

FCC TEST REPORT

FCC ID: 2AZFE-AAO-YG

On Behalf of

Shenzhen Shadow Crown Technology Co., Ltd.

LED Projector

Model No.: YG691 Movin, W1K, YG691, YG561, YG531, YG491,

YG471, PJ30

Prepared for : Shenzhen Shadow Crown Technology Co., Ltd.

Address A9 East 5th floor, Industrial Building, Longwang Miao, Fuyong

street, Baoan district, Shenzhen

Prepared By : Shenzhen Alpha Product Testing Co., Ltd.

Address Building i, No.2, Lixin Road, Fuyong Street, Bao'an District,

518103, Shenzhen, Guangdong, China

Report Number : A2307263-C01-R03

Date of Receipt : July 27, 2023

Date of Test : July 27, 2023- August 16, 2023

Date of Report : August 16, 2023

Version Number : V0

TABLE OF CONTENTS

	Des	Page	
1	TES	ST SUMMARY	5
	1.1	MEASUREMENT UNCERTAINTY	5
2	GE	NERAL INFORMATION	6
	2.1	GENERAL DESCRIPTION OF EUT	
	2.2	TEST MODE	
	2.3	TEST FACILITY	
	2.4	DESCRIPTION OF SUPPORT UNITS	
	2.5	DEVIATION FROM STANDARDS	
	2.6 2.7	ABNORMALITIES FROM STANDARD CONDITIONS	
	2.7	ADDITIONAL INSTRUCTIONS	
3	TES	ST INSTRUMENTS LIST	8
4	TES	ST RESULTS AND MEASUREMENT DATA	9
	4.1	Antenna requirement:	9
	4.2	CONDUCTED EMISSIONS	
	4.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	4.4	MAX TRANSMIT POWER	
	4.5	Power Spectral Density	
	4.6	BAND EDGE	
	4.7	RADIATED EMISSION	
	4.8	FREQUENCY STABILITY	51

TEST REPORT DECLARATION

Applicant : Shenzhen Shadow Crown Technology Co., Ltd.

Address A9 East 5th floor, Industrial Building, Longwang Miao, Fuyong street, Baoan

district, Shenzhen

Manufacturer : Shenzhen Shadow Crown Technology Co., Ltd.

Address A9 East 5th floor, Industrial Building, Longwang Miao, Fuyong street, Baoan

district, Shenzhen

EUT Description : LED Projector

(A) Model No. : YG691 Movin, W1K, YG691, YG561, YG531, YG491,

YG471, PJ30

(B) Trademark : /

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart E ANSI C63.4:2014, ANSI C63.10:2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart E limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature).....:

Project Engineer

Approved by (name + signature).....:

Reak Yang
Project Manager

Date of issue...... August 16, 2023

Page 4 of 51

Report No.: A2307263-C01-R03

Revision History

Revision	Issue Date	Revisions	Revised By
V0	August 16, 2023	Initial released Issue	Yannis Wen

1 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	Section 15.203 Section 7.1.4 RSS-Gen Issue 5	PASS
AC Power Line Conducted Emission	Section 15.207 Section 7.2.4 RSS-GEN(8.8), ANSI C63.10	PASS
Max Transmit Power	Section 15.407(a), RSS-247 5.4(2)	PASS
Power Spectral Density	Section 15.407(a), RSS-247 5.2(2)	PASS
Undesirable Emission	Section 15.407(b), RSS-247 5.5	PASS
Radiated Emission	Section 15.407(b)&15.209 Section 5.5 RSS-Gen(8.9), RSS-247(5.5), ANSI C63.10	PASS
Emission bandwidth and occupied bandwidth	47 CFR Part 15.407(e)	PASS
Band Edge	15.205, RSS-247 Issue 2, ANSI C63.10	PASS
Frequency Stability	15.407(f), RSS-GEN(6.11)	PASS

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Frequency Stability: The manufacturer stated in the user's manual.
- 3. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

1.1 Measurement Uncertainty

Item	Uncertainty
Uncertainty for Power point Conducted Emissions Test	1.63dB
Uncertainty for Radiation Emission test in 3m chamber (below 30MHz)	3.5dB
Uncertainty for Radiation Emission test in 3m chamber	3.74dB(Polarize: V)
(30MHz to 1GHz)	3.76dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)
(1GHz to 25GHz)	3.80dB(Polarize: H)
Uncertainty for Radiation Emission test in 3m chamber	4.31dB(Polarize: V)
(25GHz to 40GHz)	4.30dB(Polarize: H)
Uncertainty for radio frequency	5.06×10 ⁻⁸ GHz
Uncertainty for conducted RF Power	0.40dB
Uncertainty for temperature	0.2℃
Uncertainty for humidity	1%
Uncertainty for DC and low frequency voltages	0.06%

2 General Information

2.1 General Description of EUT

EUT Name : LED Projector

Model No. : YG691 Movin, W1K, YG691, YG561, YG531, YG491, YG471, PJ30

DIFF. : There is no difference except the name of the model. All tests are made with

the YG691 Movin model.

Power supply : AC 120V/60Hz

Radio Technology : 5G WIFI

Operation Frequency : 802.11a/n(HT20): 5180~5240MHz

802.11n(HT40): 5190~5230MHz

Channel separation : 20MHz for 802.11a/ 802.11n(HT20)

40MHz for 802.11n(HT40)

Modulation technology: : IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11a: OFDM (64QAM, 16QAM, QPSK, BPSK)

Antenna Type : Internal antenna 1, max gain 4.96dBi

Internal antenna 2, max gain 4.96dBi

The antenna MIMO combining gain is 7.96dBi. (Antenna information is provided by applicant.)

Software version : V1.0

Hardware version : V1.0

Intend use

environment

: Residential, commercial and light industrial environment

2.2 Test mode

Transmitting mode Keep the EUT in transmitting with modulation.

EUT was test with 99% duty cycle at its maximum power control level.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

2.3 Test Facility

Shenzhen Alpha Product Testing Co., Ltd

Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission

Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

2.4 Description of Support Units

Accessories : /
Manufacturer : /
Model : /
Ratings : /

2.5 Deviation from Standards

None.

2.6 Abnormalities from Standard Conditions

None.

2.7 Other Information Requested by the Customer

None.

