

243 Jubug-Ri,Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 17159 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

> Dates of Tests: April 10 ,2023 ~ May 02 ,2023 Test Report S/N: LR500112305F Test Site : LTA CO., LTD.

CERTIFICATION OF COMPLIANCE

FCC ID.

2AZKWREBE-TZ75L

APPLICANT

ATEC IoT CO., LTD.

Equipment Class	:	Digital Transmission System (DTS)
Manufacturing Description	:	Electronic Shelf Label
Manufacturer	:	SUZHOU NIHONE Electronic Technology Co., LTD
Model name	:	REBE-TZ75L
Test Device Serial No.:	:	Identical prototype
Rule Part(s)	:	FCC Part 15.247 Subpart C ; ANSI C63.10 - 2013
Frequency Range	:	2405 ~ 2480 MHz Zigbee
Max. Output Power	:	Max -1.37 dBm - Conducted
Data of issue	:	May 12 ,2023

This test report is issued under the authority of:

Jabeom. Koo

Ja-Beom Koo, Manager

The test was supervised by:

Jae-Hum Yeon, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6 dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	10
3.2.3 POWER SPECTRAL DENSITY	13
3.2.4 BAND EDGE	16
3.2.5 CONDUCTED SPURIOUS EMISSIONS	19
3.2.6 RADIATED SPURIOUS EMISSIONS	22
APPENDIX	

APPENDIX TEST EQUIPMENT USED FOR TESTS		32
--	--	----

1. General information

<u>1-1 Test Performed</u>

Company name	: LTA Co., Ltd.	
Address	: 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 1	7159
Web site	: <u>http://www.ltalab.com</u>	
E-mail	: <u>chahn@ltalab.com</u>	
Telephone	: +82-31-323-6008	
Facsimile	+82-31-323-6010	
		, ,

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

<u>1-2 Accredited agencies</u>

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2023-09-28	ECT accredited Lab.
RRA	KOREA	KR0049	-	EMC accredited Lab.
FCC	U.S.A	649054	2024-04-08	FCC CAB
VCCI	JAPAN	C-4948,	2023-09-10	VCCI registration
VCCI	JAPAN	T-2416,	2023-09-10	VCCI registration
VCCI	JAPAN	R-4483(10 m),	2023-10-15	VCCI registration
VCCI	JAPAN	G-847	2024-12-13	VCCI registration
IC	CANADA	5799A-1	2024-08-15	IC filing

2. Information about test item

2-1 Client & Manufacturer

Client Company name	:	ATEC IoT CO., LTD.
Address	:	289, Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
Tel / Fax	:	+82-31-696-9829 / +82-31-696-9899
Manufacturer		SUZHOU NIHONE Electronic Technology Co., LTD
Address		No. 185,Xiaoxiang Road, Suzhou New District, Suzhou City, Jiangsu Province, P.R. China
Tel / Fax		+82-31-696-9829 / +82-31-696-9899

2-2 Equipment Under Test (EUT)

Model name	:	REBE-TZ75L
Serial number	:	Identical prototype
Date of receipt	:	April 10 ,2023
EUT condition	:	Pre-production, not damaged
Antenna type	:	Pattern Antenna (Ant1 Gain : -6.46 dBi, Ant2 Gain : -5.18 dBi)
Frequency Range	:	2405 ~ 2480 MHz
RF output power	:	Max -1.37 dBm – Conducted
Type of Modulation	:	Pi/4 DQPSK, 8DPSK
Power Source	:	DC 3 V

This product uses two antennas at one oscillation, and both antennas cannot operate at the same time, but only antennas operate at one time when transmitting.

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz) Zigbee	2405	2440	2480

2-4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer
Notebook	-	MS-1736	MSI

3. Test Report

Parameter	Test Condition	Status (note 1)
6 dB Bandwidth		С
Transmitter Peak Output Power		С
Transmitter Power Spectral Density	Conducted	С
Band Edge & Conducted Spurious emission		С
Transmitter emission	Radiated	С
AC Conducted Emissions	Conducted	N/A
Antenna requirement	-	С
	6 dB Bandwidth Transmitter Peak Output Power Transmitter Power Spectral Density Band Edge & Conducted Spurious emission Transmitter emission AC Conducted Emissions	6 dB Bandwidth

3.1 Summary of tests

N/A: This product is only operated with DC voltage.

The above equipment was tested by LTA Co., Ltd. The test data, data evaluation, test procedures, and

equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10-2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

The tests were performed according to the method of measurements prescribed in KDB No.558074.

\rightarrow Antenna Requirement

ATEC IoT CO., LTD. FCC ID: 2AZKWREBE-TZ75E unit complies with the requirement of §15.203. The antenna type is Pattern Antenna

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

The bandwidth at 6 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz	Span = 3 X RBW
VBW = 3 X RBW	Sweep = auto
Trace = max hold	Detector function = peak

Measurement Data : Complies

Mode Ant 1

Frequency (MHz)	Test Results		
	Measured Bandwidth (MHz)	Result	
2405	1.86	Complies	
2440	1.87	Complies	
2480	1.86	Complies	

Measurement Data : Complies

Mode Ant 1

Frequency	Test Results				
(MHz)	Measured Bandwidth (MHz)	Result			
2405	1.88	Complies			
2440	1.86	Complies			
2480	1.86	Complies			

- See next pages for actual measured spectrum plots.

