

FCC TEST REPORT

FCC ID: 2AZFE-AAO-YG

On Behalf of

Shenzhen Shadow Crown Technology Co., Ltd. LED Projector Model No.: YG691 Movin, W1K, YG691, YG561, YG531, YG491, YG471, PJ30

Prepared for	: Shenzhen Shadow Crown Technology Co., Ltd.
Address	A9 East 5th floor, Industrial Building, Longwang Miao, Fuyong street, Baoan district, Shenzhen

Prepared By	: Shenzhen Alpha Product Testing Co., Ltd.
Address	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

Report Number	:	A2307263-C01-R01
Date of Receipt	:	July 27, 2023
Date of Test	:	July 27, 2023- August 16, 2023
Date of Report	:	August 16, 2023
Version Number	:	VO

ALPHA's reports is using a digital certificate that is trusted on Adobe's official server. If there is no digital certificate or the digital certificate shows damaged in your report. Please do not accept the report. E-mail: service@a-lab.cn Tel: 4008-3008-95 Website: http://www.a-lab.cn

TABLE OF CONTENTS

	Des	cription	Page
TAE	BLE OF	F CONTENTS	2
1.	Sumr	mary of Standards And Results	5
	1.1.	Description of Standards and Results	5
2.	Gene	ral Information	6
	2.1.	Description of Device (EUT)	6
	2.2.	Accessories of Device (EUT)	7
	2.3.	Tested Supporting System Details	7
	2.4.	Block Diagram of connection between EUT and simulators	7
	2.5.	Test Mode Description	7
	2.6.	Test Conditions	
	2.7.	Test Facility	8
	2.8.	Measurement Uncertainty	8
	2.9.	Test Equipment List	9
3.	Spuri	ious Emission	
	3.1.	Test Limits	
	3.2.	Test Procedure	
	3.3.	Test Setup	
	3.4.	Test Results	
4.		er Line Conducted Emission	
	4.1.	Test Limits	
	4.2.	Test Procedure	
	4.3.	Test Setup	
_	4.4.	Test Results	
5.		lucted Maximum peak Output Power	25
	5.1.	Test limits	
	5.2.	Test Procedure	
	5.3.	Test Setup	
	5.4.	Test Results	-
6.		Power Spectral Density	
	6.1.	Test limits	
	6.2.	Test Procedure	
	6.3.	Test Setup Test Results	
7	6.4.	lest Results	
7.		Test limits	
	7.1. 7.2.	Test Procedure	
	7.2.	Test Setup	
	7.3. 7.4.	Test Results	
8.		Edge Check	
0.	8.1.	Test limits	
	8.2.	Test Procedure	
	8.3.	Test Setup	
	8.4.	Test Results	
9.		nna Requirement	
5.	9.1.	Standard Requirement	40 48
	9.1. 9.2.	Antenna Connected Construction	40 /18
	9.3.	Results	
10		setup photo	
	10 1	Photo of Radiated Emission test	49
	10.2.		+0 5050
	10.2.		-50

TEST REPORT DECLARATION

Applicant	:	Shenzhen Shadow Crown Technology Co., Ltd.			
Address	:	A9 East 5th floor, Industrial Building, Longwang Miao, Fuyong street, Baoan district, Shenzhen			
Manufacturer	:	Sher	nzhen Shadow Crowr	n Technology Co., Ltd.	
Address	:		A9 East 5th floor, Industrial Building, Longwang Miao, Fuyong street, Baoan district, Shenzhen		
EUT Description	:	LED	Projector		
		(A)	Model No.	YG691 Movin, W1K, YG691, YG561, YG531, YG491, YG471, PJ30	
		(B)	Trademark	/	

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Yannis Wen Project Engineer	Yanniz wen
Approved by (name + signature):	Reak Yang Project Manager	Rr. 45
Date of issue	August 16, 2023	

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 16, 2023	Initial released Issue	Yannis Wen

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Item	Test Requirement	Standards Paragraph	Result
Conducted Emission	FCC PART 15	15.207	Р
6dB Bandwidth	FCC PART 15	15.247 (a)(2)	Р
Conducted Maximum Peak Output Power	FCC PART 15	15.247 (b)(3)	Р
Radiated Spurious Emission	FCC PART 15	15.247 (c)	Р
Conducted Spurious & Band Edge Emission	FCC PART 15	15.247 (d)	Р
Power Spectral Density	FCC PART 15	15.247 (e)	Р
Radiated Band Edge Emission	FCC PART 15	15.205	Р
Antenna Requirement	FCC PART 15	15.203	Р

Note: 1. P is an abbreviation for Pass.

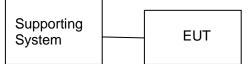
2. F is an abbreviation for Fail.

3. N/A is an abbreviation for Not Applicable.

4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)			
Description	: LED Projector		
Model Number Diff	 YG691 Movin, W1K, YG691, YG561, YG531, YG491, YG471, PJ30 There is no difference except the name of the model. All tests are made with the YG691 Movin model. 		
Power supply	: AC 120V/60Hz		
Radio Technology	: Bluetooth BLE		
Operation frequency	: 2402-2480MHz		
Channel No.	: 40 Channels		
Channel spacing	: 2MHz		
Rate	: 1Mbps, 2Mbps		
Modulation type	: GFSK		
Antenna Type	Internal antenna 3, max gain 4.73dBi (Antenna information is provided by applicant.)		
Software version Hardware version	: V1.0 . V1.0		
Connector cable loss	: N/A		
Intend use environment	: Residential, commercial and light industrial environment		


2.2. Accessories of Device (EUT)

Accessories	:	/
Manufacturer	:	/
Model	:	/
Ratings	:	/

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDoC
1	Notebook PC	Lenovo	ThinkPad E14	N/A	N/A

2.4. Block Diagram of connection between EUT and simulators

2.5. Test Mode Description

Tested mode, channel, and data rate	information	
Mode	Channel	Frequency (MHz)
	Low :CH1	2402
GFSK (1M/2Mbps)	Middle: CH20	2440
	High: CH40	2480

2.6. Test Conditions

Items	Required	Actual
Temperature range:	15-35 ℃	24 ℃
Humidity range:	25-75%	56%
Pressure range:	86-106kPa	980kPa

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12315A

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	2.74dB
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)
(below 30MHz)	2.57dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(30MHz to 1GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.13dB(Polarize: H)
(1GHz to 25GHz)	4.16dB(Polarize: V)
Uncertainty for radio frequency	5.4×10-8
Uncertainty for conducted RF Power	0.37dB
Uncertainty for temperature	0.2 °C
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2.9. Test Equipment List

