

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

47CFR, PART 15C - Intentional Radiators 47CFR Paragraph 15.249 and Industry Canada RSS-GEN Issue 5 and RSS-210 Issue 10 Application For Grant of Certification PMN: Xi-Fi PIR Capsule

24.0-24.25 GHz (DXX) Module
Motion Sensor Device Transmitter

FCC ID: 2AZIS-XCM1

IC: 27132-XCM1

EiKO Global, LLC

18000 W 105th St
Olathe, KS 66061

FCC Designation: US5305

ISED Registration: 3041A-1

Test Report Number: 210419

Test Date: April 19, 2021

Authorized Signatory: *Scot D. Rogers*
Scot D. Rogers

This report shall not be reproduced except in full, without the written approval of the laboratory. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Rogers Labs, Inc.

4405 West 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 2

EiKO Global, LLC

PMN : Xi-Fi PIR Capsule

HVIN : XCM1

Test : 210419

Test to: 47CFR 15.249, RSS-Gen RSS-210

File: EiKO XCM1 DXX TstRpt 210419 r2

SN's : ENG1, ENG2

FCC ID: 2AZIS-XCM1

IC: 27132-XCM1

Date: November 17, 2021

Page 1 of 26

Table of Contents

TABLE OF CONTENTS.....	2	
REVISIONS.....	3	
EXECUTIVE SUMMARY	4	
OPINION / INTERPRETATION OF RESULTS	4	
EQUIPMENT TESTED.....	5	
Equipment Function	5	
Equipment Configuration.....	6	
APPLICATION FOR CERTIFICATION.....	7	
APPLICABLE STANDARDS.....	8	
EQUIPMENT TESTING PROCEDURES	8	
AC Line Conducted Emission Test Procedure	8	
Radiated Emission Test Procedure.....	8	
Diagram 1 Test arrangement for radiated emissions of tabletop equipment.....	9	
Diagram 2 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)	10	
TEST SITE LOCATIONS	10	
UNITS OF MEASUREMENTS	11	
ENVIRONMENTAL CONDITIONS.....	11	
STATEMENT OF MODIFICATIONS AND DEVIATIONS	11	
INTENTIONAL RADIATORS.....	11	
Antenna Requirements	12	
Restricted Bands of Operation.....	12	
Table 1 Radiated Emissions in Restricted Frequency Bands Data	12	
Summary of Results for Radiated Emissions in Restricted Bands	13	
Rogers Labs, Inc.	EiKO Global, LLC	SN's : ENG1, ENG2
4405 West 259th Terrace	PMN : Xi-Fi PIR Capsule	FCC ID: 2AZIS-XCM1
Louisburg, KS 66053	HVIN : XCM1	IC: 27132-XCM1
Phone/Fax: (913) 837-3214	Test : 210419	Date: November 17, 2021
Revision 2	Test to: 47CFR 15.249, RSS-Gen RSS-210	File: EiKO XCM1 DXX TstRpt 210419 r2
		Page 2 of 26

AC Line Conducted EMI Procedure	13
General Radiated Emissions Procedure	13
Table 2 General Radiated Emissions Data	14
Summary of Results for General Radiated Emissions	14
Operation in the Band 24.0-24.25 GHz	15
Figure 1 Plot of Transmitter Emissions Operation in 24.0-24.25 GHz.....	16
Figure 2 Plot of Transmitter Emissions Low Band Edge	17
Figure 3 Plot of Transmitter Emissions High Band Edge.....	18
Figure 4 Plot of Transmitter Emissions 99% Occupied Bandwidth	19
Transmitter Emissions Data.....	20
Table 3 Transmitter Radiated Emissions	20
Summary of Results for Transmitter Radiated Emissions of Intentional Radiator	20
ANNEX.....	21
Annex A Measurement Uncertainty Calculations	22
Annex B Test Equipment.....	23
Annex C Rogers Qualifications	25
Annex D Laboratory Certificate of Accreditation.....	26

Revisions

Revision 2 Issued November 17, 2021 – replaced references to PMN, footer and pages 1, 4, 5

Revision 1 Issued October 7, 2021

Rogers Labs, Inc. 4405 West 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 2	EiKO Global, LLC PMN : Xi-Fi PIR Capsule HVIN : XCM1 Test to: 47CFR 15.249, RSS-Gen RSS-210 File: EiKO XCM1 DXX TstRpt 210419 r2	SN's : ENG1, ENG2 FCC ID: 2AZIS-XCM1 IC: 27132-XCM1 Date: November 17, 2021 Page 3 of 26
--	--	--

Executive Summary

License Exempt Motion Sensor Transmitter operating under Title 47 of the Code of Federal Regulations (47CFR) Paragraph 15.249, Industry Canada RSS-210 Issue 10 and RSS-GEN Issue 5, low power transmitter operations in the 24.0-24.25 GHz frequency band.

Name of Applicant: EiKO Global, LLC
18000 W 105th St
Olathe, KS 66061

PMN: Xi-Fi PIR Capsule HVIN: XCM1

FCC ID: 2AZIS-XCM1 IC: 27132-XCM1

Operating Frequency Range: 24.0-24.25 GHz

Operational communication modes

Peak Power (dB μ V/m@3m)	Average power (dB μ V/m@3m)	99% OBW (kHz)
99.3	99.1	191.5

This report addresses EUT Operation as Low Power Device using 24.0-24.25 GHz

Opinion / Interpretation of Results

Tests Performed	Margin (dB)	Results
Restricted Bands 47CFR 15.205, RSS-210 4.1	-7.5	Complies
Emissions as per 47CFR 15.207, RSS-GEN 8.8	N/A	Complies
Radiated Emissions 47CFR 15.209, RSS-GEN 8.9	-17.9	Complies
Harmonic Emissions per 47CFR 15.249, RSS-210 B.10	-19.5	Complies

