

TEST REPORT

Product Name: Mini Projector

C015FGE,C015****** (*=0-9, a-z, A-Z, - or

Model Number : blank, indicates for different market

purposes)

FCC ID : 2AZNP-C015FGE

Prepared for Address

Formovie (Chongqing) Innovative Technology Co., Ltd.4-401, #2 Longgang Road, Guojiatuo Area, Jiangbei

District, Chongqing, China

Prepared by

EMTEK (SHENZHEN) CO., LTD.

Address

Building 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : EN Date(s) of Tests : Au

ENS2108060161W00205R Aug 10,2021 to Sep 4,2021

Date of issue : Sep 6,2021

TABLE OF CONTENTS

1. TE	ST RESULT CERTIFICATION	3
2. EU	T DESCRIPTION	4
3. SU	MMARY OF TEST RESULT	6
4. TE	ST METHODOLOGY	7
4.1	GENERAL DESCRIPTION OF APPLIED STANDARDS	7
4.2	MEASUREMENT EQUIPMENT USED	
4.3	DESCRIPTION OF TEST MODES	
4.4	TEST SOFTWARE	9
5. FA	CILITIES AND ACCREDITATIONS	### STATE ST
5.1	FACILITIES	10
5.2	EQUIPMENT	10
5.3	LABORATORY ACCREDITATIONS AND LISTINGS	10
6. SE	TUP OF EQUIPMENT UNDER TEST	
6.1	SETUP CONFIGURATION OF EUT	11
6.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:	11
6.3	SUPPORT EQUIPMENT	12
7. DY	NAMIC FREQUENCY SELECTION REQUIREMENTS	13
7.1	APPLICABLE STANDARD	13
7.2	CONFORMANCE LIMIT	13
7.3	TEST CONFIGURATION	
7.4	Test parameters of DFS test signal	
7.5		
7.6		
7.7	TEST PROCEDURE	16
8. TE	ST RESULT	17
8.1	DETAILED TEST RESULTS	17
8.2	RADAR WAVEFORM	
83	IN-SERVICE MONITORING	20

1. TEST RESULT CERTIFICATION

Applicant : Formovie (Chongqing) Innovative Technology Co., Ltd.

Address : 4-401, #2 Longgang Road, Guojiatuo Area, Jiangbei District, Chongging, China

Manufacturer : Formovie (Chongqing) Innovative Technology Co., Ltd.

Address : 4-401, #2 Longgang Road, Guojiatuo Area, Jiangbei District, Chongqing, China

EUT : Mini Projector

Model Name : C015FGE,C015******* (*=0-9, a-z, A-Z, - or blank, indicates for different market

purposes)

Trademark : HEYUP, WEWATCH, Xming

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart E	PASS			

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Date of Test :	Aug 10,2021 to Sep 4,2021
Prepared by :	Severano
	Sewen Guo /Editor
Reviewer :	Sili (SHENZHEN)
	Sevin Li /Supervisor
	* * *
	ESTING
Approve & Authorized Signer:	Lisa Wang/Manager

2. EUT DESCRIPTION

Characteristics	Description				
Device style	5G WIFI (Slave equipment without radar detection function)				
Product	Mini Projector				
Model Number	C015FGE,C015******* (*=0-9, a-z, A-Z, - or blank, indicates for different market purposes) (These models are identical in circuitry and electrical, mechanical and physical construction; Only indicates for different market purposes; We chose C015FGE as the final test prototype)				
Sample number	2#				
Wifi Type					
WLAN Supported	 ⊠802.11a ⊠802.11n(20MHz channel bandwidth) ⊠802.11n(40MHz channel bandwidth) ⊠802.11ac(20MHz channel bandwidth) ⊠802.11ac(40MHz channel bandwidth) ⊠802.11ac(80MHz channel bandwidth) 				
Data Rate	⊠802.11a:54/48/36/24/18/12/9/6Mbps ⊠802.11n:up to 300 Mbps ⊠802.11ac:up to 867 Mbps				
Modulation	☑OFDM with BPSK/QPSK/16QAM/64QAM ☑OFDM with BPSK/QPSK/16QAM/64QAM				
	⊠UNII-2A: 5250MHz-5350MHz Band				
Frequency Range					
	☑UNII-2C: 5470MHz-5725MHz Band				
TPC Function	☐ Applicable ☐ Not Applicable				
device was functioned	☐Master ⊠Slave device				
Antenna Port:	⊠Antenna port 1 ⊠Antenna port 2				
Antenna Type:	FPC Antenna				
Antenna Gain:	⊠ANT 1:1.96 dBi ⊠ANT 2: 1.94 dBi				

