

RADIO TEST REPORT FCC ID: 2AZJV-JYX66BT

Product:	ACOUSTICS
Trade Mark:	XYL
Model No.:	JYX-66BT
Family Model:	JYX-16,JYX-23,JYX-26,JYX-60BT,JYX-61BT, JYX-62BT,JYX-63BT,JYX-65BT, JYX-69BT, JYX-70BT,JYX-82BT, JYX-D10,JYX-D11, JYX-N885,JYX-N887,JYX-N888,JYX-N889, JYX-NX201,JYX-Q38,JYX-S55,JYX-NX202,JYX-57S
Report No.:	S21031200201001
Issue Date:	08 Apr. 2021

Prepared for

SHENZHEN CITY JIAYUXIANG ACOUSTICS ELECTRONIC CO., LTD.

NO.7th Building, Houhaixufa Industrial Zone,Loucun,Gongmingtown,Guangming District,Shenzhen,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	5
3.3	MEASUREMENT UNCERTAINTY	
	INERAL DESCRIPTION OF EUT	
	SCRIPTION OF TEST MODES	
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7 TE	ST REQUIREMENTS	13
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 F	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8 TE	ST RESULTS	35
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION	

Report No.: S21031200201001

1 TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN CITY JIAYUXIANG ACOUSTICS ELECTRONIC CO.,
	LTD.
Address	NO.7th Building, Houhaixufa Industrial Zone,Loucun,Gongmingtown,
	Guangming District, Shenzhen, China
Manufacturer's Name:	SHENZHEN CITY JIAYUXIANG ACOUSTICS ELECTRONIC CO.,
	LTD.
Address	NO.7th Building, Houhaixufa Industrial Zone,Loucun,Gongmingtown,
	Guangming District, Shenzhen, China
Product description	
Product name:	ACOUSTICS
Model and/or type reference:	JYX-66BT
Family Model:	JYX-16,JYX-23,JYX-26,JYX-60BT,JYX-61BT,JYX-62BT,JYX-63BT,
	JYX-65BT, JYX-69BT,JYX-70BT ,JYX-82BT, JYX-D10,JYX-D11,
	JYX-N885,JYX-N887,JYX-N888,JYX-N889,JYX-NX201,JYX-Q38,
	JYX-S55,JYX-NX202,JYX-57S

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	12 Mar. 2021 ~ 08 Apr. 2021	
Testing Engineer	:	prany. Hu	
		(Mary Hu)	
Technical Manager	:	Jasonchen	
		(Jason Chen)	
Authorized Signatory	:	Alex	
		(Alex Li)	

NTEK北测

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

ACC

Certificate #4298.01

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	ACOUSTICS	
Trade Mark	JYX	
FCC ID	2AZJV-JYX66BT	
Model No.	JYX-66BT	
Family Model	JYX-16,JYX-23,JYX-26,JYX-60BT,JYX-61BT,JYX-62BT,JYX-63BT, JYX-65BT, JYX-69BT,JYX-70BT ,JYX-82BT, JYX-D10,JYX-D11, JYX-N885,JYX-N887,JYX-N888,JYX-N889,JYX-NX201,JYX-Q38, JYX-S55,JYX-NX202,JYX-57S	
Sample serial number	S210312002002	
Model Difference	All models are the same circuit and RF module, except the Model No	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	1 dBi	
Devier events	DC supply: DC 3.7V from battery or DC 5V from Type-C port	
Power supply	Adapter supply: N/A	
Battery	DC 3.7V,5200mAh	
HW Version	N/A	
SW Version	N/A	

ACCRED

Certificate #4298.01

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date
S21031200201001	Rev.01	Initial issue of report	08 Apr. 2021

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation,2Mbps for π /4-DQPSK modulation) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

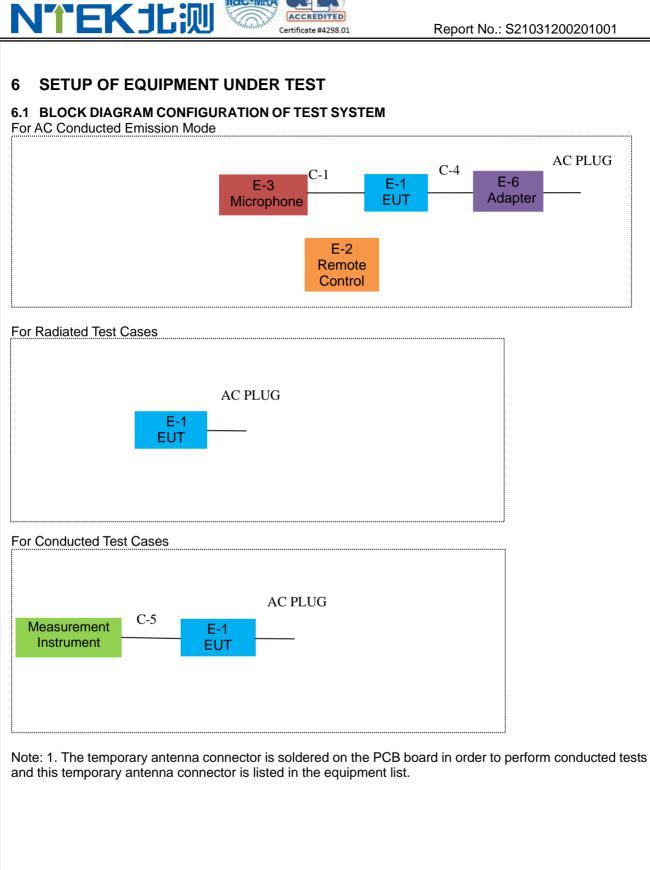
Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode	Description	
Mode 1	normal link mode	

Note: AC power line Conducted Emission was tested under maximum output power.


	For Radiated Test Cases			
Final Test Mode	Description			
Mode 1	CH39(2441MHz)			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			

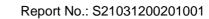
Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

Final Test ModeDescriptionMode 2CH00(2402MHz)Mode 3CH39(2441MHz)Mode 4CH78(2480MHz)	For Conducted Test Cases				
Mode 3 CH39(2441MHz)	Final Test Mode	Description			
	Mode 2	CH00(2402MHz)			
Mode 4 CH78(2480MHz)	Mode 3	CH39(2441MHz)			
	Mode 4	CH78(2480MHz)			
Mode 5 Hopping mode	Mode 5	Hopping mode			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	ACOUSTICS	JYX	JYX-66BT	N/A	EUT
E-2	Remote Control	N/A	N/A	N/A	Peripherals
E-3	Microphone	N/A	N/A	N/A	Peripherals
E-6	Adapter	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Audio cable	NO	NO	1.5m
C-2	Audio cable	NO	NO	1.5m
C-3	Audio cable	NO	NO	1.5m
C-4	DC cable	NO	NO	0.8m
C-5	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		iest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.05.11	2021.05.10	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.05.11	2021.05.10	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.05.11	2021.05.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.05.11	2021.05.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.05.11	2021.05.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.05.11	2021.05.10	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.05.11	2021.05.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.05.11	2021.05.10	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2020.05.11	2023.05.10	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.05.11	2023.05.10	3 year
16	Filter	TRILTHIC	2400MHz	29	2020.04.07	2023.04.06	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment Kind of Calibration Calibrated Manufacturer Type No. Serial No. Last calibration Item Equipment until period Test Receiver R&S ESCI 101160 2020.05.11 2021.05.10 1 1 year 2 LISN R&S **ENV216** 101313 2020.05.11 2021.05.10 1 year SCHWARZBE LISN **NNLK 8129** 3 8129245 2020.05.11 2021.05.10 1 year CK 50Ω Coaxial ANRITSU 4 MP59B 6200983704 2020.05.11 2023.05.10 3 year Switch CORP **Test Cable** 5 (9KHz-30MH N/A C01 N/A 2020.05.11 2023.05.10 3 year Z) Test Cable 6 (9KHz-30MH N/A C02 N/A 2020.05.11 2023.05.10 3 year Z) Test Cable C03 2023.05.10 7 (9KHz-30MH N/A N/A 2020.05.11 3 year Z)