2.8 Additional instructions

Software (Used for test) from client

Channel	Power level
Lowest	Default
Middle	Default
Highest	Default

3 Test Instruments list

Equipment	Manufacture	Model No.	Firmwar e version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03- 102082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840- 50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Temp. & Humid.	Teelong	WHTH-1000- 40-880	/	TL-20191205-01	2022.07.28	1 Year
Adjustable attenuator	Adjustable MWR Ftest		/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

Software Information									
Test Item	Software Name	Manufacturer	Version						
RE EZ-EMC		Farad	Alpha-3A1						
CE EZ-EMC		Farad	Alpha-3A1						
RF-CE	MTS 8310	MW	V2.0.0.0						

4 Test results and Measurement Data

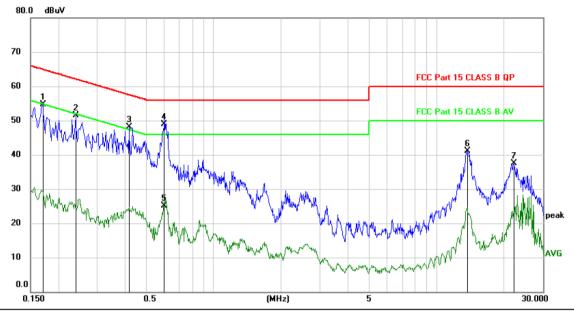
4.1 Antenna requirement:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is internal antenna. The best case gain of the antenna is 4.96dBi for 5.15~5.25GHz.

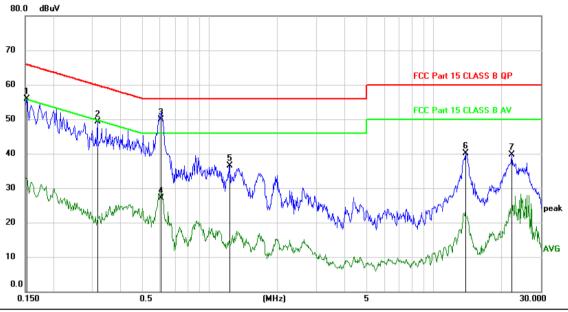

4.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz						
Limit:		Limit (d	BuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test procedure	The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.						
Test setup:	LISN 40cm		er — AC power				
Test Instruments:	Refer to section 5.10 for detail	ls					
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement Data

An initial pre-scan was performed on the line and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Line:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1	
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.1710	44.84	9.93	54.77	64.91	-10.14	peak	
2		0.2400	41.45	9.96	51.41	62.10	-10.69	peak	
3		0.4170	38.18	9.94	48.12	57.51	-9.39	peak	
4	*	0.6000	39.02	9.92	48.94	56.00	-7.06	QP	
5		0.6000	15.13	9.92	25.05	46.00	-20.95	AVG	
6		13.7070	30.78	10.30	41.08	60.00	-18.92	peak	
7		22.2119	27.04	10.46	37.50	60.00	-22.50	peak	

*:Maximum data x:Over limit !:over margin

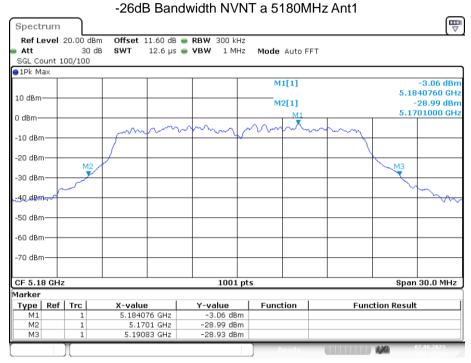
 $\langle \, \text{Reference Only} \,$

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

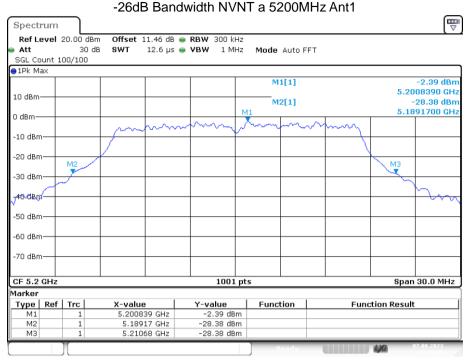
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	1	
		MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector	Comment
1		0.1530	46.04	9.94	55.98	65.84	-9.86	peak	
2		0.3150	39.47	9.93	49.40	59.84	-10.44	peak	
3	*	0.6060	39.93	9.92	49.85	56.00	-6.15	QP	
4		0.6060	17.25	9.92	27.17	46.00	-18.83	AVG	
5		1.2300	26.68	9.89	36.57	56.00	-19.43	peak	
6		13.8900	29.78	10.30	40.08	60.00	-19.92	peak	
7		22.2119	29.16	10.46	39.62	60.00	-20.38	peak	

Note: All modes and channels have been tested and only the A 5180MHz mode with the worst data is listed.

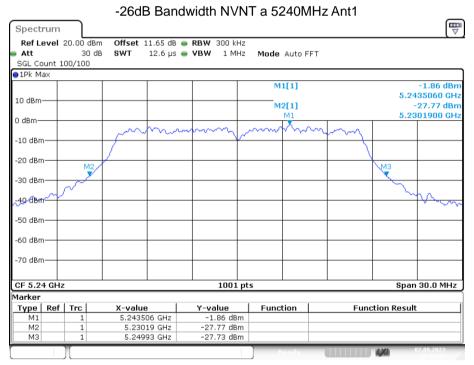
^{*:}Maximum data x:Over limit !:over margin (Reference Only Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

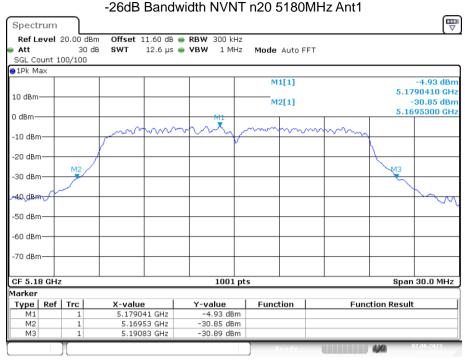

4.3 Emission Bandwidth and 99% Occupied Bandwidth

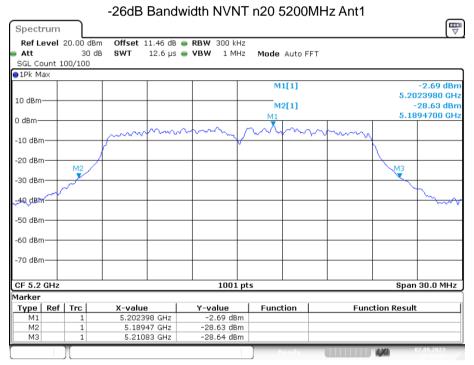
Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01					
Limit:	N/A					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table					
	Ground Reference Plane					
Test procedure:	According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01.					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