Transmit Power:	5150MHz-5250MHz : 18.91 dBm 5250MHz-5350MHz : 18.96 dBm 5470MHz-5725MHz : 17.81 dBm 5725MHz-5850MHz : 16.74 dBm
Power Supply :	DC 11.1V from Battery
Adapter :	Model:AY65AA-W-US Input:100-240V~50/60Hz 1.5A Output:PD3.0:5V=3A,9V=3A,12V=3A,15V=3A,20V=3.25A 65W Max
Date of Received:	Aug 10,2021
Temperature Range:	0°C ~ +40°C

Note: for more details, please refer to the User's manual of the EUT.

3. SUMMARY OF TEST RESULT

Clause	Clause Test Parameter		Pass/Fail
15.407	DFS Detection Threshold	N/A	N/A
15.407	15.407 Channel Availability Check Time		N/A
15.407	Channel Move Time	Applicable	Pass
15.407	15.407 Channel Closing Transmission Time		Pass
15.407 Non- Occupancy Period		N/A	N/A
15.407 Uniform Spreading		N/A	N/A
15.407	U-NII Detection Bandwidth	N/A	N/A

4. TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 06-96

FCC 47 CFR Parts 15, Subpart E

FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

4.2 MEASUREMENT EQUIPMENT USED

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	Last Cal.	Cal. Interval
Vector Signal Generater	Agilent	N5182B	My53050553	May 17, 2021	1 Year
Analog Signal Generator	Agilent	N5171B	My53050878	May 17, 2021	1 Year
Signal Analyzer	Agilent	N9010A	My53470879	May 17, 2021	1 Year
Power Analyzer	Agilent	PS-X10-100	N/A	May 17, 2021	1 Year
Test Accessories	Agilent	PS-X10-100	N/A	May 17, 2021	1 Year

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Wifi 5G with U-NII -2A

Frequency and Channel list 802.11a, 802.11n (HT20), 802.11ac (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300		
56	5280	64	5320		

Frequency and Channel list for 802.11n (HT40), 802.11ac (HT40):

	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Ī	54	5270				
Ī	62	5310				

Frequency and Channel list for 802.11ac (HT80):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
58	5290		/		

Test Frequency and Channel for 802.11a, 802.11n (HT20), 802.11ac (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	56	5280	64	5320

Test Frequency and channel for 802.11n (HT40), 802.11ac (HT40):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	N/A	N/A	62	5310

Test Frequency and channel for 802.11ac (HT80):

Lowest F	Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
58	5290					

Wifi 5G with U-NII -2C

Frequency and Channel list for 802.11a, 802.11n (HT20), 802.11ac (HT20):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	116	5580	132	5660
104	5520	120	5600	136	5680
108	5540	124	5620	140	5700
112	5560	128	5640		

Frequency and Channel list for 802.11n (HT40), 802.11ac (HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	118	5590	134	5670
110	5550	126	5630		

Frequency and Channel list for 802.11ac (HT80):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530	122	5610		

Test Frequency and Channel for 802.11a, 802.11n (HT20), 802.11ac (HT20):

Lowest Frequency		Middle Frequency		Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	116	5580	140	5700

Test Frequency and channel for 802.11n (HT40), 802.11ac (HT40):

Lowest Frequency		Middle F	requency	Highest Frequency		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
102	5510			134	5670	

