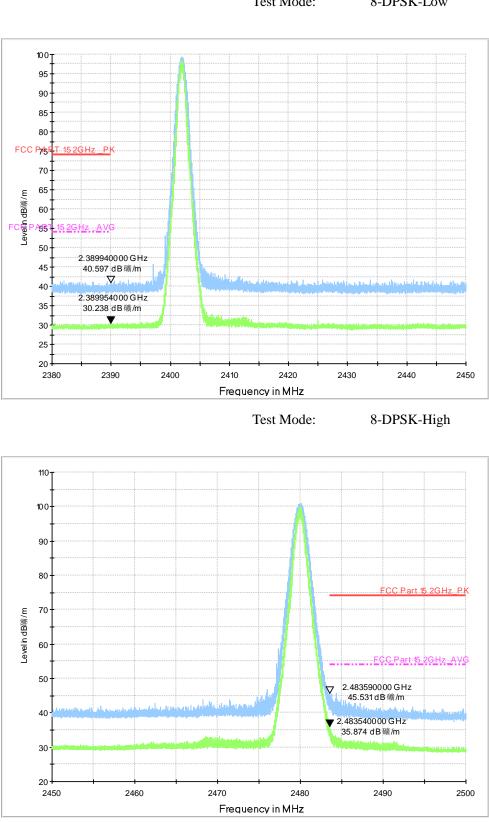
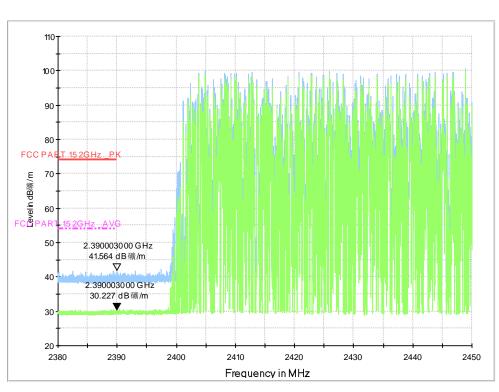


Hopping-on Test Mode:


π /4-DQPSK-Low

Test Mode:

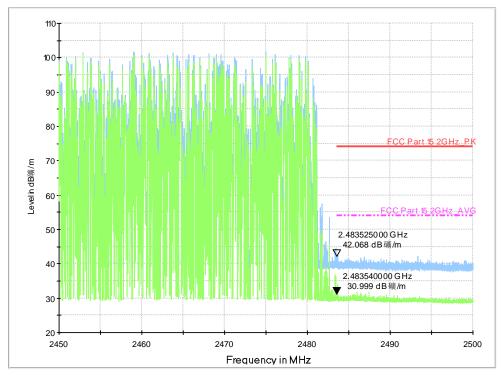
 π /4-DQPSK-High



hopping-on

Hopping-off Test Mode:

8-DPSK-Low



Hopping-on Test Mode:

8-DPSK -Low

Test Mode:

8-DPSK –Hjigh

hopping-on

Conducted Method

Band Edge NVNT 1-DH1 2402MHz Ant1 Hopping Emission

Spect	rum									
	vel 2	26.62 dB			• RBW 100 kH					
Att SGL Co	ount 2	40 (2000/20		.13.8 µs (● VBW 300 kH	IZ Mode	Auto Fi	- T		
⊖1Pk M	ax									
20 dBm							M1[1]		2 40	1.92 dBm 185000 GHz
10 dBm	_						M2[1]			-43.58 dBm 000000 GHz
0 dBm—										1 Tink
-10 dBn	n-+-									<u> </u>
-20 dBn	n ^C	01 -18.1	.52 dBm							
-30 dBn	n-+									4
-40 dBn		and an effect				the second second		M4	M3	ANNA C
-50 dBn	n	anan ()	A CONTRACTOR OF A CONT	and a m	n . Manha Marth Maran	a contraction	manner	e et a the stand and a	and the second	*
-60 dBn	n		_							
-70 dBn	n_		_				_			
Start 2	2.306	GHz		-	100:	l pts	-	I	Stop	2.406 GHz
Marker										
Туре	Ref		X-valu		Y-value		ction	Fu	nction Resul	t
M1		1		185 GHz	1.92 df					
M2 M3		1		2.4 GHz .39 GHz	-43.58 dB -45.27 dB					
M3 M4		1		769 GHz	-45.27 ut -43.24 dt					
)(Ready		14/0	16.03.2021