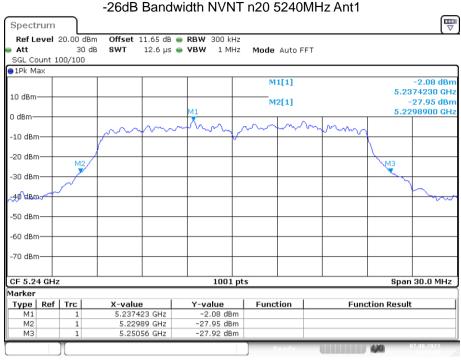

Measurement Data:

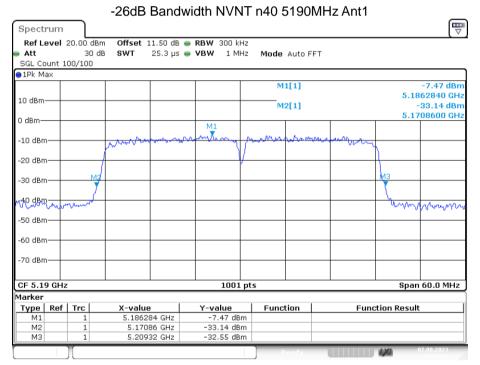
Band 1 (5150-5250 MHz): -26dB Bandwidth

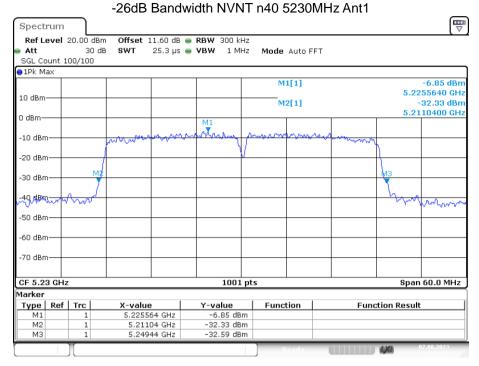

Condition	Mode	Frequency (MHz)	Antenna	-26 dB Bandwidth (MHz)
NVNT	а	5180	Ant1	20.73
NVNT	а	5200	Ant1	21.51
NVNT	а	5240	Ant1	19.74
NVNT	n20	5180	Ant1	21.3
NVNT	n20	5200	Ant1	21.36
NVNT	n20	5240	Ant1	20.67
NVNT	n40	5190	Ant1	38.46
NVNT	n40	5230	Ant1	38.4


Date: 7.AUG.2023 12:11:13


Date: 7.AUG.2023 12:19:40

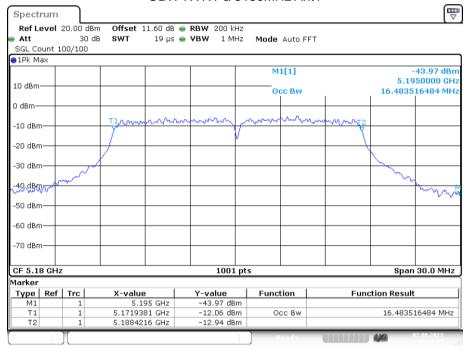

Date: 7.AUG.2023 12:30:28


Date: 7.AUG.2023 12:41:40


Date: 7.AUG.2023 12:47:43

Date: 7.AUG.2023 12:59:00

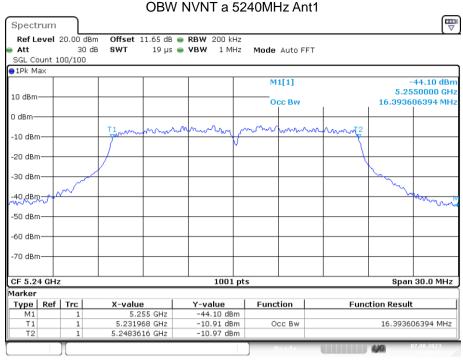
Date: 7.AUG.2023 13:13:11

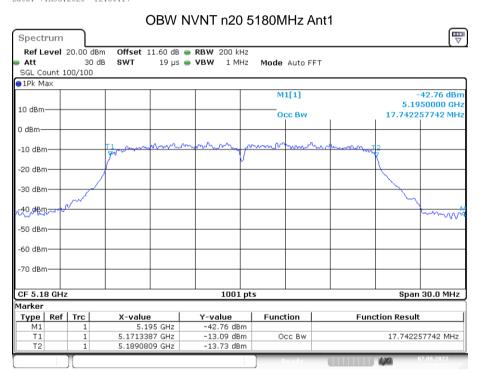


Date: 7.AUG.2023 13:23:51

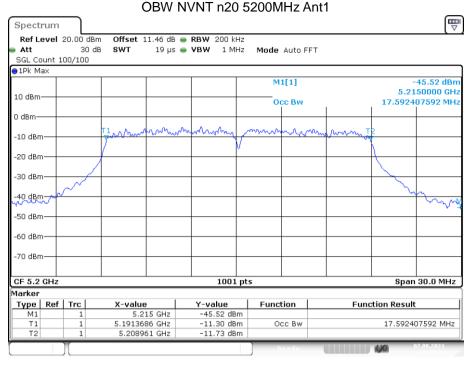
Occupied Channel Bandwidth

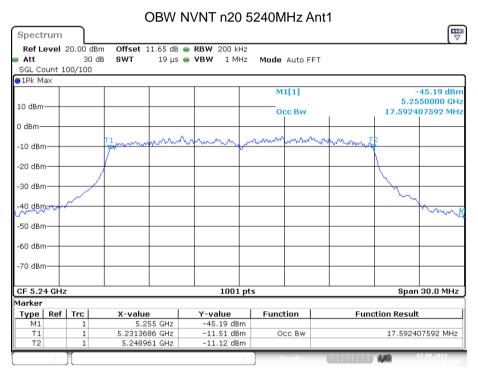
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	а	5180	Ant1	16.484
NVNT	а	5200	Ant1	16.633
NVNT	а	5240	Ant1	16.394
NVNT	n20	5180	Ant1	17.742
NVNT	n20	5200	Ant1	17.592
NVNT	n20	5240	Ant1	17.592
NVNT	n40	5190	Ant1	35.724
NVNT	n40	5230	Ant1	35.784

