

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2100513

FCC REPORT

(802.11ah)

Applicant: Zhuhai Jinhong Technology Co., LTD

Address of Applicant: room R07-06, 2nd floor, 4th building, number 2007 Mingzhunan

road, Zhuhai City, Guangdong Province, China

Equipment Under Test (EUT)

Product Name: Wirerless Signal Wall-through Ethernet Connector-ETHERNET

AIR

Model No.: AH 9066, ZG302M, ZR08PR, TD-AH9066, HW9066, TX23-

9066, COD- AH06, 87306, MT141

FCC ID: 2AZIK-AH9066

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 01 Apr., 2021

Date of Test: 02 Apr., to 23 Apr., 2021

Date of report issued: 25 Apr., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	25 Apr., 2021	Original

Reviewed by: Date: 25 Apr., 2021

Project Engineer

Page 2 of 55

Contents

			Page
1	CO/	/ER PAGE	1
2	VER	RSION	2
3		NTENTS	3
4		T SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	14
	6.5	Power Spectral Density	15
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2	2 Radiated Emission Method	35
7	TES	ST SETUP PHOTO	46
8	FIIT	CONSTRUCTIONAL DETAILS	ло
J	_51		······································

Page 3 of 55

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 802.11ah	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 802.11ah	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 802.11ah	Pass
Power Spectral Density	15.247 (e)	Appendix A – 802.11ah	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 802.11ah	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 802.11ah	Pass
Radiated Spurious Emission	15.205 & 15.209	See Section 6.7.2	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	Zhuhai Jinhong Technology Co., LTD
Address:	room R07-06, 2nd floor, 4th building, number 2007 Mingzhunan road, Zhuhai City, Guangdong Province, China
Manufacturer/ Factory:	Zhuhai Jinhong Technology Co., LTD
Address:	room R07-06, 2nd floor, 4th building, number 2007 Mingzhunan road, Zhuhai City, Guangdong Province, China

5.2 General Description of E.U.T.

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR
Model No.:	AH9066, ZG302M, ZR08PR, TD-AH9066, HW9066, TX23-9066, COD-AH06, 87306, MT141
Operation Frequency:	903.5-926.5MHz for 802.11ah(1MHz channel bandwidth);
	905-925MHz for 802.11ah(2MHz channel bandwidth);
	906-926MHz for 802.11ah(4MHz channel bandwidth);
	908-924MHz for 802.11ah(8MHz channel bandwidth);
Channel numbers:	24 channels for 802.11ah(1MHz channel bandwidth);
	11 Channels for 802.11ah(2MHz channel bandwidth);
	6 Channels for 802.11ah(4MHz channel bandwidth);
	3 Channels for 802.11ah(8MHz channel bandwidth);
Channel separation:	802.11ah(1MHz channel bandwidth): 1MHz
	802.11ah(2MHz channel bandwidth); 2MHz
	802.11ah(4MHz channel bandwidth); 4MHz
	802.11ah(8MHz channel bandwidth); 8MHz
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)
Modulation type:	BPSK, QPSK, 16QAM, 64QAM
Data speed:	802.11ah(1MHz channel bandwidth): 0.33Mbps to 3.30Mbps;
	802.11ah(2MHz channel bandwidth): 0.72Mbps to 7.20Mbps;
	802.11ah(4MHz channel bandwidth): 1.50Mbps to 15.00Mbps;
	802.11ah(8MHz channel bandwidth): 6.50Mbps to 32.50Mbps;
Antenna Type:	External Antenna
Antenna gain:	5.0dBi
AC adapter:	Model: GA-0501000
	Input: AC100-240V, 50/60Hz, 0.6A
	Output: DC 5.0V, 1000mA
Remark:	Model No.: AH9066, ZG302M, ZR08PR, TD-AH9066, HW9066, TX23-
	9066, COD- AH06, 87306, MT141 were identical inside, the electrical
	circuit design, layout, components used and internal wiring, with only difference being model.
Test Sample Condition:	The test samples were provided in good working order with no visible
	defects.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Operation Frequency each of channel for 802.11ah(1MHz channel bandwidth):					
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	903.5MHz	11	913.5MHz	22	924.5MHz
2	904.5MHz	12	914.5MHz	23	925.5MHz
3	905.5MHz	13	915.5MHz	24	926.5MHz

Note:

1. Channel 1, 12 & 24 selected for 802.11ah(1MHz channel bandwidth) as Lowest, Middle and Highest channel.

2. Note: fc=903.5MHz+(k-1)×1MHz k=1 to 24.

Operation Frequency each of channel for 802.11ah(2MHz channel bandwidth):					
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	905.0MHz	5	913.0MHz	9	921.0MHz
2	907.0MHz	6	915.0MHz	10	923.0MHz
3	909.0MHz	7	917.0MHz	11	925.0MHz
4	911.0MHz	8	919.0MHz		
Note:					

1. Channel 1, 6 & 11 selected for 802.11ah(2MHz channel bandwidth) as Lowest, Middle and Highest channel.

Operation Frequency each of channel for 802.11ah(4MHz channel bandwidth):					
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	906.0MHz	3	914.0MHz	5	922.0MHz
2	910.0MHz	4	918.0MHz	6	926.0MHz
Note:					

1. Channel 1, 3 & 6 selected for 802.11ah(4MHz channel bandwidth) as Lowest, Middle and Highest channel.

Operation Frequency each of channel for 802.11ah(8MHz channel bandwidth):					
Channel	Frequency	Channel	Frequency	Channel	Frequency
1	908.0MHz	2	916.0MHz	3	924.0MHz
Note:					

1. Channel 1, 2 & 3 selected for 802.11ah(8MHz channel bandwidth) as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.		
Mode	Data rate	
802.11ah(1MHz channel bandwidth)	0.33Mbps	
802.11ah(2MHz channel bandwidth)	0.72Mbps	
802.11ah(4MHz channel bandwidth)	1.50Mbps	
802.11ah(8MHz channel bandwidth)	3.30Mbps	