Test Frequency and channel for 802.11ac (HT80):

test residency and charmer to coerride (11100).						
Lowest Frequency		Middle F	requency	Highest Frequency		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
106	5530					

4.4 TEST SOFTWARE

Item	Software	
RF conducted:	ETSI Certification of Regulations Test Solution(V1.04.01)	
	N7607B Signal Studio for DFS Radar Profiles	

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

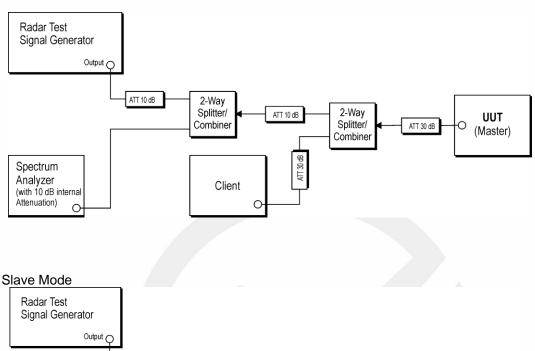
Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with preselectors and quasi-peak detectors are used to perform radiated measurements.

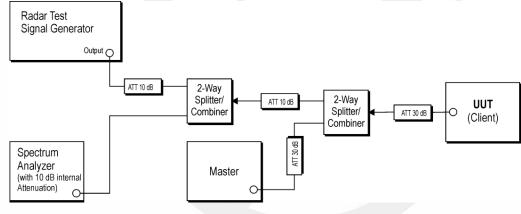
Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTINGS


Site Description		
EMC Lab.	:	Accredited by CNAS The Certificate Registration Number is L2291. The Laboratory has been assessed and proved to be in compliance with CNAS-CL01 (identical to ISO/IEC 17025:2017)
		Accredited by FCC Designation Number: CN1204 Test Firm Registration Number: 882943
		Accredited by A2LA The Certificate Number is 4321.01.
		Accredited by Industry Canada The Conformity Assessment Body Identifier is CN0008
Name of Firm Site Location	:	EMTEK (SHENZHEN) CO., LTD. Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China



6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

Master Modes

6.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –62 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.

6.3 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	FCC ID/IC
1.	Wireless Access Point	Cisco	AIR-CAP3702E-A- K9	FTX182276QD	FCC ID: LDK102087 IC:2461B-102087

Note: Software for transferring data between master and slave devices is TFGEN-1.00 (transmission rate >80%)

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. DYNAMIC FREQUENCY SELECTION REQUIREMENTS

7.1 APPLICABLE STANDARD

According to 15.407

7.2 CONFORMANCE LIMIT

The dynamic frequency selection requirement

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second periods. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

The following table lists the DFS The detection threshold values

Value
(See Notes 1, 2, and 3)
-64 dBm
-62 dBm
-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

7.3 TEST CONFIGURATION

Conducted measurements shall be used for DFS test

7.4 TEST PARAMETERS OF DFS TEST SIGNAL

The following table lists the parameters of radar test signals

Short Pulse Radar	Test Waveforms
-------------------	----------------

Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum			
Type	(µsec)	(µsec)		Percentage of	Number of			
				Successful	Trials			
				Detection				
0	1	1428	18	See Note 1	See Note 1			
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $ \left\{ \frac{\left(\frac{1}{360}\right)}{\left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}}\right)} \right\} $	60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggregate (Radar Types 1-	4)		80%	120			
Note 1. Ch	Note 1. Chart Dulgo Daday Trwa 0 should be used for the detection bandwidth test, should may							

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

Ver. 1. 0

7.5 TRANSMITTER OUTPUT POWER

THE CONDUCTED OUTPUT POWER LIST

FREQUENCY	MAX. POWER				
(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)			
5250 MHz-5350 MHz	18.96	78.70			
5470 MHz-5725 MHz	17.81	60.39			

THE MAX EIRP LIST

FREQUENCY	MAX. POWER		
(MHz)	OUTPUT POWER(dBm)	OUTPUT POWER(mW)	
5250 MHz-5350 MHz	23.92	246.60	
5470 MHz-5725 MHz	22.77	189.23	

7.6 OPERATION MODES AND REQUIREMENT TEST ITEMS

The manufacture shall state whether the EUT is capable of operating as a Master or a Slave modes, if the EUT is capable of operating in more than one operational mode then every operating mode shall be assessed separately.

Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode		
Requirement	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
Uniform Spreading	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Applicability of DFS requirements during normal operation

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		

7.7 TEST PROCEDURE

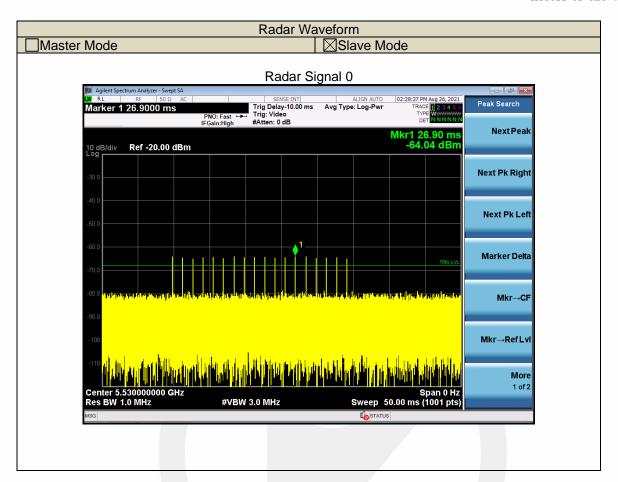
According to KDB 905462 D02v02 Section 7.

8. TEST RESULT

8.1 DETAILED TEST RESULTS

Clause	MODES	Test Parameter	Remark	Verdict
15.407		DFS Detection Threshold	N/A	N/A
15.407		Channel Availability Check Time	N/A	N/A
15.407		Channel Move Time	N/A	N/A
15.407	□Master	Channel Closing Transmission Time	N/A	N/A
15.407		Non-Occupancy Period	N/A	N/A
15.407		Uniform Spreading	N/A	N/A
15.407		U-NII Detection Bandwidth	N/A	N/A
15.407		Radar Detection Threshold	N/A	N/A
15.407		Channel Move Time	Applicable	PASS
15.407	⊠Slave	Channel Closing Transmission Time	Applicable	PASS
15.407		Non-Occupancy Period	N/A	N/A
15.407		U-NII Detection Bandwidth	N/A	N/A

8.2 RADAR WAVEFORM


Calibration:

Maximum Transmit Power is be greater than 200 milliwatt and power spectral density <10 dBm/MHz in this report, so detection threshold level is -64dBm.

The 801.11a/n have been tested, and the worst result have been recorded in the below page.

8.3 IN-SERVICE MONITORING

U-NII-Band II-A

O MI Bana I	Radar test singal type 0					
Trial ID	Pulse		Number of	Waveform	Detection(Y/N)	
Trial ID	Width(us)	PRI(us)	Pulses	Length(us)	, ,	
0	1.0	1428.0	18	25704.0	Y	
1	1.0	1428.0	18	25704.0	Y	
2	1.0	1428.0	18	25704.0	Y	
3	1.0	1428.0	18	25704.0	Y	
4	1.0	1428.0	18	25704.0	N	
5	1.0	1428.0	18	25704.0	Y	
6	1.0	1428.0	18	25704.0	Y	
7	1.0	1428.0	18	25704.0	Y	
8	1.0	1428.0	18	25704.0	Y	
9	1.0	1428.0	18	25704.0	Y	
10	1.0	1428.0	18	25704.0	Y	
11	1.0	1428.0	18	25704.0	Y	
12	1.0	1428.0	18	25704.0	Y	
13	1.0	1428.0	18	25704.0	Y	
14	1.0	1428.0	18	25704.0	Y	
15	1.0	1428.0	18	25704.0	Y	
16	1.0	1428.0	18	25704.0	Y	
17	1.0	1428.0	18	25704.0	Y	
18	1.0	1428.0	18	25704.0	Y	
19	1.0	1428.0	18	25704.0	Y	
20	1.0	1428.0	18	25704.0	N	
21	1.0	1428.0	18	25704.0	Y	
22	1.0	1428.0	18	25704.0	Y	
23	1.0	1428.0	18	25704.0	Y	
24	1.0	1428.0	18	25704.0	Y	
25	1.0	1428.0	18	25704.0	Y	
26	1.0	1428.0	18	25704.0	Y	
27	1.0	1428.0	18	25704.0	Y	
28	1.0	1428.0	18	25704.0	Y	
29	1.0	1428.0	18	25704.0	Y	
		Detection Rat	е		93%	

