2

2

÷

5

1

1

:

:

5

FCC TEST REPORT

FOR

Fujian EastWest Lifewit Technology Co., LTD

Wireless Microphone

Test Model: SD310

Fujian EastWest Lifewit Technology Co., LTD

Prepared for

Address

Prepared by

Address

Tel Fax Web Mail

Date of receipt of test sample Number of tested samples Sample No. Serial number Date of Test Date of Report Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com

Mid-Ave, Fuzhou High-tech Zone, Fuzhou, Fujian Province

Rm 1201-1205, Bld 18, 2nd Phase of Innovation Park, no.7, Wulongjiang

November 14, 2022 2 A101022004-1, A101022004-2 Prototype November 14, 2022 ~ December 30, 2022 January 04, 2023

trille mar Lab	FCC TEST REPORT		
	CC CFR 47 PART 15 C (15.249)		
Report Reference No	LCSA101022004EA		
Date of Issue	January 04, 2023		
Testing Laboratory Name :	Shenzhen LCS Compliance Testing Laboratory Ltd		
	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China		
	Full application of Harmonised standards		
Testing Location/ Procedure	Partial application of Harmonised standards		
to HI ME MIRE DA	Other standard testing method		
Applicant's Name	Fujian EastWest Lifewit Technology Co., LTD		
Address	Rm 1201-1205, Bld 18, 2nd Phase of Innovation Park, no.7, Wulongjiang Mid-Ave, Fuzhou High-tech Zone, Fuzhou, Fujian Province		
Test Specification			
Standard	FCC CFR 47 PART 15 C(15.249) / ANSI C63.10: 2013		
Test Report Form No	LCSEMC-1.0		
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.		
Master TRF	Dated 2011-03		
This publication may be reproduced Shenzhen LCS Compliance Testing La material. Shenzhen LCS Compliance	aboratory Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the aboratory Ltd. is acknowledged as copyright owner and source of the e Testing Laboratory Ltd. takes no responsibility for and will no from the reader's interpretation of the reproduced material due to it		
Test Item Description	Wireless Microphone		
Trade Mark	TONOR		
Test Model	SD310		
Dotingo Los Testino	Input: DC 5V, 2A DC 3.7V by Rechargeable Li-Polymer Battery(1200mAh)		
	Positive		

	FCC TEST REPO	
Test Report N	o.: LCSA101022004EA	<u>January 04, 2023</u> Date of issue
Test Model	: SD310	
EUT	: Wireless Microphone	其語检测器粉
Applicant	: Fujian EastWest Lifewit	t Technology Co., LTD
Address		2nd Phase of Innovation Park, no.7, uzhou High-tech Zone, Fuzhou, Fujian
Telephone	: /	
Fax	: /	
Manufacturer	: Fujian EastWest Lifewit	t Technology Co., LTD
Address		2nd Phase of Innovation Park, no.7, uzhou High-tech Zone, Fuzhou, Fujian
Telephone	: /	
Fax	: /	
Factory	: Dongguan Suoda Elect	ronic Technology Co., Ltd
Address	: Room 101, No.1 Xingfen Guangdong Province	g Road, Fenggang Town, Dongguan City,
Telephone		可給測股份
Fax		LCS Tosting Lab

Test Result

Positive

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: LCSA101022004EA

Revision History

	Revisio	n History	
Report Version	Issue Date	Revision Content	Revised By
000	January 04, 2023	Initial Issue	

	Page 5 of 43	FCC ID: 2AZNY-SI	D310	Report No.: LCSA1	01022004EA	
		TABLE OF CON	TENTS			
1. GEN	ERAL INFORMATIO	ON	<u> </u>	ang Lar	12 Mussing La	6
		st				
		cility				
		urement uncertainty				
1.6. N 1 7 F	leasurement Uncerta	inty des				7
		•••••••••••••••••••••••••••••••••••••••				
		res				
		VSI ics 1000				
3. CON	NECTION DIAGRA	M OF TEST SYSTEM	Λ			10
		Э				
		atics				
		ns				
	•	ESULTS				
		NT				
J. ANTE		TED EMISSIONS	- R 197	en la b		12 12
		MEASUREMENT				
		DGE TESTING				
9. 99%	OCCUPIED BAND	WIDTH AND 20 DB E	SANDWIDT	H MEASUREME	ENT	4
10. LIS ⁻	T OF MEASURING	EQUIPMENT		•••••		7
11. TES	ST SETUP PHOTOG	GRAPHS OF THE EU	/T		••••••	8
12. EXT	TERIOR PHOTOGR	APHS OF THE EUT.		••••••		8
13. INT	ERIOR PHOTOGRA	APHS OF THE EUT		•••••		8

Report No.: LCSA101022004EA

1. GENERAL INFORMATION

1.1 Description of D	evice (EUT)		
EUT	: Wireless Microphone		
Test Model	: SD310		
Power Supply	: Input: DC 5V, 2A DC 3.7V by Rechargeable	Li-Polymer Battery(1200mAh)
Hardware Version	: 310TX-V5.0		
Software Version	: 0x588A8A-SOP14		
Frequency Range	: 915.6MHz ~ 926.8MHz		1.012.211
Channel Spacing	: 0.8MHz		LCS
Channel Number	: 15 channels		
Modulation Type	: GFSK		
Antenna Description	: PCB Antenna, 0.52dBi(Ma	x.)	
Frequency Range	: 902.8MHz ~ 914MHz		
Channel Spacing	: 0.8MHz		
Channel Number	: 15 channels		
Modulation Type	: GFSK		
Antenna Description	: PCB Antenna, 0.52dBi(Ma	x.)	

1.2. Support Equipment List

Support Equipment	List			
Manufacturer	Description	Model	Serial Number	Certificate
OPPO	Adapter	OP52KAUH		FCC

Note: The adapter is supplied by lab and only use tested.

1.3. External I/O

I/O Port Description	Quantity	Cable
Type-C USB Port	1	USB Cable: 0.8m, unshielded

1.4. Description of Test Facility

NVLAP Accreditation Code is 600167-0.

FCC Designation Number is CN5024.

CAB identifier is CN0071.

CNAS Registration Number is L4595.

Test Firm Registration Number: 254912.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
en Ita		9KHz~30MHz	±3.10dB	(1)
		30MHz~200MHz	±2.96dB	(1)
Radiation Uncertainty	:[200MHz~1000MHz	±3.10dB	(1)
		1GHz~26.5GHz	±3.80dB	(1)
		26.5GHz~40GHz	±3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	±1.63dB	(1)
Power disturbance	:	30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

Page 8 of 43

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

All test modes were tested, only the result of the worst case was recorded in the report. ***Note: Using a temporary antenna connector for the EUT when conducted measurements are performed.