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

5.8 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	966	01-19-2021	01-18-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-03-2021	03-02-2022
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-03-2021	03-02-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-18-2020	06-17-2021
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2020	11-17-2021
EMI Test Software	AUDIX	E3	V	ersion: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-03-2021	03-02-2022
Pre-amplifier	CD	PAP-1G18	11804	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2020	11-17-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-18-2020	11-17-2021
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-03-2021	03-02-2022
Signal Generator	R&S	SMR20	1008100050	03-03-2021	03-02-2022
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-03-2021	03-02-2022
Cable	MICRO-COAX	MFR64639	K10742-5	03-03-2021	03-02-2022
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-03-2021	03-02-2022
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	09-25-2020	09-24-2021
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	11-01-2020	10-31-2021
Simulated Station	Rohde & Schwarz	CMW500	140493	07-22-2020	07-21-2021

Conducted Emission:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-03-2021	03-02-2022					
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-03-2021	03-02-2022					
LISN	CHASE	MN2050D	1447	03-03-2021	03-02-2022					
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	06-18-2020	06-17-2021					
Cable	HP	10503A	N/A	03-03-2021	03-02-2022					
EMI Test Software	AUDIX	E3	Version: 6.110919b							

Conducted method:										
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)					
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021					
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021					
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021					
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021					
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021					
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A					
PDU	MWRF-test	XY-G10	N/A	N/A	N/A					
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0							
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021					

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 5.0 dBi.

Page 9 of 55

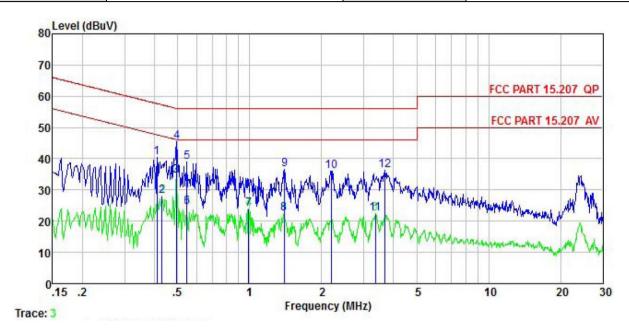
6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207								
Test Frequency Range:	150 kHz to 30 MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9 kHz, VBW=30 kHz	RBW=9 kHz, VBW=30 kHz							
Limit:	Frequency range (MHz)	Limit (dRuV)							
	. , , , ,	Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarit								
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 								
Test setup:	Re	eference Plane							
	AUX Equipment Test table/Insulatio Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabil Test table height=0.8m	at .	er — AC power						
Test Instruments:	Refer to section 5.9 for deta								
Test mode:	Refer to section 5.3 for deta	ils							
Test results:	Passed								

Page 10 of 55

Measurement Data:

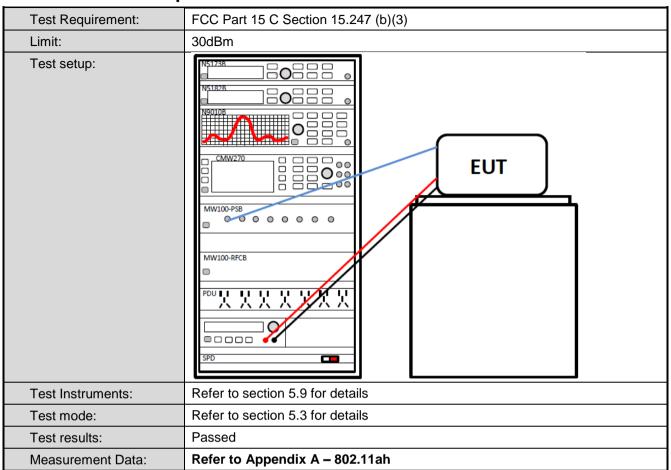
Product name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product model:	AH9066
Test by:	Mike	Test mode:	802.11ah TX mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu∀	<u>dB</u>	<u>dB</u>	₫B	dBu₹	₫₿uѶ	<u>dB</u>	
1	0.158	32.85	10.20	-0.07	0.01	42.99	65.56	-22.57	QP
2	0.431	28.34	10.20	0.16	0.03	38.73	57.24	-18.51	QP
1 2 3	0.447	20.75	10.20	0.05	0.03	31.03	46.93	-15.90	Average
4	0.479	21.40	10.20	-0.21	0.03	31.42	46.36	-14.94	Average
4 5 6 7 8 9	0.494	34.46	10.20	-0.32	0.03	44.37	56.10	-11.73	QP
6	0.494	28.28	10.20	-0.32	0.03	38.19	46.10	-7.91	Average
7	0.866	27.28	10.20	0.11	0.04	37.63	56.00	-18.37	QP
8	0.974	17.88	10.20	0.38	0.05	28.51	46.00	-17.49	Average
9	0.989	28.00	10.20	0.42	0.05	38.67	56.00	-17.33	QP
10	1.396	16.52	10.27	0.08	0.13	27.00	46.00	-19.00	Average
11	2.527	15.05	10.30	-0.26	0.13	25.22			Average
12	3.528	27.33	10.30	-0.12	0.08	37.59		-18.41	

Notes:

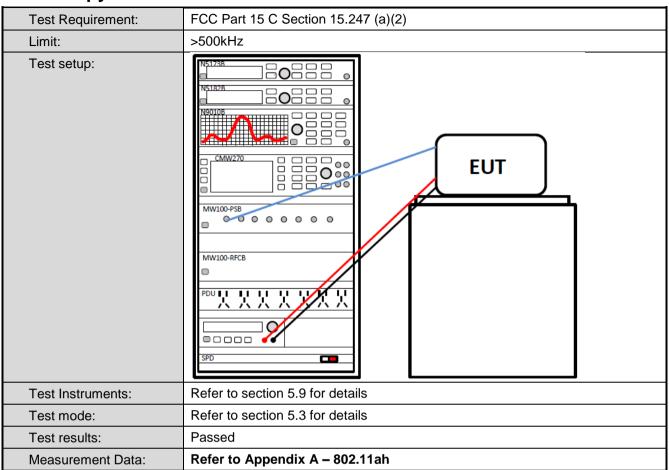
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product model:	AH9066
Test by:	Mike	Test mode:	802.11ah TX mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