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIM CERTIFICATE #4298.01

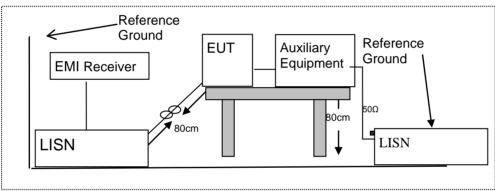
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


Frequency (MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

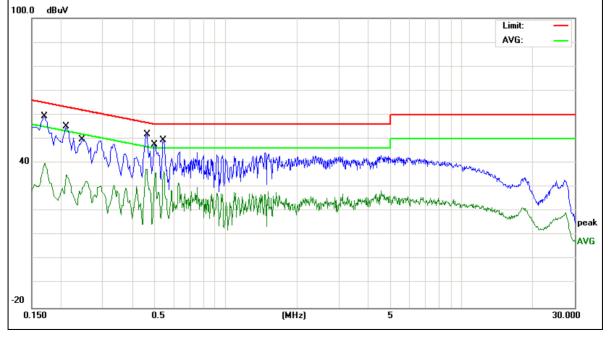
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

EUT:	ACOUSTICS	Model Name :	JYX-66BT
Temperature:	20.5 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V power by adapter AC 120V/60Hz	Test Mode:	Mode 1

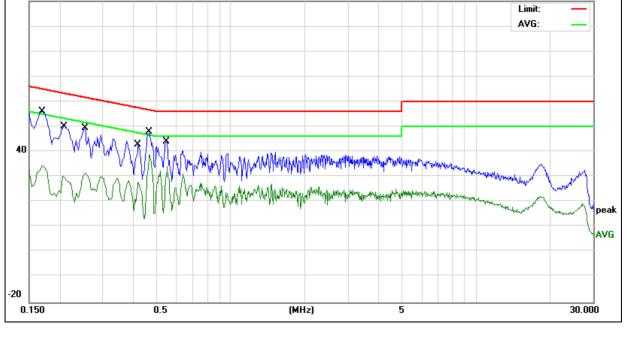
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Dermerile
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.1700	49.79	9.56	59.35	64.96	-5.61	QP
0.1700	30.35	9.56	39.91	54.96	-15.05	AVG
0.2099	45.45	9.55	55.00	63.21	-8.21	QP
0.2099	25.55	9.55	35.10	53.21	-18.11	AVG
0.2459	40.32	9.55	49.87	61.89	-12.02	QP
0.2459	22.82	9.55	32.37	51.89	-19.52	AVG
0.4620	42.33	9.55	51.88	56.66	-4.78	QP
0.4620	28.01	9.55	37.56	46.66	-9.10	AVG
0.4979	37.96	9.55	47.51	56.03	-8.52	QP
0.4979	26.43	9.55	35.98	46.03	-10.05	AVG
0.5420	39.76	9.55	49.31	56.00	-6.69	QP
0.5420	26.88	9.55	36.43	46.00	-9.57	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

EUT:	ACOUSTICS	Model Name :	JYX-66BT
Temperature:	20.5 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V power by adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCREDITED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Damarda
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1700	46.64	9.55	56.19	64.96	-8.77	QP
0.1700	24.86	9.55	34.41	54.96	-20.55	AVG
0.2058	41.02	9.54	50.56	63.37	-12.81	QP
0.2058	20.83	9.54	30.37	53.37	-23.00	AVG
0.2540	39.89	9.53	49.42	61.62	-12.20	QP
0.2540	22.06	9.53	31.59	51.62	-20.03	AVG
0.4178	33.20	9.54	42.74	57.49	-14.75	QP
0.4178	18.37	9.54	27.91	47.49	-19.58	AVG
0.4660	38.34	9.54	47.88	56.58	-8.70	QP
0.4660	29.26	9.54	38.80	46.58	-7.78	AVG
0.5460	34.51	9.54	44.05	56.00	-11.95	QP
0.5460	24.53	9.54	34.07	46.00	-11.93	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss. 100.0 dBu¥

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 alt 13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

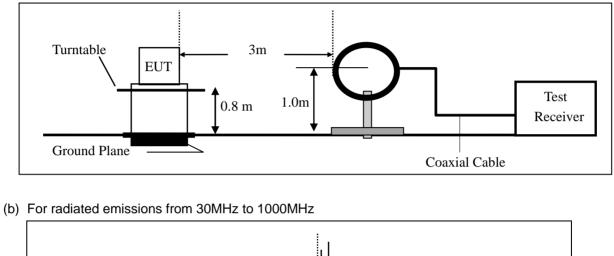
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

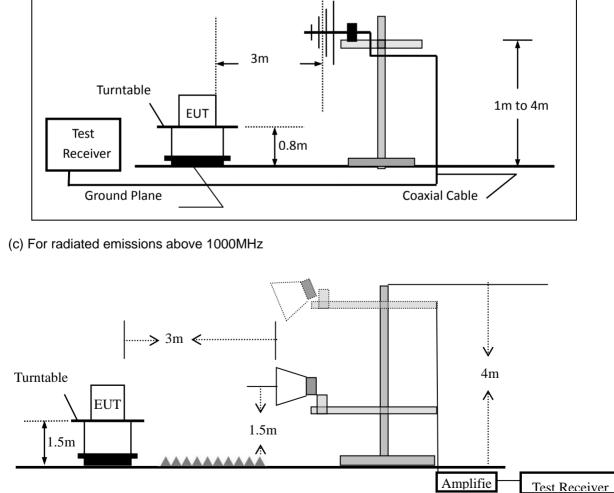
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.


7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

ACC

Certificate #4298.01

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the	Spectrum Analyzer was set	with the following configurations:
Burning the radiated ermosion test, the	opeolium / maryzer was see	with the following configurations.

Frequency Band (MHz)	Function	Function Resolution bandwidth	
30 to 1000	QP	120 kHz	300 kHz
Ab ave 4000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to	30MHz)
--	----------	----------	-------	-------	----------	--------

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Report No.: S21031200201001

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

7 di uno moduladi	en medee nave been teeted, t	and the meret recail mac repert	
EUT:	ACOUSTICS	Model Name :	JYX-66BT
Temperature:	25.2 ℃	Relative Humidity:	51%
Pressure:	1010hPa	Test Mode:	GFSK-CH39
Test Voltage :	DC 3.7V from battery		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.2111	10.85	17.50	28.35	40.00	-11.65	QP
V	39.0245	8.48	14.46	22.94	40.00	-17.06	QP
V	77.0504	14.64	7.52	22.16	40.00	-17.84	QP
V	99.5279	17.64	10.95	28.59	43.50	-14.91	QP
V	140.3420	19.33	12.39	31.72	43.50	-11.78	QP
V	207.1226	21.83	9.86	31.69	43.50	-11.81	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level- Limit

Polar Frequer		Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	99.1796	19.14	10.86	10.86 30.00		-13.50	QP
Н	141.8262	17.53	12.28	29.81	43.50	-13.69	QP
Н	205.6750	21.09	9.83	30.92	43.50	-12.58	QP
Н	219.0752	20.18	10.76	30.94	46.00	-15.06	QP
Н	239.9874	18.75	11.73	30.48	46.00	-15.52	QP
Н	319.9370	22.68	15.07	37.75	46.00	-8.25	QP
						Limit: Margin:	
32	Marine and an and a start of the start of th	www.muhh unnth				What have a straight of the st	
-8	40 50	60 70 80	(M)		300 400 5	00 600 700	1000.000