Equipment Tested

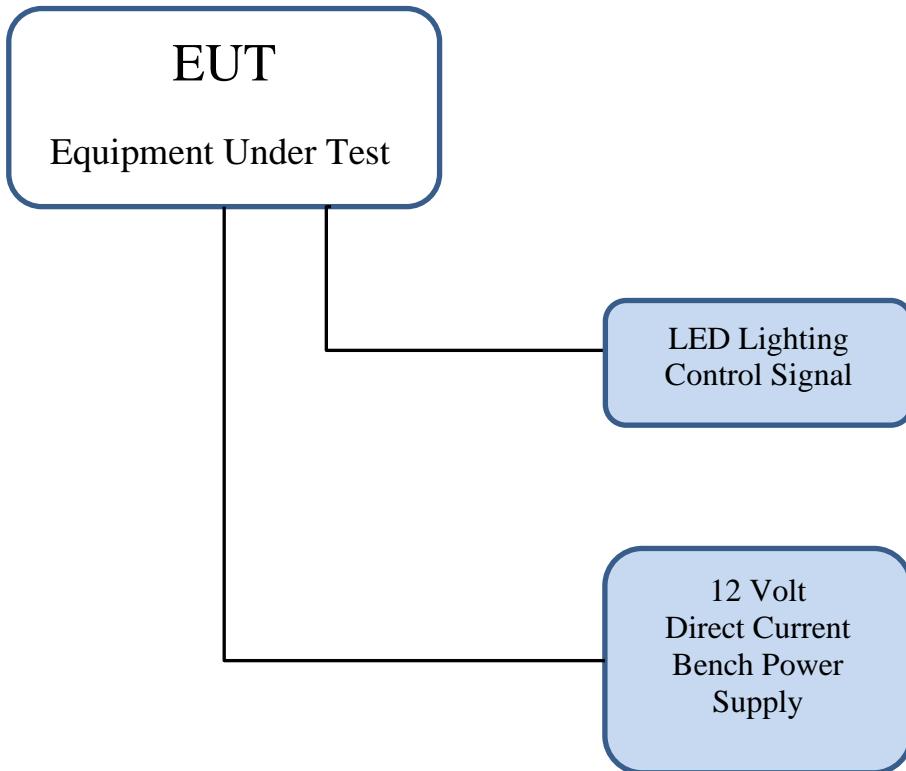
PMN: Xi-Fi PIR Capsule HVIN: XCM1

EiKO Global, LLC
18000 W 105th St
Olathe, KS 66061

<u>Equipment</u>	<u>Model / PN</u>	<u>Serial Number</u>
EUT 1	Xi-Fi PIR Capsule	ENG1
EUT 2	Xi-Fi PIR Capsule	ENG2

Test results in this report relate only to the items tested. Worst-case configuration data recorded in this report.

Software: V3 Antenna: 24 GHz PIFA (0 dBi)


Equipment Function

The Xi-Fi PIR Capsule is designed for installation in commercial LED lighting products. The design incorporates two radio frequency transmitters, one for motion sensing and the other providing wireless Remote-Control ability. The unit also uses InfraRed (IR) remote control providing ability to configure and control remotely. The EUT provides a 24.0-24.25 GHz transmitter used to sense motion in the field and a 433-435 MHz Remote Control Transmitter provided for periodic operation with associated equipment. The device is typically mounted in LED lighting fixtures located in parking garage or walking area which illuminate an area. The 433-435 MHz transmitter provides Remote Control Transmitter capability to associated fixtures to automate the lighting installation. The EUT also provides motion sensing of approaching objects and triggers signal to engage the lighting system. The EUT operates solely from direct current power provided from installation enclosure and offers no provision for connection with utility AC Power system. The modular design provides ability to mount into existing fixtures as retro fit or new lighting products. The test samples were provided with test software enabling continuous operation. The EUT module was tested in a stand-alone configuration and arranged as described by the manufacturer for testing purposes. The EUT offers no other interface connections than those presented in configuration option as presented below. For testing purposes, the EUT received power from a bench direct current power supply. During testing, the test system was configured to operate in a manufacturer defined mode. As requested by the manufacturer the

Rogers Labs, Inc.	EiKO Global, LLC	SN's : ENG1, ENG2
4405 West 259th Terrace	PMN : Xi-Fi PIR Capsule	FCC ID: 2AZIS-XCM1
Louisburg, KS 66053	HVIN : XCM1	IC: 27132-XCM1
Phone/Fax: (913) 837-3214	Test : 210419	Date: November 17, 2021
Revision 2	Test to: 47CFR 15.249, RSS-Gen RSS-210	
	File: EiKO XCM1 DXX TstRpt 210419 r2	Page 5 of 26

equipment was tested for emissions compliance using the available configurations with the worse-case data presented. Test results in this report relate only to the products described in this report.

Equipment Configuration

Application for Certification

(1) Manufacturer: EiKO Global, LLC
18000 W 105th St
Olathe, KS 66061

(2) Identification: Model: Xi-Fi PIR Capsule HVIN: XCM1
FCC ID: 2AZIS-XCM1 IC: 27132-XCM1

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) List of Peripheral Equipment Necessary for operation. The equipment operates from 12-volt direct current power provided from installation. The design provides a signaling wire to change illumination of lighting fixture. The EUT provides no other interface or communication options as presented in this filing.

(9) Transition Provisions of 47CFR 15.37 are not requested.

(10) Not Applicable. The unit is not a scanning receiver.

(11) Not Applicable. The EUT does not operate in the 59 – 64 GHz frequency band.

(12) The equipment is not software defined and this section is not applicable.

(13) Applications for certification of U-NII devices in the 5.15-5.35 GHz and the 5.47-5.85 GHz bands must include a high-level operational description of the security procedures that control the radio frequency operating parameters and ensure that unauthorized modifications cannot be made. This requirement is not applicable to his DTS device.

(14) Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used. This information is provided in this report and Test Setup Exhibits provided with the application filing.

Applicable Standards

The following information is submitted in accordance with the eCFR (electronic Title 47 of the Code of Federal Regulations) (47CFR), dated April 19, 2021: Part 2, Subpart J, Part 15C Paragraph 15.249, RSS-210 Issue 10, and RSS-GEN Issue 5. Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in ANSI C63.10-2013. This report documents compliance for the EUT operations as Motion Sensor Device Transmitter Module.

Equipment Testing Procedures

AC Line Conducted Emission Test Procedure

The design operates from direct current power only and offers no provision for connection with Utility AC Power systems. Therefore, no AC Line Conducted Emissions Testing was required or performed.

Radiated Emission Test Procedure

Radiated emissions testing was performed as required in 47CFR 15C, RSS-210 Issue 10, RSS-GEN and specified in ANSI C63.10-2013. The EUT was placed on a rotating 0.9 x 1.2-meter platform, elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement permitting orientation in three orthogonal axes, raising, and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken and recorded. The frequency spectrum from 9 kHz to 100 GHz was searched for emissions during preliminary investigation. Refer to diagrams one and two showing typical test setup. Refer to photographs in the test setup exhibit for specific EUT placement during testing.

Diagram 1 Test arrangement for radiated emissions of tabletop equipment

1—A LISN is optional for radiated measurements between 30 MHz and 1000 MHz but not allowed for measurements below 30 MHz and above 1000 MHz (see 6.3.1). If used, then connect EUT to one LISN. Unused LISN measuring port connectors shall be terminated in $50\ \Omega$ loads. The LISN may be placed on top of, or immediately beneath, the reference ground plane (see 6.2.2 and 6.2.3.2).