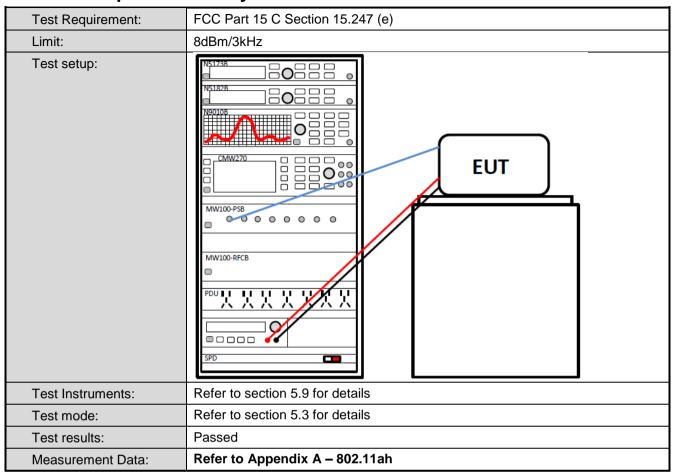

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
,	MHz	dBu∀	dB	<u>d</u> B	dB	dBu₹	dBu√	dB	
1 2 3 4 5	0.410	30.33	10.20	-0.05	0.04	40.52		-17.12	
2	0.431	17.85	10.20	-0.03	0.03	28.05	47.24	-19.19	Average
3	0.494	24.14	10.20	0.03	0.03	34.40	46.10	-11.70	Average
4	0.497	35.26	10.20	0.03	0.03	45.52	56.05	-10.53	QP
5	0.546	28.70	10.20	0.03	0.03	38.96	56.00	-17.04	QP
6	0.546	14.14	10.20	0.03	0.03	24.40	46.00	-21.60	Average
7	0.989	13.63	10.20	0.08	0.05	23.96			Average
7 8 9	1.396	11.84	10.27	0.12	0.13	22.36			Average
9	1.403	26.18	10.27	0.12	0.13	36.70		-19.30	
10	2.201	25.42	10.30	0.20	0.18	36.10	56.00	-19.90	QP
11	3.364	11.62	10.30	0.39	0.07	22.38	46.00	-23.62	Average
12	3.681	25.59	10.30	0.45	0.08	36.42		-19.58	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power



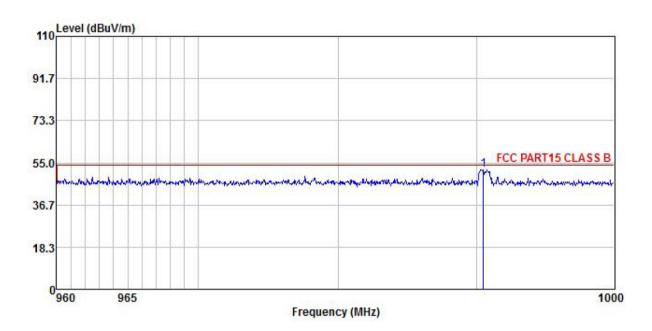
6.4 Occupy Bandwidth

6.5 Power Spectral Density

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	N\$173B					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A – 802.11ah					

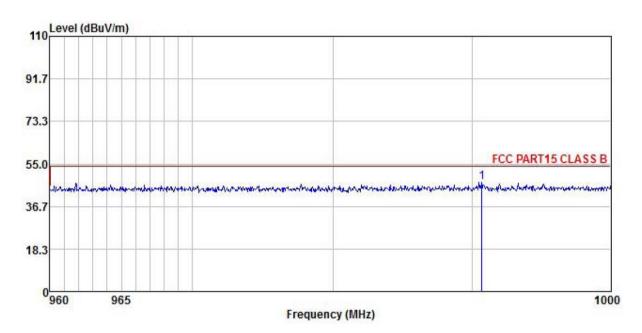

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C Section 15.209 and 15.205							
Test Frequency Range:	960 MHz to 1240 MHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit:	Frequency	RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark			
Liffiit.			54.00		Average Value			
	Above 1GH		74.00		Peak Value			
Test setup:	the ground at determine the 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sus and then the and the rota to maximum reasonable in the emission limit specified the EUT wou 10dB margin.	t a 3 meter can be position of the position of the set 3 meters of was mount to the position of the position o	amber. The take he highest radices away from the ted on the top ed from one maximum value arizations of the tuned to heigh ned from 0 deg was set to Peak Maximum Hold EUT in peak no could be stop d. Otherwise the	ole was rotated ation. The interference of a variable eter to four rof the field see antenna are as arranged at from 1 merees to 360 for Detect Fundade. The Mode was 10 ped and the lee emissions one using period at the second	height antenna meters above the strength. Both e set to make the distriction and strength and st			
	150km	AE EUT (Turntable)	Ground Reference Plane	Antenna To	wer			
Test Instruments:	Refer to section 5	.9 for details						
Test mode:	Refer to section 5	.3 for details						
Test results:	Passed							

BE-960MHz-1000MHz mode:

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066	
Test By:	Mike	Test mode:	802.11ah(1MHz channel bandwidth)	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∇	$-\overline{dB}/\overline{m}$	āB	āB	dBuV/m	$\overline{dBuV/m}$	ā	
1	990.453	25.36	23.04	3.64	0.00	52.04	54.00	-1.96	QP

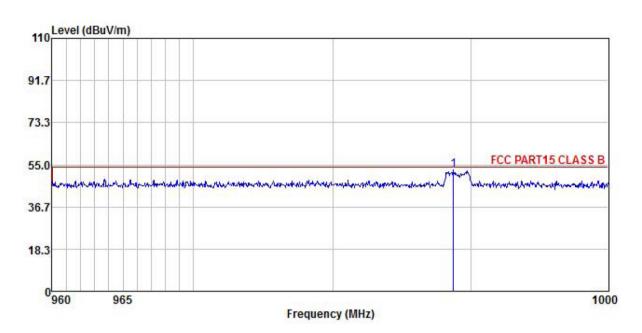

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2104004

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066		
Test By:	Mike	Test mode:	802.11ah(1MHz channel bandwidth)		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

