

0659

FCC Radio Test Report

FCC ID: 2AZL6-LB60004G

Report No. : BTL-FCCP-1-2103T093

Equipment : LBeacon Model Name : LB60004G

Brand Name : BiDaE Technology, Incorporated Applicant : BiDaE Technology, Incorporated

Address: 1F., NO. 5, LN. 96, SEC. 1, DA-AN RD., DA-AN DIST., TAIPEI CITY 106,

TAIWAN (R.O.C.)

Radio Function : Bluetooth EDR

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Measurement Procedure(s)

rocedure(s)

Date of Receipt : 2021/4/7

Date of Test : 2021/4/7 ~ 2021/6/24

Issued Date : 2021/7/12

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Peter Chen, Engineer

Approved by : Scott Hsu , Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Project No.: 2103T093 Page 1 of 72 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2103T093 Page 2 of 72 Report Version: R00

CONTENTS REVISON HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 7 1.2 1.3 TEST ENVIRONMENT CONDITIONS 8 1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 8 1.5 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 **DESCRIPTION OF EUT** 2.1 10 2.2 **TEST MODES** 12 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 13 2.4 SUPPORT UNITS 14 3 AC POWER LINE CONDUCTED EMISSIONS TEST 15 3.1 LIMIT 15 3.2 **TEST PROCEDURE** 15 **DEVIATION FROM TEST STANDARD** 15 3.3 3.4 **TEST SETUP** 16 3.5 **TEST RESULT** 16 4 RADIATED EMISSIONS TEST 17 4.1 LIMIT 17 4.2 **TEST PROCEDURE** 18 **DEVIATION FROM TEST STANDARD** 4.3 18 4.4 **TEST SETUP** 18 **EUT OPERATING CONDITIONS** 4.5 19 TEST RESULT - BELOW 30 MHZ 4.6 20 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 20 TEST RESULT - ABOVE 1 GHZ 4.8 20 5 NUMBER OF HOPPING CHANNEL 21 APPLIED PROCEDURES 5.1 21 **TEST PROCEDURE** 5.2 21 5.3 **DEVIATION FROM STANDARD** 21 **TEST SETUP** 5.4 21 **EUT OPERATION CONDITIONS** 5.5 21 5.6 **TEST RESULTS** 21 AVERAGE TIME OF OCCUPANCY 6 22 6.1 APPLIED PROCEDURES / LIMIT 22 6.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 6.3 22 6.4 **TEST SETUP** 22 **EUT OPERATION CONDITIONS** 6.5 22 **TEST RESULTS** 22 6.6 HOPPING CHANNEL SEPARATION MEASUREMENT 7 23 7.1 APPLIED PROCEDURES / LIMIT 23 7.2 **TEST PROCEDURE** 23 7.3 **DEVIATION FROM STANDARD** 23 7.4 **TEST SETUP** 23 7.5 **TEST RESULTS** 23

8	BANDWI	DTH TEST	24
8.1	APPLI	ED PROCEDURES	24
8.2	TEST	PROCEDURE	24
8.3	DEVIA	ATION FROM STANDARD	24
8.4	TEST	SETUP	24
8.5	EUT C	PERATION CONDITIONS	24
8.6	TEST	RESULTS	24
9	OUTPUT	POWER TEST	25
9.1	APPLI	ED PROCEDURES / LIMIT	25
9.2	TEST	PROCEDURE	25
9.3	DEVIA	ATION FROM STANDARD	25
9.4	TEST	SETUP	25
9.5	EUT C	PERATION CONDITIONS	25
9.6	TEST	RESULTS	25
10	ANTENN	IA CONDUCTED SPURIOUS EMISSION	26
10.1	APPLI	ED PROCEDURES / LIMIT	26
10.2	TEST	PROCEDURE	26
10.3	DEVIA	ATION FROM STANDARD	26
10.4	TEST	SETUP	26
10.5	EUT C	PERATION CONDITIONS	26
10.6	TEST	RESULTS	26
11	LIST OF	MEASURING EQUIPMENTS	27
12	EUT TES	ST PHOTO	29
13	EUT PHO	OTOS	29
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	30
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	35
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	38
APPEND	IX D	NUMBER OF HOPPING CHANNEL	55
APPEND	IX E	AVERAGE TIME OF OCCUPANCY	57
APPEND	IX F	HOPPING CHANNEL SEPARATION MEASUREMENT	60
APPEND	IX G	BANDWIDTH	63
APPEND	IX H	OUTPUT POWER	66
APPEND	IX I	ANTENNA CONDUCTED SPURIOUS EMISSION	68

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2103T093	R00	Original Report.	2021/7/12

Project No.: 2103T093 Page 5 of 72 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)								
Standard(s) Section	Description	Test Result	Judgement	Remark				
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass					
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass					
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX D	Pass					
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX E	Pass					
15.247 (a)(1)	Hopping Channel Separation	APPENDIX F	Pass					
15.247 (a)(1)	Bandwidth	APPENDIX G	Pass					
15.247 (b)(1)	Output Power	APPENDIX H	Pass					
15.247(d)	Antenna conducted Spurious Emission	APPENDIX I	Pass					
15.203	Antenna Requirement		Pass					

- (1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2103T093 Page 6 of 72 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

□ CB08 □ CB11 □ CB15 □ CB16

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CBIS	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

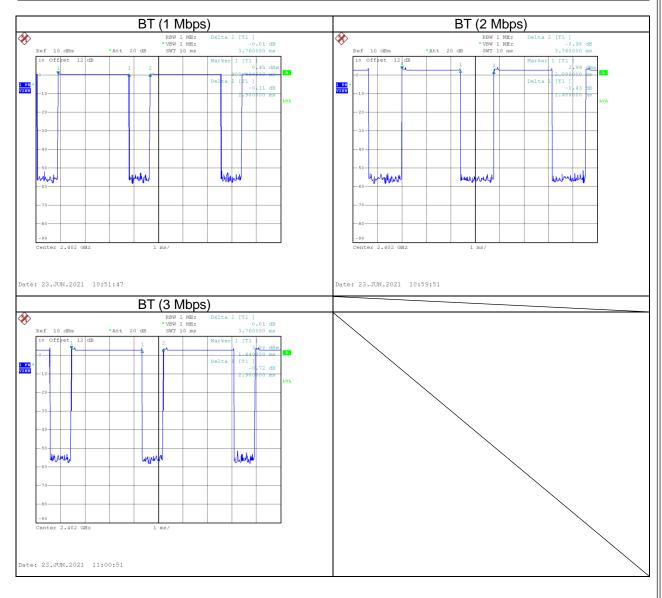
Project No.: 2103T093 Page 7 of 72 Report Version: R00