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000 -40-880	/	100631	2023.04.18	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

	Software Information										
Test Item	Software Name	Manufacturer	Version								
RE	EZ-EMC	EZ	Alpha-3A1								
CE	EZ-EMC	EZ	Alpha-3A1								
RF-CE	MTS 8310	MW	V2.0.0.0								

3. SPURIOUS EMISSION

3.1. Test Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

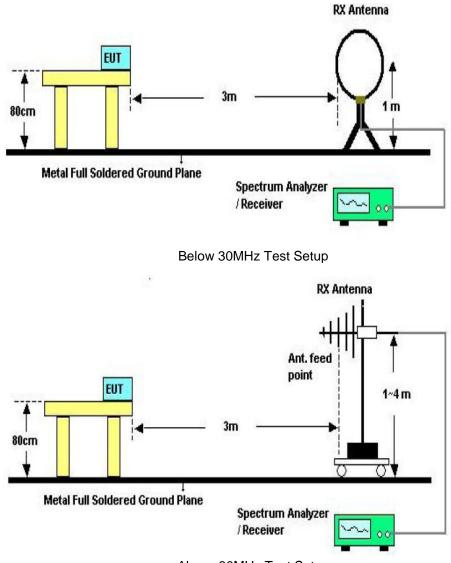
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

NOTE:

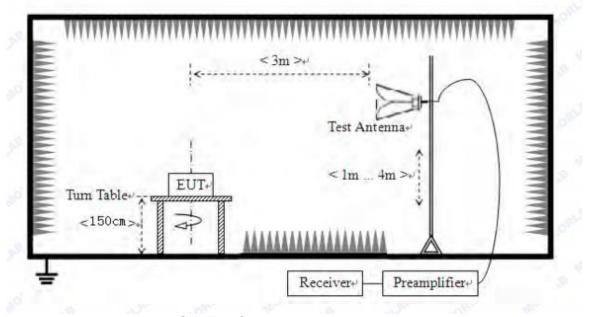
- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uv/m)

3.2. Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation


The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.

The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured


If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.

For the actual test configuration, please see the test setup photo.

3.3. Test Setup

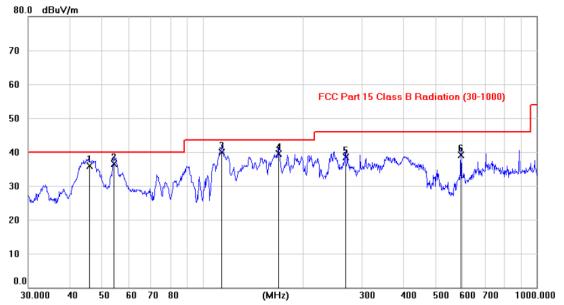
Above 30MHz Test Setup

Above 1GHz Test Setup

3.4. Test Results

Test Condition

Continual Transmitting in maximum power.

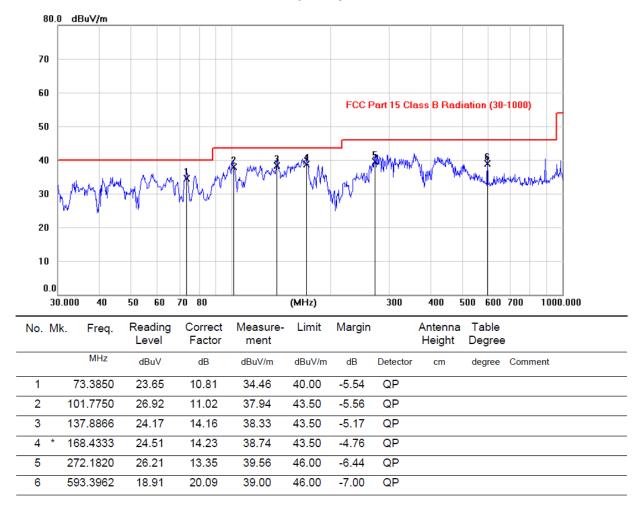

9KHz~150KHz	RBW200Hz	VBW1KHz
150KHz~30MHz	RBW9KHz	VBW 30KHz
30MHZ~1GHz	RBW120KHz	VBW 300KHz
Above1GHz	RBW1MHz	VBW 3MHz

We have scanned the 10th harmonic from 9 kHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

- Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
 - 2. Only show the test data of the worst Channel in this report.



Antenna polarity: Horizontal

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		45.7642	21.85	14.11	35.96	40.00	-4.04	QP			
2	*	54.1912	22.82	13.69	36.51	40.00	-3.49	QP			
3		114.5012	27.59	12.37	39.96	43.50	-3.54	QP			
4		168.6895	25.38	14.21	39.59	43.50	-3.91	QP			
5		268.4224	25.18	13.24	38.42	46.00	-7.58	QP			
6		593.3963	19.06	20.09	39.15	46.00	-6.85	QP			

Note:1. *:Maximum data; x:Over limit; I:over margin.

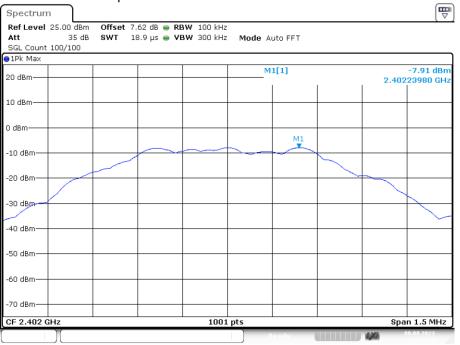
2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Vertical

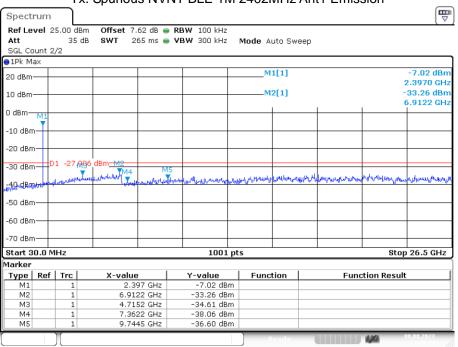
Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

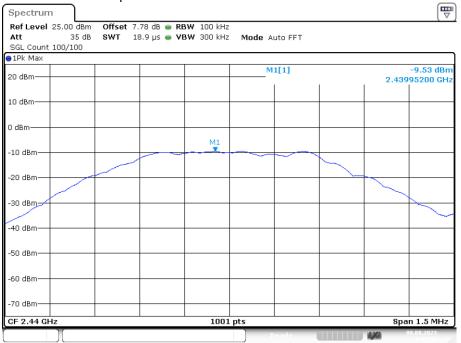
Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz.


