

# JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZB-R12-2100932

# FCC RF Test Report

**Applicant:** Advanced Sport Instruments SA

Address of Applicant: Avenue de Beaumont 5, 1012 Lausanne, Switzerland

**Equipment Under Test (EUT)** 

Product Name: ASI5010

Model No.: ASI5010

Trade Mark: ASI

FCC ID: 2AZLFASI5010

**Applicable Standards:** FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 19 May, 2021

**Date of Test:** 20 May, 2021 to 06 Sep., 2022

Date of Report Issued: 07 Sep., 2022

Test Result: PASS

Tested by: \_\_\_\_\_ Date: \_\_\_\_ 07 Sep., 2022

Reviewed by: \_\_\_\_\_\_\_ Date: \_\_\_\_\_ 07 Sep., 2022

Approved by: \_\_\_\_\_ Date: \_\_\_\_ 07 Sep., 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





# 1 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 07 Sep., 2022 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |



# 2 Contents

|   |         |                                                         | Page |
|---|---------|---------------------------------------------------------|------|
| C | over Pa | geg                                                     | 1    |
| 1 | Vers    | sion                                                    | 2    |
| 2 | Con     | tents                                                   | 3    |
| 3 | Gen     | eral Information                                        | 4    |
|   | 3.1     | Client Information                                      |      |
|   | 3.2     | General Description of E.U.T.                           |      |
|   | 3.3     | Test Mode and Test Environment                          |      |
|   | 3.4     | Description of Test Auxiliary Equipment                 |      |
|   | 3.5     | Measurement Uncertainty                                 |      |
|   | 3.6     | Additions to, Deviations, or Exclusions from the Method |      |
|   | 3.7     | Laboratory Facility                                     |      |
|   | 3.8     | Laboratory Location                                     | 5    |
|   | 3.9     | Test Instruments List                                   | 6    |
| 4 | Mea     | surement Setup and Procedure                            | 8    |
|   | 4.1     | Test Channel                                            | 8    |
|   | 4.2     | Test Setup                                              | 8    |
|   | 4.3     | Test Procedure                                          | 10   |
| 5 | Test    | t Results                                               | 11   |
|   | 5.1     | Summary                                                 | 11   |
|   | 5.1.1   | •                                                       |      |
|   | 5.1.2   | ·                                                       |      |
|   | 5.2     | Antenna requirement                                     | 13   |
|   | 5.3     | AC Power Line Conducted Emission                        | 14   |
|   | 5.4     | Emissions in Restricted Frequency Bands                 | 16   |
|   | 5.5     | Emissions in Non-restricted Frequency Bands             | 20   |





# 3 General Information

## 3.1 Client Information

| Applicant:    | Advanced Sport Instruments SA                              |
|---------------|------------------------------------------------------------|
| Address:      | Avenue de Beaumont 5, 1012 Lausanne, Switzerland           |
| Manufacturer: | Advanced Sport Instruments SA                              |
| Address:      | Avenue de Beaumont 5, 1012 Lausanne, Switzerland           |
| Factory:      | Optima International Inc.                                  |
| Address:      | 4F, No. 51, Wugong 6th Road, Wugu, Taipei 24891 Taiwan ROC |

## 3.2 General Description of E.U.T.

| dion of Eloin                                                                 |
|-------------------------------------------------------------------------------|
| ASI5010                                                                       |
| ASI5010                                                                       |
| 2402 MHz - 2480 MHz                                                           |
| 40                                                                            |
| 2MHz                                                                          |
| GFSK                                                                          |
| 1 Mbps (LE 1M PHY)                                                            |
| Internal Antenna                                                              |
| 1.0dBi (declare by applicant)                                                 |
| SISO (1TX, 1RX)                                                               |
| Rechargeable Li-ion Battery DC3.7V, 1600mAh                                   |
| The test samples were provided in good working order with no visible defects. |
|                                                                               |



Report No.: JYTSZB-R12-2100932

## 3.3 Test Mode and Test Environment

| Test Mode:                     |                                                                                       |  |  |  |
|--------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| Transmitting mode              | Keep the EUT in continuous transmitting with modulation                               |  |  |  |
| Remark: For AC power line cond | ducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, |  |  |  |
| found 1 Mbps (LE 1M PHY) was   | worse case mode. The report only reflects the test data of worst mode.                |  |  |  |
| Operating Environment:         |                                                                                       |  |  |  |
| Temperature:                   | <b>15℃ ~ 35℃</b>                                                                      |  |  |  |
| Humidity:                      | 20 % ~ 75 % RH                                                                        |  |  |  |
| Atmospheric Pressure:          | 1008 mbar                                                                             |  |  |  |

## 3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

## 3.5 Measurement Uncertainty

| Parameter                                    | Expanded Uncertainty (Confidence of 95%(U = 2Uc(y))) |
|----------------------------------------------|------------------------------------------------------|
| Conducted Emission for LISN (9kHz ~ 150kHz)  | ±3.11 dB                                             |
| Conducted Emission for LISN (150kHz ~ 30MHz) | ±2.62 dB                                             |
| Radiated Emission (30MHz ~ 1GHz) (3m SAC)    | ±4.45 dB                                             |
| Radiated Emission (1GHz ~ 18GHz) (3m SAC)    | ±5.34 dB                                             |
| Radiated Emission (18GHz ~ 40GHz) (3m SAC)   | ±5.34 dB                                             |
| Radiated Emission (30MHz ~ 1GHz) (10m SAC)   | ±4.32 dB                                             |

**Note:** All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

## 3.6 Additions to, Deviations, or Exclusions from the Method

No

# 3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ■ ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### • CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

#### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <a href="https://portal.a2la.org/scopepdf/4346-01.pdf">https://portal.a2la.org/scopepdf/4346-01.pdf</a>