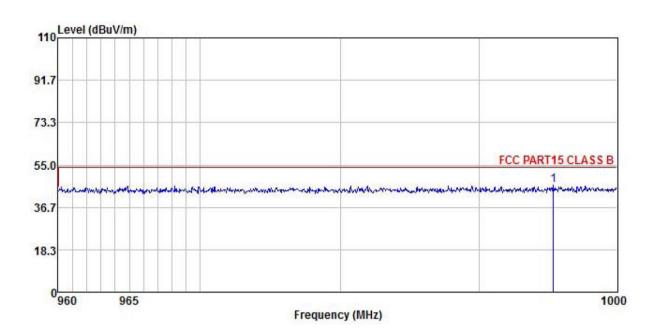
	Freq MHz		Antenna Factor						
		dBu∇	$\overline{-dB/m}$	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	990.655	20.55	23.04	3.64	0.00	47.23	54.00	-6.77	QP


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 19 of 55

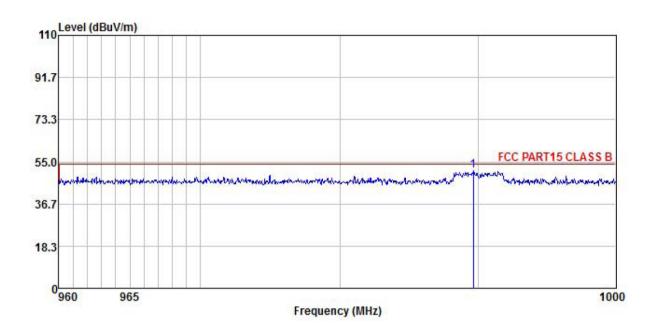
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066		
Test By:	Mike	Test mode:	802.11ah(2MHz channel bandwidth)		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		


			Antenna Factor					Over Limit	Remark
		dBu₹	$-\overline{dB/m}$	<u>d</u> B	d <u>B</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	988.716	26.26	23.04	3.64	0.00	52.94	54.00	-1.06	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

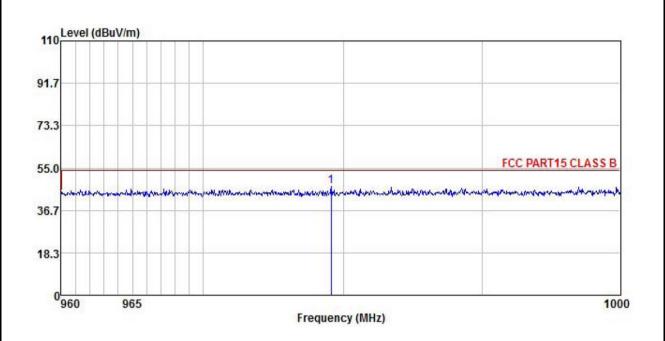
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066		
Test By:	Mike	Test mode:	802.11ah(2MHz channel bandwidth)		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		



			Antenna Factor					Over Limit	Remark
		dBu∇	$\overline{-dB/m}$	<u>ab</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
1	995.357	19.52	23.08	3.67	0.00	46.27	54.00	-7.73	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

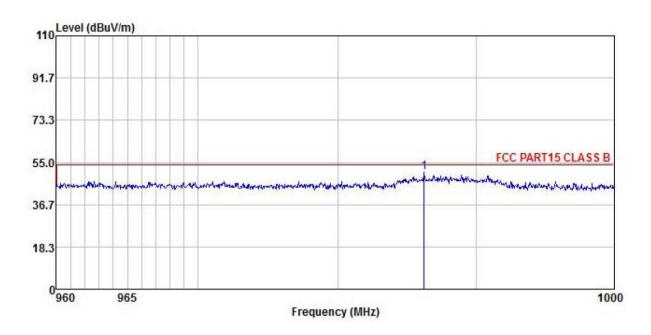
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(4MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						Remark
	MHz	MHz dBuV dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>		
1	989.604	24.36	23.04	3.64	0.00	51.04	54.00	-2.96	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

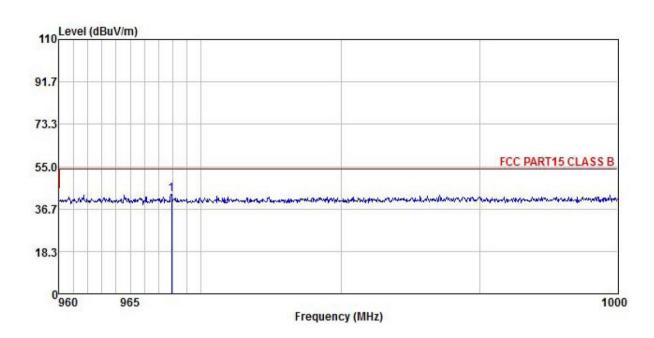
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(4MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
	MHz	dBu∜	$\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>d</u> B	
1	979.116	20.41	22.98	3.60	0.00	46.99	54.00	-7.01	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 23 of 55

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066		
Test By:	Mike	Test mode:	802.11ah(8MHz channel bandwidth)		
Test Channel:	Highest channel	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		

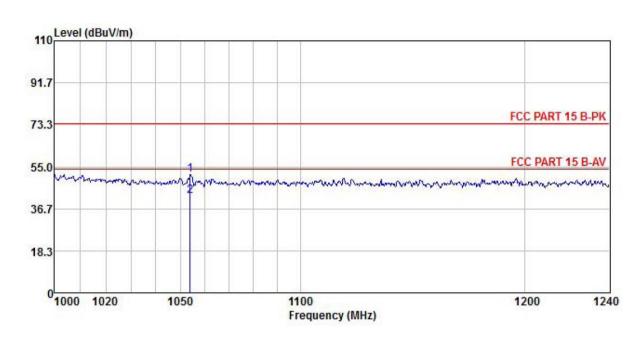

	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	986.216	23.95	23.02	3.62	0.00	50.59	54.00	-3.41	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(8MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq Le		Antenna Factor					Over Limit	
		dBu∇	$-\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	967.909	16.42	22.92	3.55	0.00	42.89	54.00	-11.11	QP