UT:	A	ACOUSTIC	S		Mode	l No.:		JYX-66BT			
Femperatur	ture: 20 °C Relative Humidity:		2			ity:	48%				
Fest Mode:	ſ	Mode2/ Mod	de4		Test	Зу:		Mary Hu			
Il the modu	ulation m	odes have	been test	ed, and tl	ne worst re	esult was r	eport as	below:			
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
Low Channel (2402 MHz)(GFSK)Above 1G											
4804	68.81	5.21	35.59	44.30	65.31	74.00	-8.69	Pk	Vertical		
4804	45.11	5.21	35.59	44.30	41.61	54.00	-12.39	AV	Vertical		
7206	70.99	6.48	36.27	44.60	69.14	74.00	-4.86	Pk	Vertical		
7206	49.05	6.48	36.27	44.60	47.20	54.00	-6.80	AV	Vertical		
4804	69.66	5.21	35.55	44.30	66.12	74.00	-7.88	Pk	Horizontal		
4804	48.68	5.21	35.55	44.30	45.14	54.00	-8.86	AV	Horizontal		
7206	68.88	6.48	36.27	44.52	67.11	74.00	-6.89	Pk	Horizontal		
7206	46.22	6.48	36.27	44.52	44.45	54.00	-9.55	AV	Horizontal		
			Mid C	hannel (244	1 MHz)(GFS	SK)Above 1	G				
4882	70.57	5.21	35.66	44.20	67.24	74.00	-6.76	Pk	Vertical		
4882	50.72	5.21	35.66	44.20	47.39	54.00	-6.61	AV	Vertical		
7323	69.14	7.10	36.50	44.43	68.31	74.00	-5.69	Pk	Vertical		
7323	50.91	7.10	36.50	44.43	50.08	54.00	-3.92	AV	Vertical		
4882	70.29	5.21	35.66	44.20	66.96	74.00	-7.04	Pk	Horizontal		
4882	49.47	5.21	35.66	44.20	46.14	54.00	-7.86	AV	Horizontal		
7323	70.76	7.10	36.50	44.43	69.93	74.00	-4.07	Pk	Horizontal		
7323	50.42	7.10	36.50	44.43	49.59	54.00	-4.41	AV	Horizontal		
		T	High C	hannel (248	0 MHz)(GF	SK) Above	1G	1	1		
4960	69.1	5.21	35.52	44.21	65.62	74.00	-8.38	Pk	Vertical		
4960	48.35	5.21	35.52	44.21	44.87	54.00	-9.13	AV	Vertical		
7440	70.26	7.10	36.53	44.60	69.29	74.00	-4.71	Pk	Vertical		
7440	46.45	7.10	36.53	44.60	45.48	54.00	-8.52	AV	Vertical		
4960	68.79	5.21	35.52	44.21	65.31	74.00	-8.69	Pk	Horizontal		
4960	50.81	5.21	35.52	44.21	47.33	54.00	-6.67	AV	Horizontal		
7440	69	7.10	36.53	44.60	68.03	74.00	-5.97	Pk	Horizontal		
7440	49.15	7.10	36.53	44.60	48.18	54.00	-5.82	AV	Horizontal		

ACC

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

(3) Only the worst case GFSK mode recorded in the report.

Spurious	Emission i	n (Band	Edge) an	d (Restric	ted Band 2	310-2390M	Hz and 2	2483.5-250	00MHz)
EUT:	ACC	USTICS	S		Model N	lo.:	JYX	(-66BT	
Cemperature:	20 °C	2			Relative	Humidity:	48%	6	
Fest Mode:	Mod	e2/ Mod	e4		Test By:		Mai	ry Hu	
	mou	02/ 11/00			100t Dy		Indi	y na	
All the modul	ation mod	es have	been test	ed, and th	e worst res	sult was rep	ort as be	elow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
		•	1	Mbps(GFS	K)-Non-hop	ping			
2310.00	68.51	2.97	27.80	43.80	55.48	74	-18.52	Pk	Horizontal
2310.00	50.6	2.97	27.80	43.80	37.57	54	-16.43	AV	Horizontal
2310.00	70.24	2.97	27.80	43.80	57.21	74	-16.79	Pk	Vertical
2310.00	50.93	2.97	27.80	43.80	37.90	54	-16.10	AV	Vertical
2390.00	70.46	3.14	27.21	43.80	57.01	74	-16.99	Pk	Vertical
2390.00	47.51	3.14	27.21	43.80	34.06	54	-19.94	AV	Vertical
2390.00	70.57	3.14	27.21	43.80	57.12	74	-16.88	Pk	Horizontal
2390.00	50.14	3.14	27.21	43.80	36.69	54	-17.31	AV	Horizontal
2483.50	70.86	3.58	27.70	44.00	58.14	74	-15.86	Pk	Vertical
2483.50	47.63	3.58	27.70	44.00	34.91	54	-19.09	AV	Vertical
2483.50	69.39	3.58	27.70	44.00	56.67	74	-17.33	Pk	Horizontal
2483.50	45.04	3.58	27.70	44.00	32.32	54	-21.68	AV	Horizontal
				1Mbps(G	FSK)-hoppir	ng			
2310.00	68.43	2.97	27.80	43.80	55.40	74	-18.60	Pk	Horizontal
2310.00	46.7	2.97	27.80	43.80	33.67	54	-20.33	AV	Horizontal
2310.00	69.2	2.97	27.80	43.80	56.17	74	-17.83	Pk	Vertical
2310.00	48.73	2.97	27.80	43.80	35.70	54	-18.30	AV	Vertical
2390.00	70.46	3.14	27.21	43.80	57.01	74	-16.99	Pk	Vertical
2390.00	50.92	3.14	27.21	43.80	37.47	54	-16.53	AV	Vertical
2390.00	68.79	3.14	27.21	43.80	55.34	74	-18.66	Pk	Horizontal
2390.00	49.36	3.14	27.21	43.80	35.91	54	-18.09	AV	Horizontal
2483.50	69.59	3.58	27.70	44.00	56.87	74	-17.13	Pk	Vertical
2483.50	48.85	3.58	27.70	44.00	36.13	54	-17.87	AV	Vertical
2483.50	70.6	3.58	27.70	44.00	57.88	74	-16.12	Pk	Horizontal
2483.50	48.19	3.58	27.70	44.00	35.47	54	-18.53	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2) Only the worst case GFSK mode recorded in the report.

Spurious Emission in Restricted Band 3260MHz-18000MHz

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/ Mode4	Test By:	Mary Hu

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	70.02	4.04	29.57	44.70	58.93	74	-15.07	Pk	Vertical
3260	46.97	4.04	29.57	44.70	35.88	54	-18.12	AV	Vertical
3260	69.67	4.04	29.57	44.70	58.58	74	-15.42	Pk	Horizontal
3260	49.41	4.04	29.57	44.70	38.32	54	-15.68	AV	Horizontal
3332	68.15	4.26	29.87	44.40	57.88	74	-16.12	Pk	Vertical
3332	45.04	4.26	29.87	44.40	34.77	54	-19.23	AV	Vertical
3332	70.83	4.26	29.87	44.40	60.56	74	-13.44	Pk	Horizontal
3332	47.61	4.26	29.87	44.40	37.34	54	-16.66	AV	Horizontal
17797	57.96	10.99	43.95	43.50	69.40	74	-4.60	Pk	Vertical
17797	34.89	10.99	43.95	43.50	46.33	54	-7.67	AV	Vertical
17788	59.99	11.81	43.69	44.60	70.89	74	-3.11	Pk	Horizontal
17788	38.86	11.81	43.69	44.60	49.76	54	-4.24	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary
- to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) \geq RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

7.4.6 Test Results

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	ACOUSTICS	Model No.:	JYX-66BT
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

ACCREDIT

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 1 dBi). It comply with the standard requirement.