Minimum Standard:

 $6 \text{ dB Bandwidth} \geq 500 \text{ kHz}$

Measurement Setup

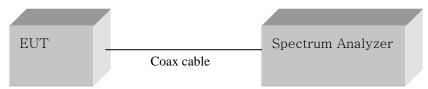
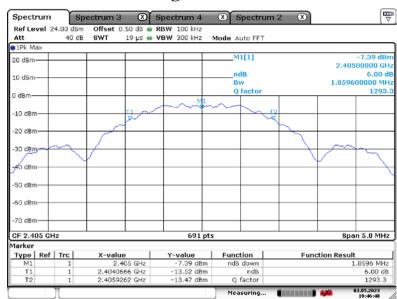
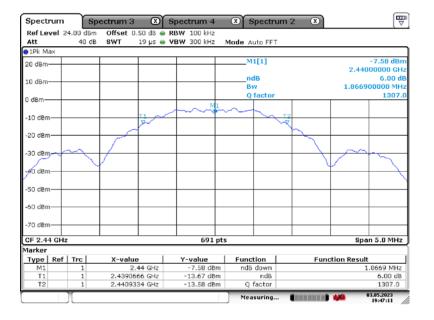
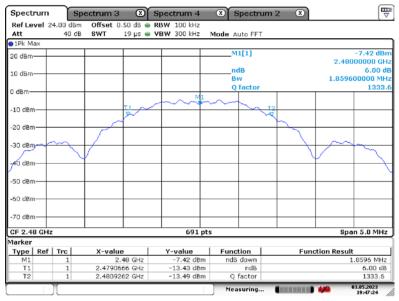





Figure 1: Measurement setup for the carrier frequency separation

Zigbee Ant1

				•	5					
Spectrum	Spe	ectrum 3	X	Spec	trum 4	× 5	Spectru	m 2 🛛 🕱)	[
Ref Level 24.00	0 dBm	Offset 0	.50 dB 😑	RBW	100 kHz					
Att	40 dB	SWT	19 µs 👄	VBW	300 kHz	Mode A	uto FFT			
1Pk Max										
20 dBm						M	1[1]			-8.91 dt
									2.40	500000 G
10 dBm							dB			6.00
						в			1.881	300000 M
0 dBm				_		Q	factor			127
					M1					
-10 dBm			11	$ \rightarrow $	$\sim \sim $	~~~	<u>>~</u>		_	
			J.					~ ₹		
-20 dBm		~	(_			L	h	_	
		<u></u>								
-30 dBm	\sim	/		_				\rightarrow	\rightarrow	-
	\mathbf{X}	1								1
40 dBm	$-\gamma$	/		_					γ —	· ·
-50 dBm				_						
-60 dBm				_						
-70 dBm				_					_	
CF 2.405 GHz					691 p	ts			Sp	an 5.0 Mi
larker										
Type Ref Tr		X-valu			-value	Func		Fu	inction Resu	
M1	1		05 GHz		-8.91 dBm		down			1.8813 M
T1 T2	1	2.40406			14.81 dBm		ndB			6.00 c
12	1	2.40594	79 GHZ		14.95 dBm	i Q	factor			
						Mea	suring			03.05.2023 19:50:50

T Spectrum Spectrum 3 Spectrum 4 Spectrum 2 Spectrum 2 Ref Level 24.00 dBm Offset 0.50 dB RBW 100 kHz Att 40 dB SWT 19 µs VBW 300 kHz Mode Auto FFT ●1Pk Ma M1[1] -8.72 dB 20 dBm -8.72 dBm 2.44000000 GHz 6.00 dB 1.859600000 MHz 1312.1 ndB Bw Q factor 10 dBm 0 dBm -10 dBm 1 -20 dBm -30 dBm-40 dBm -50 dBm -60 dBn -70 dBm Span 5.0 MHz CF 2.44 GHz 691 pts Marker Function Bm ndB down Bm ndB Bm Q factor Type Ref Trc X-value 2.44 GHz 2.4390666 GHz 2.4409262 GHz Y-value -8.72 dBm -14.68 dBm -14.80 dBm Function Result 1.8596 MHz 6.00 dB 1312.1 M1 T1 T2 Measuring... (....) 🦇 03.05.2023 19:51:12 10

Spectru	ım	Sp	ectrum :	3 ⊠`	Spectrum (4 0) Spectrum	12 🗶		[
Ref Lev					RBW 100 kH					
Att		40 dB	SWT	19 µs 😑	VBW 300 kH	z Mo	le Auto FFT			
1Pk Ma										
20 dBm—	-				_	-	_M1[1]		9.40	-8.93 dB 000000 GF
							ndB		2.40	6.00 d
10 dBm—	-					-	Bw		1.859	500000 MH
							Q factor			1333
0 dBm	-				-					
10 -10					1-~	¥~~~	-			
-10 dBm-				11				2		
-20 dBm-			-	~				\sim		
-20 06111-			~					5		
-30 dBm-		~								
-50 0011	~ ~	5						$ \rangle$	1/~	m.
-48 dBm-		~							1	
C GLIII										
-50 dBm-	_			_						
-60 dBm-				_		-				
-70 dBm-	-					-				
CF 2.48	GHZ				693	1 pts			Sp	an 5.0 MH;
Marker				1		1		-		
Type I M1	Ref Tr	1	X-val	ue 2.48 GHz	<u>Y-value</u> -8.93 d		Function ndB down	Fund	tion Resul	lt 1.8596 MH;
T1		1		2.46 GHz	-15.08 d		ndB ndB			1.0590 MH2 6.00 dB
T2		1		262 GHz	-14.99 d		O factor			1333.6
	1.75						Measuring		-	03.05.2023

Zigbee Ant2

3.2.2 Peak Output Power Measurement

Procedure:

The following procedure can be used when the maximum available RBW of the instrument is less than the DTS bandwidth :

The spectrum analyzer is set to:Center frequency = the highest, middle and the lowest channels $RBW \ge DTS$ Bandwidth $Span \ge 3 X RBW$ VBW = 3 X RBWSweep = autoDetector function = peak

Measurement Data : Complies

Mode Ant 1

Frequency	Test Results				
(MHz)	Measured data (dBm)	Result			
2405	-1.63	Complies			
2440	-1.55	Complies			
2480	-1.37	Complies			