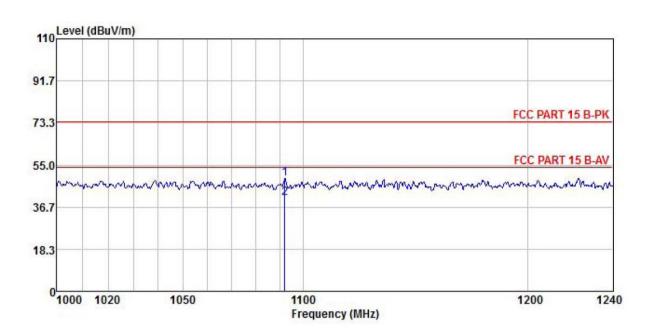

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 25 of 55

BE-1000MHz-1240MHz Mode:

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(1MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

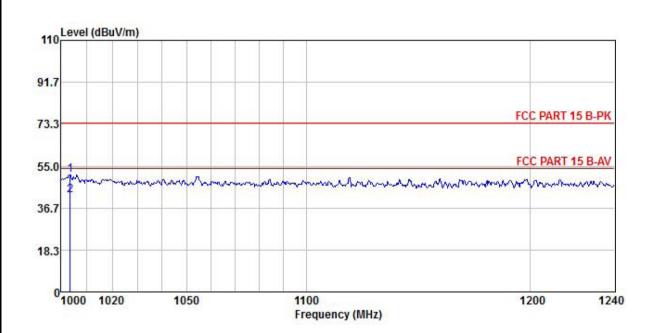
Freq		Antenna Factor						
MHz	dBu∜	dB/m	<u>dB</u>	dB	dBuV/m	dBu√/m	<u>dB</u>	
1053.889 1053.889				0.00 0.00				


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2104004

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(1MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


			Antenna Factor							
		dBu∜	<u>dB</u> /m	dB	dB	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>		
1 2	1092.202 1092.202									

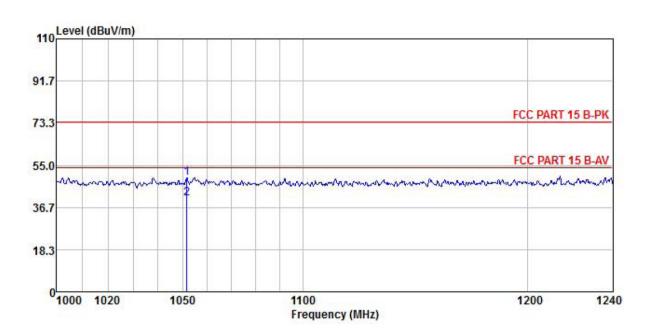
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 27 of 55

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(2MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∇	<u>dB</u> /π	₫B	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	1003.448 1003.448								

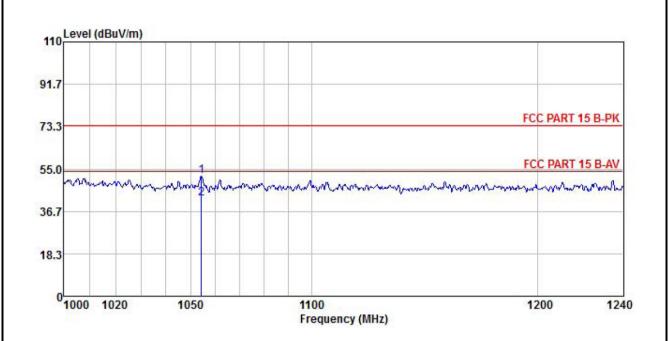
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


Page 28 of 55

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

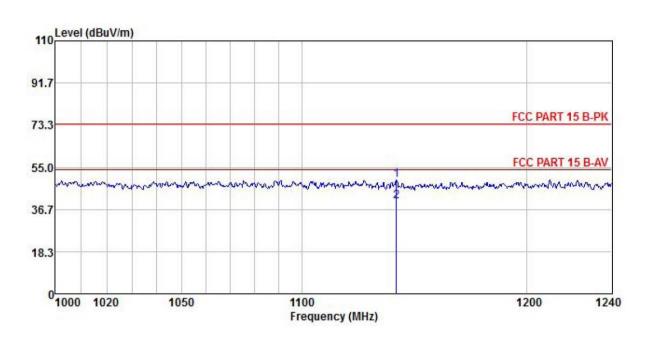
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(2MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						Remark
	MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	1051.624 1051.624								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

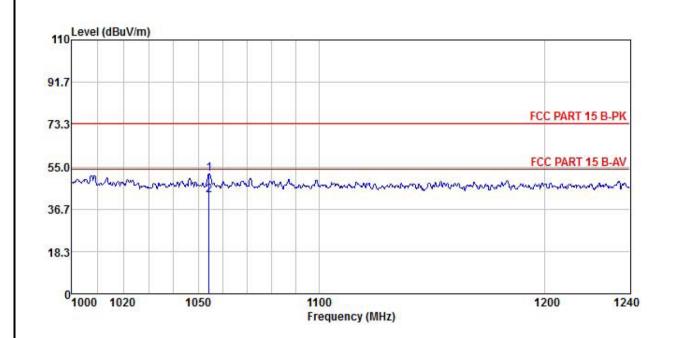
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(4MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


			Antenna Factor						
		dBu∜	dB/mdB	 dBuV/m	$\overline{dBuV/m}$	<u>d</u> B			
1 2	1054.343 1054.343				51.90 42.27				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

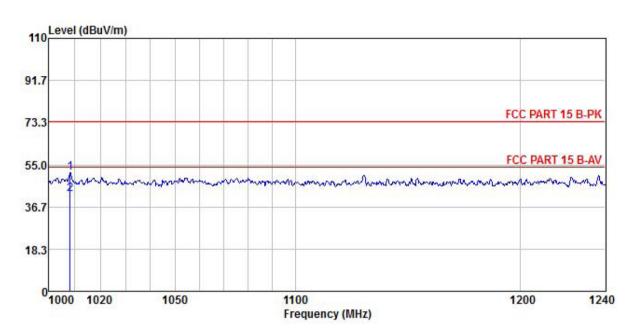
Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(4MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor						
	MHz	dBu∇	dB/m	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
	1140.952								
2	1140.952	10.06	24.27	5.91	0.00	40.24	54.00	-13.76	Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(8MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