# 3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366





## 3.9 Test Instruments List

| Radiated Emission(3m SAC):  |                 |                           |            |                         |                          |  |
|-----------------------------|-----------------|---------------------------|------------|-------------------------|--------------------------|--|
| Test Equipment              | Manufacturer    | Model No.                 | Manage No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date (mm-dd-yy) |  |
| 3m SAC                      | ETS             | 9m*6m*6m                  | WXJ001-1   | 04-14-2021              | 04-13-2024               |  |
| DiO-mil - m Antonno         | 0-1             | \/ III D0400              | M/V 1000   | 03-11-2021              | 03-10-2022               |  |
| BiConiLog Antenna           | Schwarzbeck     | VULB9163                  | WXJ002     | 03-08-2022              | 03-07-2023               |  |
| Llara Antonna               | Schwarzbeck     | DDLIA0420D                | WV 1002 2  | 03-11-2021              | 03-10-2022               |  |
| Horn Antenna                | Schwarzbeck     | BBHA9120D                 | WXJ002-2   | 03-08-2022              | 03-07-2023               |  |
| Horn Antenna                | Schwarzbeck     | DDUA0470                  | WXJ002-5   | 04-13-2021              | 04-12-2022               |  |
| Horn Antenna                | Schwarzbeck     | BBHA9170                  | VV XJUU2-5 | 04-07-2022              | 04-06-2023               |  |
| Pre-amplifier               | Cobworzhook     | DD\/0742D                 | WV 1004 2  | 03-07-2021              | 03-06-2022               |  |
| (30MHz ~ 1GHz)              | Schwarzbeck     | BBV9743B                  | WXJ001-2   | 01-20-2022              | 01-19-2023               |  |
| Pre-amplifier               | SKET            | LNDA 04400 F0             | WXJ001-3   | 03-07-2021              | 03-06-2022               |  |
| (1GHz ~ 18GHz)              | SKET            | LNPA_0118G-50             | VV AJUU1-3 | 01-20-2022              | 01-19-2023               |  |
| Pre-amplifier               | DE Cyatam       | TRLA-180400G45B W         | WV 1002 7  | 04-10-2021              | 04-09-2022               |  |
| (18GHz ~ 40GHz)             | RF System       |                           | WXJ002-7   | 03-30-2022              | 03-29-2023               |  |
| EMI Took Doooiiyar          | Dahda 9 Cahusan | E0DD7                     | WXJ003-1   | 03-11-2021              | 03-10-2022               |  |
| EMI Test Receiver           | Rohde & Schwarz | ESRP7                     |            | 03-05-2022              | 03-04-2023               |  |
| Cnastrum Analyzar           | Rohde & Schwarz | F0D 00                    | WXJ004     | 03-03-2021              | 03-02-2022               |  |
| Spectrum Analyzer           | Ronde & Schwarz | FSP 30                    |            | 01-20-2022              | 01-19-2023               |  |
| Chaotrum Anglyzor           | KEVOLOUT        | NO040D                    | W/V 1004 0 | 11-27-2020              | 11-26-2021               |  |
| Spectrum Analyzer           | KEYSIGHT        | N9010B                    | WXJ004-2   | 10-27-2021              | 10-26-2022               |  |
| Coaxial Cable               | JYTSZ           | JYT3M-1G-NN-8M            | WXG001-4   | 03-07-2021              | 03-06-2022               |  |
| (30MHz ~ 1GHz)              | JIISZ           | JY I SIVI- I G-ININ-OIVI  | WAG001-4   | 01-20-2022              | 01-19-2023               |  |
| Coaxial Cable               | JYTSZ           | JYT3M-18G-NN-8M           | WXG001-5   | 03-07-2021              | 03-06-2022               |  |
| (1GHz ~ 18GHz)              | JIISZ           | JY I SIVI- I OG-ININ-OIVI | WAG001-5   | 01-20-2022              | 01-19-2023               |  |
| Coaxial Cable               | JYTSZ           | JYT3M-40G-SS-8M           | WXG001-7   | 04-02-2021              | 04-01-2022               |  |
| (18GHz ~ 40GHz)             | JIIOL           | J 1 131VI-4UG-33-6IVI     | WXG001-7   | 01-20-2022              | 01-19-2023               |  |
| Band Reject Filter<br>Group | Tonscend        | JS0806-F                  | WXJ089     | N/A                     |                          |  |
| Test Software               | Tonscend        | TS+                       |            | Version: 3.0.0.1        |                          |  |