	Mode of Operations	Transmitting Frequency (MHz)
		915.6
		921.2
	OFOK	926.8
	GFSK	902.8
		908.4
Wel		914
-102	For Conducte	ed Emission
	Test Mode	TX Mode
	For Radiate	d Emission
	Test Mode	TX Mode

Detail Channel as belows:

Channel	Frequency(MHz)	Channel	Frequency(MHz)	
1	915.6	9	922.8	
2	916.4	10	923.6	
3	917.2	11	924.4	- 115
4	918.0	12	925.2	THE MILES TH
6 ¹⁰⁹ 5	918.8	13 13 sting	926.0	L'MN Tosting La
6	919.6	14	922.8	10.0 1
7	920.4	15	926.8	
8	921.2			

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	902.8	9	909.2
2	903.6	10	910.0
3	904.4	11	910.8
4	905.2	12	911.6
5	906.0	13	912.4
6	906.8	14	913.2
	907.6	15 Testing	914
8	908.4		

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10: 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.249 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz and 1.5 m above ground plane above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013.

2.4. Test Sample

The application provides 2 samples to meet requirement;

Scan code to check authenticity

Sample Number	Description
Sample 1(A101022004-1)	Engineer sample – continuous transmit
Sample 2(A101022004-2)	Normal sample – Intermittent transmit

3. CONNECTION DIAGRAM OF TEST SYSTEM

3.1. Justification

The system was configured for testing in a continuous transmit condition. Continuous transmitting was pre-programmed. It'll keep transmitting with modulated signal at the lowest channel by installing the batter. When press the "up" button, it'll move to the next channel. Repeat press "up" button, it'll transmitting at each of the channel used.

- 3.2. EUT Exercise Software
 - EUT will Test instruction packet sending
- 3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT. 立讯检测段份


3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard, ECC I	Part 15 Subpart C §15.249	NST 102 1
FCC Rules	Description Of Test	Result
§15.203	Antenna Requirement	Compliant
§15.207(a)	Power Line Conducted Emissions	Compliant
§15.205(a), §15.209(a), §15.249(a), §15.249(c)	Radiated Emissions Measurement	Compliant
§15.249 (d)	Band Edges Measurement	Compliant
§2.1049	99% and 20 dB Bandwidth	Compliant

5. ANTENNA REQUIREMENT

5.1. Standard Applicable

According to § 15.203 and RSS-Gen, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

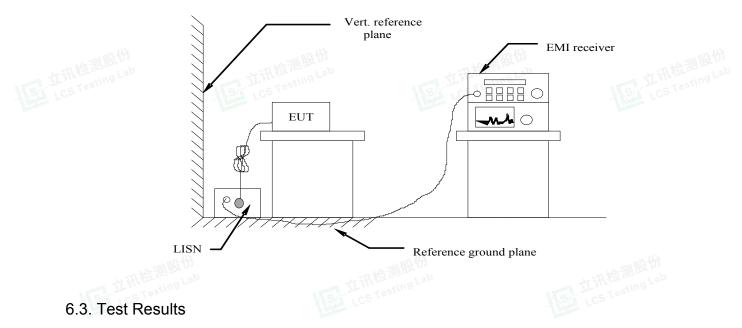
5.2. Antenna Connected Construction

The EUT use Internal Antenna(PCB Antenna) and maximum antenna gain is 0.52dBi, antenna cannot replacement, meets FCC Part §15.203 antenna requirement. Please see EUT photo for details.

5.3. Results

Compliance

6. POWER LINE CONDUCTED EMISSIONS

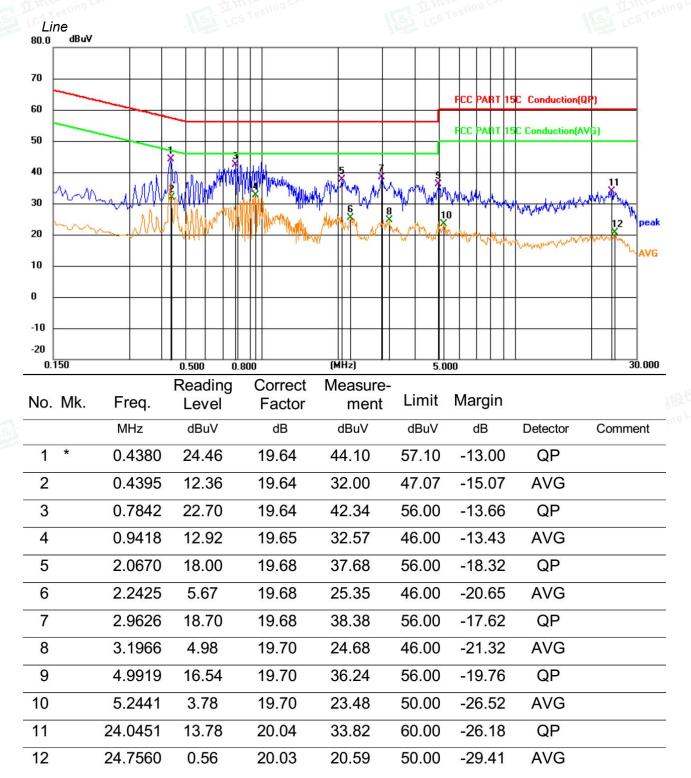

6.1. Standard Applicable

According to §15.207 (a) & RSS-Gen § 8.8: For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

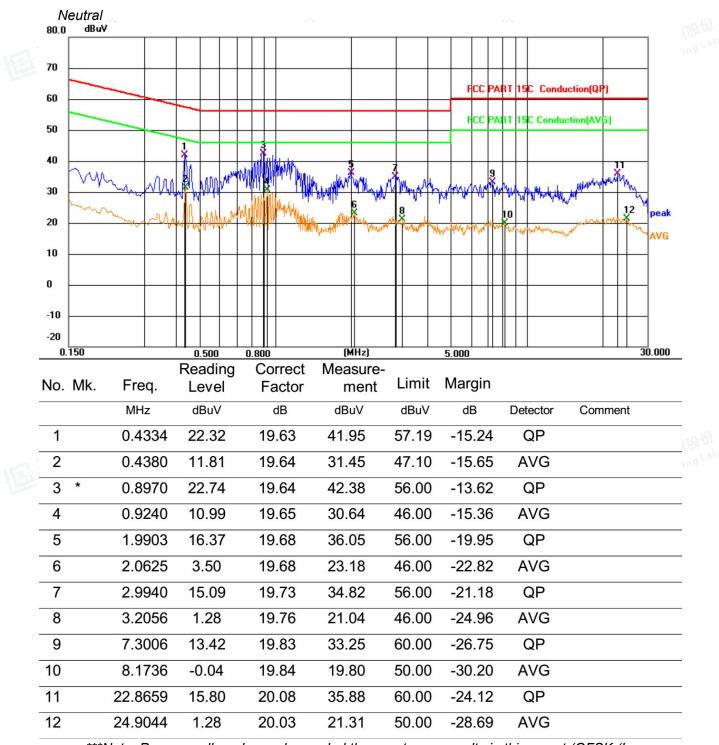
	Frequency Range	Limits	; (dBµV)	and the
	(MHz)	Quasi-peak	Average	STORE W
A ILV	0.15 to 0.50	66 to 56	56 to 46	esting La
21 rc	0.50 to 5	56	46	
	5 to 30	60	50]