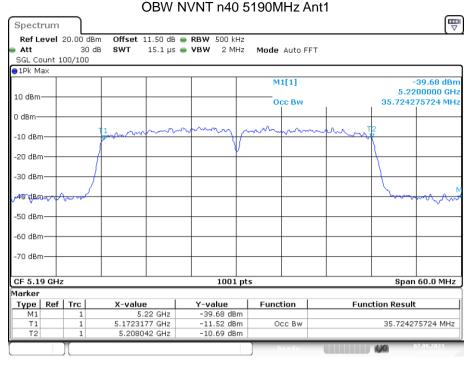

OBW NVNT a 5180MHz Ant1

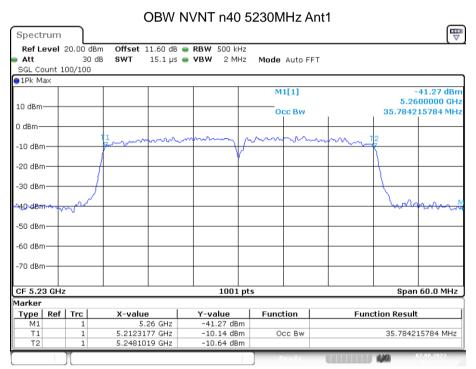

Date: 7.AUG.2023 12:11:05

OBW NVNT a 5200MHz Ant1 \blacksquare Spectrum Offset 11.46 dB ■ RBW 200 kHz SWT 19 µs ■ VBW 1 MHz Ref Level 20.00 dBm Att 30 SGL Count 100/100 30 dB Mode Auto FFT ●1Pk Max M1[1] 45.16 dBn 5.2150000 GHz 10 dBm Occ Bw 16.633366633 MH 0 dBm wwww -10 dBm -20 dBm -30 dBm r4Q,dβm,= -50 dBm -60 dBm -70 dBm-Span 30.0 MHz CF 5.2 GHz 1001 pts Marker Y-value -45.16 dBm -12.12 dBm -12.16 dBm Type | Ref | Trc X-value Function **Function Result** 5.215 GHz 5.1918182 GHz 5.2084515 GHz T1 T2 Occ Bw 16.633366633 MHz


Date: 7.AUG.2023 12:19:31


Date: 7.AUG.2023 12:30:17


Date: 7.AUG.2023 12:41:28


Date: 7.AUG.2023 12:47:30

Date: 7.AUG.2023 12:58:46

Date: 7.AUG.2023 13:12:55

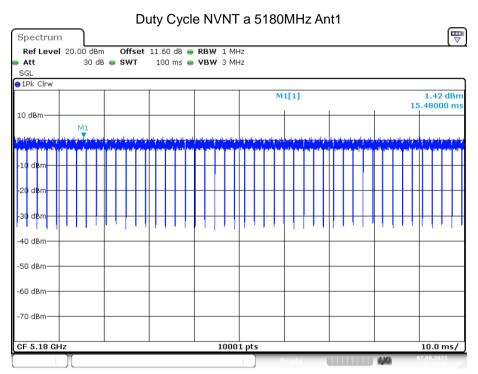
Date: 7.AUG.2023 13:23:35

4.4 Max Transmit Power

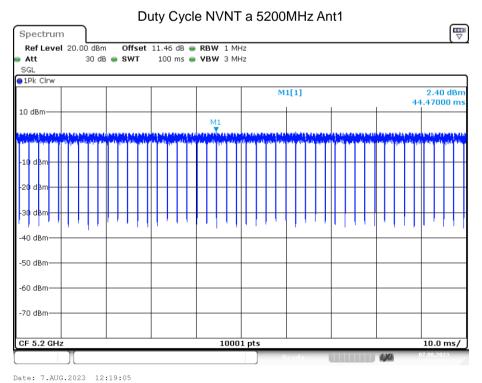
Test Requirement:	FCC Part15 E Section 15.407				
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01				
Limit:	For the band 5.15-5.25GHz, 5.25-5.35GHz, 5.47-5.725GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 250mW. For the band 5.725-5.85GHz, the maximum conducted output power over the frequency bands of operation shall not exceed 1W.				
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane				
Test procedure:	 (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit with a constant duty cycle. b) At all times when the EUT is transmitting, it must be transmitting at its maximum power control level. c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. (iv) Adjust the measurement in dBm by adding 10 log(1/x) where x is the duty cycle (e.g., 10log(1/0.25) if the duty cycle is 25 percent). 				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

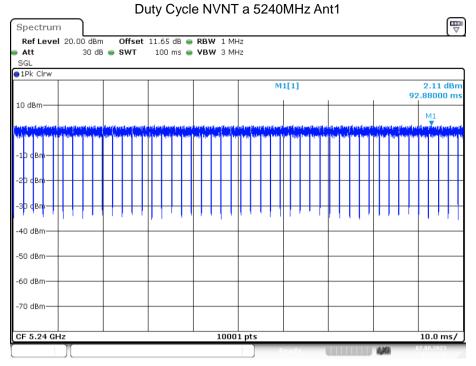
Measurement Data Band 1 (5150-5250 MHz)

Duty Cycle	=100%							
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	а	5180	Ant1	15.152	0	15.152	24	Pass
NVNT	а	5200	Ant1	15.943	0	15.943	24	Pass
NVNT	а	5240	Ant1	15.819	0	15.819	24	Pass
NVNT	n20	5180	Ant1	14.327	0	14.327	24	Pass
NVNT	n20	5200	Ant1	15.158	0	15.158	24	Pass
NVNT	n20	5240	Ant1	15.459	0	15.459	24	Pass
NVNT	n40	5190	Ant1	14.854	0	14.854	24	Pass
NVNT	n40	5230	Ant1	15.076	0	15.076	24	Pass

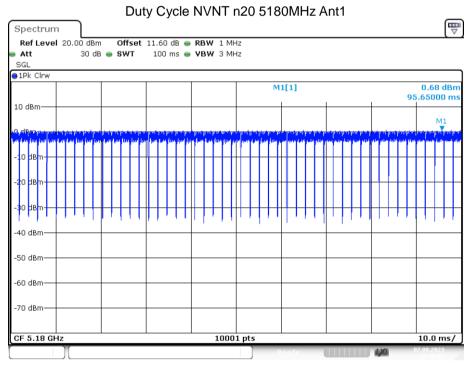

Duty Cycle	=100%							
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	а	5180	Ant2	15.745	0	15.745	24	Pass
NVNT	а	5200	Ant2	16.095	0	16.095	24	Pass
NVNT	а	5240	Ant2	16.281	0	16.281	24	Pass
NVNT	n20	5180	Ant2	15.668	0	15.668	24	Pass
NVNT	n20	5200	Ant2	16.377	0	16.377	24	Pass
NVNT	n20	5240	Ant2	15.557	0	15.557	24	Pass
NVNT	n40	5190	Ant2	13.678	0	13.678	24	Pass
NVNT	n40	5230	Ant2	14.421	0	14.421	24	Pass

Duty Cycle	=100%							
Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	n20	5180	OMIM	18.06	0	18.06	22.04	Pass
NVNT	n20	5200	MIMO	18.82	0	18.82	22.04	Pass
NVNT	n20	5240	OMIM	18.52	0	18.52	22.04	Pass
NVNT	n40	5190	OMIM	17.32	0	17.32	22.04	Pass
NVNT	n40	5230	MIMO	17.77	0	17.77	22.04	Pass

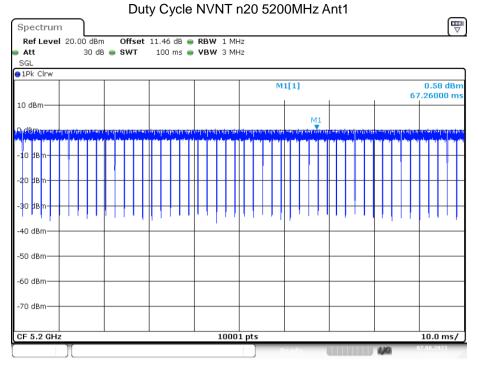

Note: 1. Directional gain=7.96dBi, so the Conducted Power Limit need to reduce 1.96.