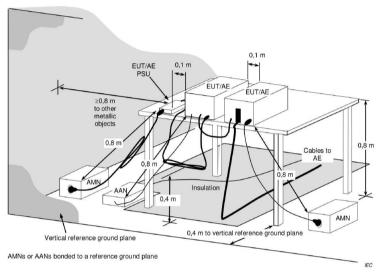
| Radiated Emission(10m SAC): |               |                           |                   |                         |                             |
|-----------------------------|---------------|---------------------------|-------------------|-------------------------|-----------------------------|
| Test Equipment              | Manufacturer  | Model No.                 | Manage No.        | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |
| 10m SAC                     | ETS           | RFSD-100-F/A              | WXJ090            | 04-28-2021              | 04-27-2024                  |
| DiCaril on Antonna          | COLIMA DZDECK | \/     D 0400             | W/V 1000 4        | 04-02-2021              | 04-01-2022                  |
| BiConiLog Antenna           | SCHWARZBECK   | VULB 9168                 | WXJ090-1          | 04-01-2022              | 03-31-2023                  |
| DiCanil og Antonna          | SCHWARZBECK   | VULB 9168                 | WXJ090-2          | 04-02-2021              | 04-01-2022                  |
| BiConiLog Antenna           | SCHWARZBECK   | VULD 9100                 | W AJU9U-2         | 03-31-2022              | 03-30-2023                  |
| FMI Toot Doggiver           | R&S           | ESR 3                     | WXJ090-3          | 04-08-2021              | 04-07-2022                  |
| EMI Test Receiver           | Ras           |                           |                   | 03-30-2022              | 03-29-2023                  |
| EMI Test Receiver           | R&S           | ESR 3                     | WXJ090-4          | 04-08-2021              | 04-07-2022                  |
| EIVII Test Receiver         | Ras           |                           |                   | 03-30-2022              | 03-29-2023                  |
| Low Pro amplifier           | Bost          | LNA 0920N                 | WXJ090-6          | 04-06-2021              | 04-05-2022                  |
| Low Pre-amplifier           | DUSI          | LINA U9ZUN                |                   | 01-20-2022              | 01-19-2023                  |
| Low Pro amplifier           | Bost          | LNA OOGONI                | WXJ090-7          | 04-06-2021              | 04-05-2022                  |
| Low Pre-amplifier           | DUSI          | LNA 0920N                 |                   | 01-20-2022              | 01-19-2023                  |
| Cable                       | Doot          | IVT10M 1C NINI 10M        | W/VC002 7         | 04-02-2021              | 04-01-2022                  |
| Cable                       | Bost          | JYT10M-1G-NN-10M          | WXG002-7          | 01-20-2022              | 01-19-2023                  |
| Coblo                       | Post          | JYT10M-1G-NN-10M WXG002-8 | W/VC000 0         | 04-02-2021              | 04-01-2022                  |
| Cable                       | Bost          |                           | 01-20-2022        | 01-19-2023              |                             |
| Test Software               | R&S           | EMC32                     | Version: 10.50.40 |                         |                             |

| Conducted Emission: |                                                  |                            |            |                    |            |
|---------------------|--------------------------------------------------|----------------------------|------------|--------------------|------------|
| Test Equipment      | Test Equipment Manufacturer Model No. Manage No. |                            | Cal. Date  | Cal. Due date      |            |
| rest Equipment      | Manuacturei                                      | Wiodei No.                 | Manage No. | (mm-dd-yy)         | (mm-dd-yy) |
| EMI Test Receiver   | THE . D                                          | 10-13-2020                 | 10-12-2021 |                    |            |
| Elvii Test Receivei | Rohde & Schwarz                                  | ESR3                       | WXJ003-2   | 10-21-2021         | 10-20-2022 |
| LICN                | Cabwarzhaak                                      | NCL I/ 0407                | QCJ001-13  | 03-18-2021         | 03-17-2022 |
| LISN                | Schwarzbeck N                                    | NSLK 8127                  | QCJ001-13  | 02-24-2022         | 02-23-2023 |
| LICN                | Dahda 9 Cahwara                                  | & Schwarz ESH3-Z5 WXJ005-1 | W/V 1005 4 | 06-18-2020         | 06-17-2022 |
| LISN                | Ronde & Schwarz                                  |                            | 03-30-2022 | 03-29-2023         |            |
| LISN Coaxial Cable  | IVTO7                                            | D/TOF 40 NIN 0M            | WVC000 4   | 03-03-2021         | 03-02-2022 |
| (9kHz ~ 30MHz)      | JYTSZ JYTCE-1G-NN-2M W                           |                            | WXG003-1   | 02-24-2022         | 02-23-2023 |
| RF Switch           | TOP PRECISION                                    | RSU0301                    | WXG003     | N/A                |            |
| Test Software       | AUDIX                                            | E3                         | \          | Version: 6.110919b |            |

| Conducted Method:            |              |                    |                           |                         |                             |            |
|------------------------------|--------------|--------------------|---------------------------|-------------------------|-----------------------------|------------|
| Test Equipment               | Manufacturer | Model No.          | Manage No.                | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |            |
| Chaotrum Angluzor            | Vovoight     | NO040D             | W/V 1004 2                | 11-27-2020              | 11-26-2021                  |            |
| Spectrum Analyzer            | Keysight     | N9010B             | N9010B WXJ004-3           | 10-27-2021              | 10-26-2022                  |            |
| DC Power Supply              | Keysight     | E3642A             | WXJ025-2                  | N                       | I/A                         |            |
| Temperature Humidity Chamber | ZHONG ZHI    | CZ-A-80D           | WXJ032-3                  | 03-19-2021              | 03-18-2023                  |            |
| Dower Detector Day           | MANDETECT    | MW100-PSB WXJ007-4 | ANDETECT MANAGO DED NAVIO | W/V 1007 4              | 11-27-2020                  | 11-26-2021 |
| Power Detector Box           | MWRFTEST     |                    | 11-19-2021                | 11-18-2022              |                             |            |
| RF Control Unit              | MWRFTEST     | MW100-RFCB         | WXG006                    | N                       | I/A                         |            |
| Test Software                | MWRFTEST     | MTS 8310           |                           | Version: 2.0.0.0        |                             |            |