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	22 °C, 70 %	AC 120V	Paul Shen
Radiated emissions below 1 GHz	23 °C, 51 %	AC 120V	Jay Kao
Radiated emissions above 1 GHz	23 °C, 51 %	AC 120V	Jay Kao
Number of Hopping Frequency	23.5 °C, 51 %	AC 120V	Nero Hsieh
Average Time of Occupancy	23.5 °C, 51 %	AC 120V	Nero Hsieh
Hopping Channel Separation	23.5 °C, 51 %	AC 120V	Nero Hsieh
Bandwidth	23.5 °C, 51 %	AC 120V	Nero Hsieh
Output Power	23.5 °C, 51 %	AC 120V	Nero Hsieh
Antenna conducted Spurious Emission	23.5 °C, 51 %	AC 120V	Nero Hsieh

1.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

Test Software		Blue	Test3	
Modulation Mode	2402 MHz	2441 MHz	2480 MHz	Data Rate
GFSK	0	-6	-6	1 Mbps
π/4-DQPSK	0	0	0	2 Mbps
8DPSK	0	0	0	3 Mbps


Project No.: 2103T093 Page 8 of 72 Report Version: R00

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (2 Mbps)	2.400	1	2.400	3.760	63.83%	1.95
BT (3 Mbps)	2.900	1	2.900	3.760	77.13%	1.13

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	LBeacon
Model Name	LB60004G
Brand Name	BiDaE Technology, Incorporated
Model Difference	N/A
Power Source	DC Voltage supplied from AC/DC adapter.
Dower Boting	Input: 100-240V~ 50/60Hz 0.5A
Power Rating	Output: 5.0V 2.5A
Products Covered	1 * Power Adapter: CHANNEL WELL TECHNOLOGY/2AEAO13BA3B
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
	1 Mbps: -1.54 dBm (0.0007W)
Output Power Max.	2 Mbps: -0.36 dBm (0.0009W)
	3 Mbps: 0.16 dBm (0.0010W)
Test Model	LB60004G
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

Project No.: 2103T093 Page 10 of 72 Report Version: R00

(2) Channel List:

Criamino Liot.	Frequency		Frequency		Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Model name	Туре	Connector	Frequency (MHz)	Gain (dBi)
					2400	5.94
-	ALFA	Pi-WiFi-ANT-BT	PIFA	I-PEX	2450	6.31
					2500	6.16

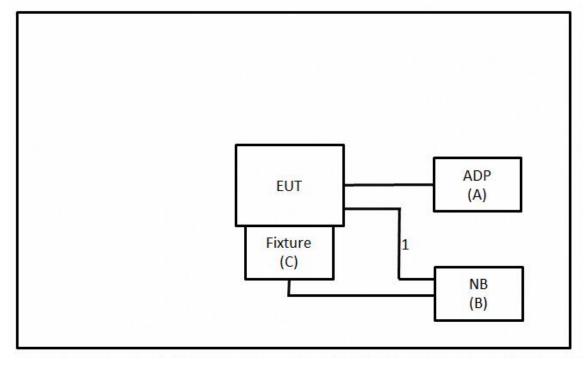
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	1 Mbps	39	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Z axis) is recorded.


Project No.: 2103T093 Page 12 of 72 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	Adapter	CHANNEL WELL TECHNOLOGY	2AEA013BA3B	N/A	Supplied by test requester
В	NB	acer	MS2351	N/A	Furnished by test lab.
С	Fixture	CSR	USB-SPI	N/A	Furnished by test lab.

١.						
	Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
	1	N/A	N/A	1.5m	USB Cable	Furnished by test lab.

Project No.: 2103T093 Page 14 of 72 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Odiodidilori champic.				
Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

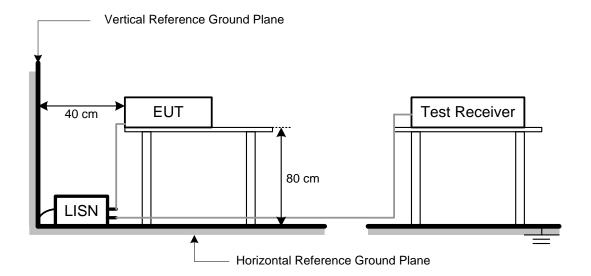
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2103T093 Page 15 of 72 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)		Emissions V/m)	Measurement Distance
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

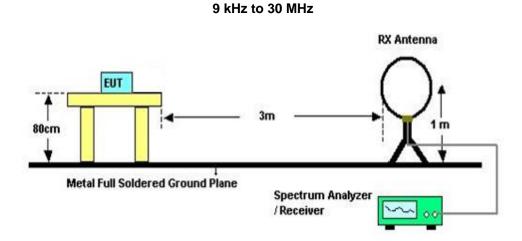
Reading Level		Correct Factor		Measurement Value
35.45	+	-11.37	=	24.08

Measurement Value		Limit Value		Margin Level
24.08	•	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

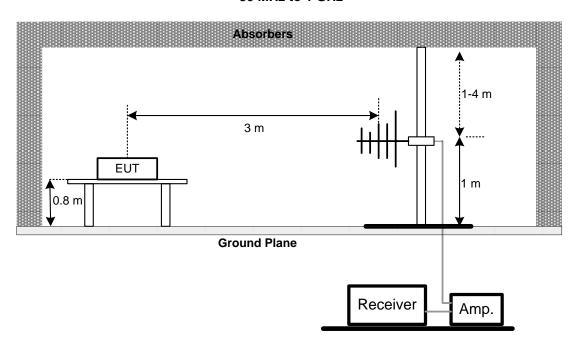
Spectrum Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector	
Start ~ Stop Frequency	90KHz~110KHz for QP detector	
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector	
Start ~ Stop Frequency	490KHz~30MHz for QP detector	
Start ~ Stop Frequency	30MHz~1000MHz for QP detector	

Project No.: 2103T093 Page 17 of 72 Report Version: R00

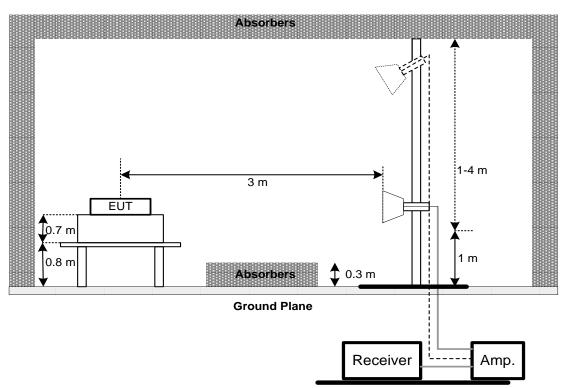

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2103T093 Page 20 of 72 Report Version: R00

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C					
Section Test Item Frequency Range (MHz) Result					
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS		

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

Project No.: 2103T093 Page 21 of 72 Report Version: R00

AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit Frequency Range (MHz) Result					
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20) DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

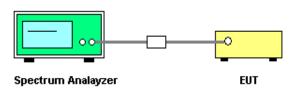
Project No.: 2103T093 Page 22 of 72 Report Version: R00

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX F.