Date: 16.MAR.2021 12:55:23

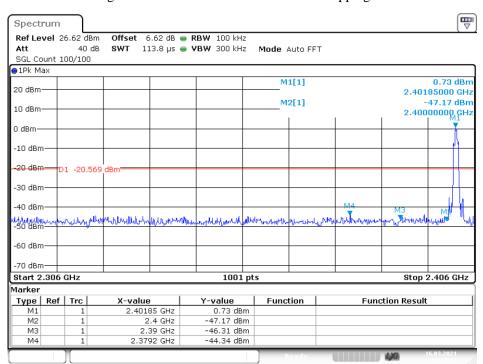
Spectrum							♥
Ref Level 2 Att SGL Count 1	40	dB SWT 113.8 μs	 RBW 100 kHz VBW 300 kHz 	Mode Auto FF	T		
●1Pk Max							
				M1[1]			i dBm
20 dBm						2.4018500	
10 dBm				M2[1]		-48.49 2.4000000	
0 dBm							1
-10 dBm						+	
-20 dBm	01 -17.9	981 dBm					╉
-30 dBm							╫
-40 dBm			4	44			\square
-50 dBm	white	Mullhamphrankernadu	normal hand probably and the	Theur changes where get	n Marthanes	www.www.www.	100
-60 dBm							
-70 dBm							
Start 2.306	GHz		1001 pt	s		Stop 2.406	GHz
Marker							
Type Ref		X-value	Y-value	Function	Fun	ction Result	
M1	1	2.40185 GHz	2.05 dBm				
M2	1	2.4 GHz	-48.49 dBm				
M3 M4	1	2.39 GHz 2.3589 GHz	-46.59 dBm -44.36 dBm				
	1			Ready		16.03.20	21

Date: 16.MAR.2021 11:28:33

Spectrum	ı							
Ref Level Att SGL Count	40 dB	s wt 113.8 μs	 RBW 100 kHz VBW 300 kHz 	Mode Auto	FFT			
●1Pk Max		-						
20 dBm				M1[1] M2[1]			-	1.68 dBm 85000 GHz 44.58 dBm 50000 GHz
Did&m	D1 -18.38	2 dBm						
-30 aBm	N							
-40 dBm -50 dBm -60 dBm		M3 when the stand of the stand	man and a second second second	le wilson Mary with	n by all r	under an	erily thereberghyd	mir ^{an} anadafhan
-70 dBm	5 CH2		1001 pt				Ston	2.576 GHz
Marker	5 0112		1001 pt	3			0.000	
	f Trc	X-value	Y-value	Function	1	Fund	tion Result	1
M1 M2 M3	1 1 1	2.47685 GHz 2.4835 GHz 2.5 GHz	1.68 dBm -44.58 dBm -46.08 dBm					
M4		2.4951 GHz	-43.29 dBm	Read			100	6.03.2021

Band Edge NVNT 1-DH1 2480MHz Ant1 Hopping Emission

Date: 16.MAR.2021 12:59:24


Spectrum								
Ref Level 2 Att	6.60 dBr 40 d		 RBW 100 kHz VBW 300 kHz 	Mode Auto	CCT			
SGL Count 1		5 3WI 113.0 µs	- YDYY 300 KH2	MOUE AUTO	FFI			
∋1Pk Max								
20 dBm				M1[1]				0.62 dBn
20 abm				MOLT				85000 GH
10 dBm				M2[1]				48.37 dBr 50000 GH
M1				1			2.400	
0 d 6 m								
-10 dBm								
-20 dBm-D	1 -19.39	0 dBm						
-30 aBm								
50 abiii								
-40 dBm	M	012						
50 dBm	للعل لماجل المالي	ware all broke why me	and the second states of the second states and the second states a	he have marked a personal de	anterry	Whenterman	when	-whong whether
-JU UBIII								
-60 dBm								
70.40								
-70 dBm Start 2.476	сu ₂		1001 g	at c			Stop	2.576 GHz
arker	GHZ		1001				atop /	2.070 GHZ
Type Ref	Trc	X-value	Y-value	Function	1	Fund	tion Result	
M1	1	2.47985 GHz	0.62 dBm					
M2	1	2.4835 GHz	-48.37 dBm					
M3 M4	1	2.5 GHz	-45.79 dBm					
1714	1	2.4945 GHz	-43.44 dBm					