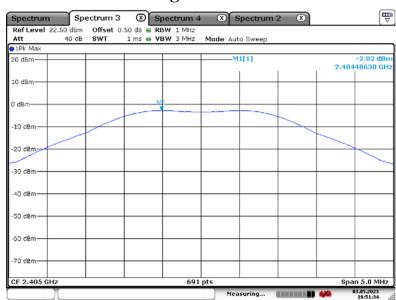
Mode Ant 2

Frequency	Test Results				
(MHz)	Measured data (dBm)	Result			
2405	-2.82	Complies			
2440	-2.76	Complies			
2480	-2.88	Complies			

- See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power	$\leq 1 \text{ W}(30 \text{ dBm})$
-------------------	------------------------------------


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Spectrum	Spectrum 3	Spectrum	14 🙁 Spectrum 2	7
Ref Level 22.50 dB Att 40 d		0 dB 🖷 RBW 1 MH 1 ms 🖶 VBW 3 MH		X
●1Pk Max				
20 dBm			M1[1]	-1.63 dBr 2.40447900 GH
10 dBm				
0 dBm		м		
-10 dBm				
22.42				
-20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				

Spectrum Spectrum 3 Spectrum 4 Spectrum 2 Spectrum ●1Pk Ma -1.55 dBn 2.44048480 GH M1[1] 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 5.0 MHz CF 2.44 GHz 691 pts 03.05.2023 19:47:49 Measuring... (.....) 🦇

Spectrum	Spe	ectrum 3	⊗ s	pectrum 4	× :	Spectrum	2 🗶		
Ref Level 22			50 dB 🖷 RI						
Att	40 dB	SWT	1 ms 🖷 V	BW 3 MHz	Mode Aut	to Sweep			
1Pk Max									
20 dBm					M	1[1]		2.480	-1.37 dBm 149930 GHz
10 dBm									
0 dBm					N	1			
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.48 GHz				691	pts				n 5.0 MHz
][]				Mea	asuring		444	03.05.2023 19:47:59

Spectrum Spectrum 3 Spectrum Spectrum 3 Spectrum 4 Spectrum 2 Spectrum 2 Spectrum 2 Spectrum 3 Spectrum 4 Spectrum 4 Spectrum 2 Spectrum 3 Spectrum 4 Spectrum4 ⊖1Pk Ma> -2.76 dBn 2.44051370 GH 20 dBm-10 dBm· 0 dBm -10 dBm -20 dBm--30 dBm 40 dBm -50 dBm -60 dBm -70 dBm Span 5.0 MHz CF 2.44 GHz 691 pts 03.05.2023 19:51:45 Measuring...

Spectrun	n Sp	ectrum 3	⊗ s	pectrum 4	× 5	Spectrum	2 🗶		
	22.50 dBm		50 dB 🖷 RI						
Att	40 dB	SWT	1 ms 😑 V	BW 3 MHz	Mode Aut	to Sweep			
1Pk Max									
20 dBm					M	1[1]			-2.88 dBm 50650 GHz
10 dBm									
0 dBm					b	1			
-10 dBm									
-20 dBm									
-30 dBm-									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.48 G	Ηz			691	pts		1	Spa	n 5.0 MHz
					Mea	suring		444	13.05.2023 19:51:54

Zigbee Ant2

3.2.3 Power Spectral Density

Procedure:

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance.

The spectrum analyzer is set to:	
$RBW = 3 \text{ kHz} (3 \text{ kHz} \le RBW \le 100 \text{ kHz})$	Span \geq 1.5 times the DTS bandwidth
VBW = 3 X RBW	Sweep = auto
Detector function = peak	Trace = max hold

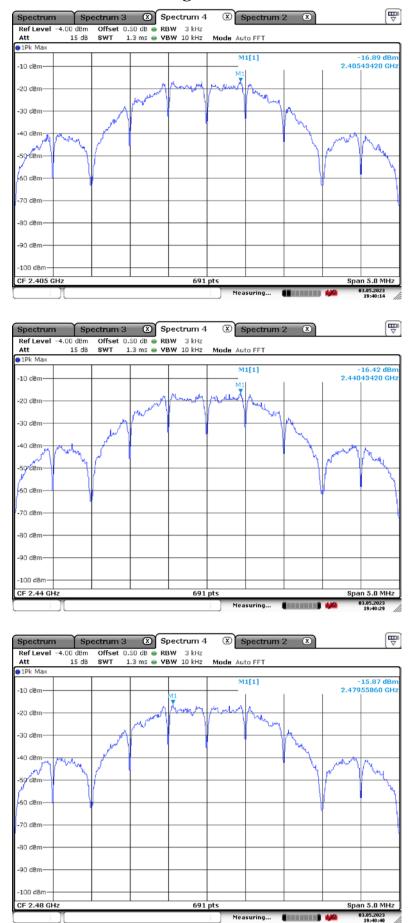
Measurement Data : Complies

Mode Ant 1

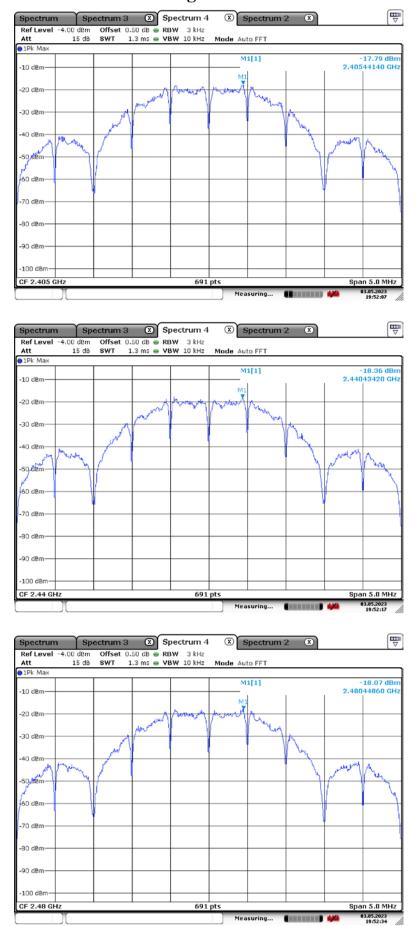
Frequency	Test Results				
(MHz)	dBm / 3 kHz BW	Result			
2405	-16.89	Complies			
2440	-16.42	Complies			
2480	-15.87	Complies			