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C				
Section	Frequency Range (MHz)			
15.247(a)(2)	Bandwidth	2400-2483.5		

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

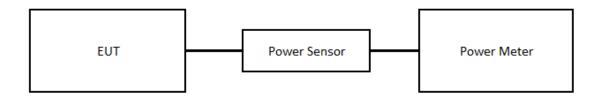
Please refer to the APPENDIX G.

Project No.: 2103T093 Page 24 of 72 Report Version: R00

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX H.

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2103T093 Page 26 of 72 Report Version: R00

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9	
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2	
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10	
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

Radiated Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7
3	Preamplifier	EMCI	EMC001340	980555	2021/4/8	2022/4/7
4	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7
5	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7
6	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7
7	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26
8	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24
9	Loop Ant	Electro-Metrics	EMCI-LPA600	274	2021/6/1	2022/5/31
10	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1
11	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8
12	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23
13	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Number of Hopping Frequency									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 30	100854	2021/4/16	2022/4/15				

	Average Time of Occupancy										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 30	100854	2021/4/16	2022/4/15					

	Hopping Channel Separation									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 30	100854	2021/4/16	2022/4/15				

	Bandwidth										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 30	100854	2021/4/16	2022/4/15					

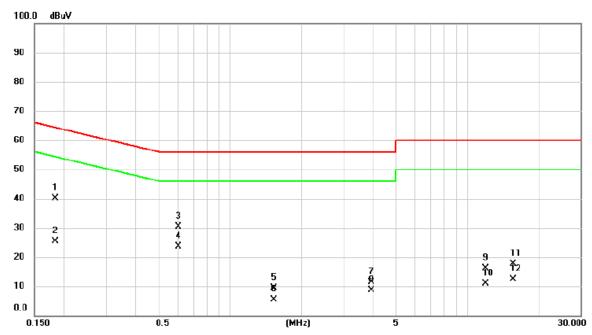
	Output Power									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	Anritsu	ML2495A	1128008	2021/5/26	2022/5/25				
2	Power Sensor	Anritsu	MA2411B	1126001	2021/5/26	2022/5/25				

	Antenna conducted Spurious Emission										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 30	100854	2021/4/16	2022/4/15					

Remark:

12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2103T093-FCCP-1 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2103T093-1 (APPENDIX-EUT PHOTOS).

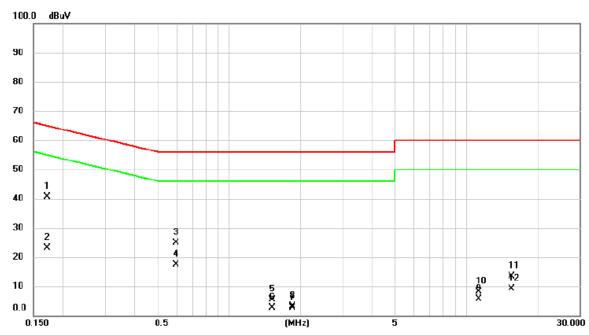
Project No.: 2103T093 Page 29 of 72 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2103T093 Page 30 of 72 Report Version: R00

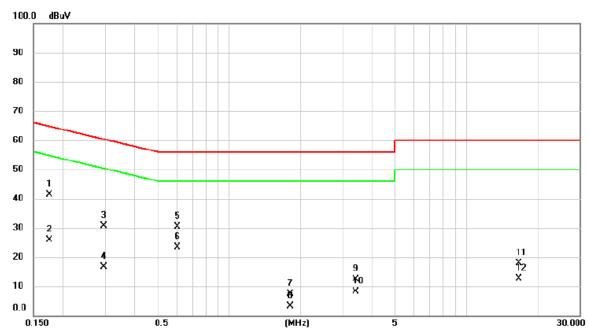
Test Mode	Normal	Tested Date	2021/5/7
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1838	30.40	9.69	40.09	64.31	-24.22	QP	
2		0.1838	15.63	9.69	25.32	54.31	-28.99	AVG	
3		0.6066	20.78	9.70	30.48	56.00	-25.52	QP	
4	*	0.6066	13.87	9.70	23.57	46.00	-22.43	AVG	
5		1.5293	-0.46	9.74	9.28	56.00	-46.72	QP	
6		1.5293	-4.37	9.74	5.37	46.00	-40.63	AVG	
7		3.9413	1.55	9.80	11.35	56.00	-44.65	QP	
- 8		3.9413	-1.28	9.80	8.52	46.00	-37.48	AVG	
9		11.9108	6.33	9.91	16.24	60.00	-43.76	QP	
10		11.9108	1.08	9.91	10.99	50.00	-39.01	AVG	
11		15.6570	7.82	9.90	17.72	60.00	-42.28	QP	
12		15.6570	2.41	9.90	12.31	50.00	-37.69	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

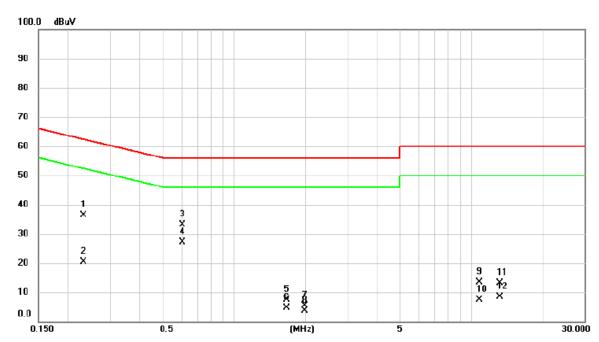
Test Mode	Normal	Tested Date	2021/5/7
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1712	31.02	9.70	40.72	64.90	-24.18	QP	
2		0.1712	13.45	9.70	23.15	54.90	-31.75	AVG	
3		0.5955	15.26	9.71	24.97	56.00	-31.03	QP	
4		0.5955	7.65	9.71	17.36	46.00	-28.64	AVG	
5		1.5180	-4.46	9.75	5.29	56.00	-50.71	QP	
6		1.5180	-7.23	9.75	2.52	46.00	-43.48	AVG	
7		1.8443	-7.03	9.76	2.73	56.00	-53.27	QP	
8		1.8443	-6.74	9.76	3.02	46.00	-42.98	AVG	
9		11.3145	-4.34	9.96	5.62	60.00	-54.38	QP	
10		11.3145	-1.88	9.96	8.08	50.00	-41.92	AVG	
11		15.5490	3.45	9.99	13.44	60.00	-46.56	QP	
12		15.5490	-0.92	9.99	9.07	50.00	-40.93	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/5/7
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1750	31.78	9.70	41.48	64.72	-23.24	QP	
2		0.1750	16.26	9.70	25.96	54.72	-28.76	AVG	
3		0.2962	20.97	9.71	30.68	60.35	-29.67	QP	
4		0.2962	6.91	9.71	16.62	50.35	-33.73	AVG	
5		0.6045	20.64	9.70	30.34	56.00	-25.66	QP	
6	*	0.6045	13.69	9.70	23.39	46.00	-22.61	AVG	
7		1.8038	-2.46	9.75	7.29	56.00	-48.71	QP	
8		1.8038	-6.69	9.75	3.06	46.00	-42.94	AVG	
9		3.4215	2.68	9.79	12.47	56.00	-43.53	QP	
10		3.4215	-1.74	9.79	8.05	46.00	-37.95	AVG	
11		16.6650	8.08	9.90	17.98	60.00	-42.02	QP	
12		16.6650	2.71	9.90	12.61	50.00	-37.39	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/5/7
Test Frequency	-	Phase	Neutral