From 1G-25GHz

				Test Mo	ode: TX Lov	N			
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	47.73	V	33.95	10.18	34.26	57.60	74	-16.40	PK
4804	39.14	V	33.95	10.18	34.26	49.01	54	-4.99	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
4804	44.40	Н	33.95	10.18	34.26	54.27	74	-19.73	PK
4804	37.54	Н	33.95	10.18	34.26	47.41	54	-6.59	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
				Test Mo	ode: TX Mic	ł			
4880	44.41	V	33.93	10.2	34.29	54.25	74	-19.75	PK
4880	34.34	V	33.93	10.2	34.29	44.18	54	-9.82	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
4880	43.64	Н	33.93	10.2	34.29	53.48	74	-20.52	PK
4880	32.88	Н	33.93	10.2	34.29	42.72	54	-11.28	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
				Test Mo	de: TX Hig	h			
4960	44.93	V	33.98	10.22	34.25	54.88	74	-19.12	PK
4960	36.73	V	33.98	10.22	34.25	46.68	54	-7.32	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/
4960	44.72	Н	33.98	10.22	34.25	54.67	74	-19.33	PK
4960	34.17	Н	33.98	10.22	34.25	44.12	54	-9.88	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/


Result = Read level + Antenna factor + cable loss-Amp factor
 All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted RF Spurious Emission



Date: 8.AUG.2023 14:38:57

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Date: 8.AUG.2023 14:39:03


Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Ref

Date: 8.AUG.2023 14:46:50

Specti	um															
Ref Le [.] Att SGL Co		35	Bm Offs dB SWT				W 100 kHz W 300 kHz		Mode At	uto Swi	еер					
😑 1Pk Ma	эх															
20 dBm-									M	1[1]						-7.72 dBm 2.4500 GHz
10 dBm·	-		_			-			M:	2[1]						32.50 dBm .1710 GHz
0 dBm—	M1					+										
-10 dBm	·++					-										
-20 dBm						+										
-30 dBn		01 -29.	583 dBn2-	M4	1	প5 ▼	un naturel i		- A UK-MA	unna	white	AMINAN	. U. Male	upt the work	rd an	ely. m. At sy reading as
ja40ndBl₩	personal Action	ABBADAN		grow	unour anon	ALCON.	and an an an an an an an	47-16								
-50 dBm	·+					\rightarrow										
-60 dBm	+					-										
-70 dBm	-+															
Start 3	0.0 1	٩Hz					1001	. pts	5						Stop	26.5 GHz
Marker																
Туре	Ref	Trc	X-	value			Y-value		Funct	tion			Fund	tion R	esult	
M1		1			45 GHz		-7.72 dB									
M2 M3		1			71 GHz		-32.50 dB									
M3 M4		1			25 GHz 24 GHz		-34.78 dB -37.60 dB									
M5		1			53 GHz		-35.85 dB									
									R	e a d y				1,70	0	8.08.2023

Date: 8.AUG.2023 14:47:07

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Date: 8.AUG.2023 14:50:23

Spectru	m)	-										E.
Ref Leve Att SGL Cour	З	5 dB			RBW 100 kH; VBW 300 kH;		Mode Au	uto Swi	зер				
😑 1Pk Max													
20 dBm—							M:	1[1]					-9.97 dBi 2.4760 GF
10 dBm—						-	M	2[1]					-32.65 dBi 6.8857 GF
0 dBm	_					-							+
-10 dBm—											_		
-20 dBm—											-		
-30 dBm	D1 -3	0.088	dBm M2	•	45	-							_
-30 abm µt∯Qu¢Bmk	harvedresor	a production of the	www.	AND	Junarunthy	syala	mante	lognofia	pertain	legtiputyisterie	rubbur	le-restlikeder yrei	wantypart
-50 dBm—											\rightarrow		
-60 dBm—											+		
-70 dBm—	-					-							-
Start 30.	0 MHz				100:	L pts	5					Sto	p 26.5 GHz
Marker													
Type F	ef Tro	:	X-value	.	Y-value		Funct	ion		F	unct	tion Resu	lt
M1		1		76 GHz	-9.97 di								
M2		1		57 GHz	-32.65 di								
M3		1		22 GHz	-34.76 di								
M4 M5		1 1		37 GHz 33 GHz	-36.84 df -35.67 df								
							R	eady			T	1/0	08.08.2023

Date: 8.AUG.2023 14:50:41

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Ref

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Emission

Spectrum						
Ref Level 🔅			RBW 100 kHz			
Att	30 (dB SWT 265 m s 🧉	VBW 300 kHz (Mode Auto Sw	еер	
SGL Count :	10/10					
1Pk Max						
				M1[1]		-9.52 dBn
10 dBm						2.3970 GH
				M2[1]		-35.99 dBn
) dBm					1	18.3208 GH
-10 dBm						
10 abiii						
-20 dBm 🕂						
		07.40				
-30 dBm	JI -28.0	M3 M4 M	5		M2	
-40 dBm		Jun haven Towney and	Lucius where we want	y hun my walked	mannound	Manufally may my Mart mart mart
-40 dBm	What was a start					
-50 dBm						
-60 dBm						
-70 dBm						
Start 30.0 M	/IHz		1001 pts	5		Stop 26.5 GHz
1arker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.397 GHz	-9.52 dBm			
M2	1	18.3208 GHz	-35.99 dBm			
MЗ	1	4.9534 GHz	-38.02 dBm			
M4	1	7.0181 GHz	-38.09 dBm			
M5	1	9.7974 GHz	-38.77 dBm			