Mode Ant 2

Frequency	Test Results				
(MHz)	dBm / 3 kHz BW	Result			
2405	-17.79	Complies			
2440	-18.36	Complies			
2480	-18.07	Complies			


- See next pages for actual measured spectrum plots.

Minimum Standard:


Power Spectral Density	$\leq 8 \text{ dBm} @ 3 \text{ kHz BW}$
------------------------	---

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Zigbee Ant1

Zigbee Ant2

3.2.4 Band Edge

Procedure:

The Unwanted emission from the EUT were measured according to the dictates PKPSD measurement procedure in section 11.11 of ANSI C63.10-2013.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

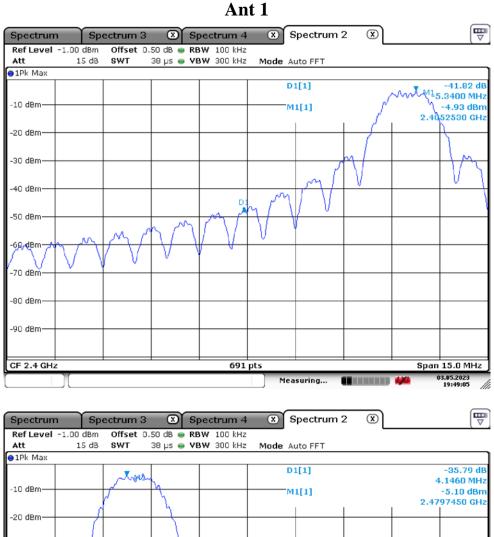
If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(4), the attenuation required shall be 30 dB instead of 20 dB.

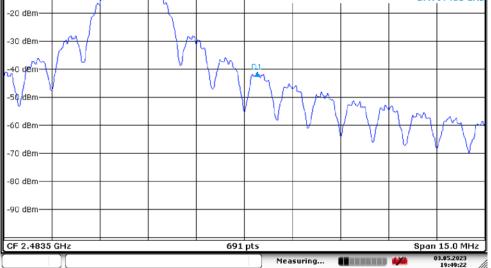
The spectrum analyzer is set to: Center frequency = the highest, middle and the lowest channels RBW = 100 kHz $VBW \ge 3 \text{ X RBW}$ Detector function = peak Trace = max holdSweep = auto

Measurement Data: Complies

Ant 1

Frequency	Test Res	sults
(MHz)	dBc	Result
Low edge	41.82	Complies
High edge	35.79	Complies


Ant 2


Frequency	Test Res	sults
(MHz)	dBc	Result
Low edge	41.56	Complies
High edge	36.46	Complies

All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.

- See next pages for actual measured spectrum plots.

Minimum Standard:	$\leq 20 \text{ dBc}$
-------------------	-----------------------

691 pts

Measuring...

144

-60 dBm-

-70 dBm·

-80 dBm-

-90 dBm·

-100 dBm-

CE 2,4835 GHz

Span 15.0 MHz

03.05.2023 19:53:11

///

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHzSweep = autoVBW = 100 kHzDetector function = peakTrace = max hold

Measurement Data: Complies

Ant1					
Frequency	Test Results				
(MHz)	dBc	Result			
2405	58.93	Complies			
2440	58.41	Complies			
2480	56.99	Complies			
Ant2					
Frequency	Test Results				
(MHz)	dBc	Result			
2405	53.30	Complies			
2440	53.08	Complies			
2480	53.52	Complies			

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 20 dB lower than the highest inband spectral density. Therefore the applying equipment meets the require ment.
- See next pages for actual measured spectrum plots.

Minimum Standard:	$\geq 20 \text{ dBc}$

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

-					spectrum	é wĽ		("
					uto Sween			
20 00	0.111		DIT COD KIN	. mous A	ato oneep			
М1				D	1[1]			-58.93 d 2.4130 GH
				M	11[1]			-5.31 dBr 2.3860 GH
D1								
1	بالاسلىر							
weeks and the state	" w	furmention	or a second the second s	watcher	Munumap	www.	mount	ويدلد المطالبة ويد
A11-2			601	ate			Stor	26.5 GHz
			091	·	curing			0 20.3 GH2 03.05.2023
				, Hea	asuring			19:49:40
n Sp	ectrum (3 🛛 S	pectrum 4	⊢ ⊗ €	Spectrum	2 🕱		Ē
	-1.00 dBm 15 dB M1 D1 	-1.00 dtm Offset 15 db SWT M1 D1 WH2 MHz	-1.00 dem Offset 0.50 dB R 15 dB SWT 265 ms V M1	-1.00 dtm Offset 0.50 dB • RBW 100 kH: 15 dB SWT 265 ms • VBW 300 kH: M1	-1.00 ddm Offset 0.50 dB • RBW 100 kHz 15 dB SWT 265 ms • VBW 300 kHz Mode A M1 D N N N N M1 D N N M1 D N N N M1 D N N N N M1 D N N N N N N N N N N N N N	-1.00 dfm Offset 0.50 dB	-1.00 dtm Offset 0.50 db e RBW 100 kHz 15 db SWT 265 ms e VBW 300 kHz Mode Auto Sweep M1 01[1] M1 01[1] M1[1]	-1.00 dtm Offset 0.50 dB • RBW 100 kHz 15 dB SWT 265 ms • VBW 300 kHz M1 01[1] M1 01[1] M1 01[1] M1[1] M1 01[1] M1 01[1