	Freq		Antenna Factor		NUMBER OF STREET				
	MHz	dBu∇	<u>dB</u> /m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
1 2	1054.343 1054.343					51.87 42.50			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 32 of 55

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah(8MHz channel bandwidth)
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor					Over Limit	Remark
	MHz	—dBu∇	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	1008.208 1008.208				0.00 0.00				

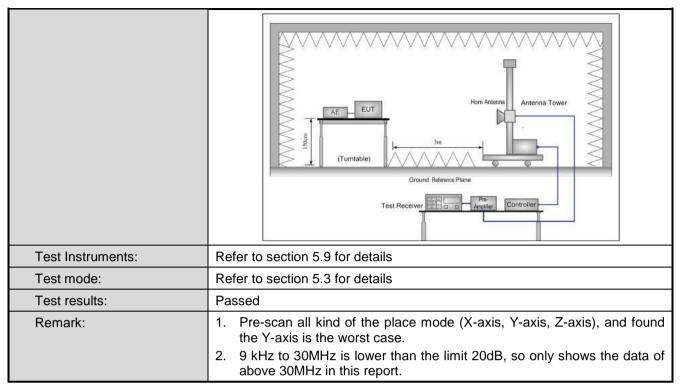
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

6.7.1 Conducted Emission Method

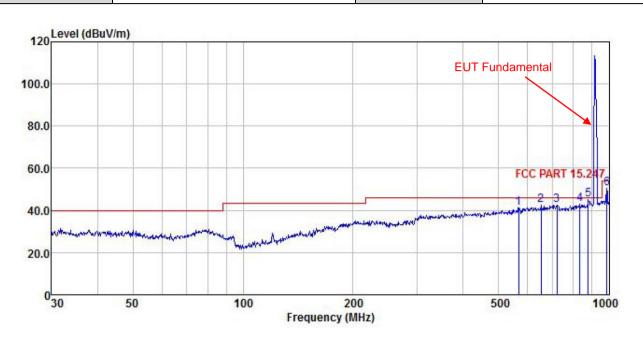
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS113R NS1127R NS105 NS105 NS006 NS006 NS006 NS007 NS0					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A – 802.11ah					


6.7.2 Radiated Emission Method

6.7.2 Radiated Emission							
Test Requirement:	FCC Part 15 C Se	ection 15.	209 an	nd 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency Dete		ctor RBW		VBW		Remark
	30MHz-1GHz Quasi-		peak	120KHz	300KHz		Quasi-peak Value
	Above 1GHz		ık	1MHz		ЛHz	Peak Value
		RM		1MHz		ЛHz	Average Value
Limit:	Frequency		Limi	t (dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH 216MHz-960M	1		43.5 46.0			uasi-peak Value uasi-peak Value
	960MHz-1GH	1		54.0			uasi-peak Value
				54.0			Average Value
	Above 1GHz	<u>'</u>		74.0			Peak Value
	 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 					e-receiving height antenna heters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the ction and dB lower than the beak values of	
Test setup:	Below 1GHz EUT Turn Table Ground I	e 0.8m	4m			s	

Page 35 of 55

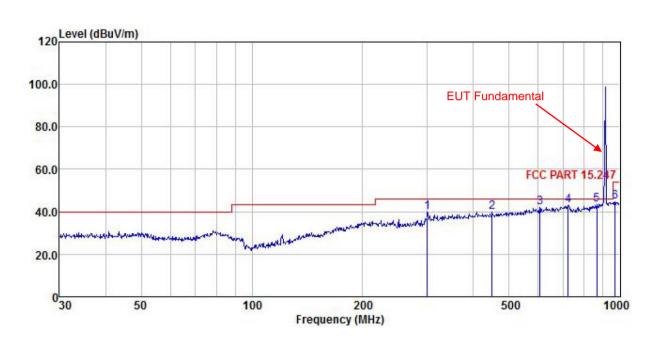
Project No.: JYTSZE2104004


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 36 of 55

Measurement Data (worst case):

Below 1GHz:

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066	
Test By:	Mike	Test mode: 802.11ah TX mode		
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	


	Freq		ntenna Factor				Limit Line	Over Limit	Remark
,	MHz	dBu∀		₫B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$		
1	566.622	18.99	19.70	2.51	0.00	41.20	46.00	-4.80	QP
2	651.942	19.80	20.12	2.70	0.00	42.62	46.00	-3.38	QP
2	721.726	19.06	20.55	2.90	0.00	42.51	46.00	-3.49	QP
4	833.317	18.69	21.23	3.18	0.00	43.10	46.00	-2.90	QP
4 5	878.322	19.60	22.08	3.30	0.00	44.98	46.00	-1.02	QP
6	986.072	23.66	23.02	3.62	0.00	50.30	54.00	-3.70	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Wirerless Signal Wall-through Ethernet Connector-ETHERNET AIR	Product Model:	AH9066
Test By:	Mike	Test mode:	802.11ah TX mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line	Over Limit	
	MHz	dBu∀		<u>d</u> B	dB	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	3
1	299.316	19.35	18.70	1.76	0.00	39.81	46.00	-6.19	QP
2	449.556	18.55	19.20	2.17	0.00	39.92	46.00	-6.08	QP
2	605.659	19.61	19.93	2.63	0.00	42.17	46.00	-3.83	QP
4	724.261	19.35	20.55	2.91	0.00	42.81	46.00	-3.19	QP
4 5 6	866.088	18.19	21.77	3.26	0.00	43.22	46.00	-2.78	QP
6	968.934	18.07	22.92	3.55	0.00	44.54	54.00	-9.46	QP