Date: 8.AUG.2023 15:05:35

Date: 8.AUG.2023 15:05:17

Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Ref

Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Emission

Spectru	ım									
Ref Lev	el 20	.00 dBr	m Offset 9.78 d	B 👄 RI	BW 100 kHz					
Att		30 d	B SWT 265 m	s 🕳 V	BW 300 kHz	Mode A	uto Sw	еер		
SGL Cou	nt 10	/10								
∋1Pk Ma>	(
						M	11[1]			-12.04 dBn
10 dBm—										2.4500 GH
						M	12[1]			-35.37 dBn
D dBm—	-									16.8649 GH
	м1									
-10 dBm-	T									
-20 dBm-										
20 00.00										
-30 dBm-	101	-27.55		M5			M2			
		M	3 M4	Jul	A AL RING, 10 K		Amerikan	month	Marchenster	Why des where of where
-40 dBm-	alante	مەرەر بەر ارىلىر	Two days and the second s	1.0100000000000000000000000000000000000	- territore - der					
-50 dBm-	_									
-60 dBm-										
-70 dBm-										
Start 30	.0 MH	lz			1001 p	ts				Stop 26.5 GHz
1arker										
Туре І	Ref	Trc	X-value		Y-value	Func	tion		Function	Result
M1		1	2.45 G		-12.04 dBm					
M2		1	16.8649 G		-35.37 dBm					
M3		1	4.874 G		-39.43 dBm					
M4		1	7.124 G		-39.28 dBm -37.94 dBm					
M5		1	9.6651 G							

Date: 8.AUG.2023 15:13:46

Date: 8.AUG.2023 15:13:28

Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Emission

Spectrum						(5
Ref Level	20.00 d	Bm Offset 9.60 dB	🔵 RBW 100 kHz			
Att	30	dB SWT 265 ms	🔵 VBW 300 kHz 🛛	Mode Auto Sw	еер	
SGL Count	10/10					
∋1Pk Max						
				M1[1]		-35.63 dBr
10 dBm						17.3110 GH
				M2[1]		-35.63 dBr 17.3149 GH
0 dBm					1	17.3149 GH
-10 dBm						
-20 dBm						
-30 dBm	01 -28.	615 dBm				
-30 uBill	DI 20.	M3 M4	M5	M		
-40 dBm	L minstrate	Martin Martin Martin and	فيكدموه أطوت المحالك فلاسمو المحالية	men march all and the second shares have	my Munterestory	where marked have
-40 dBm	0.00					
-50 dBm						
-60 dBm						
-oo abiii						
-70 dBm						
Start 30.0	MHz	I	1001 pt	s		Stop 26.5 GHz
4arker						
	Trc	X-value	Y-value	Function	Fui	nction Result
	1	17.311 GHz	-35.63 dBm			
M1			-35.63 dBm			
M1 M2	1	17.3149 GHz				
M1 M2 M3	1	5.0064 GHz	-39.57 dBm			
M1 M2	1		-39.57 dBm			

Date: 8.AUG.2023 15:16:00

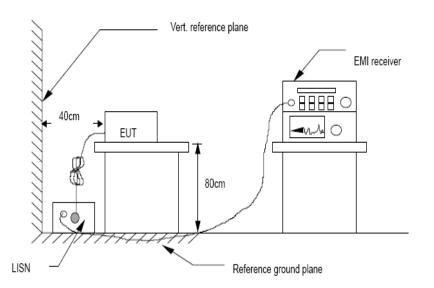
Date: 8.AUG.2023 15:15:42

4. POWER LINE CONDUCTED EMISSION

4.1. Test Limits

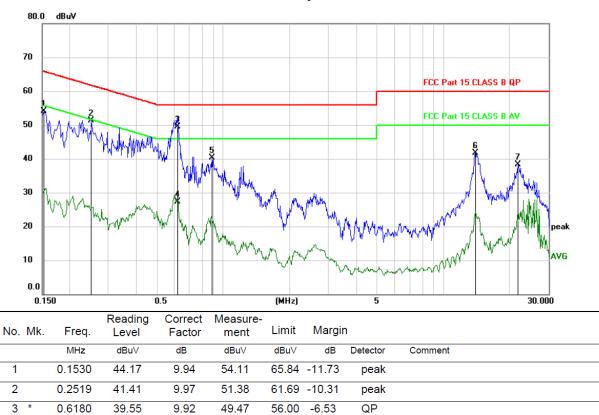
Frequency	Limits c	IB(μV)
MHz	Quasi-peak Level	Average Level
0.15 -0.50	66 -56*	56 - 46*
0.50 -5.00	56	46
5.00 -30.00	60	50

Notes: 1. *Decreasing linearly with logarithm of frequency.


- 2. The lower limit shall apply at the transition frequencies.
 - 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.


The bandwidth of test receiver is set at 9 kHz.

4.3. Test Setup

4.4. Test Results

Pass

46.00 -18.79

56.00 -15.60

60.00 -18.25

60.00 -21.64

AVG

peak

peak

peak

Polarity: L

*:Maximum data x:Over limit !:over margin

17.29

30.43

31.44

27.90

0.6180

0.8850

13.9710

21.7260

4 5

6

7

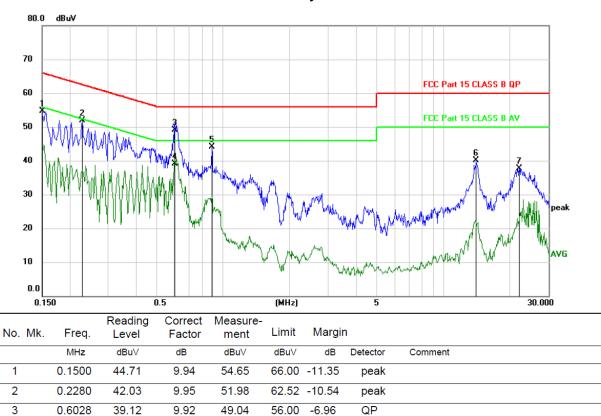
(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

27.21

40.40

41.75


38.36

9.92

9.97

10.31

10.46

46.00 -6.87

56.00 -11.83

60.00 -19.98

60.00 -22.24

AVG

peak

peak

peak

Polarity: N

*:Maximum data x:Over limit !:over margin

29.21

34.20

29.71

27.30

9.92

9.97

10.31

10.46

39.13

44.17

40.02

37.76

0.6028

0.8880

14.0907

22.0947

4 * 5

6

7

(Reference Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

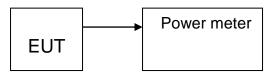
Note: All modes and channels have been tested and only the BLE 2402MHz(1Mbps) mode with the worst data is listed.

5. CONDUCTED MAXIMUM PEAK OUTPUT POWER

5.1. Test limits

Please refer section RSS-247 & 15.247.