Date: 16.MAR.2021 12:51:44

Spect	rum												
Att		26.62 dBm 40 dB 2000/2000				/ 100 kH / 300 kH		Mode 4	Auto FF	т			
😑 1Pk M	ax												
20 dBm									1[1] 2[1]				0.72 dBm 185000 GHz -44.65 dBm
10 dBm	_								-[+]				000000, GHz
0 dBm-												2.100	
-10 dBn	n-+-				_		-					+	
-20 dBn)1 -19.937	dBm										
-30 dBn	n-+												
-40 dBn							-				M4	1913	M2
		unich own	warmound	am whom	mouth	Manadory	ann	Umensie	newhork	e with	writerbefolde	Mandy The Maker	alastannola
-50 dBn	∩—+												
-60 dBn	n				_								
-70 dBn	n-+-												
Start 2	.306	GHz				1001	l pts	5				Stop	2.406 GHz
Marker													
Type	Ref	Trc	X-value	.	Y-	value	1	Funct	tion		Fun	ction Result	t [
M1		1	2.401	85 GHz		0.72 dB	3m						
M2		1	2	.4 GHz	-	44.65 dB	3m						
MЗ		1	2.	39 GHz	-	45.53 dE	3m						
M4		1	2.38	38 GHz	-	43.44 dE	Sm						
		1							eady			100	16.03.2021

Band Edge NVNT 2-DH1 2402MHz Ant1 Hopping Emission

Date: 16.MAR.2021 13:24:05

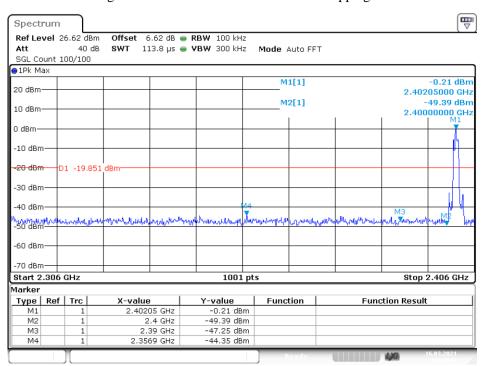
Band Edge NVNT 2-DH1 2402MHz Ant1 No-Hopping Emission

Date: 16.MAR.2021 13:17:31

Spect	rum													
Att		26.60 dBm 40 dB 2000/2000	SWT 13			100 kH 300 kH		Mode /	Auto FF	Ŧ				
⊖1Pk M	lax													
20 dBm 10 dBm 41									1[1] 2[1]		I	1	-	0.46 dBm 85000 GHz 45.76 dBm 50000 GHz
0 dBm- 40 dBn -20 dBn		01 -19.379	dBm											
-30 сВл -40 сВл	n		Nits								ylandedrogelik		-thelestone alles	-li ende og
-50 dBn		notringer			- Propositi				Hard Alberton	V. w	Concernent of the second s	- and - and -		
-60 dBn														
-70 dBn		011-				1001							01	
Start 2 Marker		GHZ				1001	. pts						stop :	2.576 GHz
Type	Ref	Trc	X-value		v.	value	1	Func	tion	1	Eu	nction	Result	
M1	NCI	1		9 85 GHz		0.46 dB	m	i unc			Fu	necton	Result	
M2		1		35 GHz	-	45.76 dB								
MЗ		1		.5 GHz		43.86 dB								
M4		1	2.49	95 GHz	-	42.84 dB	m							
									e ad y			1,00		6.03.2021