1.1—LISN spaced at least 80 cm from the nearest part of the EUT chassis.

2—Antenna can be integral or detachable, depending on the EUT (see 6.3.1).

3—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long (see 6.3.1).

4—For emission measurements at or below 1 GHz, the table height shall be 80 cm. For emission measurements above 1 GHz, the table height shall be 1.5 m for measurements, except as otherwise specified (see 6.3.1 and 6.6.3.1).

Rogers Labs, Inc.

4405 West 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 2

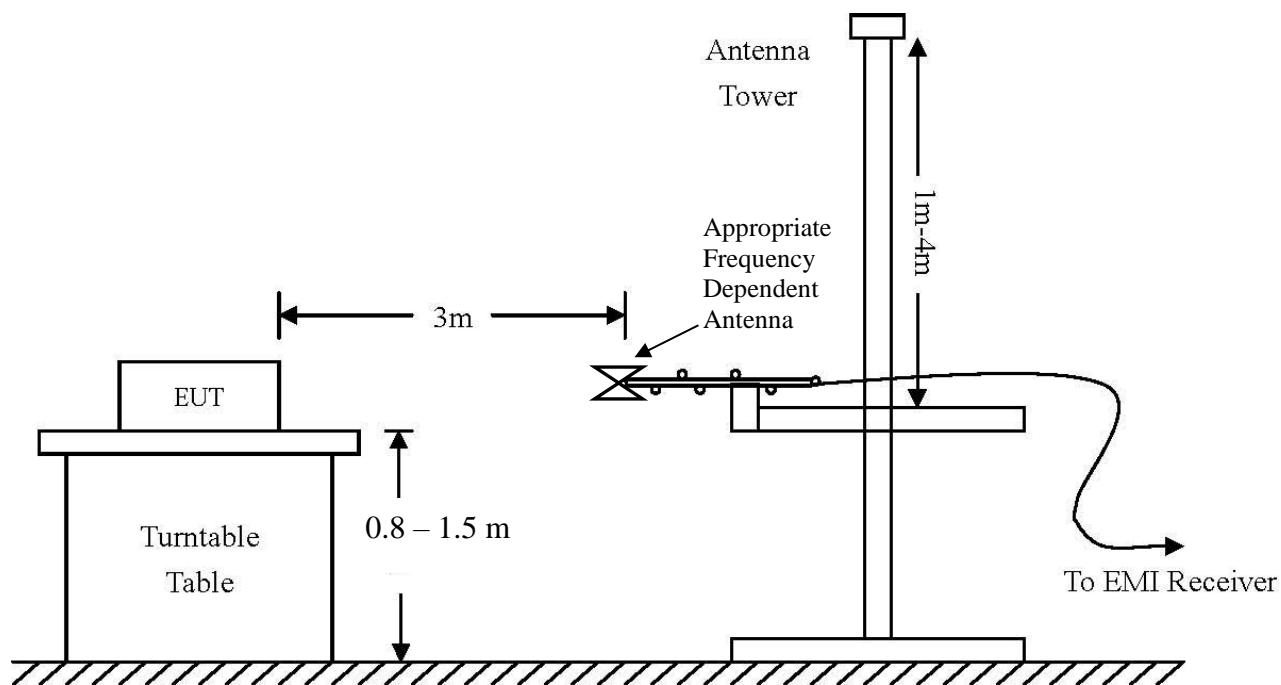
EiKO Global, LLC

PMN : Xi-Fi PIR Capsule

HVIN : XCM1 Test : 210419

Test to: 47CFR 15.249, RSS-Gen RSS-210

File: EiKO XCM1 DXX TstRpt 210419 r2 Page 9 of 26


SN's : ENG1, ENG2

FCC ID: 2AZIS-XCM1

IC: 27132-XCM1

Date: November 17, 2021

Diagram 2 Test arrangement for radiated emissions tested on Open Area Test Site (OATS)

Test Site Locations

Conducted EMI	AC line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 West 259 th Terrace, Louisburg, KS
Antenna port	Antenna port conducted emissions testing was performed in a shielded screen room located at Rogers Labs, Inc., 4405 West 259 th Terrace, Louisburg, KS
Radiated EMI	The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 West 259 th Terrace, Louisburg, KS

Registered Site information: FCC Site: US5305, ISED: 3041A, CAB Identifier: US0096

NVLAP Accreditation Lab code 200087-0

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 2

EiKO Global, LLC
PMN : Xi-Fi PIR Capsule
HVIN : XCM1
Test to: 47CFR 15.249, RSS-Gen RSS-210
File: EiKO XCM1 DXX TstRpt 210419 r2

SN's : ENG1, ENG2
FCC ID: 2AZIS-XCM1
IC: 27132-XCM1
Date: November 17, 2021
Page 10 of 26

Units of Measurements

Conducted EMI Data presented in dB μ V; dB referenced to one microvolt

Antenna port Conducted Data is in dBm; dB referenced to one milliwatt

Radiated EMI Data presented in dB μ V/m; dB referenced to one microvolt per meter

Note: Radiated limit may be expressed for measurement in dB μ V/m when the measurement is taken at a distance of 3 or 10 meters. Data taken for this report was taken at distance of 3 meters.

Sample calculation demonstrates corrected field strength reading for Open Area Test Site using the measurement reading and correcting for receive antenna factor, cable losses, and amplifier gains.

Sample Calculation:

RFS = Radiated Field Strength, FSM = Field Strength Measured

A.F. = Receive antenna factor, Losses = attenuators/cable losses, Gain = amplification gains

RFS (dB μ V/m @ 3m) = FSM (dB μ V) + A.F. (dB/m) + Losses (dB) - Gain (dB)

Environmental Conditions

Ambient Temperature 22.7° C

Relative Humidity 26 %

Atmospheric Pressure 1025.2 mb

Statement of Modifications and Deviations

No modifications to the EUT were required for the equipment to demonstrate compliance with the 47CFR Part 15C, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5 emission requirements. There were no deviations to the specifications.

Intentional Radiators

The following information is submitted supporting compliance with the requirements of 47CFR, Subpart C, paragraph 15.249, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5.

Rogers Labs, Inc.	EiKO Global, LLC	SN's : ENG1, ENG2
4405 West 259th Terrace	PMN : Xi-Fi PIR Capsule	FCC ID: 2AZIS-XCM1
Louisburg, KS 66053	HVIN : XCM1	IC: 27132-XCM1
Phone/Fax: (913) 837-3214	Test : 210419	Date: November 17, 2021
Revision 2	Test to: 47CFR 15.249, RSS-Gen RSS-210	File: EiKO XCM1 DXX TstRpt 210419 r2
		Page 11 of 26

Antenna Requirements

The EUT incorporates integral Planer Inverted F Antenna (PIFA) system. Production equipment offers no provision for connection to alternate antenna system. The antenna connection point complies with the unique antenna connection requirements. There are no deviations or exceptions to the specification.

Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at the OATS. The EUT utilizes frequency, determining circuitry, which generates harmonics falling in the restricted bands. Emissions were investigated at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. Peak and average amplitudes of frequencies above 1000 MHz were compared to the required limits with worst-case data presented below. Test procedures of ANSI C63.10-2013 were used during testing. No other significant emission was observed which fell into the restricted bands of operation. Computed emission values consider the received radiated field strength, receive antenna correction factor, amplifier gain stage, and test system cable losses.

Note: 47CFR 15.205 (d) (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only and shall not exceed the limits specified in §15.249(a).

Table 1 Radiated Emissions in Restricted Frequency Bands Data

Frequency in GHz	Horizontal Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)	Horizontal Margin (dB)	Vertical Margin (dB)
48.1	47.7	40.8	45.4	38.2	54.0	-13.2	-15.8
72.1	54.9	44.7	54.4	43.8	55.0	-10.3	-11.2
96.1	61.2	48.4	60.9	48.5	56.0	-7.6	-7.5

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for Radiated Emissions in Restricted Bands

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C and RSS-210 Issue 10 Intentional Radiator requirements. The EUT demonstrated a worst-case minimum margin of -7.5 dB below the emissions requirements in restricted frequency bands. Peak, Quasi-peak, and average amplitudes were checked for compliance with the regulations. Worst-case emissions are reported with other emissions found in the restricted frequency bands at least 20 dB below the requirements.

AC Line Conducted EMI Procedure

The design operates from direct current power only and offers no provision for connection with Utility AC Power systems. Therefore, no AC Line Conducted Emissions Testing was required or performed.

General Radiated Emissions Procedure

The EUT was arranged in a typical equipment configuration and operated through all available mode during testing. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Each radiated emission was then maximized at the OATS location before final radiated measurements were performed. Final data was taken with the EUT located on the OATS at 3 meters distance between the EUT and the receiving antenna. The frequency spectrum from 9 kHz to 100 GHz was searched for general radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Loop from 9 kHz to 30 MHz, Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 1 GHz and or double Ridge or pyramidal horns and mixers above 1 GHz, notch filters and appropriate amplifiers and external mixers were utilized.

Table 2 General Radiated Emissions Data

Frequency (MHz)	Horizontal Peak (dB μ V/m)	Horizontal Quasi-Peak (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Quasi-Peak (dB μ V/m)	Limit @ 3m (dB μ V/m)	Horizontal Margin (dB)	Vertical Margin (dB)
40.3	25.3	21.1	25.8	21.1	40.0	-20.9	-20.9
52.1	32.1	22.1	31.4	21.5	40.0	-17.9	-18.5
60.1	28.7	20.3	29.7	20.6	40.0	-19.7	-19.4
78.3	30.8	19.9	29.4	20.2	40.0	-20.1	-19.8
156.0	30.5	20.6	29.1	19.4	40.0	-19.4	-20.6
208.3	26.1	21.7	21.6	15.4	40.0	-18.3	-24.6
283.5	23.7	16.9	22.2	16.7	47.0	-30.1	-30.3
354.4	25.7	20.1	28.0	21.5	47.0	-26.9	-25.5

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for General Radiated Emissions

The EUT demonstrated compliance with the radiated emissions requirements of 47CFR Part 15C paragraph 15.209, RSS-210 Issue 10, and RSS-GEN Issue 5 Intentional Radiators. The EUT configuration demonstrated a minimum margin of -17.9 dB below the requirements. Other emissions were present with amplitudes at least 20 dB below the Limits.

Operation in the Band 24.0-24.25 GHz

The transmitter output power: harmonic and general emissions were measured on an Open Area Test Site @ 3 meters. The EUT was placed on a turntable elevated as required above the ground plane and at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of frequencies below 1000 MHz were measured using a spectrum analyzer. The peak and average amplitude of frequencies above 1000 MHz were measured using a spectrum analyzer. The amplitude of each emission was then recorded from the analyzer display. Emissions radiated outside of the specified bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits, whichever is the lesser attenuation. Plots were taken of transmitter performance for reference in this and other documentation. The amplitude of each radiated emission was measured on the OATS at a distance of 3 meters from the FSM antenna testing was performed on sample representative of production with integral antenna with worst-case data provided. The amplitude of each radiated emission was maximized by equipment orientation and placement on the turn table, raising and lowering the FSM (Field Strength Measuring) antenna, changing the FSM antenna polarization, and by rotating the turntable. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, Pyramidal Horn Antennas from 1 GHz to 40 GHz, and/or external mixers above 40 GHz. Emissions were measured in dB μ V/m @ 3 meters.

Plots were taken of transmitter performance for reference in this and other documentation displaying compliance with the specifications.