5.2. Test Procedure


Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

5.2.1 Place the EUT on the table and set it in transmitting mode.

5.2.2 Measure out each mode and each bands peak output power of EUT.

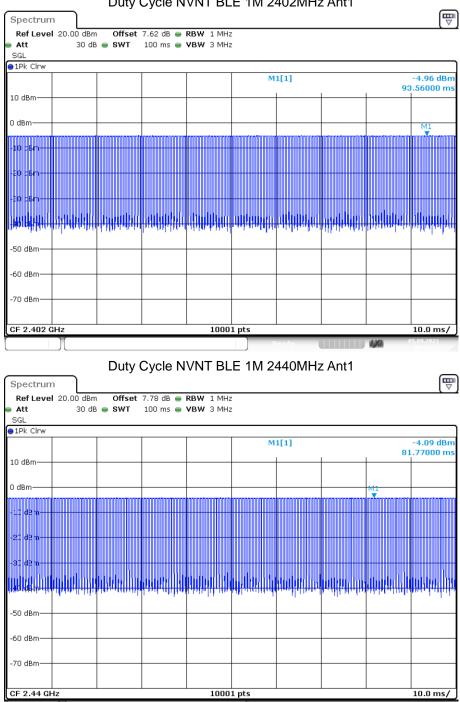
Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3. Test Setup

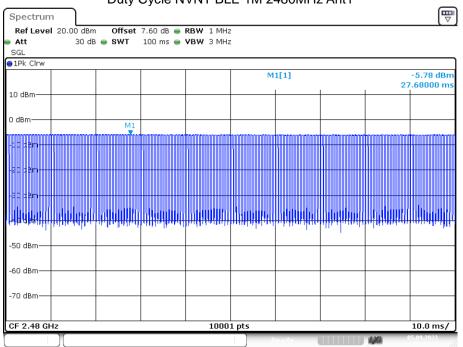
5.4. Test Results

GFSK (1M)

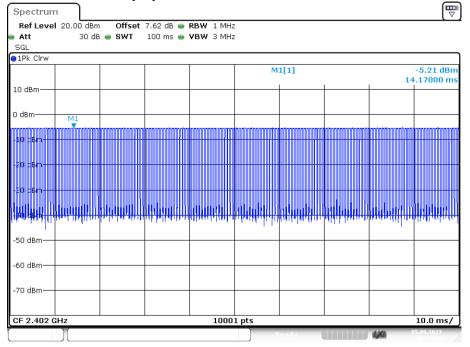
Condition	Mode	Frequency	Antenna	Conducted Power	Total Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-7.366	-7.366	30	Pass
NVNT	BLE 1M	2440	Ant1	-8.318	-8.318	30	Pass
NVNT	BLE 1M	2480	Ant1	-9.598	-9.598	30	Pass

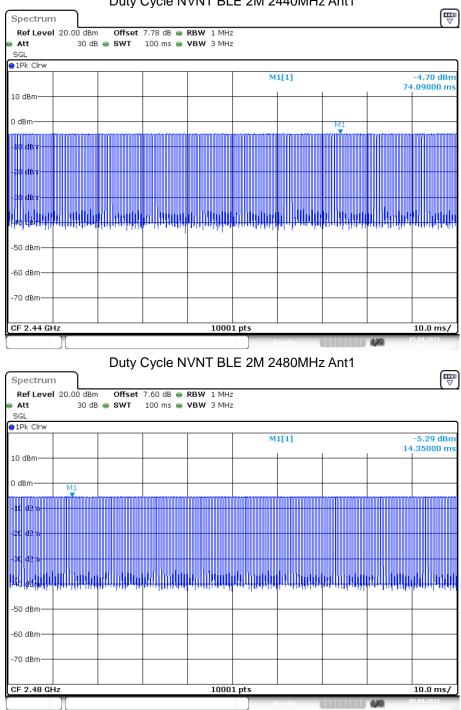

GFSK (2M)

<u> </u>							
Condition	Mode	Frequency	Antenna	Conducted Power	Total Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	BLE 2M	2402	Ant1	-5.452	-5.452	30	Pass
NVNT	BLE 2M	2440	Ant1	-6.32	-6.32	30	Pass
NVNT	BLE 2M	2480	Ant1	-7.705	-7.705	30	Pass


Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)
NVNT	BLE 1M	2402	Ant1	88.58
NVNT	BLE 1M	2440	Ant1	91.5
NVNT	BLE 1M	2480	Ant1	91.64


Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)
NVNT	BLE 2M	2402	Ant1	88.94
NVNT	BLE 2M	2440	Ant1	90.91
NVNT	BLE 2M	2480	Ant1	91.67

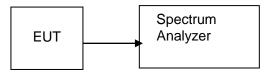

Duty Cycle NVNT BLE 1M 2402MHz Ant1

Duty Cycle NVNT BLE 1M 2480MHz Ant1

Duty Cycle NVNT BLE 2M 2440MHz Ant1

6. PEAK POWER SPECTRAL DENSITY

6.1. Test limits


- 6.1.1 Please refer section RSS-247 & 15.247.
- 6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

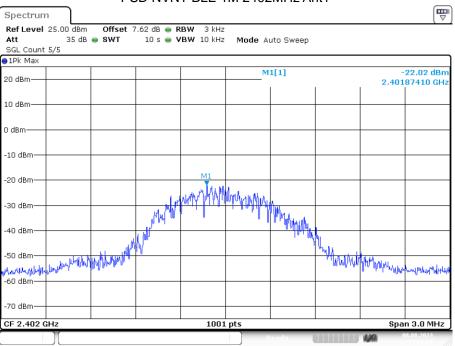
6.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

- 6.2.1 Place the EUT on the table and set it in transmitting mode.
- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: 3 kHz≤RBW≤100 kHz.), VBW = 10kHz(Set the VBW≥3×RBW), span=1.5×DTS bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

6.3. Test Setup

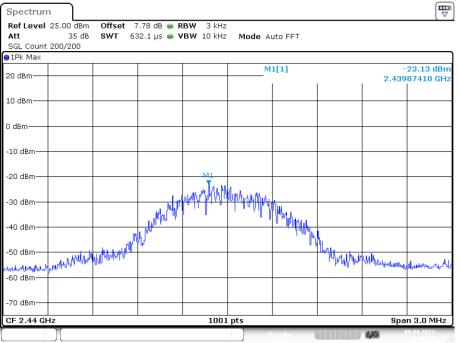
6.4. Test Results

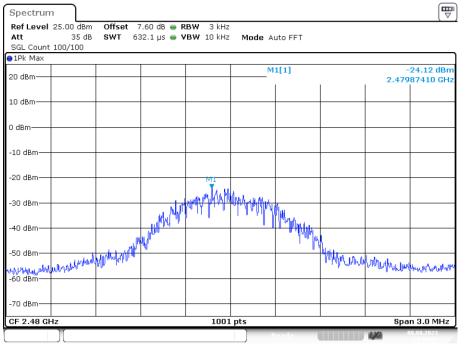

Pass

The test results are listed in next pages.