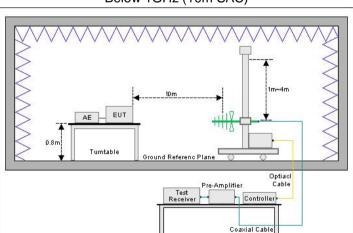
# 4 Measurement Setup and Procedure


## 4.1 Test Channel

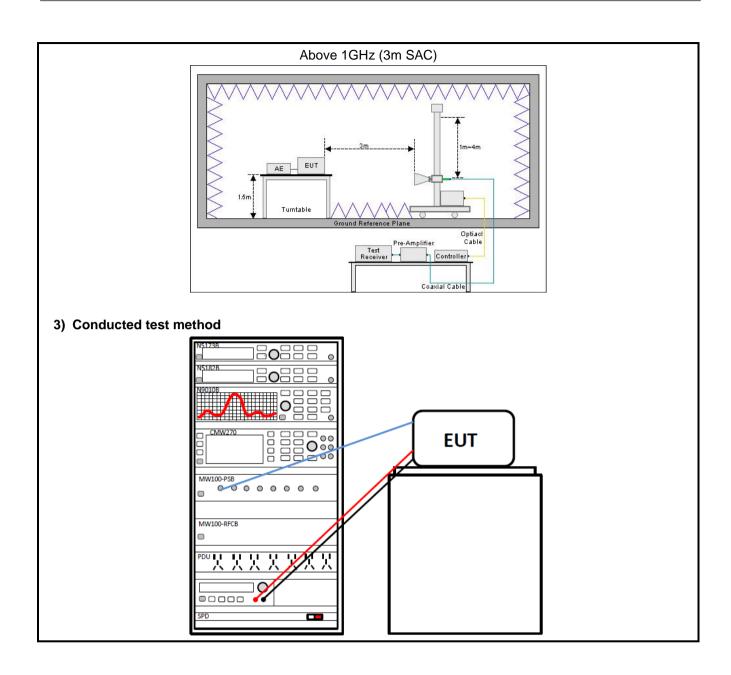
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

| Lowest channel |                    | Middle channel |                    | Highest channel |                    |
|----------------|--------------------|----------------|--------------------|-----------------|--------------------|
| Channel No.    | Frequency<br>(MHz) | Channel No.    | Frequency<br>(MHz) | Channel No.     | Frequency<br>(MHz) |
| 0              | 2402               | 20             | 2442               | 39              | 2480               |

## 4.2 Test Setup


### 1) Conducted emission measurement:




**Note:** The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.

## 2) Radiated emission measurement:

Below 1GHz (10m SAC)









# 4.3 Test Procedure

| Test method           | Test step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conducted emission    | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on</li> </ol> |
| Radiated emission     | conducted measurement.  For below 1GHz:  1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 10 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 10 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | <ol> <li>EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y &amp; Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.</li> <li>Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.</li> </ol>                                                                                     |
|                       | For above 1GHz:  1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | <ol> <li>EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y &amp; Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.</li> <li>Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.</li> </ol>                                                                                     |
| Conducted test method | <ol> <li>The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.</li> <li>The EUT is keeping in continuous transmission mode and tested in all modulation modes.</li> <li>Open the test software, prepare a test plan, and control the system through the software. After the test is completed, the test report is exported through the test software.</li> </ol>                                                                                                                                                                                                                                                                               |



# 5 Test Results

# 5.1 Summary

## 5.1.1 Clause and Data Summary

| Test items                                      | Standard clause         | Test data               | Result |
|-------------------------------------------------|-------------------------|-------------------------|--------|
| Antenna Requirement                             | 15.203<br>15.247 (b)(4) | See Section 6.2         | Pass   |
| AC Power Line Conducted Emission                | 15.207                  | See Section 6.3         | Pass   |
| Conducted Output Power                          | 15.247 (b)(3)           | Appendix A – BLE 1M PHY | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth   | 15.247 (a)(2)           | Appendix A – BLE 1M PHY | Pass   |
| Power Spectral Density                          | 15.247 (e)              | Appendix A – BLE 1M PHY | Pass   |
| Band-edge Emission Conduction Spurious Emission | 15.247 (d)              | Appendix A – BLE 1M PHY | Pass   |
| Emissions in Restricted Frequency Bands         | 15.205<br>15.247 (d)    | See Section 6.4         | Pass   |
| Emissions in Non-restricted<br>Frequency Bands  | 15.209<br>15.247(d)     | See Section 6.5         | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02