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298 01

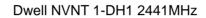
7.11.2 Frequency Hopping System

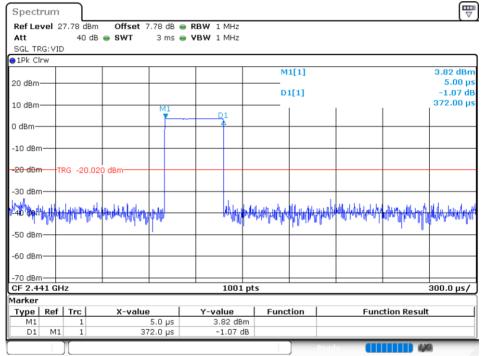
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

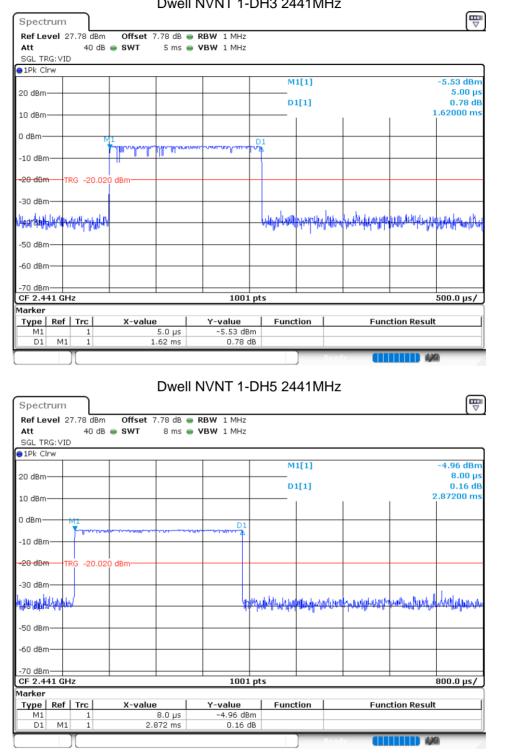
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

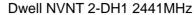

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

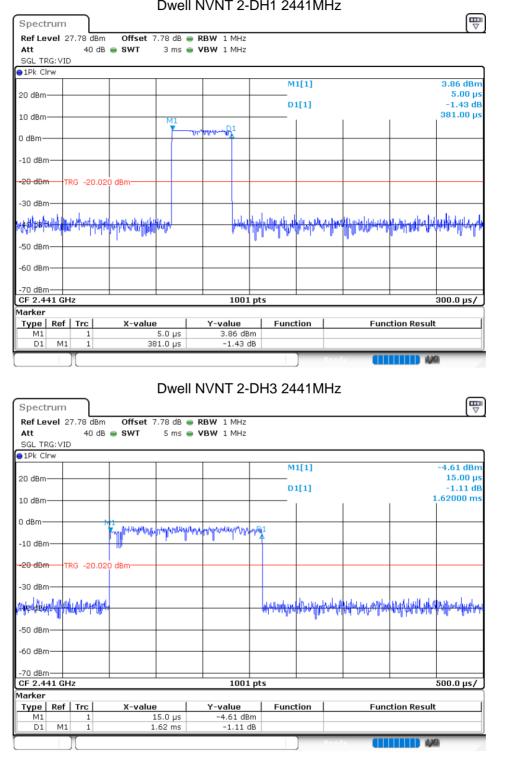


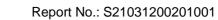
8 TEST RESULTS

8.1 DWELL TIME


Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass
NVNT	1-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	2-DH5	2441	2.864	305.493	31600	400	Pass







Dwell NVNT 2-DH5 2441MHz

ACCREDITED

Certificate #4298.01

	M1[1]		-4.54 dBm
			24.00 µs
	D1[1]		-0.99 dB 2.86400 ms
		1 1	2.00400 ms
hallow of the second state			
·		_	
	<u>, hi in an an</u>	<u>, sylphydaedd Marwydd</u>	ender and the state of the stat
			• • • •
1001 pt	s		800.0 µs/
•			
Y-value	Function	Functi	on Result
	1001 pt	ms • VBW 1 MHz	ms • VBW 1 MHz M1[1] D1[1] M ⁰ ⁴⁴ M ¹ M ¹ M ¹ ⁴⁸ M ¹ M ⁰ ⁴⁴ M ¹ M ¹ M ¹ ⁴⁸ M ¹ M ¹ ⁴ M ¹

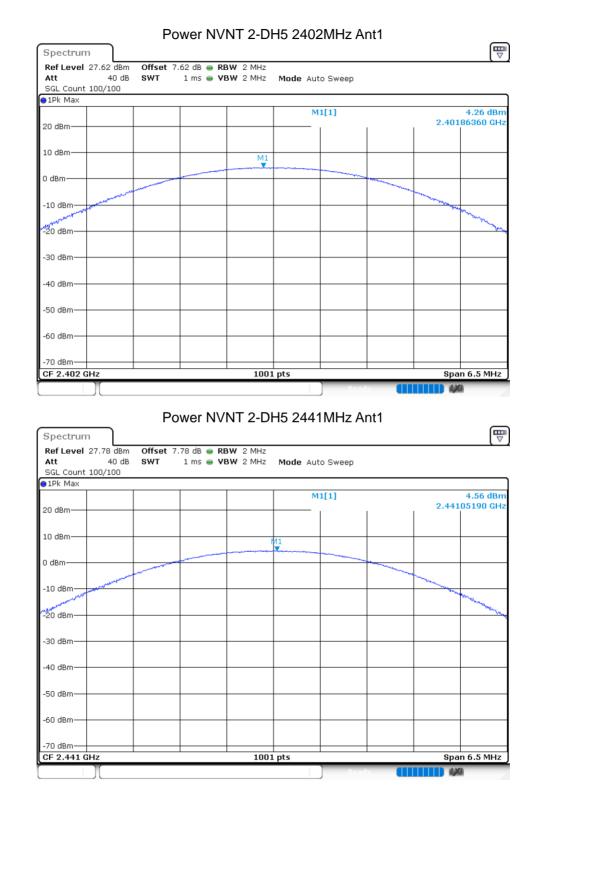
8.2 MAXIMUM CONDUCTED OUTPUT POWER

NTEK北测

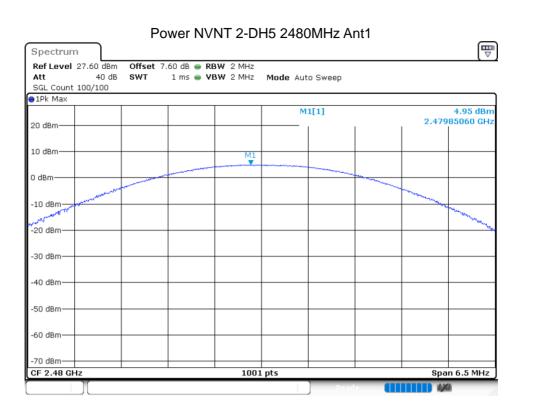
ila

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	3.822	21	Pass
NVNT	1-DH5	2441	Ant 1	3.943	21	Pass
NVNT	1-DH5	2480	Ant 1	4.449	21	Pass
NVNT	2-DH5	2402	Ant 1	4.264	21	Pass
NVNT	2-DH5	2441	Ant 1	4.562	21	Pass
NVNT	2-DH5	2480	Ant 1	4.947	21	Pass

ACCREDIT

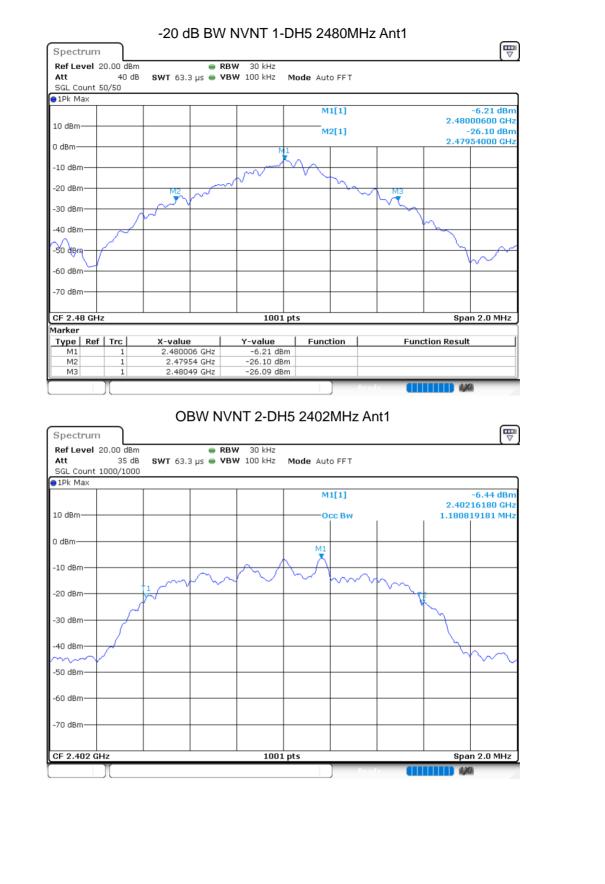

Certificate #4298.01

Spectrum							
Ref Level 30.62 dBm Att 40 dB	Offset SWT	7.62 dB RBW 1 ms VBW					
SGL Count 300/300	3991	1 IIIS 🖶 ¥DW	2 19182	Mode Auto St	weep		
1Pk Max							
				M1[1]]		3.82 dBn
20 dBm						2.401	82520 GH:
20 45.11							
10 dBm		_					
			M1				
D dBm						 _	
-10 dBm							
-20 dBm							
20 0011							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
CF 2.402 GHz			100	1 pts		Sna	n 5.0 MHz
Y)	Doady	 _pu	1