.....

	GFSK	(1M)
--	------	------

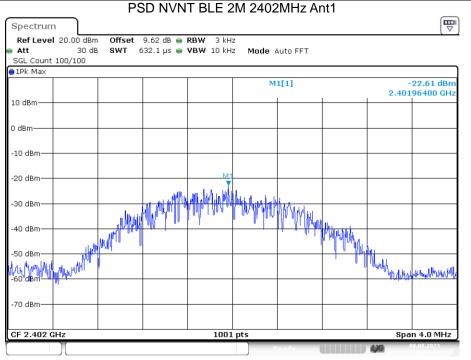

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-22.016	8	Pass
NVNT	BLE 1M	2440	Ant1	-23.135	8	Pass
NVNT	BLE 1M	2480	Ant1	-24.122	8	Pass


PSD NVNT BLE 1M 2402MHz Ant1

Date: 8.AUG.2023 14:38:38

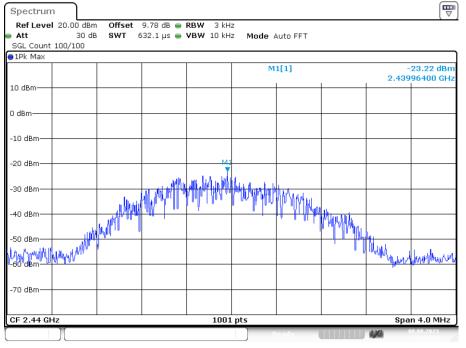
PSD NVNT BLE 1M 2440MHz Ant1

Date: 8.AUG.2023 14:46:43

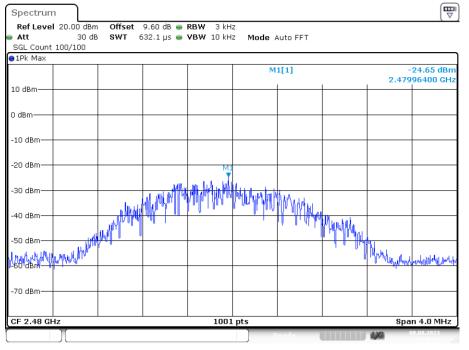


PSD NVNT BLE 1M 2480MHz Ant1

Date: 8.AUG.2023 14:50:02


GFSK (2M)

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-22.611	8	Pass
NVNT	BLE 2M	2440	Ant1	-23.216	8	Pass
NVNT	BLE 2M	2480	Ant1	-24.646	8	Pass



Date: 8.AUG.2023 15:04:58

PSD NVNT BLE 2M 2440MHz Ant1

Date: 8.AUG.2023 15:13:21

PSD NVNT BLE 2M 2480MHz Ant1

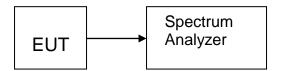
Date: 8.AUG.2023 15:15:21

7. BANDWIDTH

7.1. Test limits

Please refer section RSS-247 & 15.247

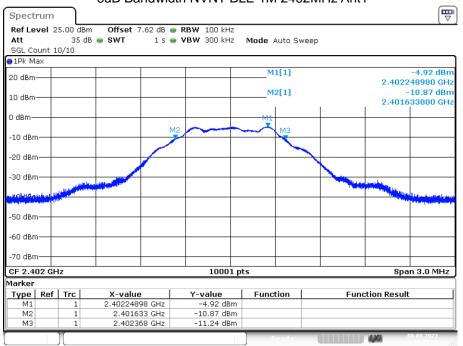
For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.


7.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

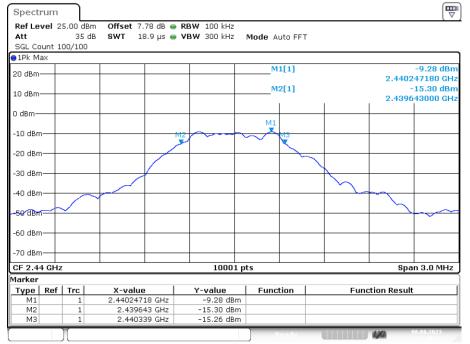
a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.
Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

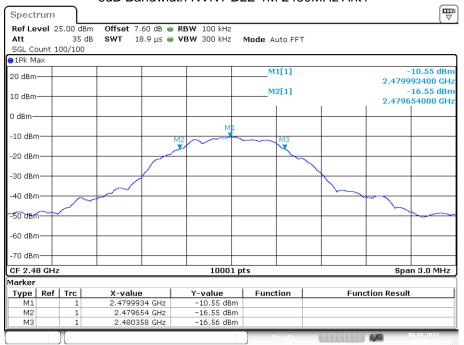
b) The test receiver set RBW = 100kHz, VBW≥3*RBW =300kHz, sweep time set auto, detail see the test plot.


7.3. Test Setup

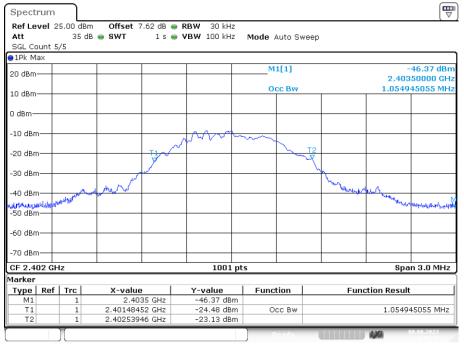
7.4. Test Results

GFSK(1M)


Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	1.055	0.734	0.5	Pass
NVNT	BLE	2440	Ant 1	1.049	0.696	0.5	Pass
NVNT	BLE	2480	Ant 1	1.067	0.704	0.5	Pass