* Decreasing linearly with the logarithm of the frequency

6.2. Block Diagram of Test Setup


PASS.

The test data please refer to following page.


Temperature	23.5 ℃	Humidity	53.2%
Test Engineer	Ling Zhu		

AC Conducted Emission of Adapter @ AC 120V/60Hz @ GFSK (Low Channel) (worst case)

***Note: Pre-scan all modes and recorded the worst case results in this report (GFSK (Low Channel).

Measurement= Reading + Correct Factor, Margin = Measurement – Limit. Correct Factor=Lisn Factor+Cable Factor

7. RADIATED EMISSION MEASUREMENT

7.1. Standard Applicable

According to FCC § 15.249: Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) and 15.249 limit in the table below has to be followed.

Fundamental Frequency	Field Strength of fundamental (millivolts/meter)	Field Strength of harmonics (microvolts/meter)
902-928MHz	50 50	500 05
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	aing Lab 3 Triffie an
216~960	200	3
Above 960	500	3

According to RSS-210 B.10:

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively.

The field strength limits shall be measured using an average detector, except for the fundamental emission in the frequency band 902-928 MHz, which is based on measurements using an International Special Committee on Radio Interference (CISPR) quasi-peak detector.

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

7.2. Instruments Setting

Please refer to equipment list in this report. The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP
Chart Chan Engineering	1GHz~10GHz / RB/VB 1MHz/3MHz for PK
Start ~ Stop Frequency	1MHz/10Hz for AV

7.3. Test Procedure

1) Sequence of testing 9 kHz to 30 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 1.0 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

--- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The turntable rotates from 0° to 315° using 45° steps.

- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

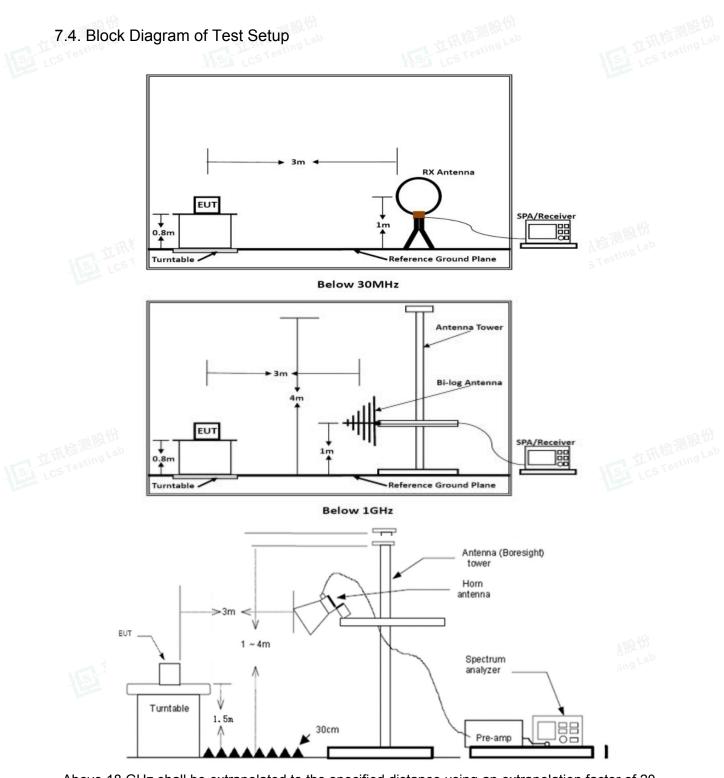
Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

--- The final measurement will be performed with minimum the six highest peaks.


--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position $(\pm 45^{\circ})$ and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

7.5 EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

7.6. Test Results of Radiated Emissions (9 KHz~30 MHz)

ang Lan	TING Lang Lan	TLW - ung L	The second second
Temperature	23.8 ℃	Humidity	52.1%
Test Engineer	Ling Zhu		

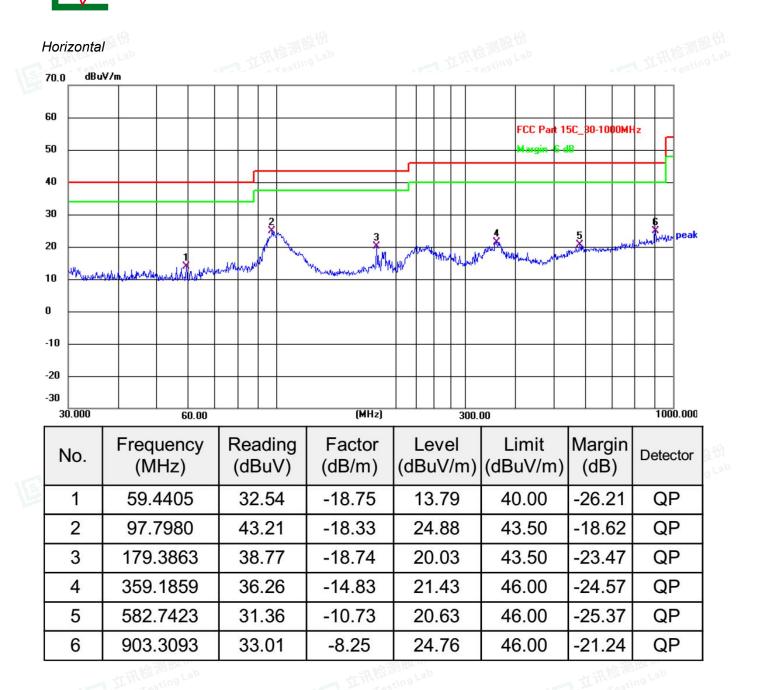
Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