Figure 1 Plot of Transmitter Emissions Operation in 24.0-24.25 GHz

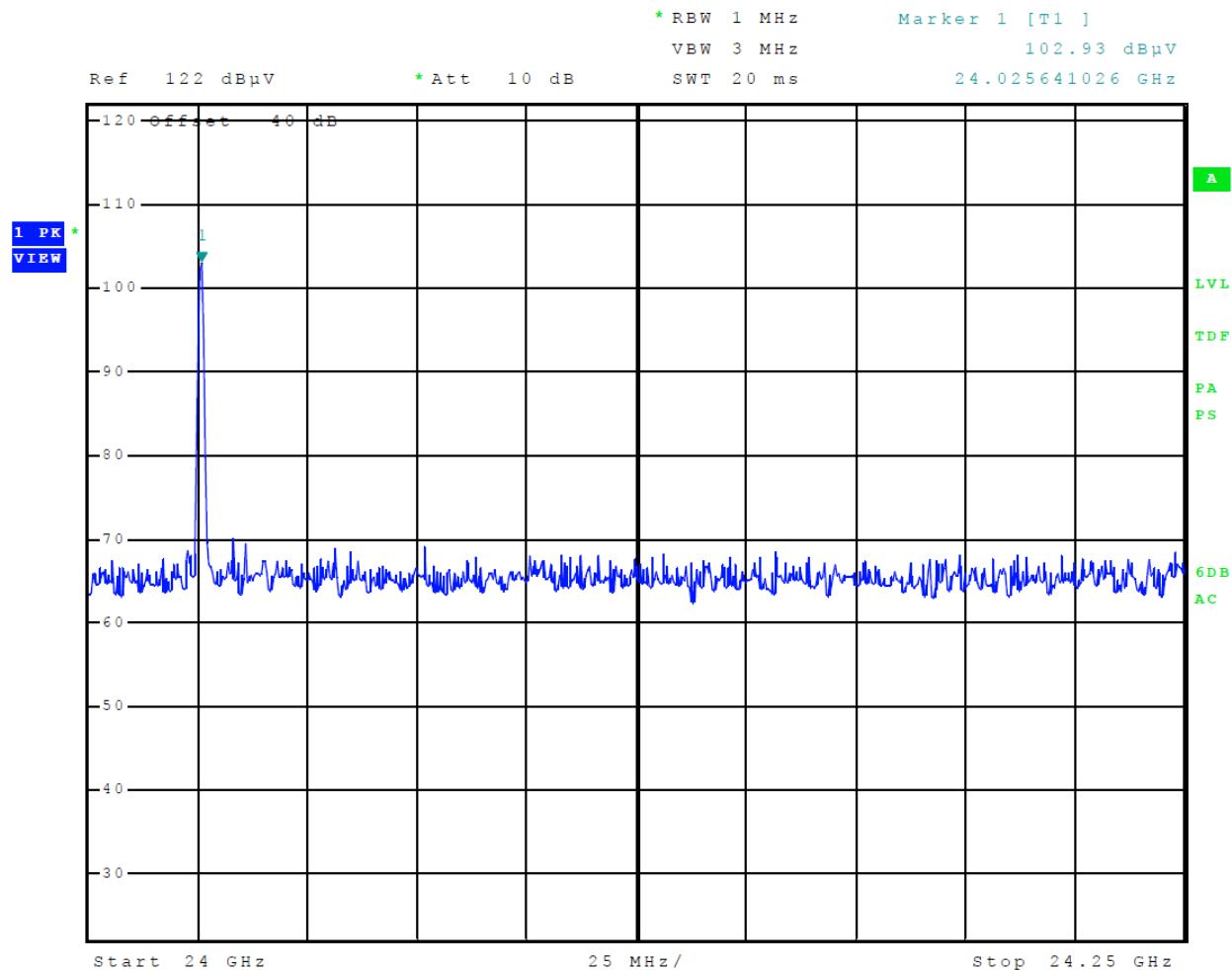


Figure 2 Plot of Transmitter Emissions Low Band Edge