Unwanted Emission – Ant1 (Low,Middle,High)

Spectrum	n Sp	ectrum 3	× s	pectrum 4	× *	Spectrum 2	2 œ		
Ref Level Att	-2.00 dBm 15 dB			BW 100 kHz BW 300 kHz	Mode A	uto Sweep	_		
1Pk Max									
-10 dBm	M1					1[1] 11[1]			-58.41 dB 2.4520 GHz -6.57 dBm 2.4240 GHz
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm-									
-60 dBm	D1								
An Court	monde	when the	allow the she	mand	mushum	warman	would	reading	ushninan
-80 dBm									
-90 dBm									
-100 dBm-									
Start 30.0	MHz			691	pts				26.5 GHz
][Mea	asuring		444	03.05.2023 19:49:54 //

Spectrum	Spo	ectrum	з 🛛	Spectrum 4	×	Spectrum 2	: 🗵		
Ref Level				RBW 100 kHz					
Att 1Pk Max	15 dB	SWT	265 ms 👄	VBW 300 kHz	Mode	Auto Sweep			
-10 dBm						D1[1] M1[1]		1	-56.99 dt 2.4110 GH -6.93 dBn
-20 dBm						++			2.4620 GH
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm					D1				
-70 dBm	mounderriche	un and a start of the start of	anaryouthill	n hure hure rest	mond	normany	work	outorus	hunder
-90 dBm									
-100 dBm-									
Start 30.0	MHz			691	pts			Sto	p 26.5 GHz
					Me	easuring 📒			03.05.2023 19:50:09

Spectrum		ectrum 3	3 🗙 SI	ectrum 4	× 5	Spectrum	2 🛛		Ē
Ref Level			0.50 dB 👄 RE			pooranii			0
Att	15 dB		265 ms 👄 🛛			uto Sweep			
1Pk Max									
M1					D	1[1]			-53.30 d
-10 dBm									2.3750 GF -8.33 dB
					191	1[1]			-8.33 UB 2.4240 GF
-20 dBm									1.12.10 01
20 0.0111									
20 d0m									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm	01								
	î								
-70 dBm	and the second second	باست	+						
با لمدينهاهين	مالمه والمستقلهما	i hu	1. monarts	tor han	warne	mon and when	mount	Moun	proposition
-80 dBm		40	- Villian Bar	4. 000. a 100					
-90 dBm									
-90 0011									
-100 dBm				691					26.5 GHz
							••••••		19:53:29
		ectrum 3		pectrum 4	S	Spectrum			
Ref Level - Att		Offset (3W 100 kHz					
Ref Level - Att	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	<u> </u>	Spectrum :		•••	
Ref Level Att	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum :			-53.08 d
Ref Level Att 1Pk Max	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF
Ref Level Att 1Pk Max	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep			-53.08 d 2.4520 GF -8.13 dB
Att 1Pk Max -10 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max -10 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max -10 dBm -20 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max -10 dBm -20 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dBi 2.4240 GF
Ref Level Att 1Pk Max -10 dBm -20 dBm -30 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max -10 dBm -20 dBm -30 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Mil 10k Mil -10 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Mil 10k Mil -10 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max 10 dBm -20 dBm -30 dBm -50 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max 10 dBm -20 dBm -30 dBm -50 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att 1Pk Max 10 dBm -20 dBm -30 dBm -50 dBm	-2.00 dBm	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1]			-53.08 d 2.4520 GF -8.13 dB
Ref Level Att Att 1Pk Max 1Pk Max M1 -10 dBm	-2.00 dBm 15 dB	Offset (0.50 dB 👄 RE	3W 100 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3		-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att Att 1Pk Max 1Pk Max M1 -10 dBm	-2.00 dBm	Offset (SWT	0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]			-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	-2.00 dBm 15 dB	Offset (0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3		-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	-2.00 dBm 15 dB	Offset (SWT	0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3		-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att 1Pk Max 110 d8m -20 d8m -30 d8m -40 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m	-2.00 dBm 15 dB	Offset (SWT	0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3		-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	-2.00 dBm 15 dB	Offset (SWT	0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3	:	-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att 1Pk Max M1 -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm -90 dBm	-2.00 dBm 15 dB	Offset (SWT	0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3	:	-53.08 d 2.4520 G -8.13 dB 2.4240 G
Ref Level Att 1Pk Max 110 d8m -20 d8m -30 d8m -40 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m	-2.00 dBm 15 dB	Offset (SWT	0.50 dB ● RE ● R	300 kHz	Mode A	Spectrum : uto Sweep 1[1] 1[1]	2 3	: : 	-53.08 d 2.4520 GF -8.13 dB

<u>Unwanted Emission – Ant2 (Low, Middle, High)</u>

T
 Spectrum
 Spectrum 3
 Spectrum 4
 Spectrum 2

 Ref Level
 -3:00 dBm
 Offset
 0.50 dB
 RBW
 100 kHz

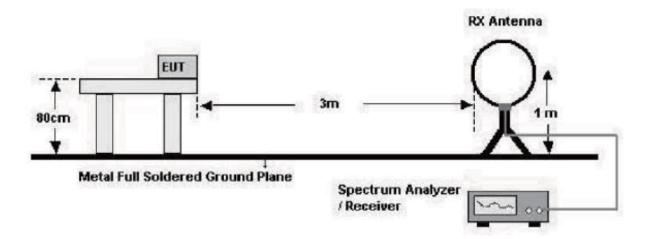
 Att
 15 dB
 SWT
 265 ms
 VBW 300 kHz
 Mode Auto Sweep
× 1Pk Max -53.52 dB 2.4900 GHz -7.43 dBm 2.4620 GHz D1[1] Y -10 dBm M1[1] -20 dBn 30 dBr 40 dBm -50 dBm -60 dBm 70 dBm undown لسلالله Indedated 101 A .1.4 -80 dBm--90 dBm -100 dBm Stop 26.5 GHz 691 pts Start 30.0 MHz 03.05.2023 19:54:04 Measuring... -----