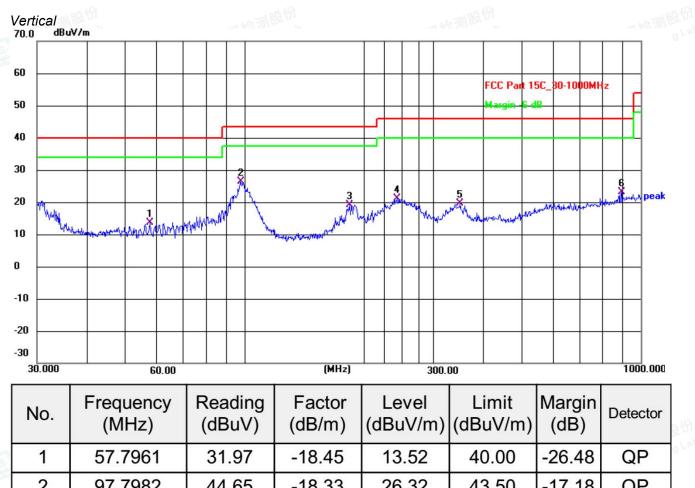
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor.

7.7. Test Results of Radiated Emissions (30 MHz - 1000 MHz)


Temperature	23.8 ℃	Humidity	52.1%
Test Engineer	Ling Zhu		



Report No.: LCSA101022004EA

1	57.7961	31.97	-18.45	13.52	40.00	-26.48	QP
2	97.7982	44.65	-18.33	26.32	43.50	-17.18	QP
3	184.4898	37.72	-18.54	19.18	43.50	-24.32	QP
4	243.3771	37.02	-15.90	21.12	46.00	-24.88	QP
5	350.4766	34.43	-14.87	19.56	46.00	-26.44	QP
6	893.8565	31.47	-8.40	23.07	46.00	-22.93	QP

Pre-scan all modes and recorded the worst case results in this report (Low Channel).
Emission level (dBuV/m) = 20 log Emission level (uV/m)

3). Level = Reading + Factor, Margin = Level – Limit,

Factor = Antenna Factor + Cable Loss - Preamp Factor

7.8. Results for Radiated Emissions (1 – 10 GHz)

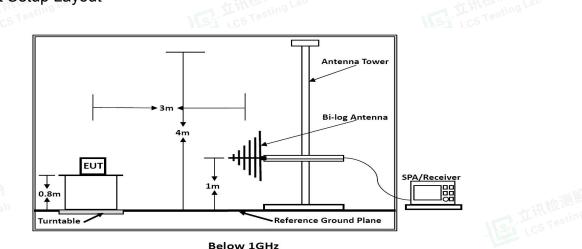
915.6MHz

915.6MF	Ηz		. :n 16	de la Milli		. m the	dered		
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1831.20	53.09	33.06	35.04	3.94	55.05	74.00	-18.95	Peak	Horizontal
1831.20	45.10	33.06	35.04	3.94	47.06	54.00	-6.94	Average	Horizontal
1831.20	53.17	33.06	35.04	3.94	55.13	74.00	-18.87	Peak	Vertical
1831.20	42.10	33.06	35.04	3.94	44.06	54.00	-9.94	Average	Vertical
921.2MF	lz							· •	
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1842.40	56.22	33.16	35.15	3.96	58.19	74.00	-15.81	Peak	Horizontal
1842.40	45.18	33.16	35.15	3.96	47.15	[©] 54.00	-6.85	Average	Horizontal
1842.40	55.31	33.16	35.15	3.96	57.28	74.00	-16.72	Peak	Vertical
1842.40	45.23	33.16	35.15	3.96	47.20	54.00	-6.80	Average	Vertical
926.8MF								. <u> </u>	
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1853.60	55.17	33.26	35.14	3.98	57.27	74.00	-16.73	Peak	Horizontal
1853.60	42.11	33.26	35.14	3.98	44.21	54.00	-9.79	Average	Horizontal
1853.60	53.66	33.26	35.14	3.98	55.76	74.00	-18.24	Peak	Vertical
1853.60	43.31	33.26	35.14	3.98	45.41	54.00	-8.59	Average	Vertical
902.8MF				an the	1	1	St. and Barrow	. .	. and
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1805.60	55.83	33.06	35.04	3.94	57.79	74.00	-16.21	Peak	Horizontal
1805.60	41.34	33.06	35.04	3.94	43.30	54.00	-10.70	Average	Horizontal
1805.60	55.53	33.06	35.04	3.94	57.49	74.00	-16.51	Peak	Vertical
1805.60	42.53	33.06	35.04	3.94	44.49	54.00	-9.51	Average	Vertical
908.4MF		00.00	00.01	0.01	11110	01100	0.01	, nonago	, or trout
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1816.80	58.30	33.16	35.15	3.96	60.27	74.00	-13.73	Peak	Horizontal
1816.80	42.88	33.16	35.15	3.96	44.85	54.00	-9.15	Average	Horizontal
1816.80	56.59	33.16	35.15	3.96	58.56	74.00	-15.44	Peak	Vertical
1816.80	45.66	33.16	35.15	3.96	47.63	54.00	-6.37	Average	Vertical
914MHz				Links					
Freq. MHz	Reading Level dBuV	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol.
1828.00	58.44	33.26	35.14	3.98	60.54	74.00	-13.46	Peak	Horizontal
1828.00	41.19	33.26	35.14	3.98	43.29	54.00	-10.71	Average	Horizontal
1828.00	53.67	33.26	35.14	3.98	55.77	74.00	-18.23	Peak	Vertical
1828.00	41.87	33.26	35.14	3.98	43.97	54.00	-10.03	Average	Vertical
Notes:								· · · · · · · · · · · · · · · · · · ·	

Measuring frequencies from 9 KHz - 10th harmonic (ex. 10GHz), No emission found between lowest internal used/generated frequency to 30 MHz.
Radiated emissions measured in frequency range from 9 KHz - 10th harmonic (ex. 10GHz) were made with an instrument using Peak detector mode.
Margin=Reading level+Cab loss+Ant Fac-Pre Fac-Limit.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity 3**9**2


8. RESULTS FOR BAND EDGE TESTING

8.1. Standard Applicable

According to FCC §15.249 (d): Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to RSS-210 B.10 (b): Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

8.2. Test Setup Layout

8.3. Measuring Instruments and Setting

Please refer to equipment list in this report. The following table is the setting of Spectrum Analyzer.

8.4. Test Procedures

3) Sequence of testing 30MHz to 1000 MHz

Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

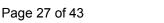
--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.