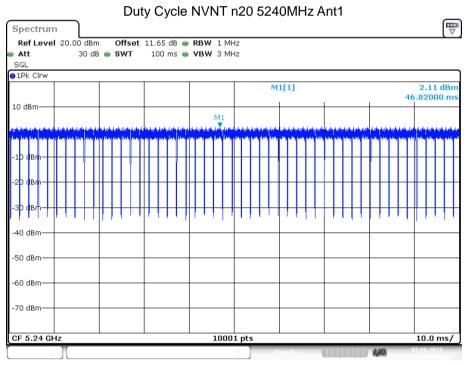

Duty Cycle

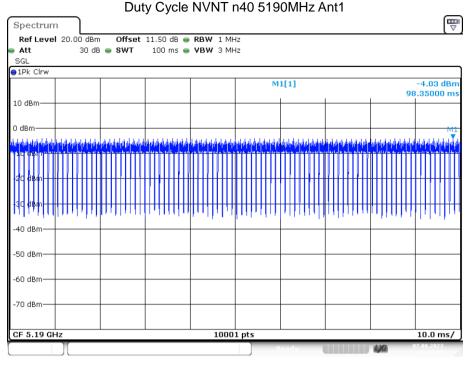
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	Ant1	100	0
NVNT	а	5200	Ant1	100	0
NVNT	а	5240	Ant1	100	0
NVNT	n20	5180	Ant1	100	0
NVNT	n20	5200	Ant1	100	0
NVNT	n20	5240	Ant1	100	0
NVNT	n40	5190	Ant1	100	0
NVNT	n40	5230	Ant1	100	0

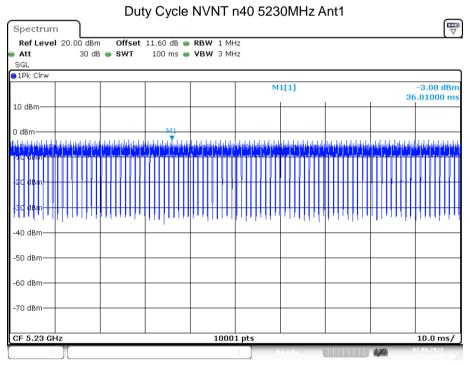


Date: 7.AUG.2023 12:10:40




Date: 7.AUG.2023 12:29:47


Date: 7.AUG.2023 12:40:55


Date: 7.AUG.2023 12:46:58

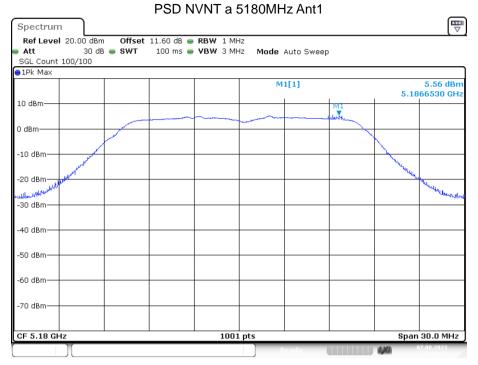
Date: 7.AUG.2023 12:58:08

Date: 7.AUG.2023 13:12:17

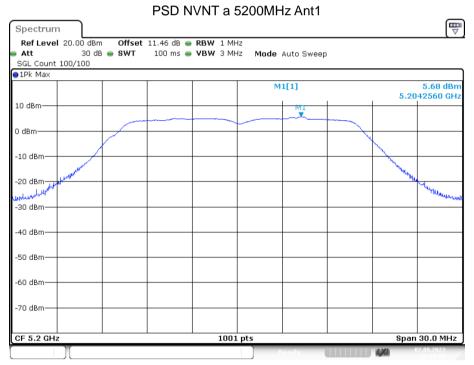
Date: 7.AUG.2023 13:22:57

4.5 Power Spectral Density

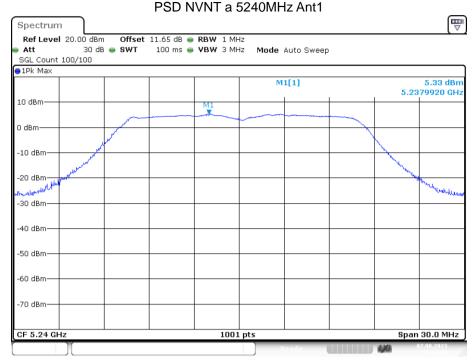
Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 General UNII Test Procedures New Rules v02r01					
Limit:	≤11.00dBm/MHz for 5150MHz-5250MHz, 5250-5350MHz and 5470-5725 MHz ≤30.00dBm/500KHz for 5725MHz-5850MHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	 Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power". Use the peak search function on the instrument to find the peak of the spectrum. Make the following adjustments to the peak value of the spectrum, if applicable: a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum. b) If Method SA-3 Alternative was used and the linear mode was used in step E)2)g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. The result is the PSD. 					
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					


Measurement Data Band 1 (5150 - 5250 MHz)

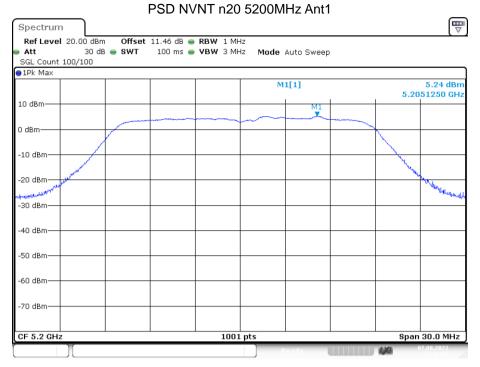
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	Ant1	5.563	11	Pass
NVNT	а	5200	Ant1	5.681	11	Pass
NVNT	а	5240	Ant1	5.326	11	Pass
NVNT	n20	5180	Ant1	3.004	11	Pass
NVNT	n20	5200	Ant1	5.243	11	Pass
NVNT	n20	5240	Ant1	4.087	11	Pass
NVNT	n40	5190	Ant1	0.66	11	Pass
NVNT	n40	5230	Ant1	0.945	11	Pass