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Above 1GHz

	802.11ah-1M							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Level [dB µ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
1807.00	77.97	56.46	-21.51	74	17.54	Vertical		
1807.00	69.06	47.55	-21.51	54	6.45	Vertical		
2710.50	57.19	38.58	-18.61	74	35.42	Vertical		
2710.50	49.41	30.8	-18.61	54	23.20	Vertical		
3614.00	59.9	43.49	-16.41	74	30.51	Vertical		
3614.00	49.7	33.29	-16.41	54	20.71	Vertical		
1807.00	65.68	44.17	-21.51	74	29.83	Horizontal		
1807.00	58.54	37.03	-21.51	54	16.97	Horizontal		
2710.50	60.17	41.56	-18.61	74	32.44	Horizontal		
2710.50	51.22	32.61	-18.61	54	21.39	Horizontal		
3614.00	59.62	43.21	-16.41	74	30.79	Horizontal		
3614.00	50.56	34.15	-16.41	54	19.85	Horizontal		

	Test channel: Middle channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Level [dB µ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
1829.00	78.34	56.83	-21.51	74	17.17	Vertical			
1829.00	69.01	47.5	-21.51	54	6.50	Vertical			
2743.50	57.62	39.01	-18.61	74	34.99	Vertical			
2743.50	49.37	30.76	-18.61	54	23.24	Vertical			
3658.00	60.17	43.76	-16.41	74	30.24	Vertical			
3658.00	49.25	32.84	-16.41	54	21.16	Vertical			
1829.00	66.11	44.6	-21.51	74	29.40	Horizontal			
1829.00	58.21	36.7	-21.51	54	17.30	Horizontal			
2743.50	60.63	42.02	-18.61	74	31.98	Horizontal			
2743.50	51.5	32.89	-18.61	54	21.11	Horizontal			
3658.00	60.11	43.7	-16.41	74	30.30	Horizontal			
3658.00	50.93	34.52	-16.41	54	19.48	Horizontal			

	Test channel: Highest channel								
			Detector: Peak V	'alue					
Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
1853.00	78.25	56.74	-21.51	74	17.26	Vertical			
1853.00	68.68	47.17	-21.51	54	6.83	Vertical			
2779.50	57.27	38.66	-18.61	74	35.34	Vertical			
2779.50	48.99	30.38	-18.61	54	23.62	Vertical			
3706.00	59.8	43.39	-16.41	74	30.61	Vertical			
3706.00	49.56	33.15	-16.41	54	20.85	Vertical			
1853.00	65.63	44.12	-21.51	74	29.88	Horizontal			

JianYan Testing Group Shenzhen Co., Ltd. No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community,

Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

1853.00	58.35	36.84	-21.51	54	17.16	Horizontal
2779.50	60.81	42.2	-18.61	74	31.80	Horizontal
2779.50	51.83	33.22	-18.61	54	20.78	Horizontal
3706.00	60.2	43.79	-16.41	74	30.21	Horizontal
3706.00	50.45	34.04	-16.41	54	19.96	Horizontal

- Final Level = Receiver Read level + Factor.
 Factor = Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11ah-2M								
	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
1810.00	63.6	42.09	-21.51	74	31.91	Vertical			
1810.00	55.22	33.71	-21.51	54	20.29	Vertical			
2715.00	56.07	37.46	-18.61	74	36.54	Vertical			
2715.00	48.91	30.30	-18.61	54	23.70	Vertical			
3620.00	56.42	40.01	-16.41	74	33.99	Vertical			
3620.00	48.63	32.22	-16.41	54	21.78	Vertical			
1810.00	76.02	54.51	-21.51	74	19.49	Horizontal			
1810.00	66.26	44.75	-21.51	54	9.25	Horizontal			
2715.00	64.03	45.42	-18.61	74	28.58	Horizontal			
2715.00	51.48	32.87	-18.61	54	21.13	Horizontal			
3620.00	56.89	40.48	-16.41	74	33.52	Horizontal			
3620.00	48.91	32.50	-16.41	54	21.50	Horizontal			

	Test channel: Middle channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
1830.00	63.65	42.14	-21.51	74	31.86	Vertical			
1830.00	55.04	33.53	-21.51	54	20.47	Vertical			
2745.00	56.5	37.89	-18.61	74	36.11	Vertical			
2745.00	49.17	30.56	-18.61	54	23.44	Vertical			
3660.00	56.9	40.49	-16.41	74	33.51	Vertical			
3660.00	48.71	32.30	-16.41	54	21.7	Vertical			
1830.00	75.62	54.11	-21.51	74	19.89	Horizontal			
1830.00	66.59	45.08	-21.51	54	8.92	Horizontal			
2745.00	63.83	45.22	-18.61	74	28.78	Horizontal			
2745.00	51.4	32.79	-18.61	54	21.21	Horizontal			
3660.00	56.65	40.24	-16.41	74	33.76	Horizontal			
3660.00	48.84	32.43	-16.41	54	21.57	Horizontal			

	Test channel: Highest channel							
			Detector: Peak V	alue alue				
Frequency (MHz)	Read Level (dBuV)	Level [dB µ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
1850.00	63.29	41.78	-21.51	74	32.22	Vertical		
1850.00	54.6	33.09	-21.51	54	20.91	Vertical		
2775.00	56.49	37.88	-18.61	74	36.12	Vertical		
2775.00	49.52	30.91	-18.61	54	23.09	Vertical		
3700.00	56.41	40.00	-16.41	74	34.00	Vertical		
3700.00	49.2	32.79	-16.41	54	21.21	Vertical		
1850.00	75.56	54.05	-21.51	74	19.95	Horizontal		

1850.00	67.04	45.53	-21.51	54	8.47	Horizontal
2775.00	63.94	45.33	-18.61	74	28.67	Horizontal
2775.00	51.77	33.16	-18.61	54	20.84	Horizontal
3700.00	56.43	40.02	-16.41	74	33.98	Horizontal
3700.00	48.57	32.16	-16.41	54	21.84	Horizontal