## 5.1.2 Test Limit

| Test items                                       |                                                                                                                                                          |                                                                                                                                                                                                                                            | Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nit                                                                                                                                                                         |                                                                                                                                                                                                                                                                                          |                            |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
|                                                  |                                                                                                                                                          | Frequency                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit (dB                                                                                                                                                                   | βμV)                                                                                                                                                                                                                                                                                     |                            |  |  |
|                                                  |                                                                                                                                                          | (MHz)                                                                                                                                                                                                                                      | Quas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | si-Peak                                                                                                                                                                     | Average                                                                                                                                                                                                                                                                                  |                            |  |  |
| AC Power Line Conducted                          |                                                                                                                                                          | 0.15 - 0.5                                                                                                                                                                                                                                 | 66 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56 Note 1                                                                                                                                                                   | 56 to 46 Note 1                                                                                                                                                                                                                                                                          |                            |  |  |
| Emission                                         |                                                                                                                                                          | 0.5 – 5                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 56                                                                                                                                                                          | 46                                                                                                                                                                                                                                                                                       |                            |  |  |
| Limbolott                                        |                                                                                                                                                          | 5 – 30                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                          | 50                                                                                                                                                                                                                                                                                       |                            |  |  |
|                                                  | Note 1: The limit level in dBµV decreases linearly with the logarithm of frequency.  Note 2: The more stringent limit applies at transition frequencies. |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                            |  |  |
| Conducted Output Power                           |                                                                                                                                                          | stems using digital<br>25-5850 MHz band                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the 902-928 M                                                                                                                                                               | MHz, 2400-2483.5 MHz                                                                                                                                                                                                                                                                     | Ζ,                         |  |  |
| 6dB Emission Bandwidth                           | The mi                                                                                                                                                   | nimum 6 dB bandw                                                                                                                                                                                                                           | vidth shall be a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | it least 500 kH                                                                                                                                                             | lz.                                                                                                                                                                                                                                                                                      |                            |  |  |
| 99% Occupied Bandwidth                           | N/A                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                            |  |  |
| Power Spectral Density                           | intentic                                                                                                                                                 |                                                                                                                                                                                                                                            | antenna shall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | not be greater                                                                                                                                                              | ensity conducted from<br>than 8 dBm in any 3 k<br>ion.                                                                                                                                                                                                                                   |                            |  |  |
| Band-edge Emission  Conduction Spurious Emission | spectru<br>frequer<br>dB belo<br>highes<br>radiate<br>the pea<br>power<br>permitt<br>this pa<br>limits s<br>which f                                      | arm or digitally modu<br>ney power that is property of the total in the 100 ket level of the desired measurement, proceed the conducted power limits based on the ed under paragraph shall be 30 pecified in §15.209 all in the restricted | ulated intention roduced by the KHz bandwidth d power, base rovided the train limits. If the tase of RMS at h (b)(3) of this of dB instead of tall is not required bands, as deficial in the condition of the cond | nal radiator is a intentional radiator in within the bar d on either an ansmitter demoransmitter corveraging over section, the a 20 dB. Attenuired. In additioned in §15.20 | I in which the spread operating, the radio diator shall be at least and that contains the RF conducted or a constrates compliance with the conducted a time interval, as ttenuation required unuation below the generon, radiated emissions (5(a), must also comply a) (see §15.205(c)). | vith<br>eted<br>der<br>ral |  |  |
|                                                  |                                                                                                                                                          | Frequency<br>(MHz)                                                                                                                                                                                                                         | Limit (d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                             | Detector                                                                                                                                                                                                                                                                                 | ]                          |  |  |
|                                                  |                                                                                                                                                          | 30 – 88                                                                                                                                                                                                                                    | <b>@ 3m</b><br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>@ 10m</b><br>30.0                                                                                                                                                        | Quasi-peak                                                                                                                                                                                                                                                                               | 1                          |  |  |
| Emissions in Restricted                          |                                                                                                                                                          | 88 – 216                                                                                                                                                                                                                                   | 43.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33.5                                                                                                                                                                        | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                 | 1                          |  |  |
| Frequency Bands                                  |                                                                                                                                                          | 216 – 960                                                                                                                                                                                                                                  | 46.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.0                                                                                                                                                                        | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                 | 1                          |  |  |
| 1 Toquotioy Barias                               |                                                                                                                                                          | 960 – 1000                                                                                                                                                                                                                                 | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44.0                                                                                                                                                                        | Quasi-peak<br>Quasi-peak                                                                                                                                                                                                                                                                 | 1                          |  |  |
| Emiggione in New restricts of                    | Notes Till 18 18 18 18 18 18 18                                                                                                                          |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                            |  |  |
| Emissions in Non-restricted                      | d Limit (dBµV/m) @ 3m                                                                                                                                    |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                            |  |  |
| Frequency Bands                                  |                                                                                                                                                          | Frequency                                                                                                                                                                                                                                  | Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rage                                                                                                                                                                        | Peake                                                                                                                                                                                                                                                                                    | 1                          |  |  |
|                                                  |                                                                                                                                                          | Above 1 GHz                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             | 74.0                                                                                                                                                                                                                                                                                     |                            |  |  |
| i e                                              | l                                                                                                                                                        | Above 1 GHz 54.0 74.0  Note: The measurement bandwidth shall be 1 MHz or greater.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                          |                            |  |  |



Report No.: JYTSZB-R12-2100932

## 5.2 Antenna requirement

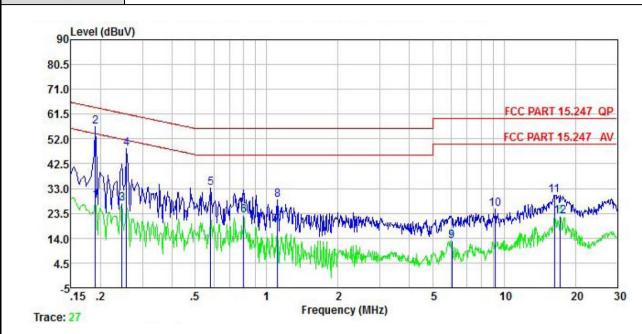
Standard requirement: FCC Part 15 C Section 15.203 /247(b)(4)

#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


#### E.U.T Antenna:

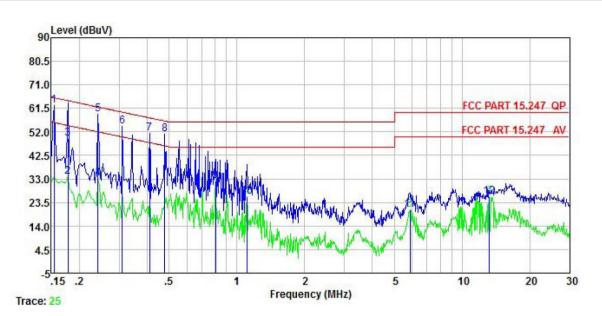
The BLE antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi. See product internal photos for details.



## 5.3 AC Power Line Conducted Emission

| Product name:   | ASI5010          | Product model: | ASI5010            |
|-----------------|------------------|----------------|--------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line               |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |




|                                           | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark                                  |
|-------------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|-----------------------------------------|
|                                           | MHz    | dBu√          | dB             | ₫B            | dBu₹  | dBu₹          | <u>dB</u>     |                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.190  | 28.31         | 0.05           | 0.03          | 28.39 |               |               | Average                                 |
| 2                                         | 0.190  | 56.53         | 0.05           | 0.03          | 56.61 | 64.02         | -7.41         | QP                                      |
| 3                                         | 0.246  | 27.19         | 0.06           | 0.01          | 27.27 | 51.91         | -24.64        | Average                                 |
| 4                                         | 0.258  | 48.38         | 0.06           | 0.01          | 48.46 | 61.51         | -13.05        | QP                                      |
| 5                                         | 0.582  | 33.09         | 0.06           | 0.02          | 33.20 | 56.00         | -22.80        | QP                                      |
| 6                                         | 0.800  | 22.44         | 0.07           | 0.03          | 22.59 | 46.00         | -23.41        | Average                                 |
| 7                                         | 1.106  | 18.72         | 0.07           | 0.07          | 18.95 |               |               | Average                                 |
| 8                                         | 1.111  | 28.53         | 0.07           | 0.07          | 28.76 |               | -27.24        | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 9                                         | 6.024  | 11.79         | 0.15           | 0.09          | 12.79 | 50.00         | -37.21        | Average                                 |
| 10                                        | 9,204  | 23.63         | 0.21           | 0.11          | 25.21 |               | -34.79        |                                         |
| 11                                        | 16.312 | 27.82         | 0.30           | 0.16          | 30.57 |               | -29.43        | 2070000                                 |
| 12                                        | 17.291 | 20.27         | 0.31           | 0.15          | 22.45 |               |               | Average                                 |
|                                           |        |               |                |               |       |               |               |                                         |