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	а	5180	Ant2	5.427	11	Pass
NVNT	а	5200	Ant2	5.907	11	Pass
NVNT	a	5240	Ant2	6.117	11	Pass
NVNT	n20	5180	Ant2	4.762	11	Pass
NVNT	n20	5200	Ant2	5.351	11	Pass
NVNT	n20	5240	Ant2	4.488	11	Pass
NVNT	n40	5190	Ant2	0.815	11	Pass
NVNT	n40	5230	Ant2	1.064	11	Pass

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	n20	5180	MIMO	6.98	9.04	Pass
NVNT	n20	5200	MIMO	8.31	9.04	Pass
NVNT	n20	5240	MIMO	7.30	9.04	Pass
NVNT	n40	5190	MIMO	3.75	9.04	Pass
NVNT	n40	5230	MIMO	4.02	9.04	Pass

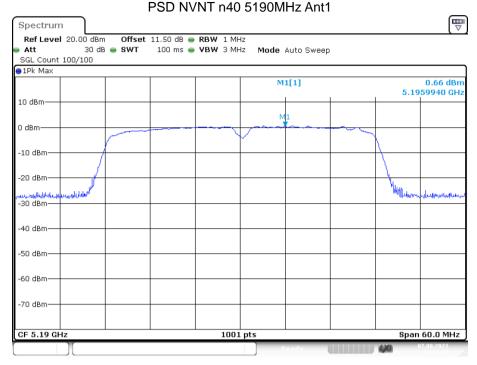

Note: 1. Directional gain=7.96dBi, so the Conducted Power Limit need to reduce 1.96.

Date: 7.AUG.2023 12:11:31


Date: 7.AUG.2023 12:19:59

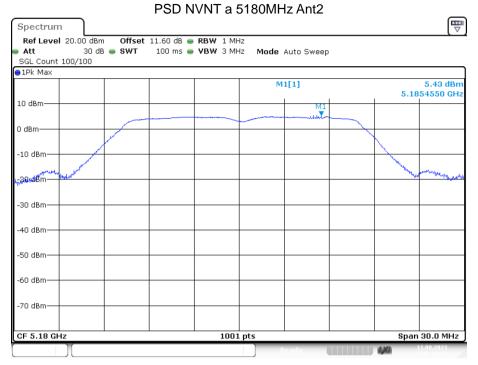
Date: 7.AUG.2023 12:30:49

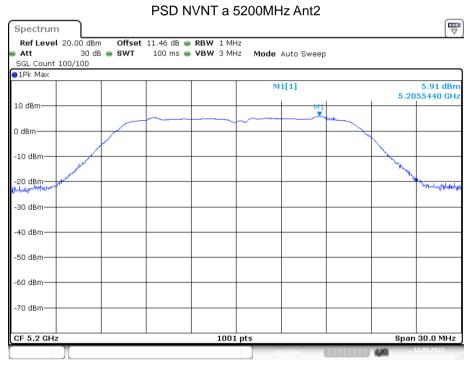
PSD NVNT n20 5180MHz Ant1 lacksquareSpectrum Offset 11.60 dB ● RBW 1 MHz SWT 100 ms ● VBW 3 MHz Ref Level 20.00 dBm Att 30 SGL Count 100/100 30 dB 🁄 SWT Mode Auto Sweep ●1Pk Max M1[1] 3.00 dBr 5.1824580 GH 10 dBm-0 dBm--10 dBm -20 dBm -30 dBm--40 dBm -50 dBm--60 dBm--70 dBm-CF 5.18 GHz 1001 pts Span 30.0 MHz


Date: 7.AUG.2023 12:42:02

Date: 7.AUG.2023 12:48:06

PSD NVNT n20 5240MHz Ant1 lacksquareSpectrum Offset 11.65 dB ● RBW 1 MHz SWT 100 ms ● VBW 3 MHz Ref Level 20.00 dBm Att 30 SGL Count 100/100 30 dB 🁄 SWT Mode Auto Sweep ●1Pk Max M1[1] 4.09 dBr 5.2447350 GH 10 dBm-0 dBm--10 dBm -20 dBm -30 dBm--40 dBm -50 dBm--60 dBm--70 dBm-CF 5.24 GHz 1001 pts Span 30.0 MHz


Date: 7.AUG.2023 12:59:23

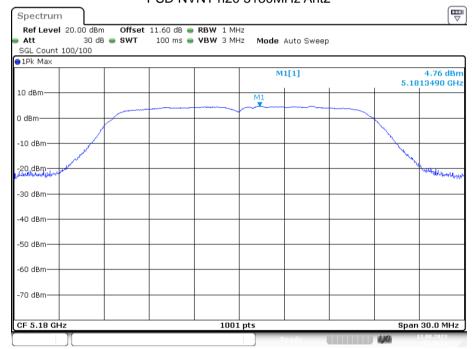

Date: 7.AUG.2023 13:13:36

PSD NVNT n40 5230MHz Ant1 lacksquareSpectrum Offset 11.60 dB ● RBW 1 MHz SWT 100 ms ● VBW 3 MHz Ref Level 20.00 dBm Att 30 SGL Count 100/100 30 dB 🁄 SWT Mode Auto Sweep ●1Pk Max M1[1] 0.94 dBn 10 dBm 0 dBm--10 dBm -20 dBm Holythown -30 dBm--40 dBm -50 dBm--60 dBm--70 dBm-CF 5.23 GHz 1001 pts Span 60.0 MHz