- Final Level = Receiver Read level + Factor.
 Factor = Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	802.11ah-4M							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Level [dB µ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
1812.00	79.2	57.69	-21.51	74	16.31	Vertical		
1812.00	69.38	47.87	-21.51	54	6.13	Vertical		
2718.00	59.36	40.75	-18.61	74	33.25	Vertical		
2718.00	53.95	35.34	-18.61	54	18.66	Vertical		
3624.00	56.96	40.55	-16.41	74	33.45	Vertical		
3624.00	49.36	32.95	-16.41	54	21.05	Vertical		
1812.00	61.18	39.67	-21.51	74	34.33	Horizontal		
1812.00	53.39	31.88	-21.51	54	22.12	Horizontal		
2718.00	56.13	37.52	-18.61	74	36.48	Horizontal		
2718.00	49.12	30.51	-18.61	54	23.49	Horizontal		
3624.00	56.46	40.05	-16.41	74	33.95	Horizontal		
3624.00	48.43	32.02	-16.41	54	21.98	Horizontal		

	Test channel: Middle channel								
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
1828.00	79.09	57.58	-21.51	74	16.42	Vertical			
1828.00	69	47.49	-21.51	54	6.51	Vertical			
2742.00	59.83	41.22	-18.61	74	32.78	Vertical			
2742.00	53.85	35.24	-18.61	54	18.76	Vertical			
3656.00	56.75	40.34	-16.41	74	33.66	Vertical			
3656.00	48.99	32.58	-16.41	54	21.42	Vertical			
1828.00	60.74	39.23	-21.51	74	34.77	Horizontal			
1828.00	53.88	32.37	-21.51	54	21.63	Horizontal			
2742.00	56.5	37.89	-18.61	74	36.11	Horizontal			
2742.00	48.9	30.29	-18.61	54	23.71	Horizontal			
3656.00	56.86	40.45	-16.41	74	33.55	Horizontal			
3656.00	48.73	32.32	-16.41	54	21.68	Horizontal			

Test channel: Highest channel

Detector: Peak Value

Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization
1852.00	79.3	57.79	-21.51	74	16.21	Vertical
1852.00	69.42	47.91	-21.51	54	6.09	Vertical
2778.00	60	41.39	-18.61	74	32.61	Vertical
2778.00	54.05	35.44	-18.61	54	18.56	Vertical
3704.00	56.52	40.11	-16.41	74	33.89	Vertical
3704.00	48.57	32.16	-16.41	54	21.84	Vertical
1852.00	61.18	39.67	-21.51	74	34.33	Horizontal
1852.00	54.21	32.7	-21.51	54	21.30	Horizontal
2778.00	56.37	37.76	-18.61	74	36.24	Horizontal
2778.00	48.62	30.01	-18.61	54	23.99	Horizontal
3704.00	56.54	40.13	-16.41	74	33.87	Horizontal
3704.00	48.37	31.96	-16.41	54	22.04	Horizontal

Page 43 of 55

^{1.} Final Level = Receiver Read level + Factor. Factor = Antenna Factor + Cable Loss - Preamplifier Factor.

The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	802.11ah-8M								
	Test channel: Lowest channel								
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
1816.00	58.54	37.03	-21.51	74	36.97	Vertical			
1816.00	53.64	32.13	-21.51	54	21.87	Vertical			
2724.00	50.24	31.63	-18.61	74	42.37	Vertical			
2724.00	56.96	38.35	-18.61	54	15.65	Vertical			
3632.00	59.67	43.26	-16.41	74	30.74	Vertical			
3632.00	49.59	33.18	-16.41	54	20.82	Vertical			
1816.00	65.79	44.28	-21.51	74	29.72	Horizontal			
1816.00	55.05	33.54	-21.51	54	20.46	Horizontal			
2724.00	56.83	38.22	-18.61	74	35.78	Horizontal			
2724.00	48.53	29.92	-18.61	54	24.08	Horizontal			
3632.00	56.11	39.7	-16.41	74	34.30	Horizontal			
3632.00	48.02	31.61	-16.41	54	22.39	Horizontal			

Test channel: Middle channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Level [dB μ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
1832.00	58.57	37.06	-21.51	74	36.94	Vertical	
1832.00	53.42	31.91	-21.51	54	22.09	Vertical	
2748.00	49.81	31.2	-18.61	74	42.80	Vertical	
2748.00	57	38.39	-18.61	54	15.61	Vertical	
3664.00	59.54	43.13	-16.41	74	30.87	Vertical	
3664.00	49.36	32.95	-16.41	54	21.05	Vertical	
1832.00	66.13	44.62	-21.51	74	29.38	Horizontal	
1832.00	54.66	33.15	-21.51	54	20.85	Horizontal	
2748.00	57.15	38.54	-18.61	74	35.46	Horizontal	
2748.00	48.91	30.3	-18.61	54	23.70	Horizontal	
3664.00	56.06	39.65	-16.41	74	34.35	Horizontal	
3664.00	47.72	31.31	-16.41	54	22.69	Horizontal	

Test channel: Highest channel							
Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Level [dB µ V/m]	Factor (dB)	Limit Line (dBuV/m)	Margin (dB)	Polarization	
1848.00	58.15	36.64	-21.51	74	37.36	Vertical	
1848.00	53.16	31.65	-21.51	54	22.35	Vertical	
2772.00	50.06	31.45	-18.61	74	42.55	Vertical	
2772.00	57.1	38.49	-18.61	54	15.51	Vertical	
3696.00	59.6	43.19	-16.41	74	30.81	Vertical	
3696.00	49.14	32.73	-16.41	54	21.27	Vertical	
1848.00	66.17	44.66	-21.51	74	29.34	Horizontal	

JianYan Testing Group Shenzhen Co., Ltd.
No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

1848.00	54.96	33.45	-21.51	54	20.55	Horizontal
2772.00	56.77	38.16	-18.61	74	35.84	Horizontal
2772.00	48.82	30.21	-18.61	54	23.79	Horizontal
3696.00	55.69	39.28	-16.41	74	34.72	Horizontal
3696.00	47.69	31.28	-16.41	54	22.72	Horizontal

- Final Level = Receiver Read level + Factor.
 Factor = Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366