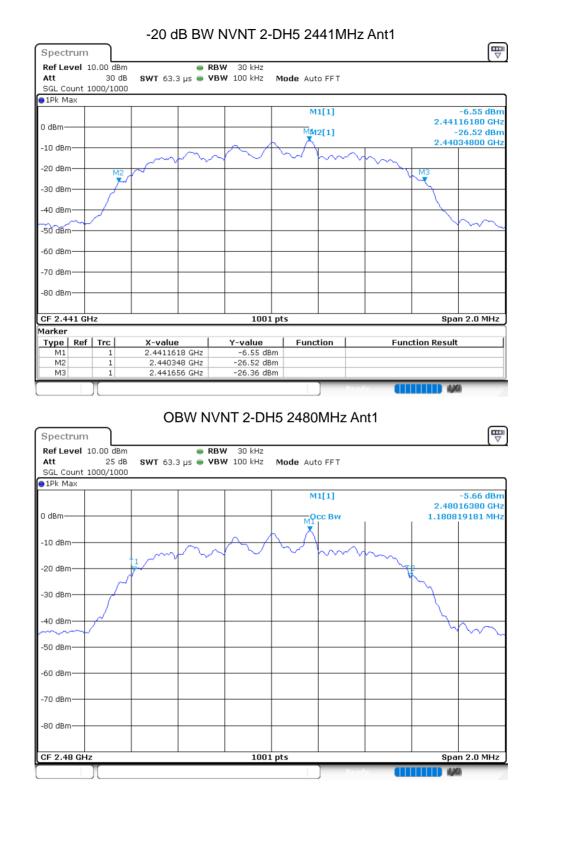


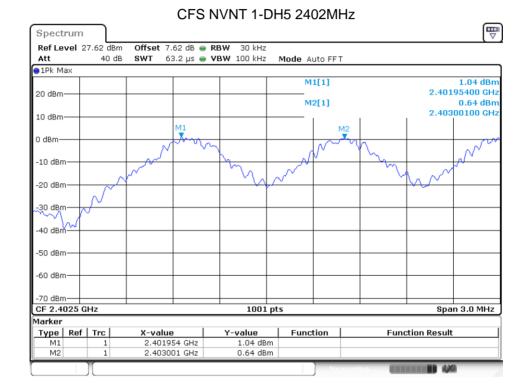
Ref Level 27 Att SGL Count 10	40 dB SWT	7.78 dB 👄 RBW 1 ms 👄 VBW	2 MHz Mod	e Auto Sweep		
∋1Pk Max		1 1		M1[1]		3.94 dBm
20 dBm				M1[1]	2.44	4092510 GHz
10 dBm			M1			
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						+
-60 dBm						
-70 dBm			1001 pts			pan 5.0 MHz
CE 2 441 CH					어	5411 0.0 14112
Spectrum Ref Level 27 Att	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	2480MHz Ant		
Spectrum Ref Level 27 Att SGL Count 10	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2			
Spectrum Ref Level 27 Att SGL Count 10	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2		1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	
Spectrum Ref Level 27 Att SGL Count 10 DPk Max 20 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 DPk Max 20 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Att	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm -10 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 PIPK Max 20 dBm 10 dBm 0 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm -10 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10) IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	1	(₩) ∀ 4.45 dBm
Spectrum Ref Level 27 Att SGL Count 10 PPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	2.4	4.45 dBm 7979020 GHz
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	2.4 [°]	4.45 dBm 7979020 GHz
Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 10 dBm -20 dBm -20 dBm -30 dBm	F .60 dBm Offset 40 dB SWT	7.60 dB 🖷 RBW	T 1-DH5 2	e Auto Sweep	2.4	4.45 dBm 7979020 GHz

Condition	Mode	Frequency (MHz)	Antenna	99% OBW	-20 dB Bandwidth	Limit -20 dB Bandwidth	Verdict
		((MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8891	0.932	0	Pass
NVNT	1-DH5	2441	Ant 1	0.8412	0.942	0	Pass
NVNT	1-DH5	2480	Ant 1	0.8472	0.95	0	Pass
NVNT	2-DH5	2402	Ant 1	1.1808	1.306	0	Pass
NVNT	2-DH5	2441	Ant 1	1.1748	1.308	0	Pass
NVNT	2-DH5	2480	Ant 1	1.1808	1.31	0	Pass
	Spectrum Ref Level Att	14.00 dBm 30 dB SWT 63.	● RBW 30 3 µs ● VBW 100		o FFT		
	SGL Count	50/50]	
	10 dBm			M	1[1]	-7.67 dBm 2.40201800 GHz	
				0	cc Bw	2.40201800 GHz 889.110889111 kHz	
	0 dBm			M1			
	-10 dBm			$-\pi$			
	-20 dBm				\sum		
	-30 dBm	X	r~		T2 W		
	-40 dBm	/				m	
	- 3 0 dBm	\bigwedge				7	
	N/	/					
	-60 dBm 🗸						
	-70 dBm						
	-80 dBm						
	CF 2.402 G	Hz		1001 pts		Span 2.0 MHz	
					Ready		







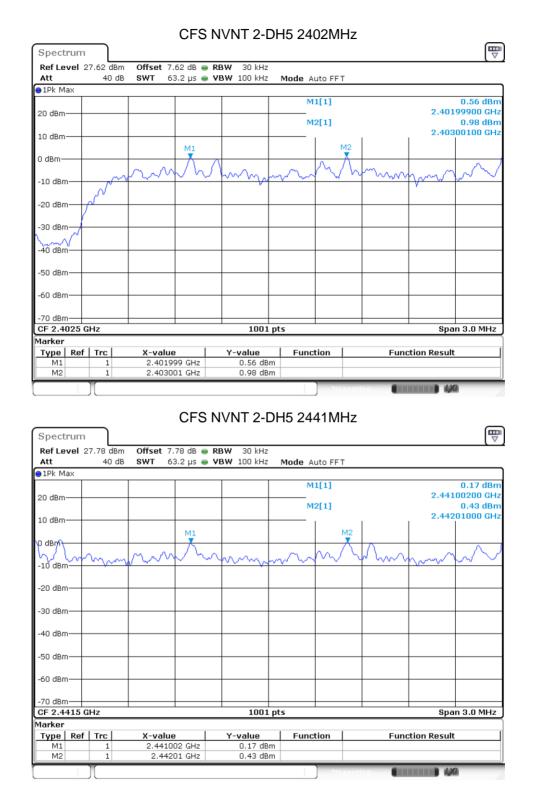


-20 dB BW NVNT 2-DH5 2480MHz Ant1 ₽ Spectrum Ref Level 10.00 dBm RBW 30 kHz Att 30 dB SWT 63.3 µs 👄 VBW 100 kHz Mode Auto FFT SGL Count 1000/1000 ●1Pk Max M1[1] -5.61 dBn 2.48016380 GHz 0 dBm-12[1] -25.60 dBm 2.47934600 GHz -10 dBm· -20 dBm . T -30 dBm -40 dBm· -50 dBm· -60 dBm -70 dBm -80 dBm CF 2.48 GHz 1001 pts Span 2.0 MHz Marker Type | Ref | Trc | X-value Y-value Function Function Result -5.61 dBm 2.4801638 GHz Μ1 1 M2 2.479346 GHz -25.60 dBm 1 2.480656 GHz ΜЗ 1 -25.56 dBm 1.10



8.4 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.954	2403.001	1.047	0.932	Pass
NVNT	1-DH5	2440.954	2441.956	1.002	0.942	Pass
NVNT	1-DH5	2478.846	2479.848	1.002	0.95	Pass
NVNT	2-DH5	2401.999	2403.001	1.002	0.871	Pass
NVNT	2-DH5	2441.002	2442.01	1.008	0.872	Pass
NVNT	2-DH5	2479.161	2480.166	1.005	0.873	Pass