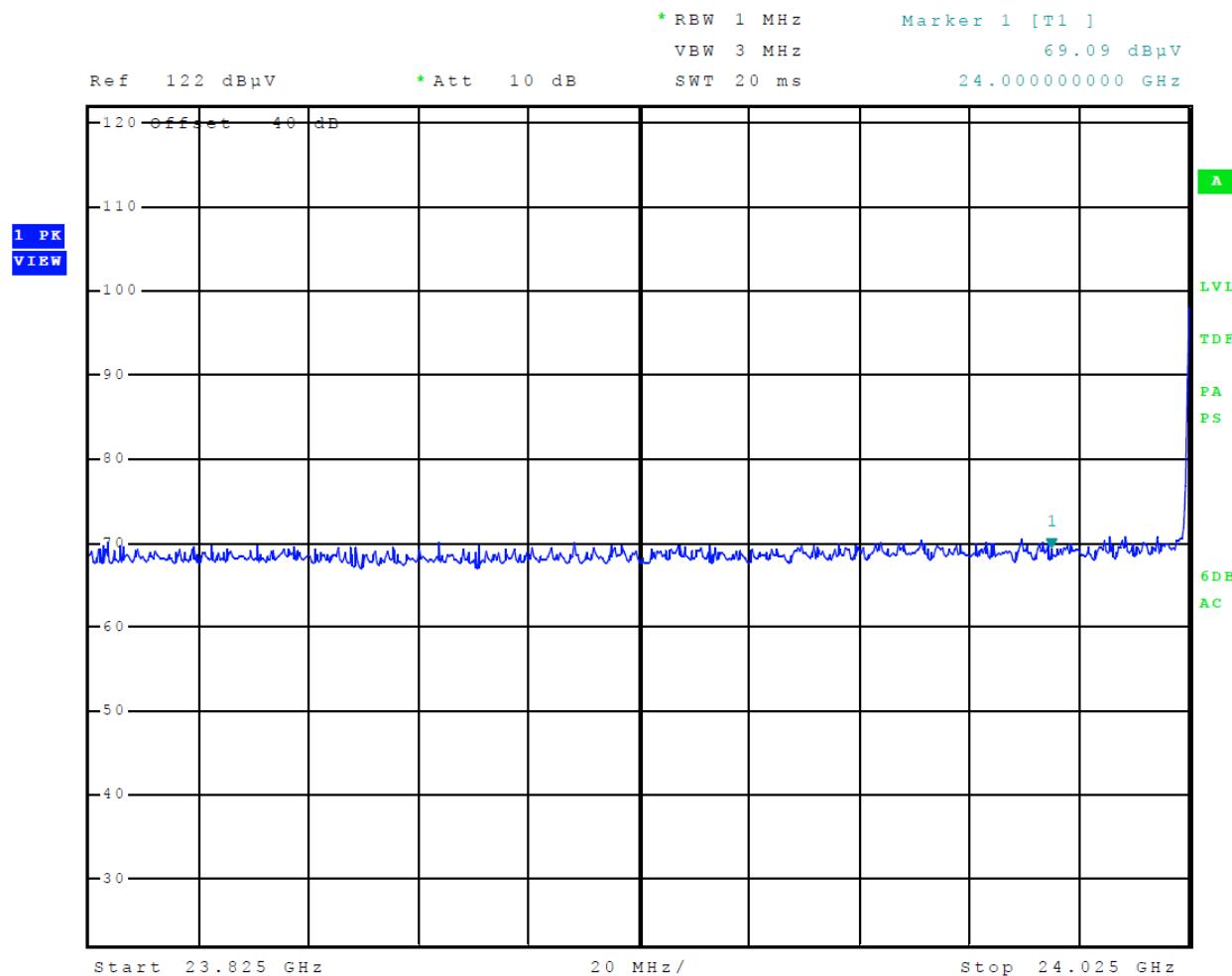


Figure 3 Plot of Transmitter Emissions High Band Edge

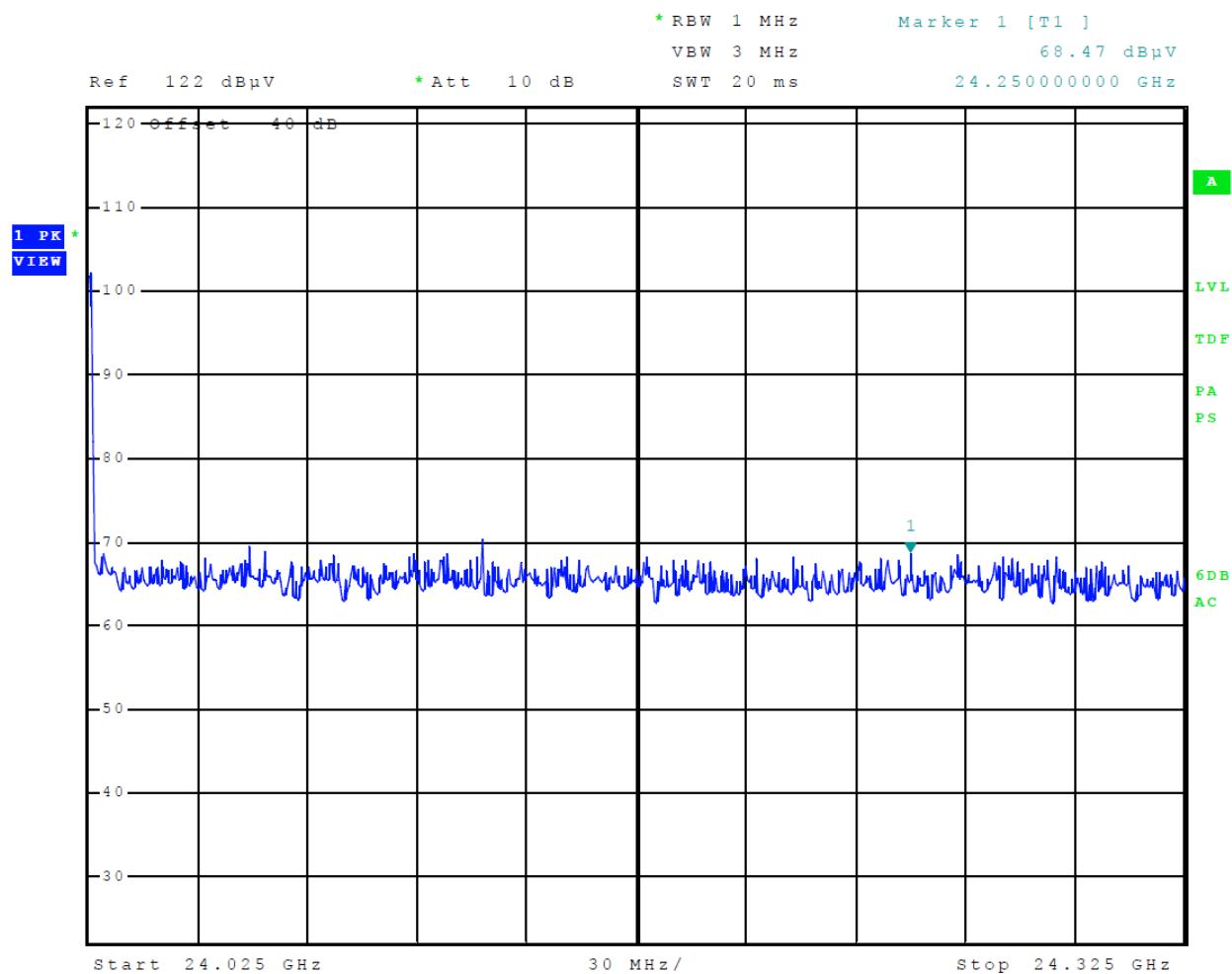
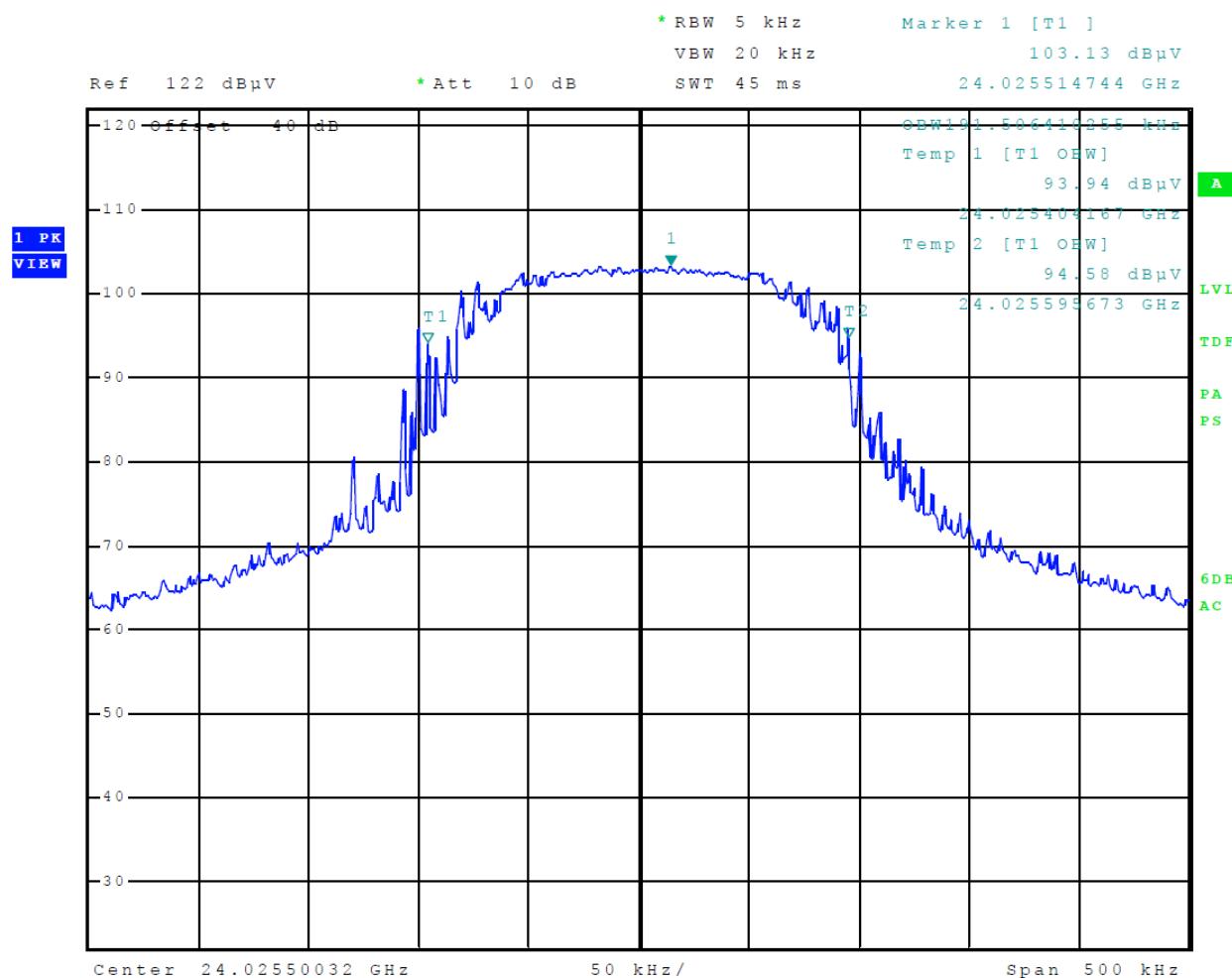