#### Remark:

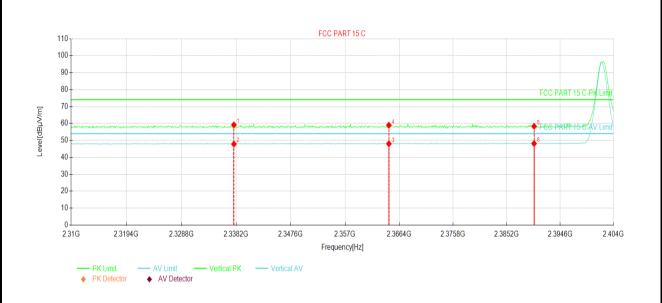
1. Level = Read level + LISN Factor + Cable Loss.



| Product name:   | ASI5010          | Product model: | ASI5010            |
|-----------------|------------------|----------------|--------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx (LE 1M PHY) |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral            |
| Test voltage:   | AC 120 V/60 Hz   |                |                    |



|                                           | Freq   | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|-------|---------------|---------------|---------|
| ,                                         | MHz    | dBu√          | <u>dB</u>      | ₫B            | dBu₹  | dBu∇          | <u>dB</u>     |         |
| 1                                         | 0.154  | 62.55         | 0.06           | 0.01          | 62.63 | 65.78         | -3.15         | QP      |
| 2                                         | 0.178  | 33.84         | 0.05           | 0.01          | 33.90 | 54.59         | -20.69        | Average |
| 3                                         | 0.178  | 49.21         | 0.05           | 0.01          | 49.27 | 64.59         | -15.32        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.242  | 33.15         | 0.05           | 0.01          | 33.21 | 52.04         | -18.83        | Average |
| 5                                         | 0.242  | 58.94         | 0.05           | 0.01          | 59.00 | 62.04         | -3.04         | QP      |
| 6                                         | 0.310  | 54.33         | 0.05           | 0.03          | 54.41 | 59.97         | -5.56         | QP      |
| 7                                         | 0.410  | 51.53         | 0.04           | 0.04          | 51.56 | 57.64         | -6.08         | QP      |
| 8                                         | 0.479  | 50.98         | 0.04           | 0.03          | 51.06 | 56.36         | -5.30         | QP      |
| 9                                         | 0.804  | 32.05         | 0.06           | 0.03          | 32.20 | 46.00         | -13.80        | Average |
| 10                                        | 1.106  | 25.54         | 0.06           | 0.07          | 25.76 | 46.00         | -20.24        | Average |
| 11                                        | 5.867  | 19.51         | 0.13           | 0.09          | 20.48 | 50.00         | -29.52        | Average |
| 12                                        | 13.267 | 22.88         | 0.25           | 0.11          | 25.81 | 50.00         | -24.19        | Average |


#### Remark:

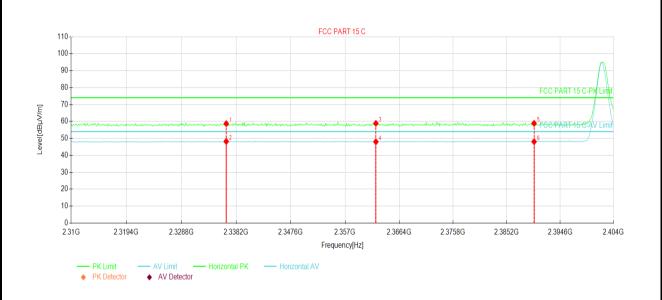
1. Level = Read level + LISN Factor + Cable Loss.



5.4 Emissions in Restricted Frequency Bands

| Product Name: | ASI5010        | Product Model: | ASI5010            |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Vertical           |
| Test Voltage: | AC 120/60Hz    |                |                    |




| Susp | Suspected Data List |                     |                |                   |                   |                |       |          |  |  |  |
|------|---------------------|---------------------|----------------|-------------------|-------------------|----------------|-------|----------|--|--|--|
| NO.  | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity |  |  |  |
| 1    | 2337. 2             | 23.95               | 35.20          | 59.15             | 74.00             | 14.85          | PK    | Vertical |  |  |  |
| 2    | 2337.82             | 12.66               | 35.20          | 47.86             | 54.00             | 6.14           | AV    | Vertical |  |  |  |
| 3    | 2364.61             | 12.62               | 35.40          | 48.02             | 54.00             | 5.98           | AV    | Vertical |  |  |  |
| 4    | 2364.61             | 23.57               | 35.40          | 58.97             | 74.00             | 15.03          | PK    | Vertical |  |  |  |
| 5    | 2390.00             | 22.75               | 35.60          | 58.35             | 74.00             | 15.65          | PK    | Vertical |  |  |  |
| 6    | 2390.00             | 12.55               | 35.60          | 48.15             | 54.00             | 5.85           | AV    | Vertical |  |  |  |