3.2.6 Radiated Spurious Emissions

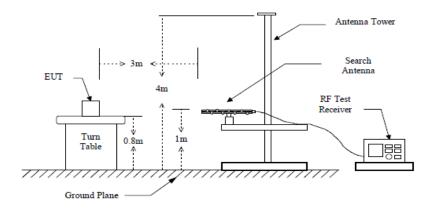
Procedure:

Radiated emissions from 30 MHz to 25 GHz were measured according to the methods defines in ANSI C63.10-2013.

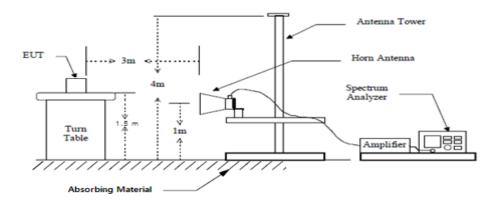
The EUT is a placed on as turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while


keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

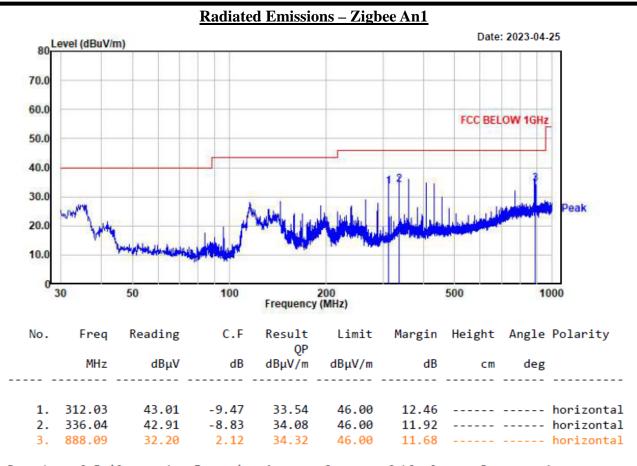
The spectrum analyzer is set to:	
Center frequency = the worst channel	
Frequency Range = 9 kHz ~ 10^{th} harmonic.	
RBW = 120 kHz (30 MHz ~ 1 GHz)	$VBW \geq RBW$
= 1 MHz (1 GHz ~ 10^{th} harmonic)	
Trace = max hold	Detector function = peak
Sweep = auto	

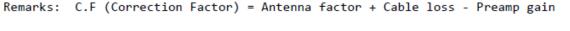

Duty cycle : 98.89 %

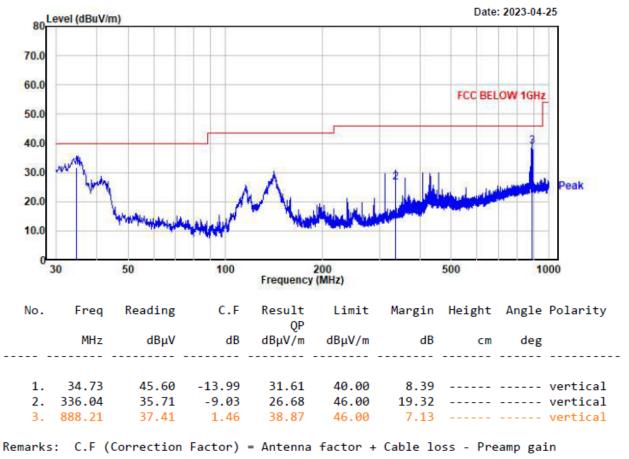
below 30 MHz


The EUT configureal to transmit continuously($D \ge 98\%$)/ Duty Factor = 0

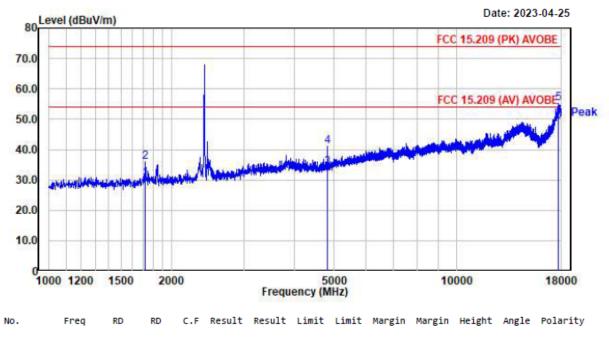
below 1 GHz (30 MHz to 1 GHz)

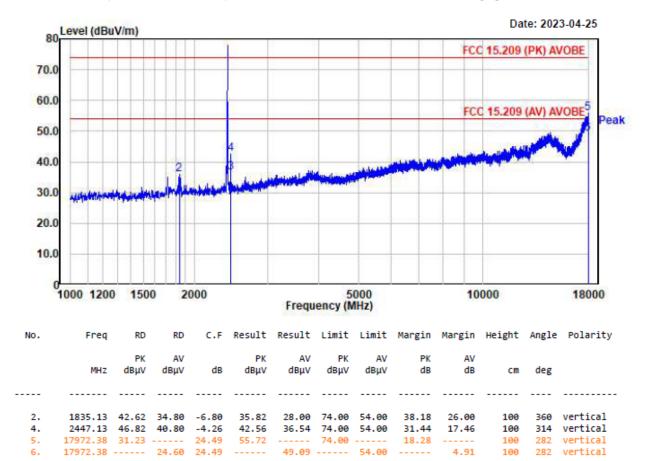

Measurement Data: Complies


- See next pages for actual measured data.
- No other emissions were detected at a level greater than 20 dB below limit include from 9 kHz to 30MHz.
- The test results for the worst of the various operating modes are presented in accordance with 6.3.4 of ANSI C63.10.
- Checked with a red circle is the fundamental frequency.