Version.1.3

			CFS	NVNT 2-D	H5 248	30MHz			
Spectrum									
Ref Level 2	27.60 dBm	Offset 7	.60 dB 😑	RBW 30 kHz					
Att	40 dB	SWT 6	3.2 µs 😑	VBW 100 kHz	Mode Au	uto FFT			
●1Pk Max									
20 dBm					M	L[1]		2.479	1.23 dBm 16100 GHz
20 0811					M	2[1]			1.88 dBm
10 dBm								2.480	16600 GHz
			1	11			M2		
0 dBm	mm	m	\bigwedge	mm	m	Mh	/	\sim	
								han ha	
-20 dBm)	(
-30 dBm									han
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.4795 C	GHZ			1001	pts			Spa	n 3.0 MHz
Marker Type Ref	Trc	X-valu	e	Y-value	Funct	ion	Fund	tion Result	1
M1	1		.61 GHz	1.23 dBm					
M2	1	2.4801	.66 GHz	1.88 dBm	1				
						Measur	ing 💷		1

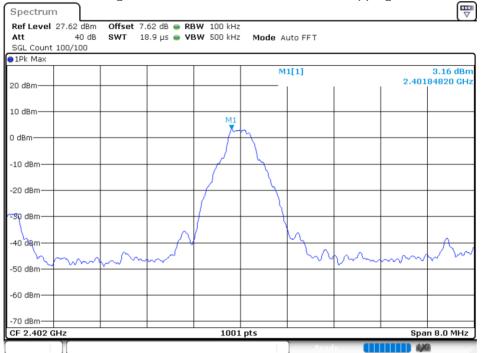
8.5 NUMBER OF HOPPING CHANNEL

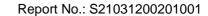
Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass

ACCRED

Certificate #4298.01

Hopping No. NVNT 1-DH5 2402MHz


Att SGL Co		40 dB 00/5000				₩ 300 kHz	Mode A		ь.			
JIEK Die							М	1[1]				3.13 dB
20 dBm-					+			0[4]			2.40	18370 GI
10 d0m-							IM	2[1]			2.48	3.02 dB 302435 GI
10 dBm-												M2
o ներայի 		ANNA			AAA	MAAAA	MAAAAA	MM	M		<u>Realanna</u>	
-19 864	11111	HANA	<u>Hakahara</u> h	<u> </u>	m	NAAAAAA	<u> </u>	₩₩₩₽₩		<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	<u>╉╓┽╢╢║┽╓</u> ┽	╢╫╙╫╢
-20 dBm					_							
- 30 dBm					_							
40 dBm												Þ
-50 dBm	_				+							
-60 dBm	_				+							
-70 dBm												
Start 2	4 GHz					1001	pts				Stop 2	.4835 GH
1arker Type	Ref	Trc	X-value			Y-value	Func	tion		Eup	ction Result	•
M1	Ker	1	2.4018			3.13 dB				run	cion result	<u>.</u>



8.6 BAND EDGE

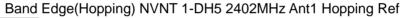
	DGL						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-44.17	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-43.65	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-40.35	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-43.93	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-42.52	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-43.28	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-43.19	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.03	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Ref

_ .

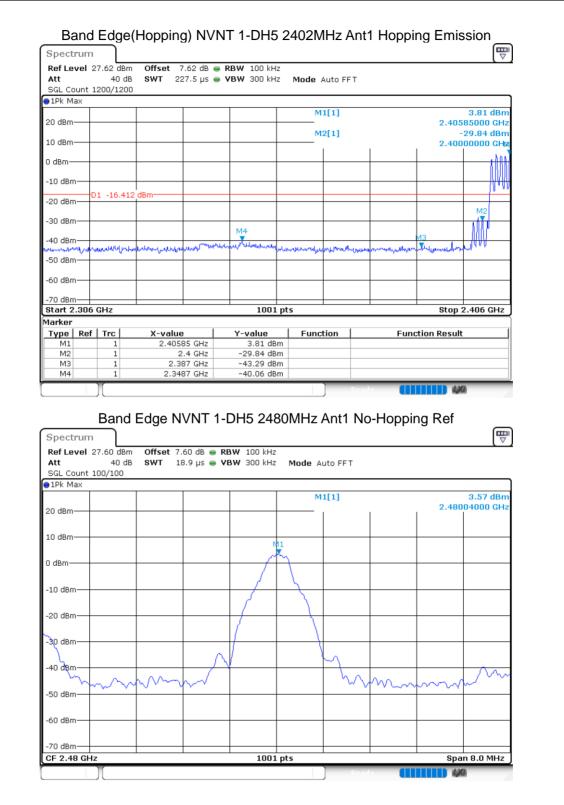
.

В	and	Edge I	NVNT	1-DF	15 2	402N	IHz Ant1 No-Hopping Emission	_
Spectrun	n							
Ref Level	27.62	lBm Off	set 7.6	2 dB 😑	RBW	100 kHz		
Att	40	dB SW	T 227.	5 µs 👄	VBW	500 kHz	Mode Auto FFT	
SGL Count	100/10	0						
1Pk Max								
							M1[1] 3.0	10 dBm

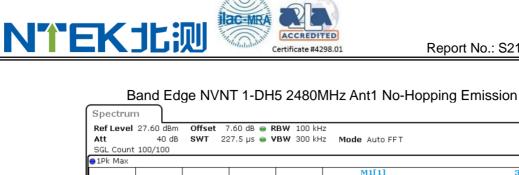

.

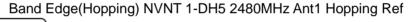
.

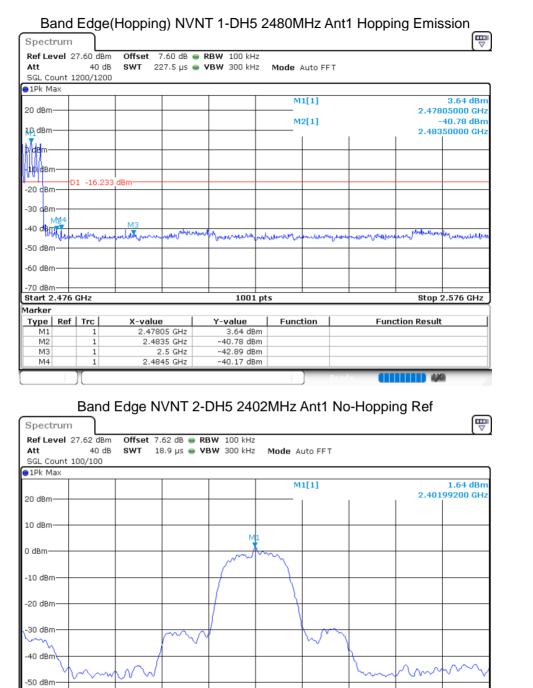
. .


_

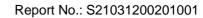
20 dBm—						м	1[1]			0.400	3.00 05000	
20 uBili—						M	2[1]				03000 42.93	
10 dBm—	+										00000	
0 dBm—	_											-
-10 dBm-												<u> </u>
-20 dBm-	-D1	-16.	836 dBm									+
-30 dBm-												
-40 dBm-				1.01	M4					M3 da		
Նումվերնոն -50 dBm-	and of the	ndressa	rubilithethyphotocom	~nvvv~v~	without the particular	whenershippy	when	roundlower	penonth	nthRay Wer	nn Alla	¥
-60 dBm-	_											
-70 dBm-												
Start 2.3	06 0	Hz			1001	pts				Stop 2	2.406 (3Hz
Marker												
	\ef	Trc	X-value		Y-value	Func	tion		Funct	tion Result		
M1		1	2.402	D5 GHz	3.00 dBm							
M2		1	2	.4 GHz	-42.93 dBm							
M3		1		39 GHz	-45.75 dBm							
M4		1	2.34	94 GHz	-41.02 dBm	ו						
								Ready	-		_	