Figure 4 Plot of Transmitter Emissions 99% Occupied Bandwidth

Transmitter Emissions Data

Table 3 Transmitter Radiated Emissions

Frequency in GHz	Horizontal Peak (dB μ V/m)	Horizontal Average (dB μ V/m)	Vertical Peak (dB μ V/m)	Vertical Average (dB μ V/m)	Limit @ 3m (dB μ V/m)	Horizontal Margin (dB)	Vertical Margin (dB)
24.025	98.1	97.9	99.3	99.1	108.0	-10.1	-8.9
48.050	47.7	40.8	45.4	38.2	68.0	-27.2	-29.8
72.075	54.9	44.7	54.4	43.8	68.0	-23.3	-24.2
96.100	61.2	48.4	60.9	48.5	68.0	-19.6	-19.5

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded for frequency range below 1000 MHz. Peak and Average amplitude emissions are recorded for frequency range above 1000 MHz.

Summary of Results for Transmitter Radiated Emissions of Intentional Radiator

The EUT demonstrated compliance with the radiated emissions requirements of FCC 47CFR Part 15.249, Industry Canada RSS-210 Issue 10, and RSS-GEN Issue 5 Intentional Radiator regulations. The EUT worst-case test sample configuration demonstrated minimum average margin of -8.9 dB below the average emission limit for the fundamental. The EUT worst-case configuration demonstrated minimum radiated harmonic emission margin of -19.5 dB below the limit. No other radiated emissions were found in the restricted bands less than 20 dB below limits than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits.

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Test Equipment
- Annex C Rogers Qualifications
- Annex D Laboratory Certificate of Accreditation

Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 2

EiKO Global, LLC
PMN : Xi-Fi PIR Capsule
HVIN : XCM1 Test : 210419
Test to: 47CFR 15.249, RSS-Gen RSS-210
File: EiKO XCM1 DXX TstRpt 210419 r2

SN's : ENG1, ENG2
FCC ID: 2AZIS-XCM1
IC: 27132-XCM1
Date: November 17, 2021
Page 21 of 26

Annex A Measurement Uncertainty Calculations

The measurement uncertainty was calculated for all measurements listed in this test report according To CISPR 16-4. Result of measurement uncertainty calculations are recorded below. Component and process variability of production devices similar to those tested may result in additional deviations. The manufacturer has the sole responsibility of continued compliance.

Measurement	Expanded Measurement Uncertainty $U_{(lab)}$
3 Meter Horizontal 0.009-1000 MHz Measurements	4.16
3 Meter Vertical 0.009-1000 MHz Measurements	4.33
3 Meter Measurements 1-18 GHz	5.14
3 Meter Measurements 18-40 GHz	5.16
10 Meter Horizontal Measurements 0.009-1000 MHz	4.15
10 Meter Vertical Measurements 0.009-1000 MHz	4.32
AC Line Conducted	1.75
Antenna Port Conducted power	1.17
Frequency Stability	1.00E-11
Temperature	1.6°C
Humidity	3%

Annex B Test Equipment

Equipment	Manufacturer	Model (SN)	Band	Cal Date(m/d/y)	Due
<input type="checkbox"/> LISN	FCC	FCC-LISN-50-25-10(1PA) (160611)	.15-30MHz	4/6/2021	4/6/2022
<input type="checkbox"/> LISN	Compliance Design	FCC-LISN-2.Mod.cd,(126)	.15-30MHz	10/14/2020	10/14/2021
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(L10M)(303073)9kHz-40 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303069)9kHz-40 GHz	10/14/2020	10/14/2021	
<input checked="" type="checkbox"/> Cable	Huber & Suhner Inc.	Sucoflex102ea(1.5M)(303070)9kHz-40 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021
<input type="checkbox"/> Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/14/2020	10/14/2021
<input checked="" type="checkbox"/> Antenna	Com Power	AL-130 (121055)	.001-30 MHz	10/14/2020	10/14/2021
<input type="checkbox"/> Antenna:	EMCO	6509	.001-30 MHz	10/14/2020	10/14/2022
<input type="checkbox"/> Antenna	ARA	BCD-235-B (169)	20-350MHz	10/14/2020	10/14/2021
<input type="checkbox"/> Antenna:	Schwarzbeck Model	VHBB 9124 (1468)		10/14/2020	10/14/2022
<input checked="" type="checkbox"/> Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/14/2020	10/14/2021
<input type="checkbox"/> Antenna	ETS-Lindgren	3147 (40582)	200-1000MHz	10/14/2020	10/14/2022
<input type="checkbox"/> Antenna:	Schwarzbeck Model:	VULP 9118 A (VULP 9118 A-534)		10/14/2020	10/14/2022
<input checked="" type="checkbox"/> Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	4/21/2020	4/21/2022
<input type="checkbox"/> Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/14/2020	10/14/2022
<input checked="" type="checkbox"/> Antenna	Com Power	AH-840 (101046)	18-40 GHz	4/6/2021	4/6/2023
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	3/2/2021	3/2/2022
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESW44 (101534)	20Hz-44GHz	1/12/2021	1/12/2022
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	FS-Z60, 90, 140, and 220	40GHz-220GHz	12/22/2017	12/22/2027
<input checked="" type="checkbox"/> Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/14/2020	10/14/2021
<input checked="" type="checkbox"/> Amplifier	Com-Power	CPPA-102 (01254)	1-1000 MHz	10/14/2020	10/14/2021
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/14/2020	10/14/2021
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-840A (461328)	18-40 GHz	10/14/2020	10/14/2021
<input type="checkbox"/> Power Meter	Agilent	N1911A with N1921A	0.05-40 GHz	4/6/2021	4/6/2022
<input type="checkbox"/> Generator	Rohde & Schwarz	SMB100A6 (100150)	20Hz-6 GHz	4/6/2021	4/6/2022
<input type="checkbox"/> Generator	Rohde & Schwarz	SMBV100A6 (260771)	20Hz-6 GHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50722 (009).9G notch	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50114 (017)1.5G HPF	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50117 (063) 3G HPF	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	HPM50105 (059) 6G HPF	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	BRM50702 (172) 2G notch	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50703 (G102) 5G notch	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> RF Filter	Micro-Tronics	BRC50705 (024) 5G notch	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> Attenuator	Fairview	SA6NFNF100W-40 (1625)	30-18000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1436)	30-6000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1445)	30-6000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-3W2+ (1735)	30-6000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1438)	30-6000 MHz	4/6/2021	4/6/2022
<input type="checkbox"/> Attenuator	Mini-Circuits	VAT-6W2+ (1736)	30-6000 MHz	4/6/2021	4/6/2022
<input checked="" type="checkbox"/> Weather station	Davis	6312 (A81120N075)		11/4/2020	11/4/2021