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2310	26.58	9.70	36.28	62.41	-26.13	QP	
2		0.2310	10.66	9.70	20.36	52.41	-32.05	AVG	
3		0.6066	23.50	9.71	33.21	56.00	-22.79	QP	
4	×	0.6066	17.36	9.71	27.07	46.00	-18.93	AVG	
5		1.6575	-2.34	9.76	7.42	56.00	-48.58	QP	
6		1.6575	-5.06	9.76	4.70	46.00	-41.30	AVG	
7		1.9905	-4.32	9.77	5.45	56.00	-50.55	QP	
8		1.9905	-6.09	9.77	3.68	46.00	-42.32	AVG	
9		10.8330	3.49	9.96	13.45	60.00	-46.55	QP	
10		10.8330	-2.68	9.96	7.28	50.00	-42.72	AVG	
11		13.1325	3.15	9.98	13.13	60.00	-46.87	QP	
12		13.1325	-1.52	9.98	8.46	50.00	-41.54	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

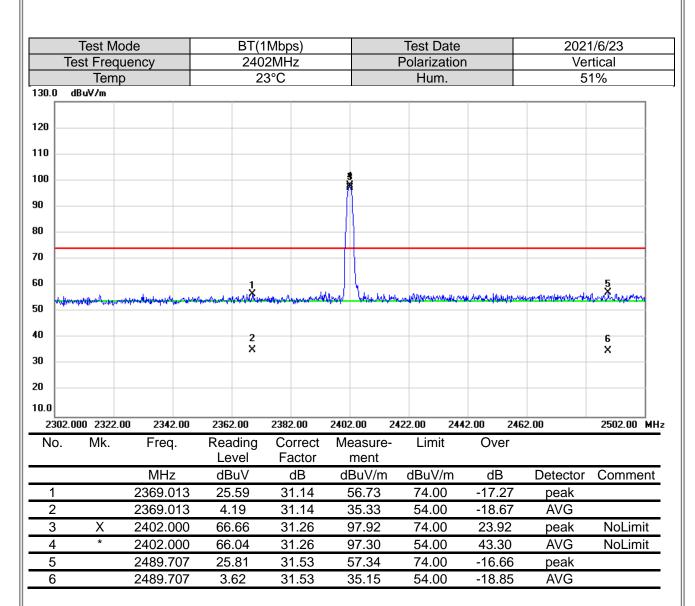
APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2103T093 Page 35 of 72 Report Version: R00

	Test Mo	de	BT(1Mbps)		Test Date	2021/6/23			
Test Frequency			24	41MHz		Polarization	n	Vei	rtical	
	Temp		4	23°C		Hum.		51%		
70 de	BuV/m									
60										
50									-	
30	×	2 X		;	3 X	4 ×	5		•	
20										
10										-
0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 709	9.00 806.	.00	1000.00	_мн
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz dBuV		dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	123.2817		45.03	-10.12	34.91	43.50	-8.59	peak		
2		214.0413	40.99	-10.81	30.18	43.50	-13.32	peak		
3		474.6157	36.23	-3.27	32.96	46.00	-13.04	peak		
4		599.9720	33.01	-0.57	32.44	46.00	-13.56	peak		
5		799.9537	33.94	2.47	36.41	46.00	-9.59	peak		
6	*	960.0683	40.68	5.10	45.78	54.00	-8.22	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)					Test Dat					/6/23	
T	est Frequency					1MHz				Р	olarizati	on		Н		ontal	
	Temp	ρ			2	3°C					Hum.				51	%	
80.0	dBuV/m																
70																	
60																	
50																	
40 —					3 X					4			:	5 X		<u> </u>	
30										4 ×							
20																	
10																	
0.0 30.00	0 127.00	0 224.	00	321.0	10	418.00		515.	00 (612.	.00 7	09.00	806	6.00		1000.00	_ □ MH:
No.	Mk.	Freq	•	Read Lev	ding	Corr Fac	ect		easure- ment	•	Limit		Over				
		MHz		dBı	٧V	dE	3	d	BuV/m		dBuV/m		dB	Detect	or	Comm	ent
1		144.97	73	42.	87	-8.5	9	(34.28		43.50		-9.22	peak	(
2	*	210.06	43	47.		-10.	77		37.03		43.50		-6.47	peak	(
3		357.40	73	39.		-5.9			33.71		46.00		12.29	peak	(
4		600.00	43	32.	21	-0.5	7	- (31.64		46.00		14.36	peak	(
5		799.95	37	35.	87	2.4	7	- ;	38.34		46.00		-7.66	peak	(
6		960.06	83	36.	07	5.1	0	-	41.17		54.00	-	12.83	peak	(


- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2103T093 Page 38 of 72 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	est Mo			1Mbps)		Test Date			1/6/23
Tes	t Frequ			80MHz		Polarizatio	n		rtical
	Temp		2	3°C		Hum.		5	1%
30.0 dB	uV/m								
20									
10									
00					\$				
JU									
0									
o									
0									
0 1								5	
X.	et week with	many that	والمرافق والمستعدد والمتعاودة والمتعادة والمتعاودة والم	who we will not be	andy Lyeryning	gered adopted policy becomes	home market with the contract of the contract	s s	canto the selection below
0	-							X	
0 2									
x									
0									
o									
0.0									
2380.000	2400.0	0 2420.00	2440.00	2460.00	2480.00 2	500.00 25	20.00 254	0.00	2580.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2382.353	25.48	31.18	56.66	74.00	-17.34	peak	
2		2382.353	3.52	31.18	34.70	54.00	-19.30	AVG	
3	Χ	2480.000	70.96	31.51	102.47	74.00	28.47	peak	NoLimit
4	*	2480.000	70.64	31.51	102.15	54.00	48.15	AVG	NoLimit
5		2558.253	26.44	31.74	58.18	74.00	-15.82	peak	
6		2558.253	16.16	31.74	47.90	54.00	-6.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de		BMbps)		Test Date			1/6/23
Tes	t Frequ	iency		2MHz		Polarization	n		tical
	Temp		2	3°C		Hum.		5	1%
130.0 dB	uV/m								
120									
110									
100					3 X				
90					Ň				
30									
70									
60									5
50	Alberton and	<u> ماديدي هياد به نهميداليديدي</u>	referencial dispersibility	Andrie Andrie	warmen war	vent all organization with	HAT THE PARTY OF T	ages to the second distriction of the second	haran Marker da Parana
40				2 X					6 X
30				^					
20									
10.0									
2302.00	0 2322.0	0 2342.00	2362.00	2382.00	2402.00 24		42.00 246	2.00	2502.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2380.287	26.24	31.18	57.42	74.00	-16.58	peak	
2		2380.287	4.34	31.18	35.52	54.00	-18.48	AVG	
3	Χ	2402.000	65.15	31.26	96.41	74.00	22.41	peak	NoLimit
4	*	2402.000	61.23	31.26	92.49	54.00	38.49	AVG	NoLimit
5		2496.480	25.56	31.56	57.12	74.00	-16.88	peak	
6		2496.480	5.30	31.56	36.86	54.00	-17.14	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			BMbps)		Test Date			1/6/23
Τe	st Frequ			0MHz		Polarizatio	n		rtical
130.0 d	Temp		2	3°C		Hum.		5	1%
130.0 0	BUY/III								
120									
110									
100 -					3				
90									
во									
70									
60							5		
50 44X	nedosky podruhove	oppolections/pst/andpolection	alla de partir de del como en	ng talang ng makallah	and Indiament	and the second second	dellaronder	mgthydd flwr o y ar flwdyd	Wallan Maragera Ma
							6 X		
40 2 30 >	2								
20									
10.0									
2380.0	00 2400.0	0 2420.00	2440.00	2460.00	2480.00 25	500.00 25	20.00 254	0.00	2580.00 M
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2387.093	26.39	31.21	57.60	74.00	-16.40	peak	
2		2387.093	3.35	31.21	34.56	54.00	-19.44	AVG	
3	Χ	2480.000	69.61	31.51	101.12	74.00	27.12	peak	NoLimit
4	*	2480.000	65.87	31.51	97.38	54.00	43.38	AVG	NoLimit
5		2521.107	26.19	31.63	57.82	74.00	-16.18	peak	
6		2521.107	12.33	31.63	43.96	54.00	-10.04	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1Mbps)		Test Date			1/6/23
7	Test Freq			02MHz		Polarization	า		rtical
	Tem	p		23°C		Hum.		5	1%
30.0	dBuV/m								
20									
10									
100									
10									
30									
'o									
io									
io		X							
10									
io									
20									
10.0									
	.000 3550.			11200.00				100.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.00	0 60.33	-9.84	50.49	74.00	-23.51	peak	
2	*	4804.00	0 58.16	-9.84	48.32	54.00	-5.68	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		t Mod					Mbps					Test D					1/6/23	
	Test F	emp	ency				<u>2MH</u> 3°C	<u>′</u>				Polariza Hun					zontal 1%	
30.0	dBuV/i						<u> </u>					HIUH	l.			<u> </u>	1 /0	
120																		
110																		
00 _																		
90																		
30 _																		ļ
'o																		
io																		
io <u> </u>			Š															
10 <u> </u>																		
30																		
20																		
10.0	000 2	FF0 00	C100		8650		1120	2.00	1075	0.00	10	200.00	100	50.00	2140	0.00	20500 00	
No.	:000 3 M		Freq		Rea			rect	1375 Me	asur		300.00 Limi		50.00 O∨€		U.UU	26500.00	мн
		-			Le			ctor		ment	_							
			MHz		dB	uV	С	В	dl	3uV/r	n	dBuV	/m	dB	3	Detector	Comme	nt
1			4804.0	00	60.		-9	.84	Ę	51.03		74.0	0	-22.9		peak		
2	*		4804.0	000	58.	12	-9	.84		18.28		54.0	0	-5.7	'2	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test						Mbp					Test D					1/6/23	
	est Fr		ency				1MH	<u>Z</u>				Polariza					rtical	
30.0	dBuV/m	emp				2	3°C					Hun	Դ			5	1%	
	ab a i i i																	7
20																		-
10																		
00																		
10																		
																		1
80																		1
'o 🗀																		1
io																		-
io <u> </u>				3	?													
10																		
80																		
20																		1
10.0 1000	.000 35	50.00	6100	.00	8650	1.00	1120	0.00	1375	0.00	16	300.00	188	50.00	2140	00.00	26500.00] I MH
No.	Mk		Freq.		Rea	ding	Со	rrect		easur		Limi		Ove				
					Le			ctor		ment								
			MHz		dB			dΒ		3uV/r		dBuV.		dB		Detector	Comme	ent
1			7323.0			.06		.75		54.31		74.0		-19.0		peak		
2	*		7323.0	00	54.	.72	-2	.75	Ę	51.97		54.0	0	-2.0	3	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo					Mbp 1MH					Test D					1/6/23 zontal
		Frequ Temp					1101⊡. 3°C					Hun					2011(a) 1%
130.0	dBuV						3 0					Tiun	11.				1 /0
120 _																	
110																	
100																	
90																	
30 _																	
'o																	
io																	
50				X													
10 <u> </u>				2 X													
30																	
20																	
10.0																	
		3550.00		00	8650		1120			50.00		300.00		50.00		00.00	26500.00 MI
No.	IN	Лk.	Freq.		Rea Le			rrect ctor		easur ment	e-	Limi	It	Ove	er		
			MHz		dB	uV	C	lΒ	dl	BuV/r	n	dBuV	/m	dE	3	Detector	Comment
1			7323.00	00	52.	87	-2	.75	į	50.12		74.0	0	-23.	88	peak	
2		*	7323.00	00	43.	19	-2	.75		10.44		54.0	0	-13.	56	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)	_			st Dat				1/6/23
Ie:	st Frequ				0MHz				<u>arizati</u>	on			rtical
30.0 dE	Temp			2	3°C			ŀ	lum.			5	1%
130.V at	SUV/M												
20													
10													
00													
30													
80													
o 🗀													
io			1										
io 🗀			×										
0													
:0													
20													
0.0													
	0 3550.0			0.00	11200.00	13750		6300.		8850.00	21400	1.00	26500.00 MI
No.	Mk.	Freq.		iding evel	Correct Factor		asure- nent	L	₋imit	Ov	er		
		MHz	dE	₿uV	dB	dB	uV/m	dE	BuV/m	n dE	3	Detector	Comment
1		7440.00	0 58	.63	-2.19	56	6.44	7	4.00	-17.	.56	peak	
2	*	7440.00	0 54	.02	-2.19	5′	1.83	5	4.00	-2.′	17	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				1Mbps)			Test Date			1/6/23
- 1	est Frequ Temp				3°C			olarization Hum.	on		zontal 1%
130.0	dBuV/m)			3 0			Hulli.			1 /0
120											
20											
10											
00											
10											
80											
o 🗀											
:0			1								
o 🗀			1 2 X								
o											
:0											
20											
0.0											
	000 3550.0			650.00	11200.00	13750.00				21400.00	26500.00 MH
No.	Mk.	Freq.		eading _evel	Correct Factor	Measure ment	}-	Limit	Ove	r	
		MHz	(dBuV	dB	dBuV/m	1	dBuV/m	dB	Detector	Comment
1		7440.00		55.85	-2.19	53.66		74.00	-20.3		
2	*	7440.00	00 4	19.46	-2.19	47.27		54.00	-6.73	3 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M					BMbps)			Test Da				1/6/23
T	Test Freq					2MHz			Polariza				rtical
	Tem	р			2	3°C			Hum	•		5	1%
30.0	dBuV/m												
20													
110 -													
100													
30													
80													
'o 🗀													
io													
io <u> </u>		1											
10		X											
30 <u> </u>													
20													
0.0													
	.000 3550.			8650.		11200.00	750.00		300.00	18850.0		400.00	26500.00 MH
No.	Mk.	Freq		Read Lev	ding ⁄el	Corre Facto	Measur ment	e-	Limit		Over		
		MHz		dBı	٧L	dB	dBuV/r	n	dBuV/r	m	dB	Detector	Comment
1		4804.0	000	58.	45	-9.84	48.61		74.00) -	25.39	peak	
2	*	4804.0	000	53.	75	-9.84	43.91		54.00) -	10.09	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			BMbps)		Test Date			1/6/23
16	est Frequ			2MHz 3°C		Polarization	1		zontal
130.0 c	Temp dBuV/m)		3°C		Hum.		5	1%
50.0	ab u + 7 iii								
20									
110									
00									
0 -									
io									
, <u> </u>									
0									
0		1 ½							
o		×							
o L									
0									
0.0									
	000 3550.0		8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	58.84	-9.84	49.00	74.00	-25.00	peak	
2	*	4804.000	53.72	-9.84	43.88	54.00	-10.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test						3Mbp					Test D					1/6/23	
	est Fr	eque emp	ency				1M⊢ 3°C	IZ				Polariz Hun		<u>) </u>			Vertical 51%	
130.0	dBuV/m						3 C					Hun	11.			<u> </u>	170	
120																		
10																		
00																		
00																		
30																		
'O																		
60 <u> </u>				1 8	•													
io 🗀				5 >														
10																		
80																		
20																		
10.0	000 25	FO 00	C1.00	.00	8650	2.00	1100	00.00	107	0.00	10	200.00	100	50.00	21.40	00.00	20500.00	
No.	000 35 Mk		Freq			ding		rrect		60.00 easur		300.00 Lim		ou.uu O∨€		JU.UU	26500.00	МН
140.	IVII	٠.	1 104	•		vel		actor		ment		L1111		Ove	J 1			
			MHz		dB	luV	-	dB	dl	BuV/r	n	dBuV	/m	dE	}	Detector	Comme	nt
1			7323.0			.67		2.75		56.92		74.0		-17.		peak		
2	*		7323.0	00	53	.24	-2	2.75	į	50.49)	54.0	0	-3.5	51	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de			BT(3	3Mbp	s)				Test Da	ate		202	1/6/23
Т	est Frequ					1MH	Z			Р	olariza				zontal
	Temp)			2	3°C					Hum.			5	1%
30.0	dBuV/m														
20															
110															
100															
30															
30															
70															
SO															
50			ž X												
10			×												
30															
20															
0.0															
	000 3550.0		00	8650.		1120			50.00			18850		400.00	26500.00 MH
No.	Mk.	Freq.		Read			rrect ctor		easure ment)-	Limit		Over		
		MHz		dBı	٧L	C	dΒ	dl	3uV/m		dBuV/r	m	dB	Detector	Comment
1		7323.00	00	52.	54	-2	.75	4	19.79		74.00)	-24.21	peak	
2	*	7323.00	00	47.	00	-2	.75	- 4	14.25		54.00)	-9.75	AVG	