Date: 7.AUG.2023 13:24:14

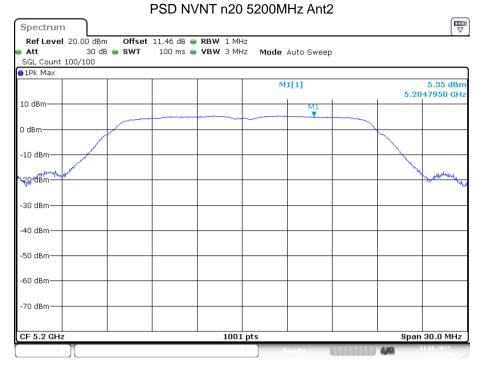


Date: 11.AUG.2023 06:44:23


Date: 11.AUG.2023 07:05:49

PSD NVNT a 5240MHz Ant2

Date: 11.AUG.2023 07:08:33

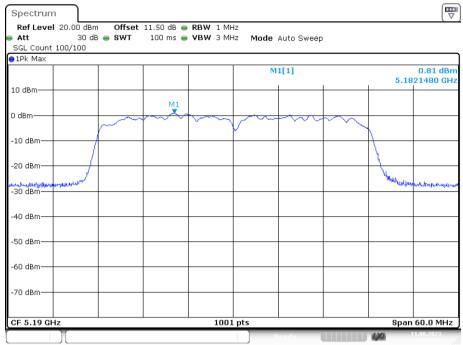

PSD NVNT n20 5180MHz Ant2

Date: 11.AUG.2023 07:20:50

Report No.: A2307263-C01-R03

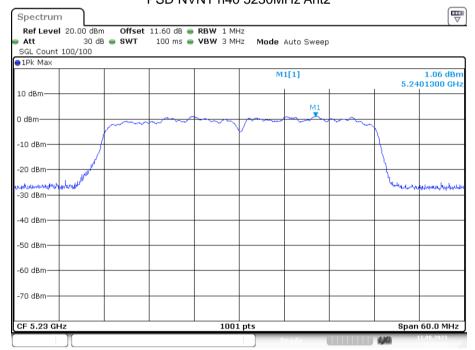
Span 30.0 MHz

Date: 11.AUG.2023 07:24:23

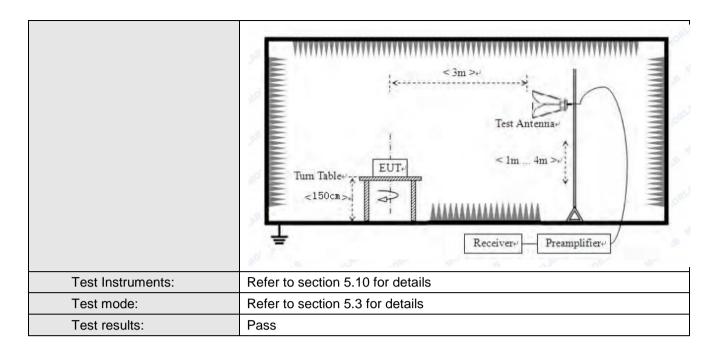

PSD NVNT n20 5240MHz Ant2 Spectrum Offset 11.65 dB RBW 1 MHz Ref Level 20.00 dBm Att 30 SGL Count 100/100 30 dB 🁄 SWT Mode Auto Sweep ●1Pk Max M1[1] 4.49 dBm 5.2389510 GH 10 dBm-0 dBm--10 dBm -20 dBm -30 dBm--40 dBm--50 dBm--60 dBm--70 dBm-

1001 pts

Date: 11.AUG.2023 09:27:22


CF 5.24 GHz

Date: 11.AUG.2023 11:18:51


PSD NVNT n40 5230MHz Ant2

Date: 11.AUG.2023 11:12:25

4.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 15.205							
Test Method:	ANSI C63.10:2013							
Test site:	Measurement Dis	stance: 3m ((Sen	ni-Anechoi	ic Chambei	r)		
Receiver setup:								
•	Frequency	Detector		RBW	VBW	Remark		
	30MHz-1GHz	Quasi-pea	ık	100KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak		1MHz	3MHz	Peak Value		
122		AV		1MHz	3MHz	Average Value		
Limit:	Frequen	iCV	l ir	mit (dBuV/	m @3m)	Remark		
	30MHz-88			40.0		Quasi-peak Value		
	88MHz-216			43.5		Quasi-peak Value		
	216MHz-96	0MHz		46.0)	Quasi-peak Value		
	960MHz-1	GHz		54.0		Quasi-peak Value		
	Above 10	GHz		54.0		Average Value		
	7.5575	, <u> </u>		68.2	2	Peak Value		
Test Procedure:	outside of the dBm/MHz. (2) For transmitted outside of the dBm/MHz. If generate end applicable ted band (include emission EIF (3) For transmitted outside of the dBm/MHz. a. The EUT was ground at a 3 determine the determine the determine the determine the determine the determine the determine tower. c. The antenna ground to determine the measure determine the determine the determine the determine the determine the determine the determine tower. c. The antenna ground to determine the measure determine the determi	ers operating e 5.15-5.35 ers operating e 5.15-5.35 Devices operating indoor RP limit of -2 ers operating e 5.47-5.725 es placed on B meter came e position of s set 3 meter ch was mouther the divertical poment. Pected emis n the antenine rotable tand the maximiter system and width with	g in GH erati the erati use 7 dE g in the to the erati the eration of the eration	the 5.25- z band sh ing in the 5.15-5.2 nents for ce of or alter many many many many many many many many	sall not exc 5.35 GHz sall not exc e 5.25-5.3 5 GHz base operation in matively m the 5.15-5 5.725 GHz sall not exc tating table was rotate adiation. the interfered p of a varial meter to for use of the fiel the antennal			
	the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.							
Test setup:	Above 1GHz							

Remark:

According to KDB 789033 D02 ν 02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2,

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Band1

Bandi							
Mo	ode:	802	.11a	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	36.07	17.18	53.25	68.20	-14.95	PK
V	5150.00	35.68	17.18	52.86	68.20	-15.34	PK
Mo	ode:	802	.11a	Frequ	iencv:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	24.33	17.18	41.51	54.00	-12.49	AV
V	5150.00	24.03	17.18	41.21	54.00	-12.79	AV
Mo	ode:	802	.11a	Frequ	iency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	35.68	17.18	52.86	68.20	-15.34	PK
V	5350.00	35.00	17.18	52.18	68.20	-16.02	PK
	•						
Мс	Mode: 802.11a		Frequ	iency:	5240MHz		
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	26.93	17.18	44.11	54.00	-9.89	AV
V	5350.00	24.25	17.18	41.43	54.00	-12.57	AV

Report N	lo.: A2307263-	C01-R03
----------	----------------	---------

Mo	ode:	802.11	n(HT20)	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	37.48	17.18	54.66	68.20	-13.54	PK
V	5150.00	34.83	17.18	52.01	68.20	-16.19	PK
				T		1	
Mo	ode:	802.11	n(HT20)	Frequ	iency:	5180)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	28.09	17.18	45.27	54.00	-8.73	AV
V	5150.00	26.02	17.18	43.20	54.00	-10.80	AV
Мс	ode:	802.11	n(HT20)	Frequ	iency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	37.42	17.18	54.60	68.20	-13.60	PK
V	5350.00	32.83	17.18	50.01	68.20	-18.19	PK
Мс	ode:	802.11n(HT20)		Frequ	iency:	5240)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	27.88	17.18	45.06	54.00	-8.94	AV
V	5350.00	24.32	17.18	41.50	54.00	-12.50	AV