Band Edge NVNT 2-DH1 2480MHz Ant1 Hopping Emission

Date: 16.MAR.2021 13:28:33


Spectrun										
Ref Level							-			
Att SGL Count	40 dE	3 SWT 113.8 µ	is 👄 VBW	300 KHZ	Mode 4	Auto FF	Т			
1Pk Max	100/100									
					M	1[1]				-1.27 dBr
20 dBm									2.480	05000 GH
10 dBm					M	2[1]				47.05 dBr
									2.483	50000 GH
0 d B m										
1										
-10 dBm				-+			\rightarrow			
-20 cBm-										
	D1 -21.14	3 dBm								
-30 dBm										
-4 dBm		M4 M3			IL		1.0		Utalia da	adad in
ቀ/ ጊር መመ -50 dBm —	managenter	malute the marched and	Maler AND A Providence of the second	Machiller	mandalwymuu	Nahulada	4,04/10/	WARMAN	www.p. nov yup	an the second by
-60 dBm										
-70 dBm										
Start 2.47	6 GHz			1001	nts				Ston	2.576 GHz
1arker	o une			1001					otop	
Type Re	f Trc	X-value	Y-	value	Funct	tion		Fund	tion Result	:
M1	1	2.48005 GH	Iz ·	-1.27 dBm	_					
M2	1	2.4835 GH		47.05 dBm						
M3	1	2.5 GH		45.83 dBm						
M4	1	2.497 GH	IZ -4	44.52 dBm	n					

Date: 16.MAR.2021 13:21:00

Spect	rum													
Att SGL Co	ount 2	6.62 dBm 40 dB 000/2000	Offset 6 SWT 11			/ 100 kH / 300 kH		Mode 4	Auto FF	T				
😑 1Pk M	ax													
20 dBm									1[1] 2[1]				0.00 585000 -46.30	GHz
10 dBm	-				-								000000	
0 dBm-														MM
-10 dBn	n													1464
-20 dBn		1 -19.337	dBm											
-30 dBn	n													
-40 dBn		abordayon	M4	وريقور والبعالة	maria	waterparen	paper	rumenter	un	- Marca	Marnellantharry	M3	M	
-50 dBn				- 1 V	-		Ĭ			v		-	-	
-60 dBn	n													
-70 dBn	n													
Start 2	.306	GHz				1001	l pts	5				Stop	2.406	GHz
Marker														
Type	Ref	Trc	X-value	.	Y-	value	1	Funct	tion	1	Fun	ction Resul	t	1
M1		1	2.405	85 GHz		-0.00 de	3m							
M2		1	2	.4 GHz	-	46.30 dB	3m							
MЗ		1	2.3	39 GHz	-	45.12 dB	3m							
M4		1	2.3	33 GHz	-	43.05 dE	Sm							
		1							endv		11111111	100	16.03.202	1

Band Edge NVNT 3-DH1 2402MHz Ant1 Hopping Emission

Date: 16.MAR.2021 13:37:37

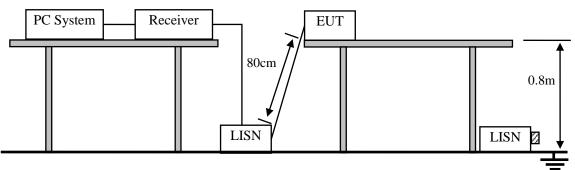
Band Edge NVNT 3-DH1 2402MHz Ant1 No-Hopping Emission

Date: 16.MAR.2021 13:31:40

Spect	rum											
Att		6.60 dBm 40 dB 2000/2000	SWT 113		RBW 100 kH VBW 300 kH		Mode /	Auto FF	T			
😑 1Pk M	ax											
20 dBm 10 dBm								1[1] 2[1]	1			-0.16 dBm +7605000 GHz -45.10 dBm +8350000 GHz
0,dBm— +10 dBm 120 dBm		01 -20.325	dBm									
-30 cBm	1 2	danhowit, jerr	M4	an March	montesentinesellecture	mm	werthank	water	ىلىس	allreel	many down	Marparthan
-50 dBm									~			
-70 dBm Start 2	n	CU 2			1001	ntc						op 2.576 GHz
Marker	.470	GHZ			1001	. prs					30	JP 2.370 GH2
Type	Ref	Trc	X-value	1	Y-value	1	Func	tion		Fui	nction Res	sult l
M1 M2 M3 M4		1 1 1 1	2.4760 2.483 2.		-0.16 dB -45.10 dB -45.25 dB -42.35 dB	im Im						
			2.797		42,33 UD		R	eady	1		100	16.03.2021