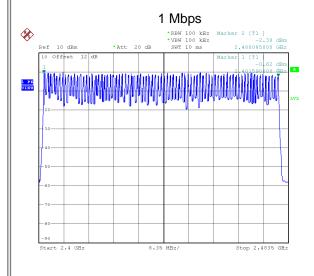
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

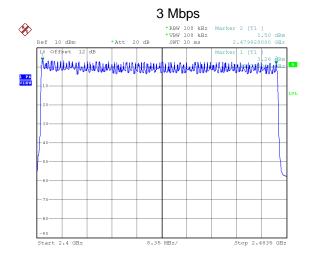
т.	Test Mo				BMbps)				Test Da				1/6/23
Ie	st Frequ				0MHz			Р	olarizat		Vertical 51%		
30.0 d	Temp BuV/m				3°C				Hum.	•		5	1%
20													
10													
00													
00													
0													
:0													
o 🗀													
. ا													
0			1 X										
0			X										
0													
o													
0 0.0													
	00 3550.00	0 6100.00	8650	1.00	11200.00	1375	0.00	163	00.00	18850.00	214	00.00	26500.00 MF
No.	Mk.	Freq.	Rea	ding	Correct		asure-		Limit	Ov			
			Le		Factor		ment						
		MHz	dB		dB		3uV/m		dBuV/r			Detector	Comment
1		7440.000		.82	-2.19		6.63		74.00			peak	
2	*	7440.000	54	.10	-2.19	5	1.91		54.00	-2.	09	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		st Mo					3Mbp					Test D					1/6/23	
			ency				OMH:	Z			F	Polariza					zontal	
100.0		Temp	1			2	3°C					Hum	۱.			5	1%	
130.0	dBu∀	/m																_
120																		
110																		-
100																		-
90																		
30																		
~																		-
io					1 X													-
io					2 x													
0																		-
30 <u> </u>																		-
20																		-
0.0																		
		3550.0			8650		1120			50.00		300.00			21400	.00	26500.0	O MH
No.	N	Лk.	Fred	ļ. 	Kea Le	iding vel		rrect ctor		easure ment	- -	Limit	t 	Ove	r 			
			MH	Z	dB	luV	C	ΙB	dl	BuV/n	1	dBuV/	m /	dB		Detector	Comm	ent
1			7440.0	000	58	.14	-2	.19	į	55.95		74.00	0	-18.0)5	peak		
2		*	7440.0	000	50	.36	-2	.19		48.17		54.00	0	-5.83	3	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX D	NUMBER OF HOPPING CHANNEL