					M1[1]				3.85 dB
20 dBm		+ +						2.48	005000 GI
					M2[1]				-36.79 dB
10 <mark> Ø</mark> Bm		+ + +						2.48	350000 GI
0 dBm									
-10 dBm									
-20 dBm	1 -16.434	+ aBm							
20 49				+					-
		1 1							
15 7.1									
		M3	- Milest					A. MANN	6
-40 dBm	whender	1013 Morte Marker worth Marco	yrus Millionel	where we want for the factor of the second s	www.altreperce	mhriden	manny	hlunnhing	themed year to be
-40 dBm	wholen	1013 ปฏะประหารคปปฏะก	yruf ^{Whil} wood	Harrowenter	numalmana	ndrucker	mynny	holework My	theme have been been a start when the
	whole	1013 Marth Million Marth Million	yrus Milland	where an and the later	menaltripulant	mhanan	mymmy	holewark when	Manutapharada
-50 dBm	Whole	143 ปฏิราณที่มีโรงหนางหาไปปูณก	yng Mkland		nennelliterinkennel	mhaile	mynnir	hlund	Mani Ny Nindri
-40 dBm	• · ·	1413 Mprilut Mittanen umphylen	y w Millond			nd and an	mann		
-40 dBm	• · ·	างาร ฟูกระโนได้รับหนายายุไปเป็นกา	yng ^{Mhlu} nd	1001 p		ndrære er	manna		2.576 GH
-40 dBm	• · ·	างาร พระนงสมุขแต่ง	yrup Millonal			ndrærder	manna		
-40 dBm	GHz	MS MrthMX,Hownfiller X-value	yray ^{Mal} anal						2.576 GH
-40 dBm -50 dBm -60 dBm -70 dBm Start 2.476 4arker	GHz			1001 p	ts			Stop	2.576 GH
-50 dBm -50 dBm -60 dBm -70 dBm Start 2.476 Marker Type Ref M1 M2	GHz	X-value 2.48005 2.4835	5 GHz 5 GHz	1001 p 	ts			Stop	2.576 GH
40 dBm -50 dBm -60 dBm -70 dBm Start 2.476 Marker Type Ref M1	GHz	X-value 2.48005 2.4835	5 GHz 5 GHz 5 GHz 5 GHz	1001 p 7-value 3.85 dBm	ts Function			Stop	2.576 GH

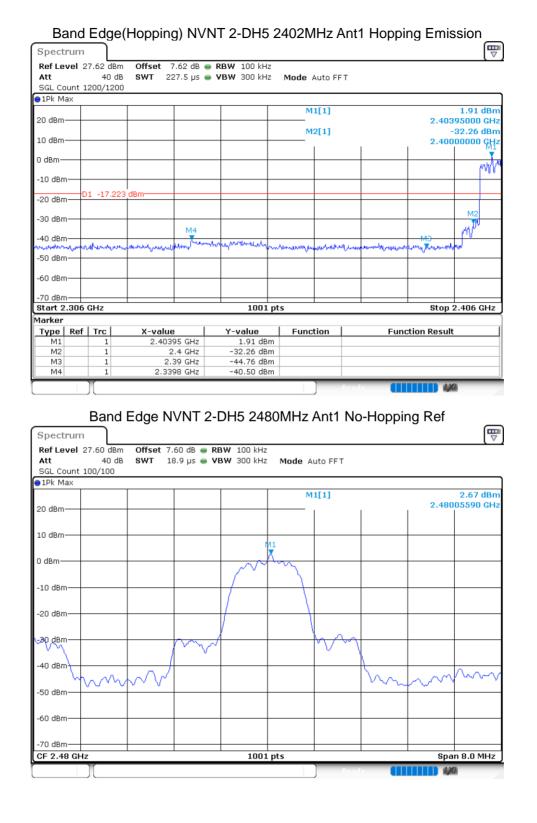


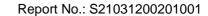
1001 pts

-60 dBm· -70 dBm·

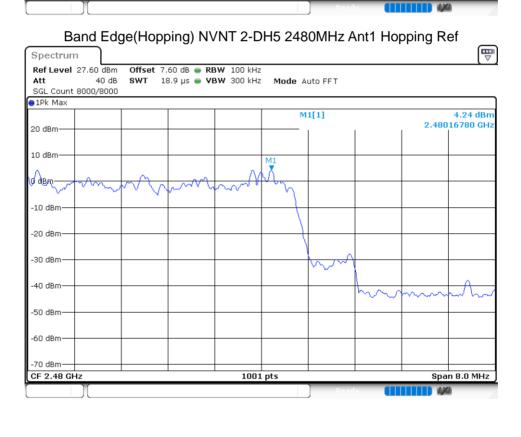
CF 2.402 GHz

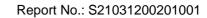
Span 8.0 MHz


TEK北测	Certificate #4298.01


Ν

Spectrum						
Ref Level 2		-	• RBW 100 kHz			
Att SGL Count 1	40 dB	SWT 227.5 µs 🧉	• VBW 300 kHz	Mode Auto FF	Т	
1Pk Max	00/100					
				M1[1]	3.4	I3 dBm
20 dBm —					2.401950	00 GHz
				M2[1]		L4 dBm
10 dBm					2.400000	op, GHz
0 dBm						
						- 11
-10 dBm						
-20 dBm-D	1 -18.364	4 dBm				
-20 uBiii————						
-30 dBm						
		M4				40
-40 dBm		a har a har	aline Mahlerblan		with apprech of more and the formation of the	1 .h
	surlamungery	Man was a superior	n and a man and fourth	www.www.www.	any approximation of the second of the second of the	r ur
-60 dBm						
-70 dBm						
Start 2.306	GHz		1001 pt	5	Stop 2.40	6 GHz
Marker			1001 pt	-	0.00 2.10	0 0112
	Trc	X-value	Y-value	Function	Function Result	
M1	1	2.40195 GHz	3.43 dBm			
M2	1	2.4 GHz	-43.14 dBm			
M3 M4	1	2.39 GHz 2.3399 GHz	-45.34 dBm -40.89 dBm			
1714		2.3399 GHZ	-40.89 dBm			

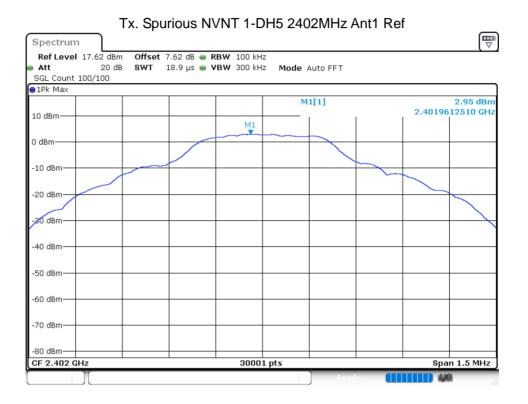


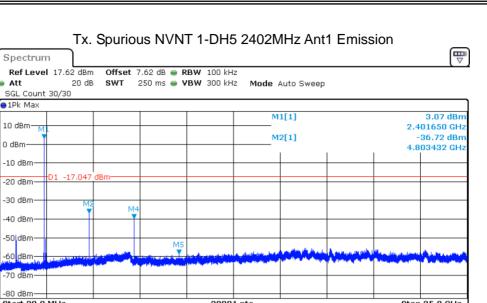


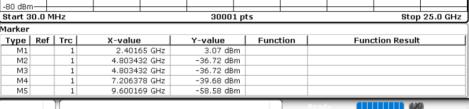
Ba	and E	Edge NVN	T 2-DI	H5 2480M	Hz Ant	1 No-H	lopping	Emissio	n
Spectrum									
Ref Level 2	27.60 dE	3m Offset 7	.60 dB 🔵	RBW 100 kHz					
Att	40	dB SWT 22	7.5 μs 👄	VBW 300 kHz	Mode A	uto FFT			
SGL Count 1	100/100								
∋1Pk Max									
					M:	l[1]			3.38 dBm
20 dBm —								2.480	15000 GHz
					M2	2[1]		-	40.52 dBm
10 dBm —								2.483	50000 GHz
Ţ									
D dBm									
-10 cBm									
-20 dBm 0	01 -17.3	335 dBm							
20 00									
-30 dem —									
MB									
-40 dBm		M3.	he					Status 1	A
տի՝ հայրություն	Applances	Another all the state	man	multiplication	wheelphalipern	goleworkinge	Julitry marker	and marine	a provident and a second second
-50 dBm	-								
<0.40-c									
-60 dBm									
-70 dBm									
Start 2.476	GHz			1001 p	ts		1	Stop 2	2.576 GHz
1arker									
Type Ref	Trc	X-value	1	Y-value	Funct	ion	Fund	tion Result	1
M1	1	2.4801	L5 GHz	3.38 dBm					
M2	1	2.483	35 GHz	-40.52 dBm					
MЗ	1	2	.5 GHz	-47.03 dBm					
M4	1	2.483	35 GHz	-40.52 dBm					