-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

Date: 8.AUG.2023 14:37:41

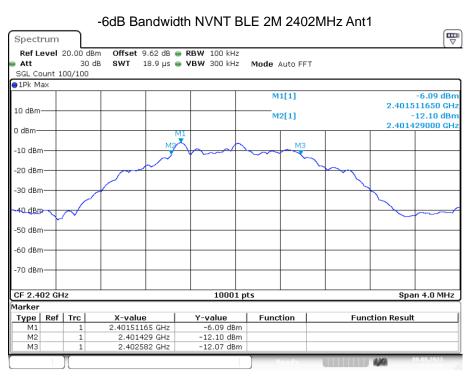

Date: 8.AUG.2023 14:46:34

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

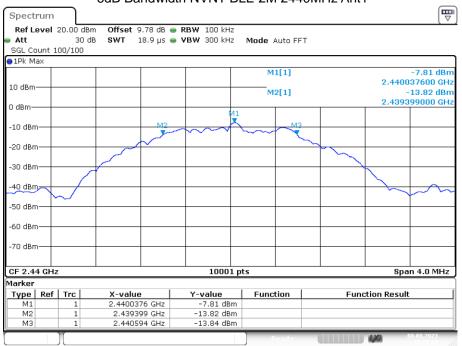

Date: 8.AUG.2023 14:49:54

OBW NVNT BLE 1M 2402MHz Ant1

Date: 8.AUG.2023 14:45:39

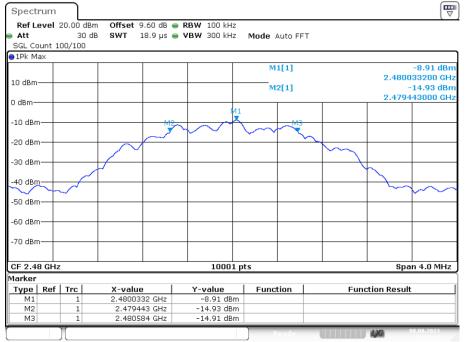

Date: 8.AUG.2023 14:46:25

OBW NVNT BLE 1M 2480MHz Ant1

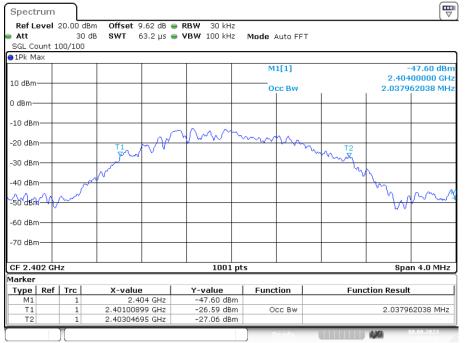

Spectrum								
Ref Level 2 Att SGL Count 1	35 c		 RBW 30 kHz VBW 100 kHz 	Mode Auto FF1		()		
●1Pk Max								
20 dBm				M1[1] -53.9 2.4815000				
10 dBm				Occ Bw		1.066933067 MHz		
0 dBm								
-10 dBm								
-20 dBm			J~~~	\sim	Т2			
-30 dBm				~	NE .			
-40 dBm	^	~~~~			m	m.		
-50 dBm	\mathcal{N}					mon		
-60 dBm								
-70 dBm								
CF 2.48 GH	z		1001	pts	I	Span 3.0 MHz		
Marker								
Type Ref		X-value	Y-value	Function	Fund	ction Result		
M1	1	2.4815 GHz	-53.98 dBn					
T1 T2	1	2.47947552 GHz 2.48054246 GHz	-30.69 dBn -29.23 dBn			1.066933067 MHz		
)[Ready		08.08.2023		

Date: 8.AUG.2023 14:49:44

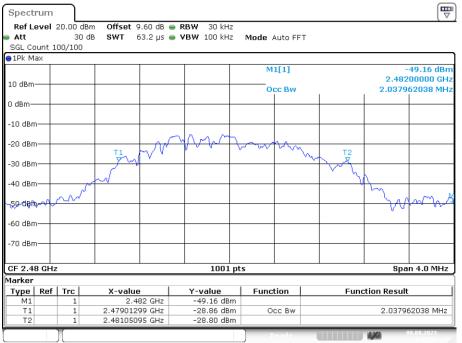
GFSK(2M)							
Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	2.038	1.153	0.5	Pass
NVNT	BLE	2440	Ant 1	2.046	1.194	0.5	Pass
NVNT	BLE	2480	Ant 1	2.038	1.141	0.5	Pass


Date: 8.AUG.2023 15:04:50

-6dB Bandwidth NVNT BLE 2M 2440MHz Ant1


Date: 8.AUG.2023 15:13:13


Date: 8.AUG.2023 15:15:12



Date: 8.AUG.2023 15:04:42

OBW NVNT BLE 2M 2440MHz Ant1

Date: 8.AUG.2023 15:13:04

OBW NVNT BLE 2M 2480MHz Ant1

Date: 8.AUG.2023 15:15:03

8. BAND EDGE CHECK

8.1. Test limits

Please refer section RSS-GEN&15.247.

8.2. Test Procedure

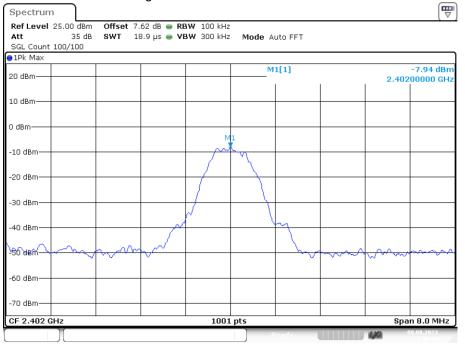
Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission

8.2.2 Check the spurious emissions out of band.

8.2.3 RBW 1MHz, VBW 3MHz, peak detector for peak value, RBW 1MHz, VBW 3MHz, RMS detector for AV value.

8.3. Test Setup

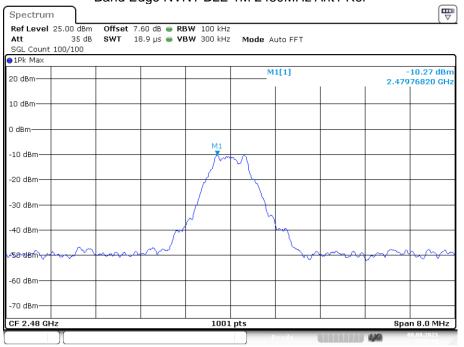

Same as 5.2.2.

8.4. Test Results

Pass The test results are listed in next pages.