Band Edge NVNT 3-DH1 2480MHz Ant1 Hopping Emission

Date: 16.MAR.2021 13:41:30



Spectru										
	1 26.60 dB				-					
Att	40 d	B SWT 113.8	µs 👄 VB	W 300 kH	z Mode	Auto FF	т			
1Pk Max	t 100/100									
трк мах	1					1[1]				-0.98 dBr
20 dBm—					IM	1(1)			2 480	-0.98 UBI 15000 GH
					м	2[1]				47.57 dBr
LO dBm—										50000 GH
M1								1		
) dem —										
10 Bm-										
20 dBm-	D1 -21.4	an dam — — — — — — — — — — — — — — — — — — —								
30 dBm—										
49 dgm-+										
		worker high where	الأر استعراقه	accel in	John and a star		1		. And	data and
50 dBm	- Contraction of the second	manan all manan	h Burleway	የመንጫ <mark>አምሳት</mark> ዓ	hu shatters alde	No.No. Ad	for non north orth	wrant	Mrd	a selles en al de a
60 dBm—										
70 dBm—										
Start 2.47	76 GHz			1001	nts				Ston	 2.576 GHz
larker	U UIIL			1001					otop	
Type R	ef Trc	X-value	1	Y-value	Func	tion		Funct	ion Result	
M1	1	2.48015 G	Hz	-0.98 dB	m					
M2	1	2.4835 G		-47.57 dB						
M3	1	2.5 G		-45.85 dB						
M4	1	2.4852 G	Hz	-45.27 dB	m					

Date: 16.MAR.2021 13:35:20

10. Power Line Conducted Emissions

10.1.Block Diagram of Test Setup

🛛 :50Ω Terminator

10.2.Limit

	Maximum R	F Line Voltage
Frequency	Quasi-Peak Level	Average Level
	$dB(\mu V)$	$dB(\mu V)$
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

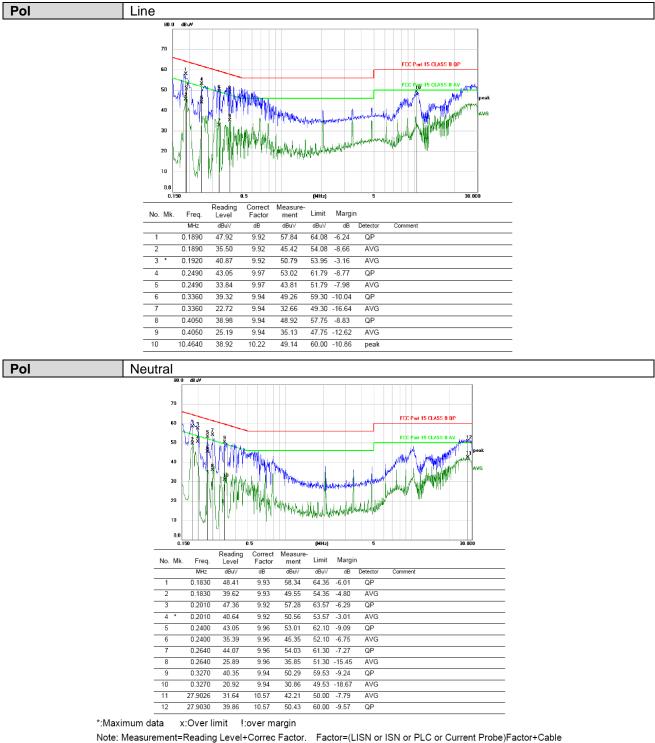
Notes: 1. * Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

10.3.Test Procedure

(1) The EUT was placed on a non-metallic table, 80cm above the ground plane.