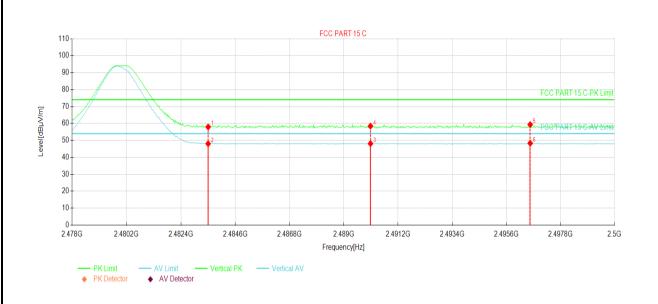
#### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



| Product Name: | ASI5010        | Product Model: | ASI5010            |
|---------------|----------------|----------------|--------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Lowest channel | Polarization:  | Horizontal         |
| Test Voltage: | AC 120/60Hz    |                |                    |




| Suspe | Suspected Data List |                     |                |                   |                   |                |       |            |  |  |  |
|-------|---------------------|---------------------|----------------|-------------------|-------------------|----------------|-------|------------|--|--|--|
| NO.   | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity   |  |  |  |
| 1     | 2336.50             | 23.50               | 35.19          | 58.69             | 74.00             | 15.31          | Р     | Horizontal |  |  |  |
| 2     | 2336.50             | 13.03               | 35.19          | 48.22             | 54.00             | 5.78           | AV    | Horizontal |  |  |  |
| 3     | 2362.35             | 23.48               | 35.39          | 58.87             | 74.00             | 15.13          | PK    | Horizontal |  |  |  |
| 4     | 2362.35             | 12.64               | 35.39          | 48.03             | 54.00             | 5.97           | AV    | Horizontal |  |  |  |
| 5     | 2390.00             | 23.30               | 35.60          | 58.90             | 74.00             | 15.10          | PK    | Horizontal |  |  |  |
| 6     | 2390.00             | 12.48               | 35.60          | 48.08             | 54.00             | 5.92           | AV    | Horizontal |  |  |  |

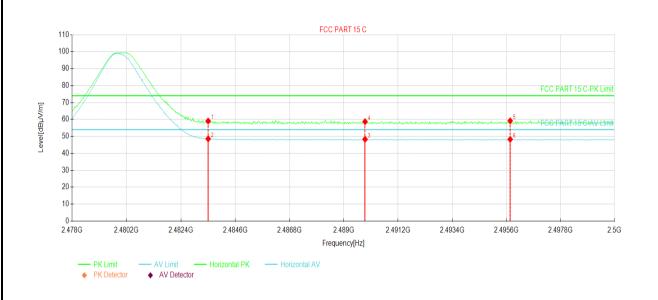
#### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



| Product Name: | ASI5010         | Product Model: | ASI5010            |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Highest channel | Polarization:  | Vertical           |
| Test Voltage: | AC 120/60Hz     |                |                    |




| Suspe | Suspected Data List |                     |                |                   |                   |                |       |          |  |  |  |  |
|-------|---------------------|---------------------|----------------|-------------------|-------------------|----------------|-------|----------|--|--|--|--|
| NO.   | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity |  |  |  |  |
| 1     | 2483.50             | 22.43               | 35.51          | 57.94             | 74.00             | 16.06          | PK    | Vertical |  |  |  |  |
| 2     | 2483.50             | 1 .54               | 35.51          | 48.05             | 54.00             | 5.95           | AV    | Vertical |  |  |  |  |
| 3     | 2490.07             | 12.61               | 35.50          | 48.11             | 54.00             | 5.89           | AV    | Vertical |  |  |  |  |
| 4     | 2490.07             | 22.94               | 35.50          | 58.44             | 74.00             | 15.56          | PK    | Vertical |  |  |  |  |
| 5     | 2496.56             | 23.85               | 35.49          | 59.34             | 74.00             | 14.66          | PK    | Vertical |  |  |  |  |
| 6     | 2496.56             | 12.84               | 35.49          | 48.33             | 54.00             | 5.67           | AV    | Vertical |  |  |  |  |

#### Remark

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).

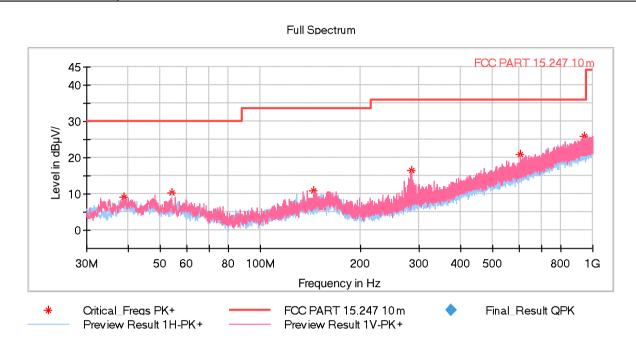


| Product Name: | ASI5010         | Product Model: | ASI5010            |
|---------------|-----------------|----------------|--------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx (LE 1M PHY) |
| Test Channel: | Highest channel | Polarization:  | Horizontal         |
| Test Voltage: | AC 120/60Hz     |                |                    |



| Suspected Data List |                |                     |                |                   |                   |                |       |            |  |
|---------------------|----------------|---------------------|----------------|-------------------|-------------------|----------------|-------|------------|--|
| NO.                 | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Factor<br>[dB] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Trace | Polarity   |  |
| 1                   | 2483.50        | 23.55               | 35.51          | 59.06             | 74.00             | 14.94          | PK    | Horizontal |  |
| 2                   | 2483.50        | 13.05               | 35.51          | 48.56             | 54.00             | 5.44           | AV    | Ho izontal |  |
| 3                   | 2489.85        | 12.82               | 35.50          | 48.32             | 54.00             | 5.68           | AV    | Horizontal |  |
| 4                   | 2489.85        | 23.18               | 35.50          | 58.68             | 74.00             | 15.32          | PK    | Horizontal |  |
| 5                   | 2495.75        | 23.69               | 35.49          | 59.18             | 74.00             | 14.82          | PK    | Horizontal |  |
| 6                   | 2495.75        | 12.77               | 35.49          | 48.26             | 54.00             | 5.74           | AV    | Horizontal |  |