List of Test Equipment		Calibration	Date (m/d/y)	Due
<input type="checkbox"/> Antenna:	Schwarzbeck Model VHBB 9124 (9124-627)		4/21/2020	4/21/2022
<input type="checkbox"/> Antenna:	Schwarzbeck Model: VULP 9118 A (VULP 9118 A-534)		4/21/2020	4/21/2022
<input type="checkbox"/> Frequency Counter:	Leader LDC-825 (8060153)		4/6/2021	4/6/2022
<input type="checkbox"/> LISN:	Com-Power Model LI-220A		10/14/2020	10/14/2021
<input type="checkbox"/> LISN:	Com-Power Model LI-550C		10/14/2020	10/14/2021
<input type="checkbox"/> ISN:	Com-Power Model ISN T-8		4/6/2021	4/6/2022
<input type="checkbox"/> LISN:	Fischer Custom Communications Model: FCC-LISN-50-16-2-08		4/6/2021	4/6/2022
<input type="checkbox"/> Cable	Huber & Suhner Inc. Sucoflex102ea(1.5M)(303072) 9kHz-40 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> Cable	Huber & Suhner Inc. Sucoflex102ea(L1M)(281183) 9kHz-40 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> Cable	Huber & Suhner Inc. Sucoflex102ea(L4M)(281184) 9kHz-40 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> Cable	Huber & Suhner Inc. Sucoflex102ea(L10M)(317546)9kHz-40 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> Cable	Time Microwave 4M-750HF290-750 (4M) 9kHz-24 GHz	10/14/2020	10/14/2021	
<input type="checkbox"/> RF Filter	Micro-Tronics BRC17663 (001) 9.3-9.5 notch 30-1800 MHz	4/6/2021	4/6/2022	
<input type="checkbox"/> RF Filter	Micro-Tronics BRC19565 (001) 9.2-9.6 notch 30-1800 MHz	10/16/2018	4/6/2022	
<input type="checkbox"/> Analyzer	HP 8562A (3051A05950) 9kHz-125GHz	4/6/2021	4/6/2022	
<input type="checkbox"/> Analyzer	HP External Mixers11571, 11970 25GHz-110GHz	4/18/2015	4/18/2025	
<input type="checkbox"/> Analyzer	HP 8591EM (3628A00871)		4/21/2020	4/21/2022
<input type="checkbox"/> Wave Form Generator	Keysight 33512B (MY57400128)		4/21/2020	4/6/2022
<input type="checkbox"/> Antenna:	Solar 9229-1 & 9230-1		2/22/2021	2/22/2022
<input type="checkbox"/> CDN:	Com-Power Model CDN325E		10/14/2020	10/14/2021
<input type="checkbox"/> Injection Clamp	Luthi Model EM101		10/14/2020	10/14/2021
<input type="checkbox"/> Oscilloscope	Scope: Tektronix MDO 4104		2/22/2021	2/22/2022
<input type="checkbox"/> EMC Transient Generator	HVT TR 3000		2/22/2021	2/22/2022
<input type="checkbox"/> AC Power Source	(Ametech, California Instruments)		2/22/2021	2/22/2022
<input type="checkbox"/> Field Intensity Meter	EFM-018		2/22/2021	2/22/2022
<input type="checkbox"/> ESD Simulator	MZ-15		2/22/2021	2/22/2022
<input type="checkbox"/> R.F. Power Amp	ACS 230-50W		not required	
<input type="checkbox"/> R.F. Power Amp	EIN Model: A301		not required	
<input type="checkbox"/> R.F. Power Amp	A.R. Model: 10W 1010M7		not required	
<input type="checkbox"/> R.F. Power Amp	A.R. Model: 50U1000		not required	
<input type="checkbox"/> Tenney Temperature Chamber			not required	
<input checked="" type="checkbox"/> Shielded Room			not required	

Rogers Labs, Inc.	EiKO Global, LLC	SN's : ENG1, ENG2
4405 West 259th Terrace	PMN : Xi-Fi PIR Capsule	FCC ID: 2AZIS-XCM1
Louisburg, KS 66053	HVIN : XCM1	IC: 27132-XCM1
Phone/Fax: (913) 837-3214	Test : 210419	Date: November 17, 2021
Revision 2	Test to: 47CFR 15.249, RSS-Gen RSS-210	
	File: EiKO XCM1 DXX TstRpt 210419 r2	Page 24 of 26

Annex C Rogers Qualifications

Scot D. Rogers, Engineer

Rogers Labs, Inc.

Mr. Rogers has 35 years' experience in the field of electronics. Work experience includes working in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University
- 2) Bachelor of Science Degree in Business Administration Kansas State University
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Rogers Labs, Inc.	EiKO Global, LLC	SN's : ENG1, ENG2
4405 West 259th Terrace	PMN : Xi-Fi PIR Capsule	FCC ID: 2AZIS-XCM1
Louisburg, KS 66053	HVIN : XCM1	IC: 27132-XCM1
Phone/Fax: (913) 837-3214	Test : 210419	Date: November 17, 2021
Revision 2	Test to: 47CFR 15.249, RSS-Gen RSS-210	
	File: EiKO XCM1 DXX TstRpt 210419 r2	Page 25 of 26

Annex D Laboratory Certificate of Accreditation

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2017

NVLAP LAB CODE: 200087-0

Rogers Labs, Inc.
Louisburg, KS

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Electromagnetic Compatibility & Telecommunications

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).*

2021-02-19 through 2022-03-31

Effective Dates

For the National Voluntary Laboratory Accreditation Program

A handwritten signature in blue ink that reads "Anna S. Laman".

Rogers Labs, Inc.	EiKO Global, LLC	SN's : ENG1, ENG2
4405 West 259th Terrace	PMN : Xi-Fi PIR Capsule	FCC ID: 2AZIS-XCM1
Louisburg, KS 66053	HVIN : XCM1	IC: 27132-XCM1
Phone/Fax: (913) 837-3214	Test : 210419	Date: November 17, 2021
Revision 2	Test to: 47CFR 15.249, RSS-Gen RSS-210	
	File: EiKO XCM1 DXX TstRpt 210419 r2	Page 26 of 26