Frequency (MHz)	Limit (uV/m) @ 3 m
0.009 ~ 0.490	2400/F(kHz) (@ 300 m)
0.490 ~ 1.705	24000/F(kHz) (@ 30 m)
1.705 ~ 30	30(@ 30 m)
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

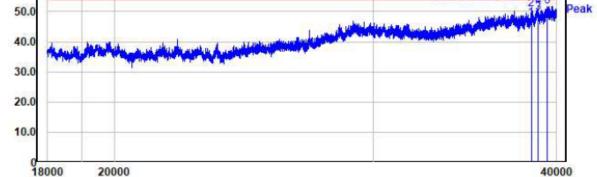
Minimum Standard: FCC Part 15.209(a)


** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.



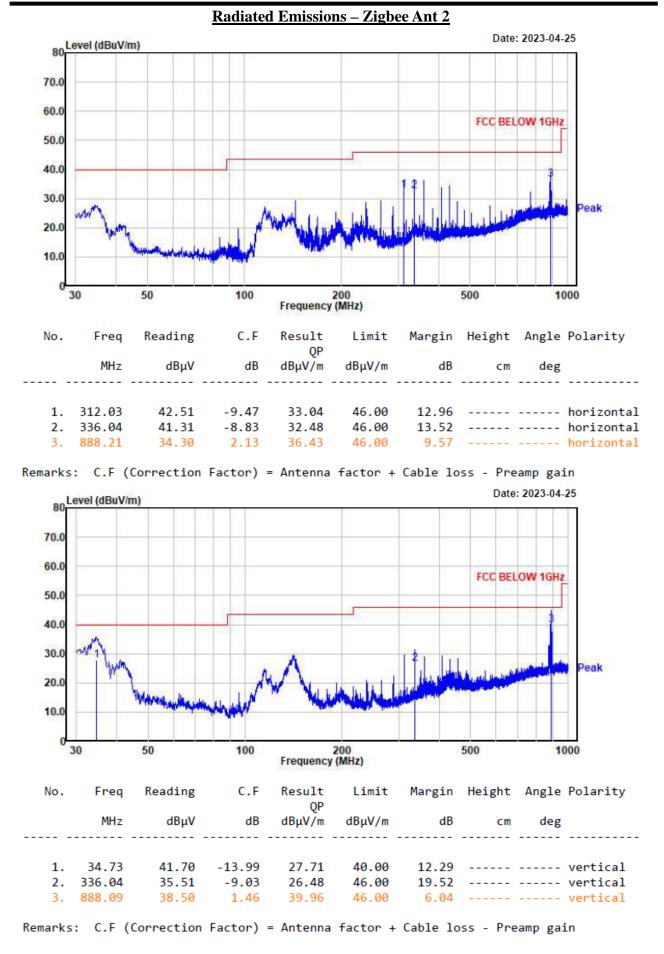
Copyright © 2023, LTA Co., Ltd.

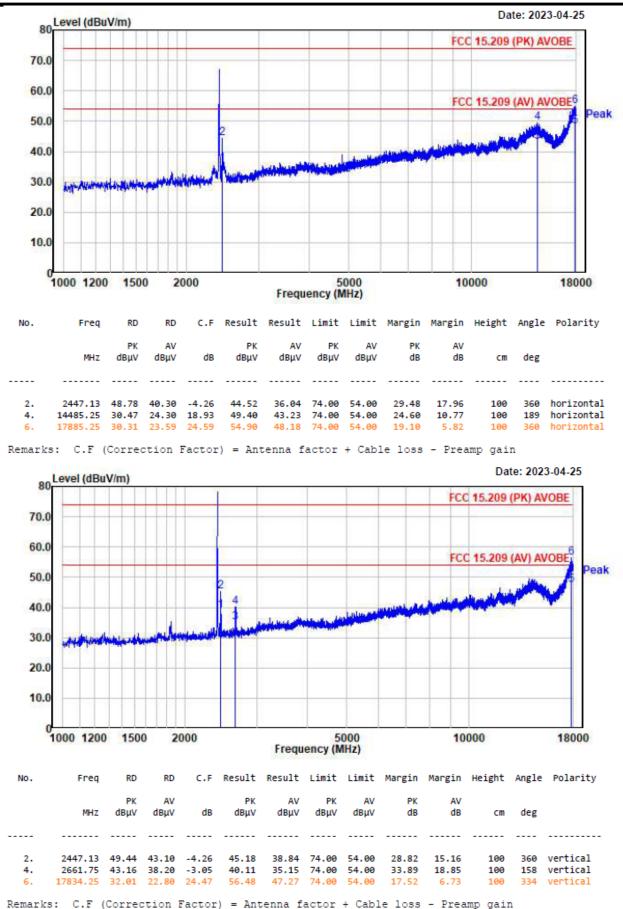
	MHz	ΡK dBµV	ΑV dBµV	dB	ΡK dBµV	AV dBμV	ΡK dBµV		PK dB	AV dB	cm	deg	
2.	1718.25	43.06	37.60	-7.26	35.80	30.34	74.00	54.00	38.20	23.66	100	358	horizontal
4.	4808.00	37.54	30.70	3.49	41.03	34.19	74.00	54.00	32.97	19.81	100	77	horizontal
5.	17738.63	30.99		24.11	55.10		74.00		18.90		100	360	horizontal
6.	17738.63		25.10	24.11		49.21		54.00		4.79	100	360	horizontal