GFSK (1M)

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



Date: 8.AUG.2023 14:38:44

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Spectrum									[₩		
Ref Level 2				RBW 100 kHz							
Att	35		113.8 µs (VBW 300 kHz	Mode .	Auto FF	т				
SGL Count 1	100/100	1									
1Pk Max											
20 dBm					M	1[1]			-7.86 dBn		
									225000 GH		
10 dBm —					M	2[1]		-48.49 dBn 2.40000000 GH			
						1	1	2.40			
D dBm									M1		
-10 dBm									T		
10 0.0									1 1		
20 dBm						<u> </u>					
	1 -27.9	942 dBm									
-30 dBm — L											
-40 dBm											
					M4			M3	M2		
Saraget and	4 CLIPP PL VILL	anter and the above	under the states	لالألما المحالية المستد المحاصية	and the heart of the	ند رید /ید	water and happened	-reported when	www.Z he		
-60 dBm											
-70 dBm											
Start 2.306	GHz			1001	pts			Stop	2.406 GHz		
larker											
Type Ref		X-value				Function		ction Resul	t		
M1 M2	1	2.40	225 GHz	-7.86 dBr -48.49 dBr							
M2 M3	1		2.4 GHZ 2.39 GHZ	-49.70 dBr							
M4	1		3599 GHz	-45.93 dBr							
) [_		1.1.171	88 88 2823		

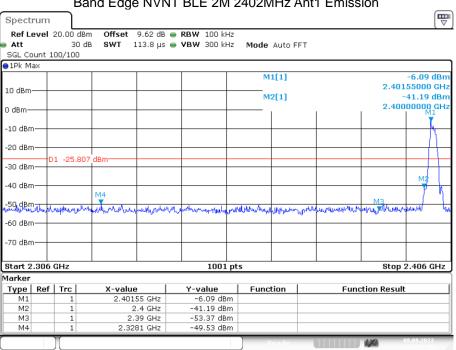
Date: 8.AUG.2023 14:38:50

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Date: 8.AUG.2023 14:50:10

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Spectrum		-								
Ref Level 2			50 dB 👄 RB							
Att	35		.8 µs 👄 VE	300 kHz	2 Mode 4	Auto FF1	Г			
SGL Count 1 1Pk Max	00/100									
DIPK Max					54	1[1]			-10.29 dBm	
20 dBm					M	1[1]		2.47	-10.29 uBm 7995000 GHz	
10 dBm					M	2[1]			-49.28 dBm	
TO UBIII								2.48	3350000 GHz	
0 dBm										
M1										
-10 8m-									_	
-20 dBm										
30 dBm-D	1 -30 2	268 dBm								
	1 00.									
-40 dBm		MA							-	
And M2	al market	Manualana	as Hickory	nation distants in		Museul Jalla	May Hand Back	use one otherste	Womannun	
-80 gBW	des and they						,			
-60 dBm										
-70 dBm										
Start 2.476	GHz			1001	pts			Stop	2.576 GHz	
Marker										
Type Ref	Trc	X-value		Y-value	Funct	Function		Function Result		
M1	1	2.47995	GHz	-10.29 dB						
M2	1			-49.28 dBi						
M3	1		GHz	-49.70 dB						
M4	1	2.4959	GHZ	-45.20 dBi	m					
	Π				R	e a d y		4,40	08.08.2023	


Date: 8.AUG.2023 14:50:15

GFSK (2M)

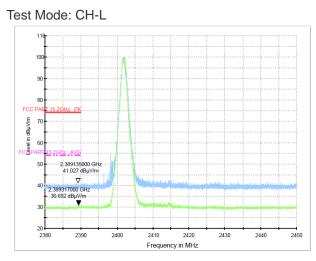
Band Edge NVNT BLE 2M 2402MHz Ant1 Ref

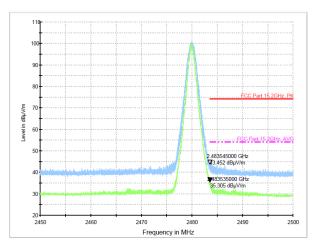
Date: 8.AUG.2023 15:05:04

Band Edge NVNT BLE 2M 2402MHz Ant1 Emission

Date: 8.AUG.2023 15:05:10

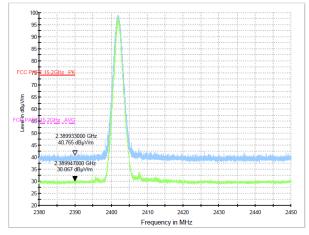
Band Edge NVNT BLE 2M 2480MHz Ant1 Ref


Date: 8.AUG.2023 15:15:29

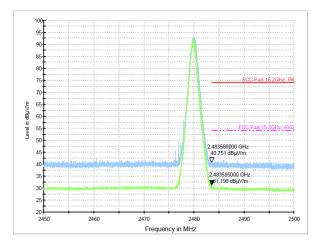

Spectru	m		Ũ										
Ref Lev Att SGL Cour		30 dB		9.60 dB 113.8 µs				Auto F	FT				
⊖1Pk Max													
							M	1[1]					-8.11 dBm
10 dBm—	_					-+							55000 GHz
							M	2[1]					53.64 dBm
0 dBm								1	1		1	2.483	50000 GHz
-10 dBm-													
-10 aBm-													
-20 dBm-	_												
77													
-30 d8m—	D1 -2	B.601 (dBm=====		-						-		
-40 dBm—													
-50 dB			M43									A	
NPO GDI	whicher	mulum	WWWWWW	www	NL Production	4m Tranget	n hanna	muleen	re Maria	Add all Alexan	when) another the	Manauthry
-60 dBm—	_										_		
-70 dBm—													
Start 2.4	76 GHz					1001 p	ts					Stop	2.576 GHz
Marker													
	ef Tro		X-value		Y-Ve		Func	Function		Function Result			
M1		1	2.47955 GHz			-8.11 dBm							
M2 M3		1	2.4835 GHz 2.5 GHz		-53.64 dBm -52.88 dBm				-				
M4		1		99 GHz									
	1										4.90		18.08.2023
	— Л —										1/1		

Date: 8.AUG.2023 15:15:35

Radiated Method: GFSK(1M)



Test Mode: CH-H



Radiated Method: GFSK(2M)

Test Mode: CH-L

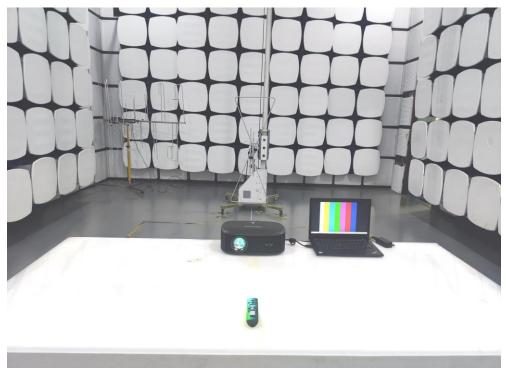
Test Mode: CH-H

9. ANTENNA REQUIREMENT

9.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction


The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.


9.3. Results

The EUT antenna is Internal Antenna. It complies with the standard requirement.

10. TEST SETUP PHOTO

10.1.Photo of Radiated Emission test

10.2.Photo of Conducted Emission test

-----END OF REPORT------