#### Remark


1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



# 5.5 Emissions in Non-restricted Frequency Bands

#### Below 1GHz:

| Product Name:   | ASI5010        | Product Model: | ASI5010               |
|-----------------|----------------|----------------|-----------------------|
| Test By:        | Mike           | Test mode:     | BLE Tx (LE 1M PHY)    |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical & Horizontal |
| Test Voltage:   | AC 120/60Hz    |                |                       |



| Frequency<br>(MHz) | MaxPeak<br>(dB μ V/m) | Limit<br>(dB µ V/m) | Margin<br>(dB) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|---------------------|----------------|----------------|-----|---------------|-----------------|
| 38.778500          | 9.06                  | 30.00               | 20.94          | 100.0          | V   | 96.0          | -16.0           |
| 54.201500          | 10.18                 | 30.00               | 19.82          | 10 .0          | Н   | 126.0         | -16.2           |
| 144.314500         | 10.90                 | 33.50               | 22.60          | 100.0          | V   | 330.0         | -15.8           |
| 286.031500         | 16.44                 | 36.00               | 19.56          | 100.0          | V   | 240.0         | -15.2           |
| 603.367000         | 21.02                 | 36.00               | 14.98          | 100.0          | V   | 274.0         | -7.2            |
| 944.710000         | 25.91                 | 36.00               | 10.09          | 100.0          | V   | 207.0         | -0.7            |

#### Remark:

1. Level = Reading + Factor(Antenna Factor + Cable Loss - Preamplifier Factor).



#### Above 1GHz:

|                    |                      | В              | LE Tx (LE 1M PH                          | Y)                |                |              |
|--------------------|----------------------|----------------|------------------------------------------|-------------------|----------------|--------------|
|                    |                      | Test o         | hannel: Lowest cl                        | nannel            |                |              |
|                    |                      | D              | etector: Peak Valu                       | ne                |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)                        | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 57.76                | -9.60          | 48.16                                    | 74.00             | 25.84          | Vertical     |
| 4804.00            | 60.33                | -9.60          | 50.73                                    | 74.00             | 23.27          | Horizontal   |
|                    |                      | Det            | tector: Average Va                       | alue              |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)                        | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4804.00            | 52.34                | -9.60          | 42.74                                    | 54.00             | 11.26          | Vertical     |
| 4804.00            | 55.75                | -9.60          | 46.15                                    | 54.00             | 7.85           | Horizontal   |
|                    |                      |                | channel: Middle ch<br>etector: Peak Vali |                   |                |              |
| Frequency          | Read Level           | Factor         | Level                                    | Limit             | Margin         | Polarization |
| (MHz)<br>4884.00   | (dBµV)<br>57.92      | (dB)<br>-9.04  | (dBµV/m)<br>48.88                        | (dBµV/m)<br>74.00 | (dB)<br>25.12  | Vertical     |
| 4884.00            | 60.41                | -9.04          | 51.37                                    | 74.00             | 22.63          | Horizontal   |
|                    | 55111                |                | tector: Average Va                       |                   |                | 110112011101 |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)                        | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 51.96                | -9.04          | 42.92                                    | 54.00             | 11.08          | Vertical     |
| 4884.00            | 55.76                | -9.04          | 46.72                                    | 54.00             | 7.28           | Horizontal   |
|                    |                      | <b>.</b>       |                                          |                   |                |              |
|                    |                      |                | hannel: Highest c<br>etector: Peak Val   |                   |                |              |
| Fraguena           | Dood Love!           |                | I                                        |                   | Morain         |              |
| Frequency<br>(MHz) | Read Level<br>(dBµV) | Factor<br>(dB) | Level<br>(dBµV/m)                        | Limit<br>(dBµV/m) | Margin<br>(dB) | Polarization |
| 4960.00            | 57.39                | -8.45          | 48.94                                    | 74.00             | 25.06          | Vertical     |
|                    | 1                    |                | 1                                        |                   | I              | 1            |

| Test channel: Highest channel                                                           |                                                                                                               |       |       |       |       |              |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|--------------|--|--|--|
| Detector: Peak Value                                                                    |                                                                                                               |       |       |       |       |              |  |  |  |
| Frequency<br>(MHz)                                                                      | Read Level     Factor     Level     Limit     Margin       (dBμV)     (dB)     (dBμV/m)     (dBμV/m)     (dB) |       |       |       |       |              |  |  |  |
| 4960.00                                                                                 | 57.39                                                                                                         | -8.45 | 48.94 | 74.00 | 25.06 | Vertical     |  |  |  |
| 4960.00                                                                                 | 60.81                                                                                                         | -8.45 | 52.36 | 74.00 | 21.64 | Horizontal   |  |  |  |
|                                                                                         | Detector: Average Value                                                                                       |       |       |       |       |              |  |  |  |
| Frequency Read Level Factor Level Limit Margin (MHz) (dBµV) (dB) (dBµV/m) (dBµV/m) (dB) |                                                                                                               |       |       |       |       | Polarization |  |  |  |
| 4960.00                                                                                 | 52.34                                                                                                         | -8.45 | 43.89 | 54.00 | 10.11 | Vertical     |  |  |  |
| 4960.00                                                                                 | 56.17                                                                                                         | -8.45 | 47.72 | 54.00 | 6.28  | Horizontal   |  |  |  |
|                                                                                         |                                                                                                               |       |       |       |       |              |  |  |  |

#### Remark:

-----End of report-----

<sup>1.</sup> Level = Reading + Factor.

Test Frequency up to 25GHz, and the emission levels of other frequencies are lower than the limit 20dB, not show in test report.