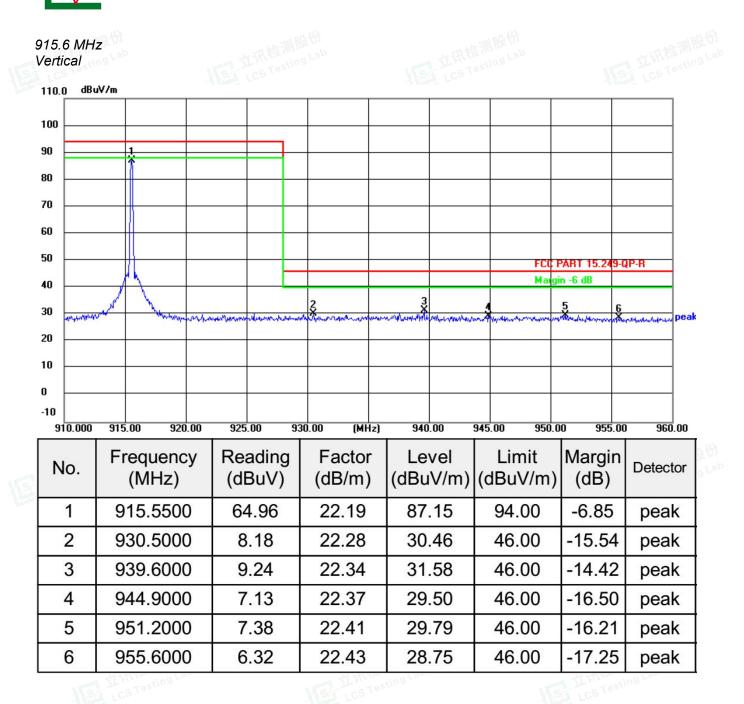
--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

8.5. Measuring Instruments and Setting


145 22	1ser Lan	the fill the stand have	At the said	3 M	Prairie a Li
NSA CS	Temperature	23.5 ℃	Humidity	52.1%	Leethe
Pres -	Test Engineer	Ling Zhu			

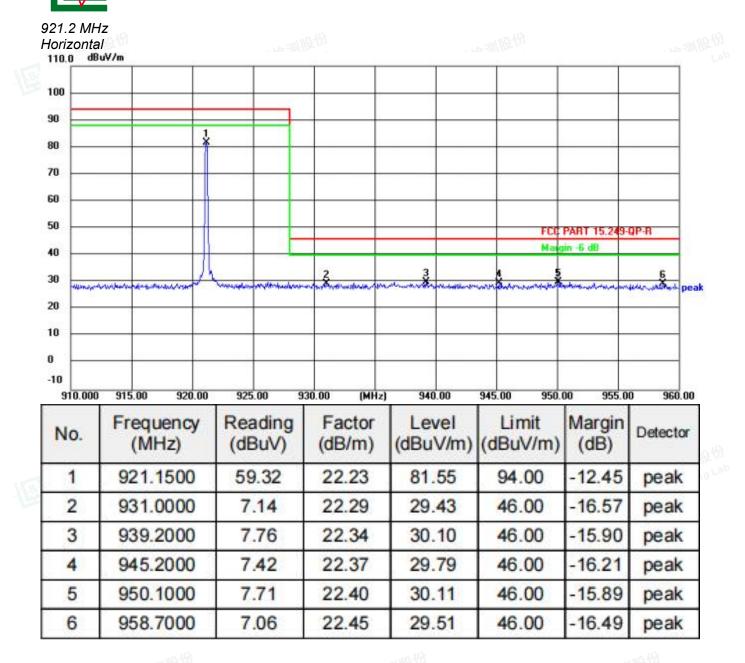
PASS


Remark:

- 1. The other emission levels were very low against the limit.
- 2. Detector PK is setting spectrum/receiver. RBW=100KHz/VBW=300KHz/Sweep time=Auto/Detector=Peak;
- 3. Please refer to following test plots;