(2) Setup the EUT and simulator as shown in 10.1


(3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N2), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10 :2013on conducted Emission test.

(4) The bandwidth of test receiver is set at 10KHz.

(5) The frequency range from 150 KHz to 30MHz is checked.

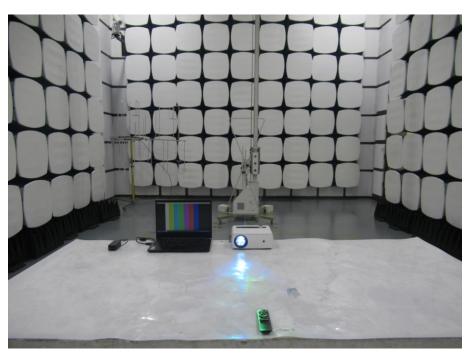
10.4.Test Result

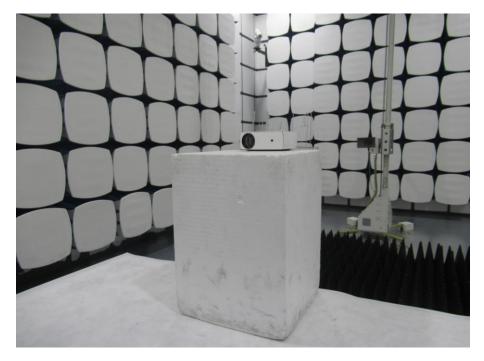
PASS. (See below detailed test data) Note: If peak Result comply with AV limit, QP and AV Result is deemed to comply with AV limit

Remark: All modes have been tested, and only worst data of GFSK was listed in this report.

11.Antenna Requirements

11.1.Limit


For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


11.2.Result

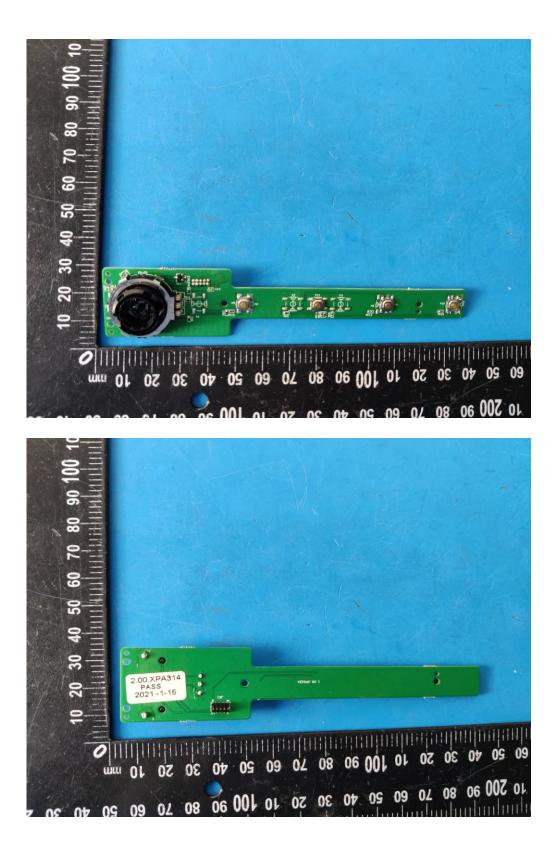
The EUT antenna is Internal antenna. It complies with the standard requirement.