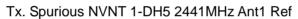
NTEK北 测	Certificate #4298.01

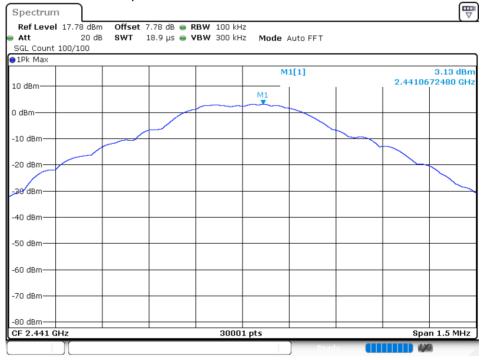
Band Edge(Hopping) NVNT 2-DH5 2480MHz Ant1 Hopping Emission

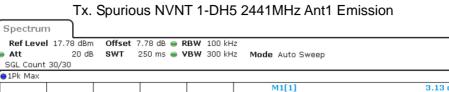

Spectrur	n											
Ref Level	27.60	dBm	Offset	7.60 dB	🛛 RBW	100 kHz	2					
Att	4	0 dB	SWT	227.5 µs	🛛 увw	300 kHz	Mode	Auto Fl	FΤ			
SGL Count	1000/	1000										
●1Pk Max												
							N	11[1]				1.53 dBm
20 dBm											2.4	47995000 GHz
							N	12[1]				-39.80 dBm
10 dBm											2.4	18350000 GHz
-												
Ridem												
-10 cBm												
10 000	D1 -15	5 761	dBm									
-20 dBm—	D1 -1.		иып									
-30 d <mark>8</mark> m				_								
ĩ Mã			мз									
-40 dBm	4			- month	money		and a set		what w	har .	and the March	mongreetonen
-50 dBm-	and when the	ma	and an and a second	Carl Annual Carl Carl Carl Carl Carl Carl Carl Ca			water ways	here	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	war and Austr	wown	. Konstanna Jan
-50 dBm-												
-60 dBm												
00 00111												
-70 dBm				_							_	
Start 2.47	6 GHz			-		1001	pts				St	op 2.576 GHz
Marker												
Type Re	f Trc	1	X-val	ue I	Y-	value	Fund	tion	1	Fu	nction Res	sult l
M1	1		2.4	7995 GHz		1.53 dBr						
M2	1	L	2.4	4835 GHz	-:	39.80 dBr	n					
M3	1	L		2.5 GHz	- 4	42.62 dBr	n					
M4	t		2.4	4835 GHz	-:	39.80 dBr	n					
									Reads			4.80

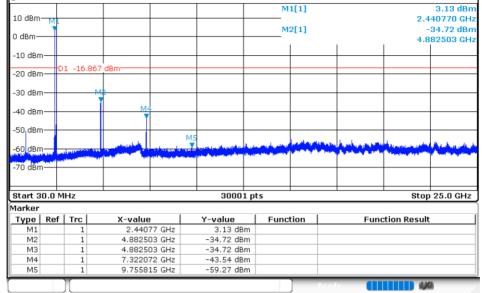

8.7 CONDUCTED RF SPURIOUS EMISSION

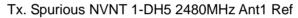

NTEK北测


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-39.66	-20	Pass
NVNT	1-DH5	2441	Ant 1	-37.84	-20	Pass
NVNT	1-DH5	2480	Ant 1	-38.52	-20	Pass
NVNT	2-DH5	2402	Ant 1	-41.76	-20	Pass
NVNT	2-DH5	2402	Ant 1	-41.76	-20	Pass
	-					
NVNT	2-DH5	2480	Ant 1	-41.73	-20	Pass



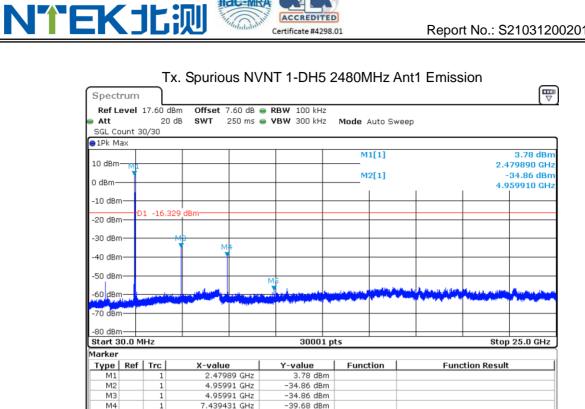


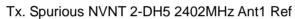




Att

₽

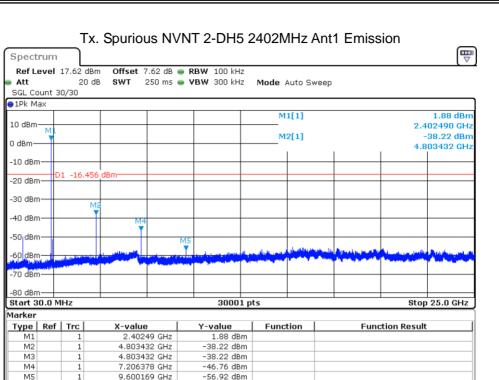


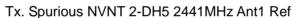


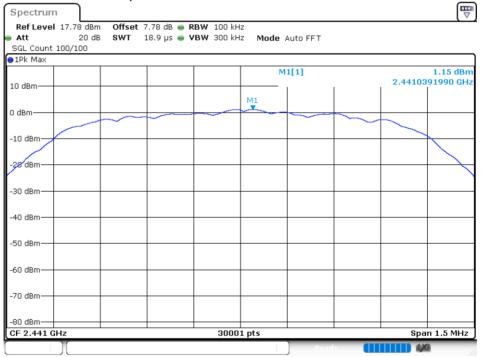


1.10

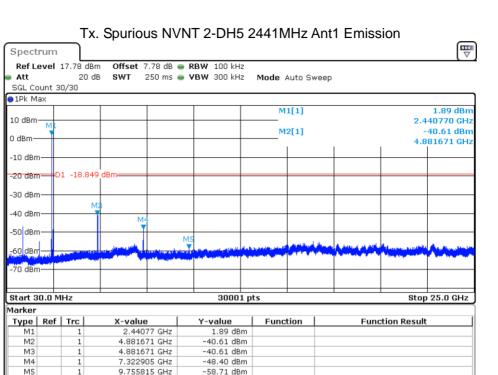
-57.78 dBm

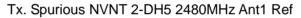

M5

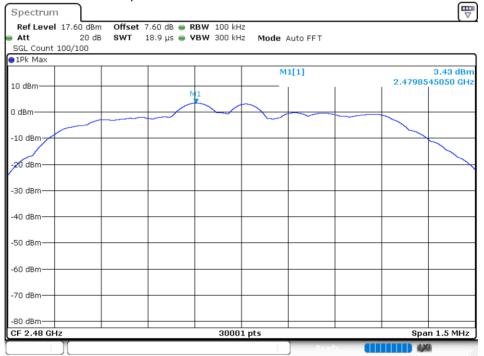

1

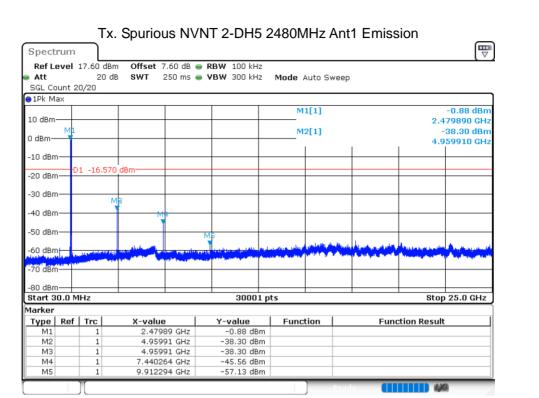

9.912294 GHz

1.10








1.10

END OF REPORT

Version.1.3