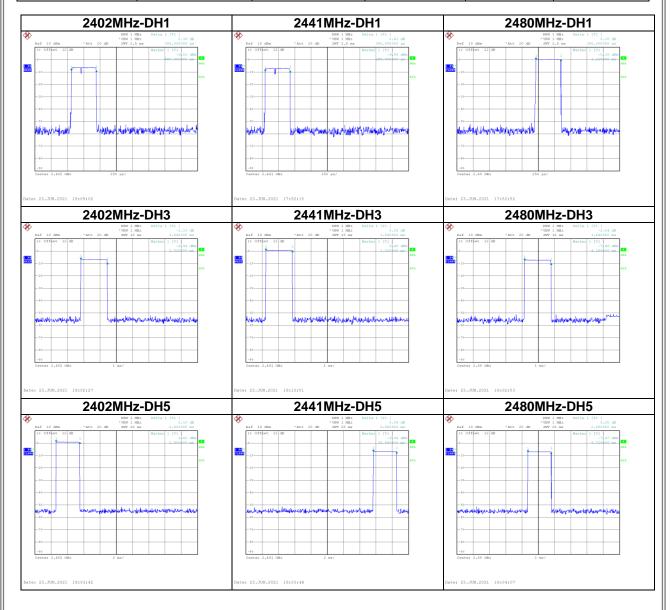

Project No.: 2103T093 Page 55 of 72 Report Version: R00

Test Mode 1/3Mbps

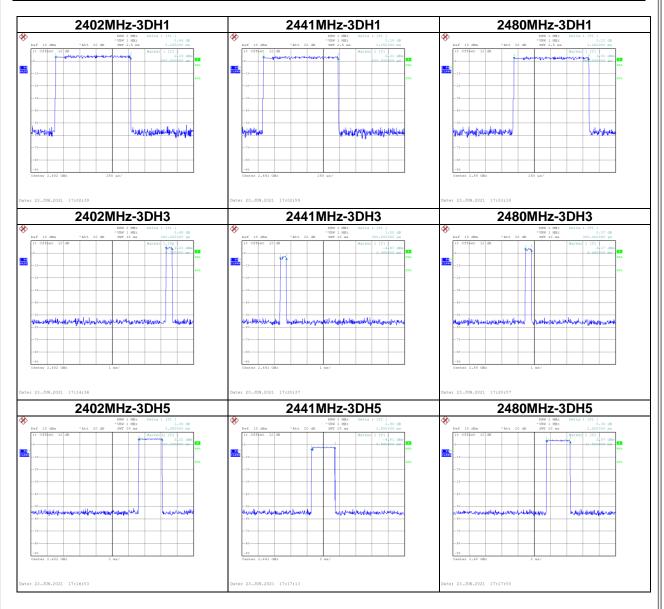
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

Date: 23.JUN.2021 17:59:58 Date: 23.JUN.2021 17:11:54

APPENDIX E	AVERAGE TIME OF OCCUPANCY

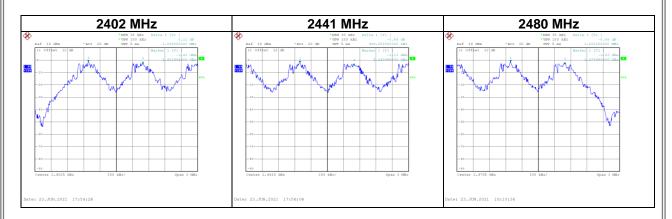

Project No.: 2103T093 Page 57 of 72 Report Version: R00

Test Mode: 1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3850	0.1232	0.4000	Pass
DH5	2480	2.8800	0.3072	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass

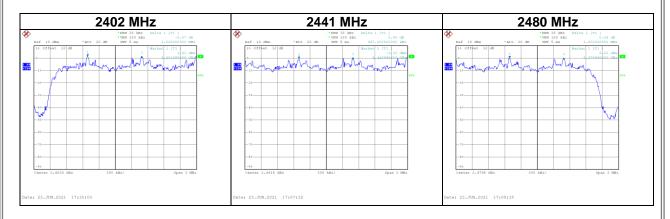
Test Mode: 3Mbps

Data Packet	Frequency (MHz)	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	0.3800	0.0608	0.4000	Pass
3DH1	2402	1.1550	0.3696	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	0.3800	0.0608	0.4000	Pass
3DH1	2441	1.1500	0.3680	0.4000	Pass
3DH5	2480	2.9200	0.3115	0.4000	Pass
3DH3	2480	0.3800	0.0608	0.4000	Pass
3DH1	2480	1.1500	0.3680	0.4000	Pass


APPENDIX F	HOPPING CHANNEL SEPARATION MEASUREMENT

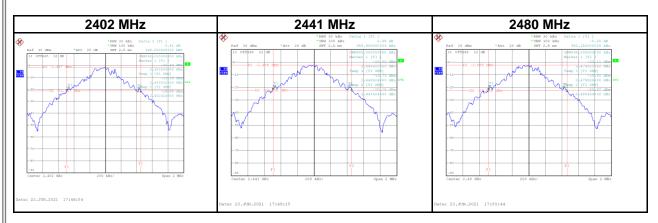
Project No.: 2103T093 Page 60 of 72 Report Version: R00

Test Mode :	Hopping on _1Mbps
TOST WIDGE .	riopping on _ rivibps


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.008	0.631	Pass
2441	0.999	0.637	Pass
2480	1.002	0.635	Pass

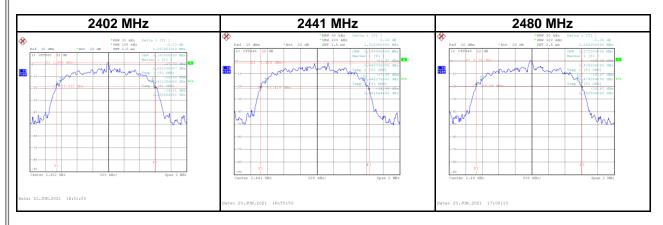
Test Mode : Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	1.002	0.839	Pass
2441	0.997	0.873	Pass
2480	1.002	0.855	Pass


Report No.: BTL-FCCP-1-2103T093 APPENDIX G BANDWIDTH

Project No.: 2103T093 Page 63 of 72 Report Version: R00

Test Mode : 1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0. 946	0. 892	Pass
2441	0. 956	0. 900	Pass
2480	0. 952	0.896	Pass

Test Mode: 3Mbps

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1. 258	1. 180	Pass
2441	1. 310	1. 188	Pass
2480	1. 282	1. 172	Pass

APPENDIX H	OUTPUT POWER

Project No.: 2103T093 Page 66 of 72 Report Version: R00

2480

-5.77

Report No.: BTL-FCCP-1-2103T093

0.1172

Pass

Test Mode :	1Mbps		Tested	d Date 2	2021/6/23
F	0 1 / 10	0 1 (15	B.A. 11. 1/		
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-1.54	0.0007	20.69	0.1172	Pass
2441	-5.86	0.0003	20.69	0.1172	Pass