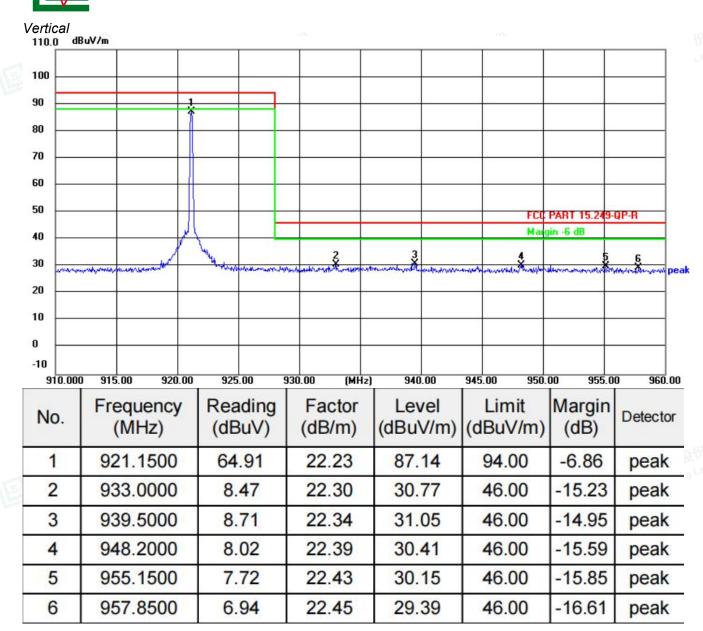
Report No.: LCSA101022004EA

Page 28 of 43

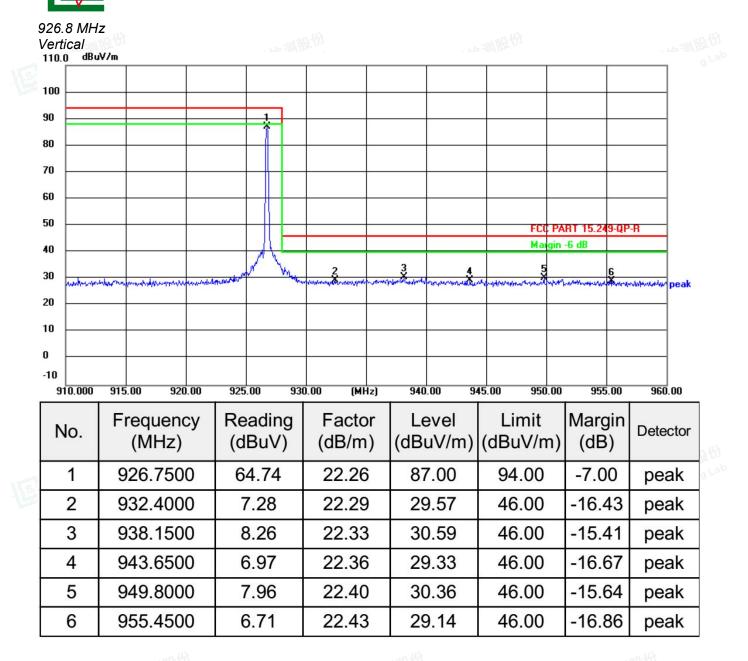

Report No.: LCSA101022004EA

	Horiz	onta	NE HI							
	110.0	dBu	W/m							
	90 80 -		 X							
	70 – 60 –									
	50 - 40 -				2	3	FCC PA Maigin			
	20	ler Universit	with the second second	Manimikan sakilan na kasilari ka	2 norther taken warden tra	and a construction of the second	. Manufana ana ana ana ana ana ana ana ana ana	eneret in the second	Www.www.peak	
	10 - 0 - -10									
		0.000	915.00 920.00	925.00 93	0.00 (MHz)	940.00 9	45.00 950.00	955.00	960.00	_
	N	0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	g (b) g Lab
5	,	1	915.5500	60.56	22.19	82.75	94.00	-11.25	peak	1
	2	2	932.0000	8.19	22.29	30.48	46.00	-15.52	peak	1
	3	3	938.0000	8.08	22.33	30.41	46.00	-15.59	peak	1
	2	4	944.7000	7.49	22.37	29.86	46.00	-16.14	peak	1
	Ę	5	950.5500	7.53	22.40	29.93	46.00	-16.07	peak	1
	6	6	956.1000	7.24	22.44	29.68	46.00	-16.32	peak]

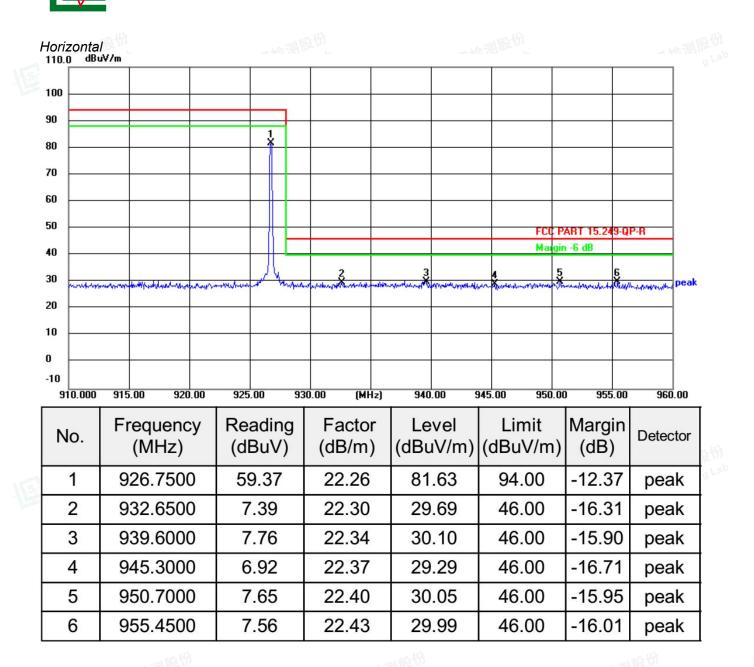
立讯检测



Report No.: LCSA101022004EA



Page 1 of 43


Report No.: LCSA101022004EA

Page 3 of 43

Report No.: LCSA101022004EA

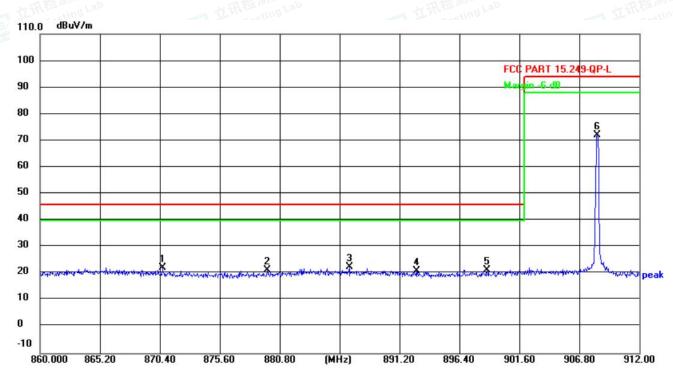
000 01/14

Report No.: LCSA101022004EA

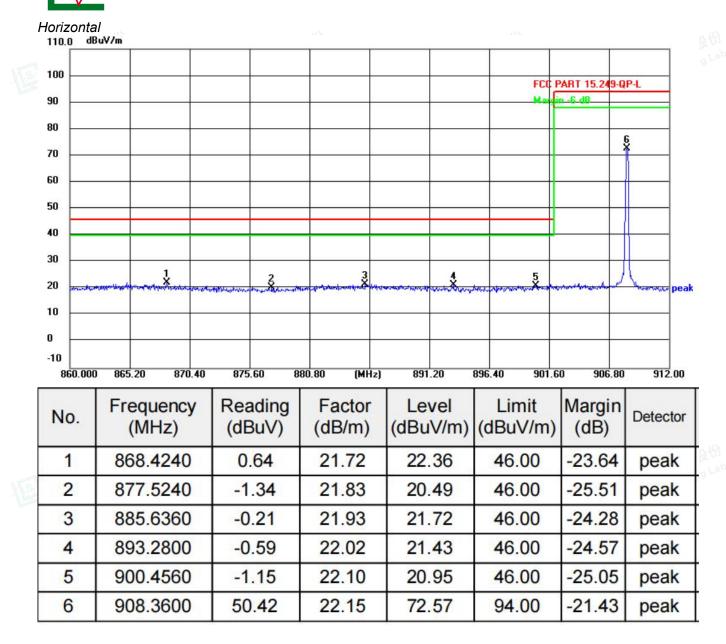
	.8MHz tical odBuʻ				1		- L	e mili	92 (F)		1			. sb	:MIR	份	T) الله حد 1	
100																FC	C PA	RT 15.2	49-QP	4	-	
90																		-6.dB	- 4.			
80																	6				-	
70																	6 X				-	
60	<u> </u>																Щ				-	
50																			-		-	
40																	₽╢				-	
30																	Н		-		-	
20	1 X	-	hat an	2	-	der/an	E.	North PH	-	4 X	ward the	and the second second	and the second	Madinga	5	are gaining	2	Wayne word		t-th-t-spin-philing	, peak	
10																	_				-	
0																	-				-	
-10 80	50.000	865	.20	870).40	875	.60	880	.80	(Mł	Hz)	891	.20	89	6.40	90	1.60	90	6.80	91:	2.00	
١	۱o.	F		uen Hz)	•		eadi Bu∖	-		acto IB/m		2001-022	evel uV/i	~		imit uV/r		Mar (dE		Dete	ector	0
	1	8	862.	548	0		1.06	;	2	1.65	5	2	2.71		4	6.00)	-23.	29	ре	ak	9
	2	8	868.	580	0	(0.40)	2	1.72	2	2	2.12	2	4	6.00)	-23.	88	ре	ak	
	3	8	878.	044	0	8-	0.5	5	2	1.84	4	2	1.29)	4	6.00)	-24.	71	pe	ak	
	4	8	883.	972	20	-	0.07	7	2	1.91	1	2	1.84		4	6.00)	-24.	16	ре	ak	
	5	8	896.	764	0	-	0.44	1	2	2.06	6	2	1.62	2	4	6.00)	-24.	38	ре	ak	
	6	g	02.	744	0	5	1.2	4	2	2.12	2	73	3.36	;	94	4.00		-20.	64	pe	ak	