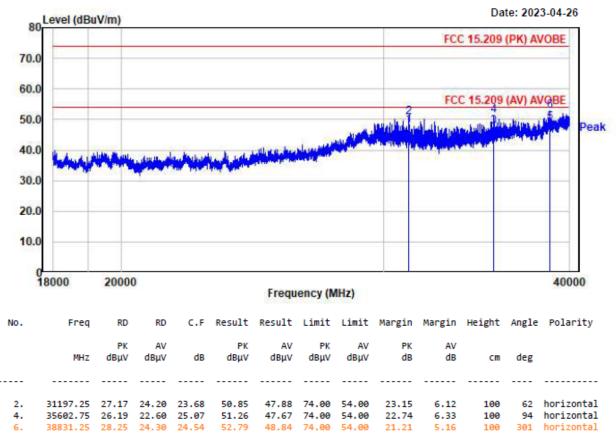


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

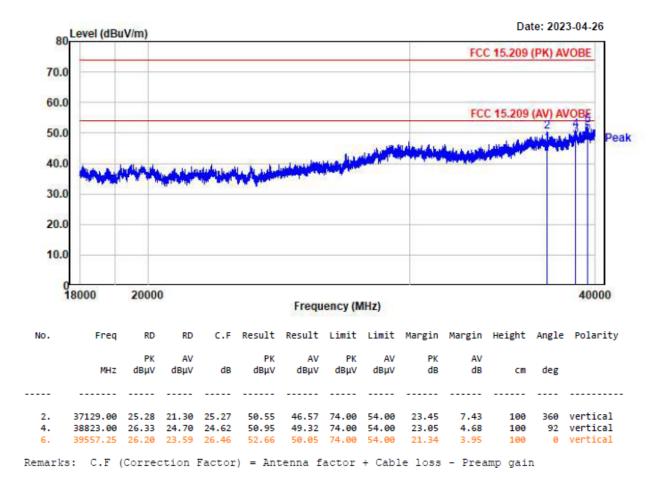
Copyright © 2023, LTA Co., Ltd.


Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain





Frequency (MHz)


No.	Freq	RD	RD	C.F	Result	Result	Limit	Limit	Margin	Margin	Height	Angle	Polarity
	MHZ	РК dBµV	ΑV dBµV	dB	РК dBµV	ΑV dBµV	РК dBµV	ΑV dBµV	PK dB	AV dB	cm	deg	
2.	38468.25	26.47	23.50	24.28	50.75	47.78	74.00	54.00	23.25	6.22	100	284	vertical
4.	38864.25	26.88	24.70	24.69	51.57	49.39	74.00	54.00	22.43	4.61	100	94	vertical
6.	39452.75	25.40	20.61	26.31	51.71	46.92	74.00	54.00	22.29	7.08	100	268	vertical
Remark	s: C.F	(Correc	ction	Factor) = Ant	tenna f	actor	+ Cabl	e loss	- Prea	mp gai	n	

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.7 AC Conducted Emissions

Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Minimum Standard: FCC Part 15.207(a)/EN 55022 Measurement Data: N/A

Class B

Frequency Range	quasi-peak	Average			
0.15 ~ 0.5	66 to 56 *	56 to 46 *			
0.5 ~ 5	56	46			
5 ~ 30	60	50			

* Decreases with the logarithm of the frequency

APPENDIX TEST EQUIPMENT USED FOR TESTS

0	Use	Description	Model No.	Serial No.	Manufacturer	Interval	Next Cal. Date
1		Signal Analyzer (9 kHz ~ 30 GHz)	FSV30	100757	R&S	1 year	2023-08-30
2		Signal Generator (~3.2 GHz)	8648C	3623A02597	HP	1 year	2024-03-14
3		SYNTHESIZED CW GENERATOR	83711B	US34490456	HP	1 year	2024-03-14
4		Attenuator (3 dB)	8491A	37822	HP	1 year	2023-08-30
5		Attenuator (10 dB)	8491A	63196	HP	1 year	2023-08-30
6		EMI Test Receiver (~7 GHz)	ESCI7	100722	R&S	1 year	2023-08-30
7		RF Amplifier (~1.3 GHz)	8447D OPT 010	2944A07684	HP	1 year	2023-08-30
8		RF Amplifier (1~26.5 GHz)	8449B	3008A02126	HP	1 year	2024-03-14
9		Horn Antenna (1~18 GHz)	3115	00114105	ETS	2 year	2023-08-30
10		DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2024-03-18
11		DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2024-03-18
12		TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2024-03-14
13		Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2024-03-14
14		Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
15		DC Power Supply	6674A	3637A01657	Agilent	-	-
17		Power Meter	EPM-441A	GB32481702	HP	1 year	2024-03-14
18		Power Sensor	8481A	3318A94972	HP	1 year	2023-08-30
19		Audio Analyzer	8903B	3729A18901	HP	1 year	2023-08-30
20		Moduleation Analyzer	8901B	3749A05878	HP	1 year	2023-08-30
21		TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2023-08-30
22		Stop Watch	HS-3	812Q08R	CASIO	2 year	2026-03-14
23		LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2024-03-14
24		Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2024-03-14
25		UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2024-03-14
26		Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	1 year	2024-03-14
27		Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	1 year	2024-03-14
28		OSP120 BASE UNIT	OSP120	101230	R&S	1 year	2024-03-14
29		Signal Generator(100 kHz ~ 40 GHz)	SMB100A03	177621	R&S	1 year	2024-03-14
30		Signal Analyzer (10 Hz ~ 40 GHz)	FSV40	101367	R&S	1 year	2024-03-14
31		Active Loop Antenna	FMZB 1519	1519-031	SCHWARZBECK	2 year	2024-03-16