Test Mode:	2Mbps	Tested Date	2021/6/23

20.69

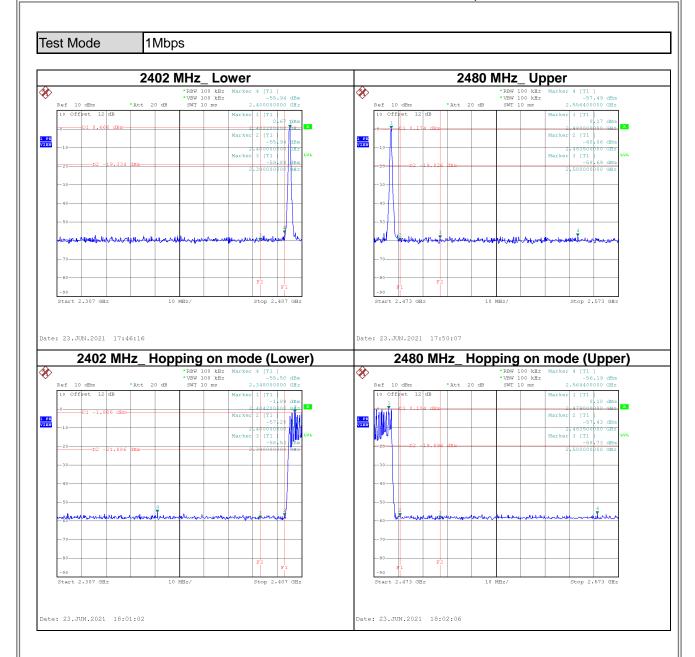
0.0003

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-2.61	0.0005	20.69	0.1172	Pass
2441	-0.36	0.0009	20.69	0.1172	Pass
2480	-0.65	0.0009	20.69	0.1172	Pass

Test Mode: 3Mbps	Tested Date	2021/6/23
------------------	-------------	-----------

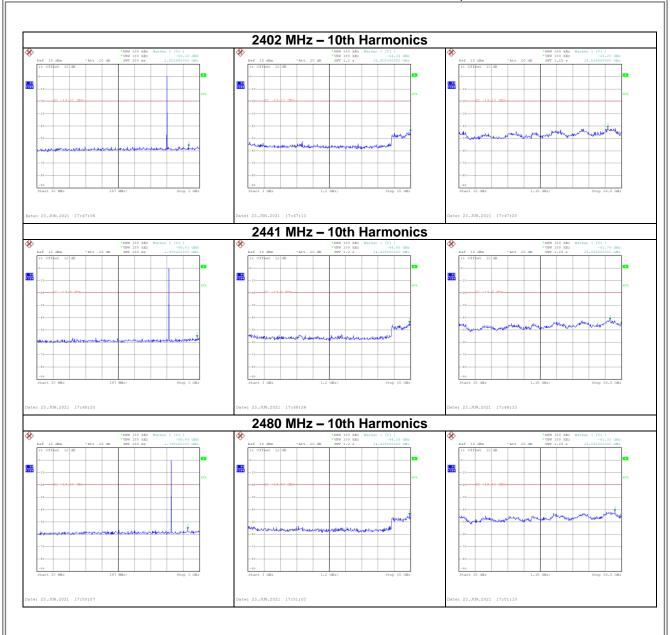
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	-2.35	0.0006	20.69	0.1172	Pass
2441	0.16	0.0010	20.69	0.1172	Pass
2480	-0.47	0.0009	20.69	0.1172	Pass

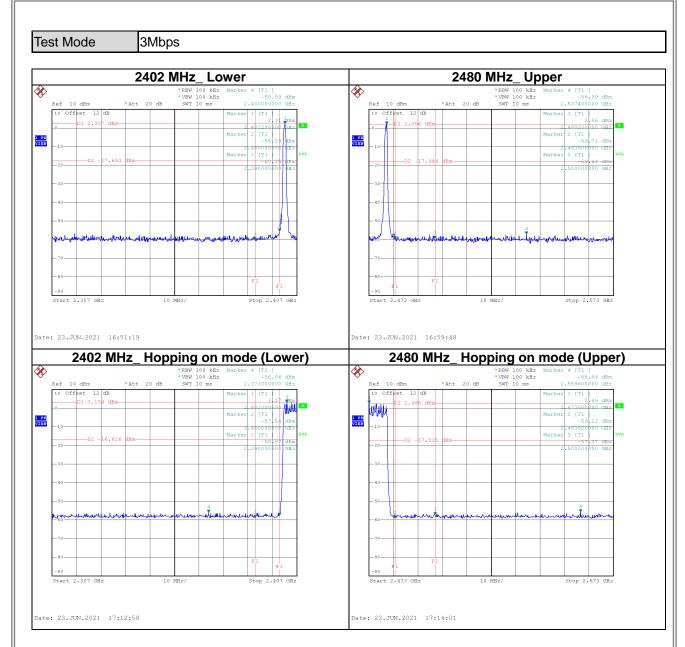
Project No.: 2103T093 Page 67 of 72 Report Version: R00

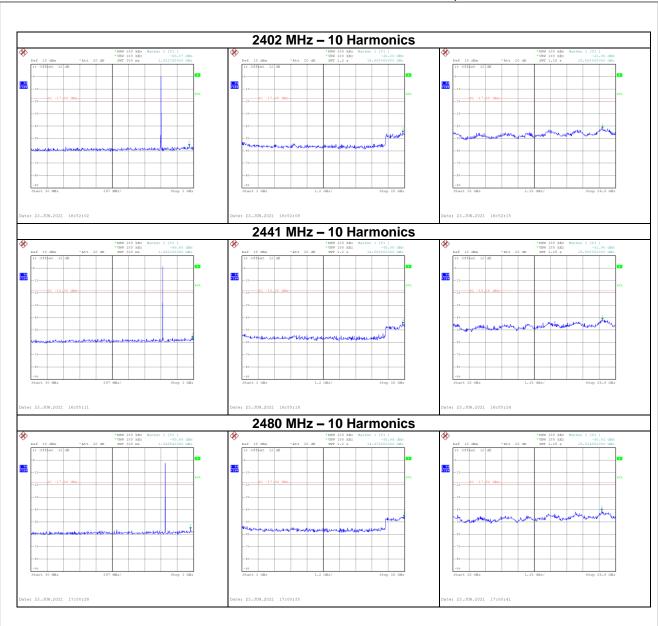


APPENDIX I	ANTENNA CONDUCTED SPURIOUS EMISSION

Project No.: 2103T093 Page 68 of 72 Report Version: R00







End of Test Report