Page 5 of 43

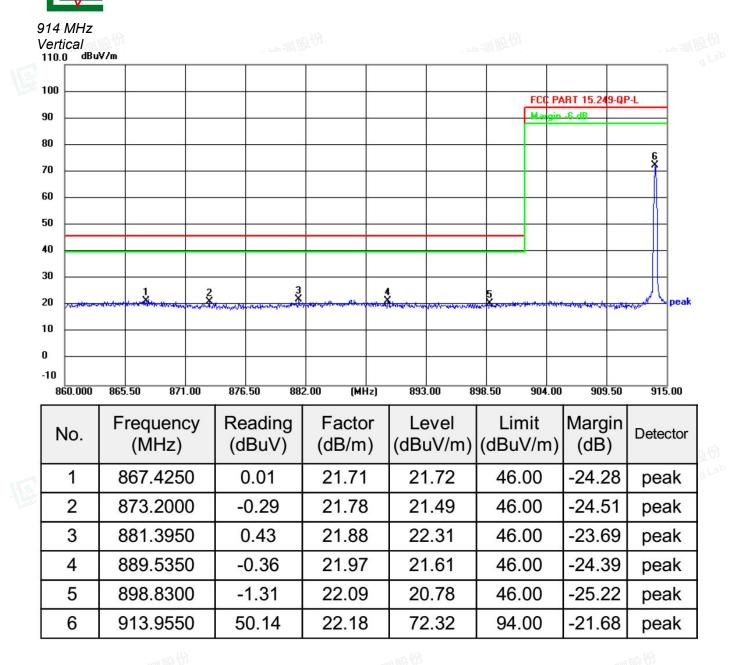

Report No.: LCSA101022004EA

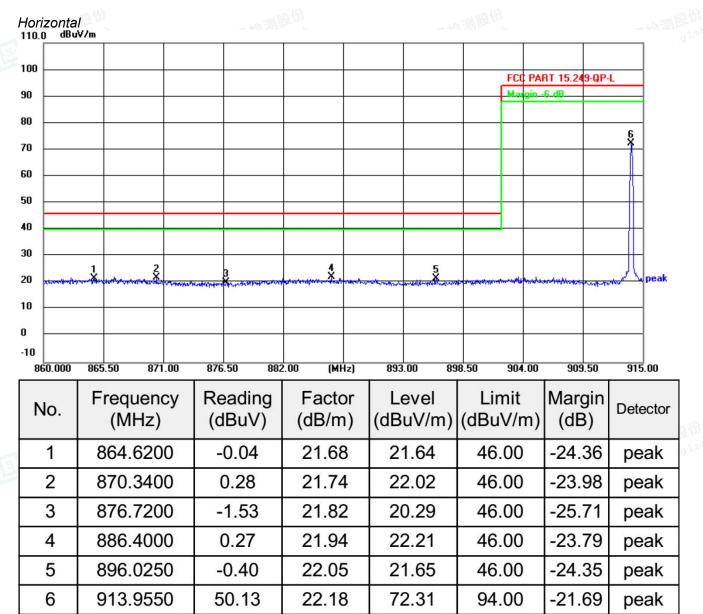
	lorizo	ntal dBu		ña.					A UTE es	8.69 				1	in hR	:1016	5	1		1			
	100 -															+	FC	¢ P/	ART 15.2	49-QF	Р-L	-	
	90 -															-	Ma		-6 dB			-	
	80															_		6				-	
	70 -																	6 X		-		-	
	60 –																					-	
	50 -																					-	
	40																	₽∤				-	
	30 –																	$\left \right $				-	
	20 📩	and the state	-	1 - X	the states	- warma	2 Annution	and the second sec	an an an	3	transfer of the state	~ + m,	4 X	-	5	con prisecono	www.hard	a l	Hundre	-	খ িলক্ষান্সান	m peak	
	10 -															_		-				-	
	o -															_				-		-	
	-10 860.	000	865	.20	870	.40	875	.60	88	0.80	(Mł	łz)	891	.20	8	96.40	90	1.60	90	6.80	91	12.00	
ſ			Fr	equ	Jenc	:v	Re	adi	ng	Fa	acto	r	Le	evel		L	imit		Marg	qin			
	No	•			Hz)			Bu\	-	(d	B/m)	(dBi	uV/r	n)	(dB	uV/n	n)			Det	ector	249
5	1		8	66.	552)	C).24		2	1.70)	21	.94		46	6.00		-24.	06	ре	eak	0 r.
	2	0 8	8	73.	000	C	-(0.66	5	2	1.78		21	1.12	8	46	5.00		-24.	88	pe	eak	
	3	l	8	81.	684)	-().7′	1	2	1.88	1	21	1.17		46	6.00		-24.	83	ре	eak	
	4	1	8	88.	132)	C).13	5	2	1.96	i	22	2.09		46	6.00		-23.	91	ре	eak	1
	5		8	95.	204)	-().83	3	22	2.04		21	.21		46	6.00		-24.	79	ре	eak	
	6		9	02.	744()	5	1.5	ô	22	2.12		73	8.68		94	4.00		-20.	32	ре	eak	



908.4 MHz Vertical

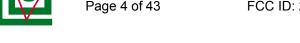
5	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
Less .	1	870.6080	0.42	21.75	22.17	46.00	-23.83	peak
	2	879.7080	-0.57	21.86	21.29	46.00	-24.71	peak
	3	886.8320	0.62	21.94	22.56	46.00	-23.44	peak
	4	892.6560	-0.97	22.01	21.04	46.00	-24.96	peak
	5	898.7920	-0.88	22.09	21.21	46.00	-24.79	peak
	6	908.3600	49.93	22.15	72.08	94.00	-21.92	peak
•	E	LCS TOSTING LOU		LET LOS TO	sting Lav	15	LCS Test	luä _{Pan}




Report No.: LCSA101022004EA

Page 3 of 43

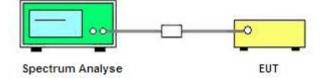
Report No.: LCSA101022004EA


Notes:

1) Level (dBuv/m) =Reading+Factor;

2) Margin(dB)=Level-Limit;

3) Factor=Ant Fac-Pre Fac+Cab Loss.