12.Test Setup Photo

12.1.Photos of Radiated emission

12.2.Photos of Power Line Conducted Emission Test

13.Photos Of EUT



07 05

06 007

08

08 06 00C 0L

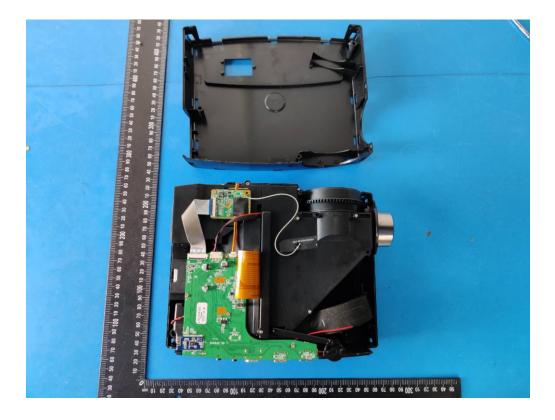
09 09

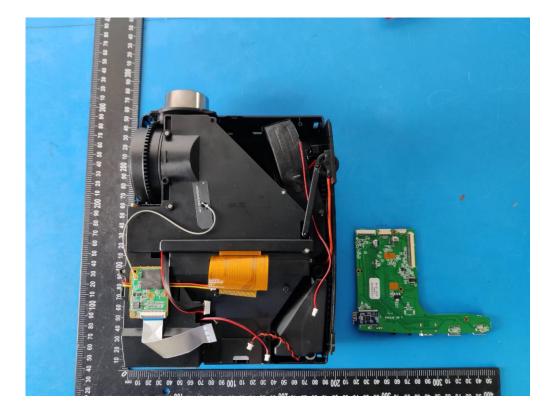
02 00 00 20 50 10 300 00 80 10

oz 05 01

nL

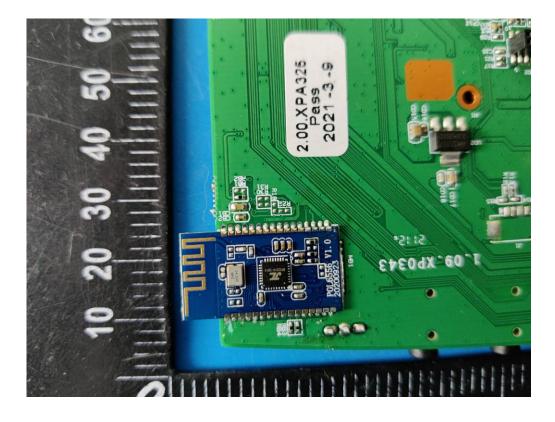
01 09