U-NII-Band II-C

	ar test singal	type 0			
Trial ID	Pulse		Number of	Waveform	Detection(Y/N)
Trial ID	Width(us)	PRI(us)	Pulses	Length(us)	, ,
0	1.0	1428.0	18	25704.0	Y
1	1.0	1428.0	18	25704.0	Y
2	1.0	1428.0	18	25704.0	Y
3	1.0	1428.0	18	25704.0	Y
4	1.0	1428.0	18	25704.0	Y
5	1.0	1428.0	18	25704.0	N
6	1.0	1428.0	18	25704.0	Y
7	1.0	1428.0	18	25704.0	Y
8	1.0	1428.0	18	25704.0	Y
9	1.0	1428.0	18	25704.0	Y
10	1.0	1428.0	18	25704.0	Y
11	1.0	1428.0	18	25704.0	Υ
12	1.0	1428.0	18	25704.0	Υ
13	1.0	1428.0	18	25704.0	Υ
14	1.0	1428.0	18	25704.0	Υ
15	1.0	1428.0	18	25704.0	Υ
16	1.0	1428.0	18	25704.0	N
17	1.0	1428.0	18	25704.0	Y
18	1.0	1428.0	18	25704.0	Y
19	1.0	1428.0	18	25704.0	Y
20	1.0	1428.0	18	25704.0	Y
21	1.0	1428.0	18	25704.0	Y
22	1.0	1428.0	18	25704.0	N
23	1.0	1428.0	18	25704.0	Υ
24	1.0	1428.0	18	25704.0	Υ
25	1.0	1428.0	18	25704.0	Υ
26	1.0	1428.0	18	25704.0	Y
27	1.0	1428.0	18	25704.0	Y
28	1.0	1428.0	18	25704.0	Υ
29	1.0	1428.0	18	25704.0	Υ
		Detection Rat	e		90%

In-Service Monitoring					
Channel Move Time and	☐Master Mode	⊠Slave Mode			
Channel Closing Transmission Time Operation Frequency					
Operation requestoy					
5530MHz					
0364 [0]0.2002879 In Service N	lonitor				
-20 - -30 -					
☐ -50- ☐ -50- ☐ -60-					
9 -70-					
= -80 -					
3 -100 - 6 -110 - 7 -110 - 8 -110 - 9 -110 -					
-120 - 454 50 (654) 20 (654) 20 (659) 120 20 (655) 133 (659) 133 (659) 133 (659) 133 (659) 133 (659) 133 (659)		A Sale Sale Sale Sale Sale Sale Sale Sale			
-130	s - 4 - 4 - 4 - 1 - 1 - 1				
		11.00000 12.00000 13.00000			
Time Index Info					
T0 : -0.0364 S (Radar Injection Start) T1 : 0.0000 S (Radar Injection Stop) T2 : 0.2002 S (200msec Interval) T3 : 0.5879 S (Channel Move Time) T2~T3 Bins Over Threshold: = 4 Bins		Time: 0.5879412 S Time: 0.0055994 S			
Note: T0 = Start time of Radar Burst					
T1 = end time of Radar Burst					
T2 = 200ms from end of Radar Burst					
T3 = Last traffic burst from Client (Channel Move Ti	me)				

----- END OF REPORT ------