9. 99% OCCUPIED BANDWIDTH AND 20 DB BANDWIDTH MEASUREMENT

9.1. Standard Applicable

According to § 2.1049 and RSS-Gen section 6.7 "The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs."

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

9.2. Block Diagram of Test Setup

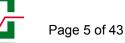
9.3. Test Procedure

Use the following spectrum analyzer settings:

Span = 1 MHz

RBW = 10 KHz

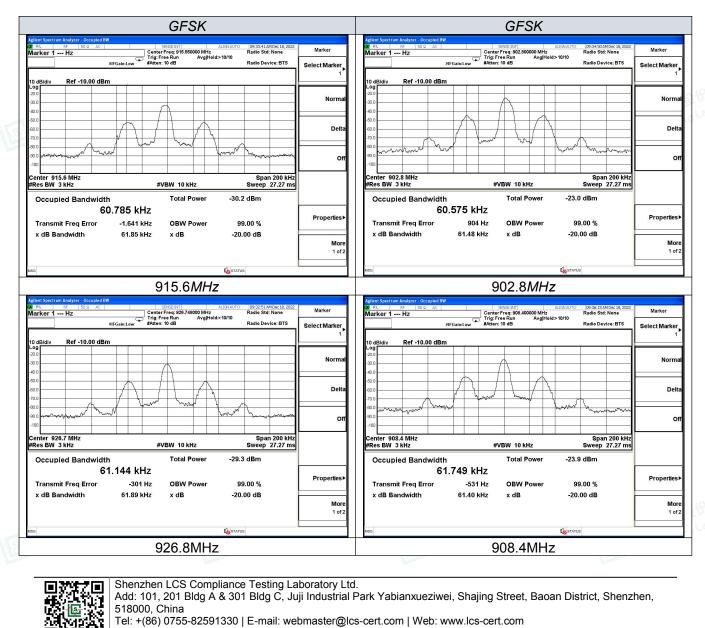
VBW = 30 KHz


Sweep = auto

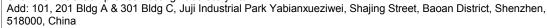
Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).


9.4. Test Results

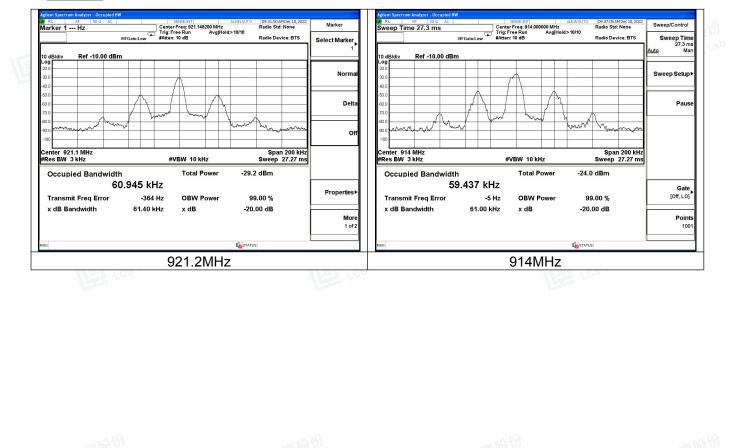
Bel mang Lab	The sung Lab	T HANDEL	Stirty - de
Temperature	24.6 ℃	Humidity	54.1%
Test Engineer	Ling Zhu		


Tes	st Result of 99% and 20	dB Bandwidth Measure	ement
Test Frequency	20dB Bandwidth	99% Bandwidth	Limit
(MHz)	(KHz)	(KHz)	(MHz)
915.6	61.85	60.785	Non-Specified
921.2	61.40	60.945	Non-Specified
926.8	61.89	61.144	Non-Specified
902.8	61.48	60.575	Non-Specified
908.4	61.40	61.749	Non-Specified
914	61.00	59.437	Non-Specified

Remark:

- 1. Test results including cable loss;
- 2. Please refer following test plots;

Shenzhen LCS Compliance Testing Laboratory Ltd.


Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Page 6 of 43

FCC ID: 2AZNY-SD310

Report No.: LCSA101022004EA

Page 7 of 43

10. LIST OF MEASURING EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	MXA Signal Analyzer	Agilent	N9020A	MY49100060	2022-10-29	2023-10-28
2	DC Power Supply	Agilent	E3642A	N/A	2022-10-29	2023-10-28
3	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2022-10-06	2023-10-05
4	EMI Test Software	AUDIX	E3	1	N/A	N/A
5	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2022-06-16	2023-06-15
6	Positioning Controller	Max-Full	MF7802BS	MF780208586	N/A	N/A
7	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	00005	2021-08-29	2024-08-28
8	By-log Antenna	SCHWARZBECK	VULB9163	9163-470	2021-09-12	2024-09-11
9	Horn Antenna	SCHWARZBECK	BBHA 9120D	9120D-1925	2021-09-05	2024-09-04
10	EMI Test Receiver	R&S	ESR 7	101181	2022-06-16	2023-06-15
11	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2022-10-29	2023-10-28
12	Broadband Preamplifier	1	BP-01M18G	P190501	2022-06-16	2023-06-15
13	EMI Test Receiver	R&S	ESPI	101940	2022-08-18	2023-08-17
14	Artificial Mains	R&S	ENV216	101288	2022-06-16	2023-06-15
15	10dB Attenuator	SCHWARZBECK	MTS-IMP-136	261115-001-0032	2022-06-16	2023-06-15
16	EMI Test Software	Farad	EZ	1	N/A	N/A

Report No.: LCSA101022004EA

11. TEST SETUP PHOTOGRAPHS OF THE EUT

Please refer to separated files for Test Setup Photos of the EUT.

12. EXTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for External Photos of the EUT.

13. INTERIOR PHOTOGRAPHS OF THE EUT

Please refer to separated files for Internal Photos of the EUT.

----THE END OF REPORT-----