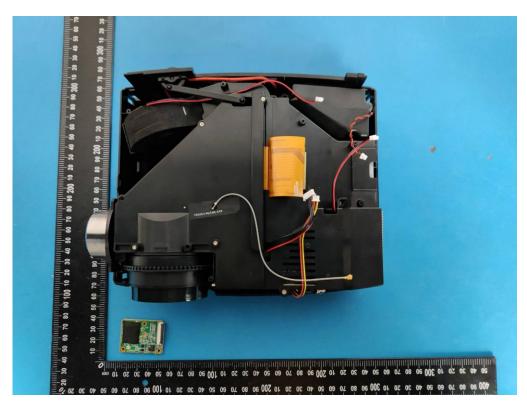

0

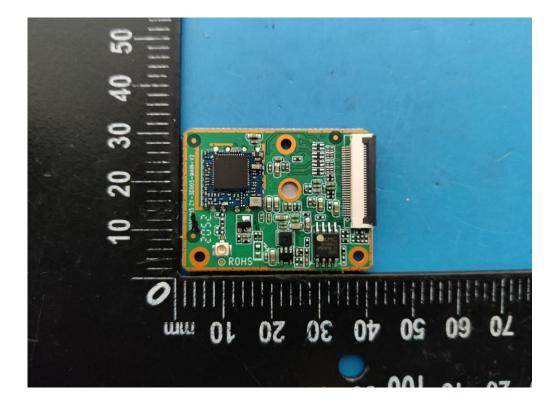

10 500 30 80

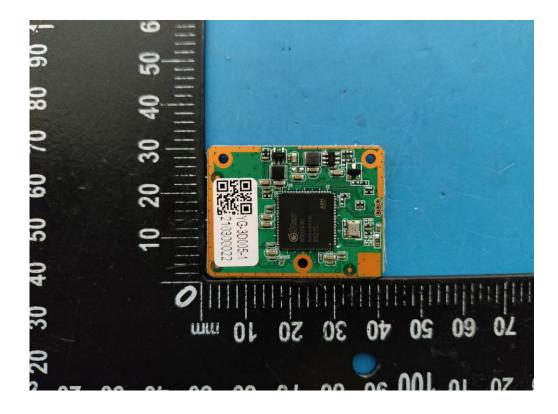
06 00

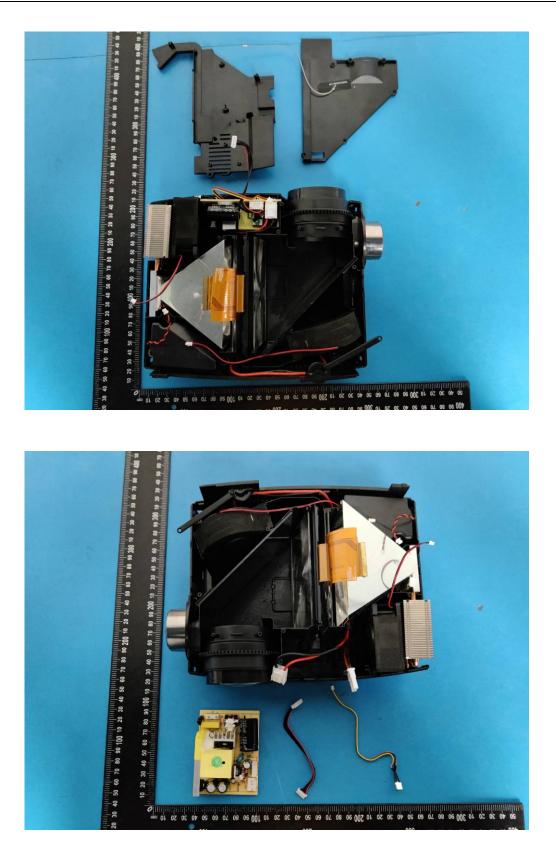
09 09

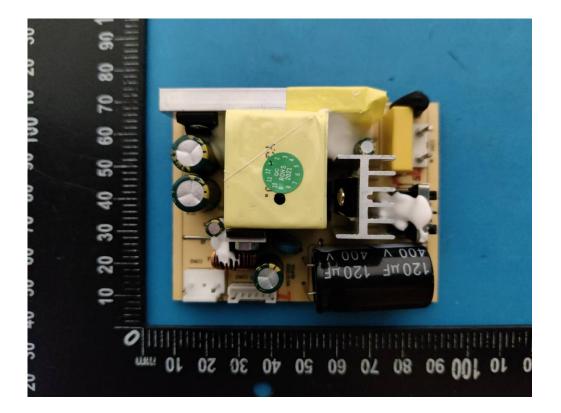


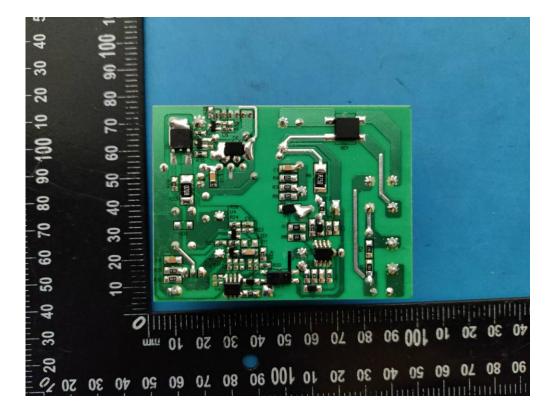


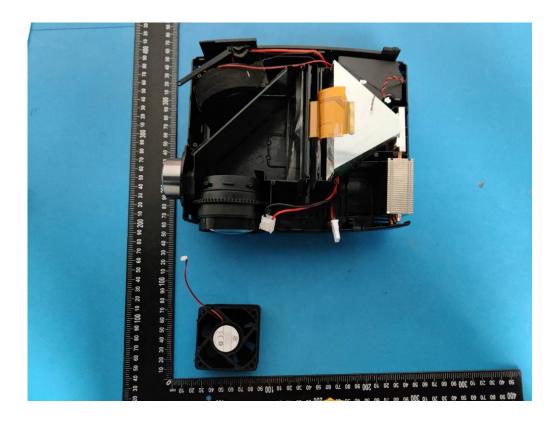












-----THE END OF REPORT------