Мо	ode:	802.11r	n(HT40)	Frequ	ıency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	35.71	17.18	52.89	68.20	-15.31	PK
V	5150.00	33.56	17.18	50.74	68.20	-17.46	PK
				T		Ī	
Mo	ode:	802.11r	(HT40)	Frequ	iency:	5190)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5150.00	24.95	17.18	42.13	54.00	-11.87	AV
V	5150.00	26.00	17.18	43.18	54.00	-10.82	AV
Мо	ode:	802.11r	n(HT40)	Frequ	iency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	34.00	17.18	51.18	68.20	-17.02	PK
V	5350.00	33.87	17.18	51.05	68.20	-17.15	PK
Мо	ode:	802.11r	n(HT40)	Frequ	iency:	5230)MHz
Antenna Pol.	Frequency (MHz)	Reading Level (dBuV)	Factor (dB/m)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over limit(dB)	Detector
Н	5350.00	27.24	17.18	44.42	54.00	-9.58	AV
V	5350.00	25.74	17.18	42.92	54.00	-11.08	AV

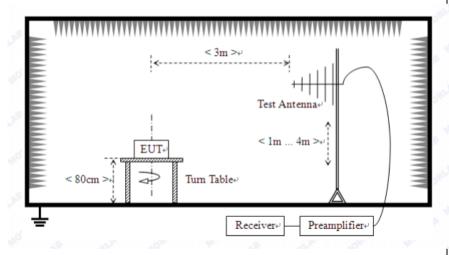
Note: 1. Except for mode a, other modes test the MIMO status.

^{2.} Mode a represents the worst data of antenna 1.

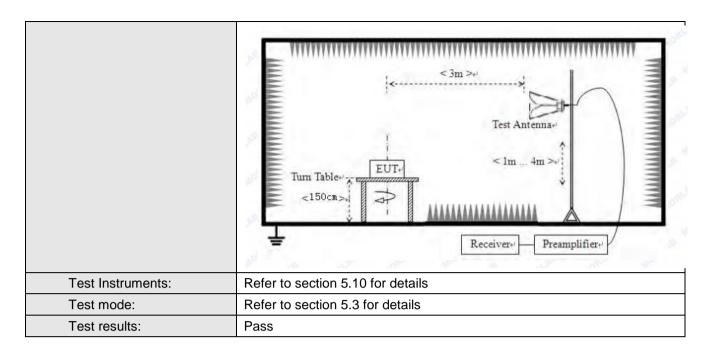
4.7 Radiated Emission

4.7	Radiated Emission							
	Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
	Test Method:	ANSI C63.10:20	013					
	Test Frequency Range:	30MHz to 40GH	l z					
	Test site:	Measurement D	Distance: 3m (Semi-Anecho	ic Chambei	-)		
	Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	receiver cetap.	30MHz- 1GHz	Quasi-peak		300KHz	Quasi-peak Value		
		Above 1GHz	Peak AV	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value		
	Limit:	Freque		Limit (dBuV/		Remark		
		30MHz-8		40.0		Quasi-peak Value		
		88MHz-2	16MHz	43.5	5	Quasi-peak Value		
		216MHz-9	60MHz	46.0)	Quasi-peak Value		
		960MHz-	-1GHz	54.0)	Quasi-peak Value		
		Above 1	IGHz			Peak Value		
						Average Value		
	Test Procedure:	960MHz-1GHz 54.0 Quasi-peak V Above 1GHz 74.0 Peak Value						
		receiver. 3. The transmitter shall be switched on, if possible, without modulation						

transmitter under test.

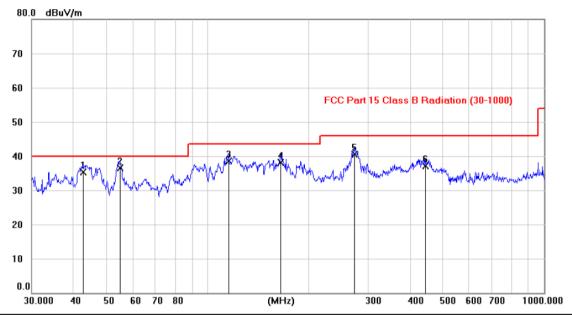

and the measuring receiver shall be tuned to the frequency of the

- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi) where:


Pg is the generator output power into the substitution antenna.

Test setup:

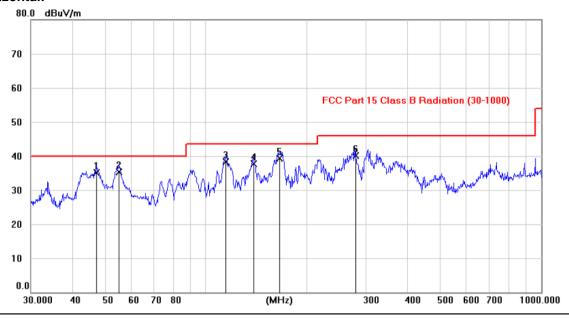
Below 1GHz


Above 1GHz

Measurement Data:

Below 1GHz

Vertical:



No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		42.6298	21.13	14.27	35.40	40.00	-4.60	QP			
2	*	54.9117	22.99	13.58	36.57	40.00	-3.43	QP			
3		115.3205	26.03	12.47	38.50	43.50	-5.00	QP			
4		165.0038	23.64	14.56	38.20	43.50	-5.30	QP			
5		273.6175	27.17	13.39	40.56	46.00	-5.44	QP			
6		444.0721	19.71	17.42	37.13	46.00	-8.87	QP			

Note:1. *:Maximum data; x:Over limit; !:over margin.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Horizontal:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		47.1984	21.13	14.07	35.20	40.00	-4.80	QP			
2		55.0467	21.74	13.57	35.31	40.00	-4.69	QP			
3		114.8900	25.94	12.42	38.36	43.50	-5.14	QP			
4		138.8247	23.41	14.23	37.64	43.50	-5.86	QP			
5	*	165.6415	24.89	14.50	39.39	43.50	-4.11	QP			
6		279.3373	26.55	13.55	40.10	46.00	-5.90	QP			

Note:1. *:Maximum data; x:Over limit; !:over margin.

Remark: All modes have been tested, and only worst data of a mode, Channel 5180MHz was listed in this report.

^{2.}Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Above 1GHz:

10360.38

15540.64

64.27

68.14

9.4

8.5

14.62

17.66

32.65

34.46

Above 1GHz:								
			8 02.11	la(HT20) 51	80MHz			
	Read	Antenna	Cable	Preamp		Limate Limas	Over	
Frequency	Level	Factor	Loss	Factor	Level	Limit Line	Limit	polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	•
10360.86	67.23	11.25	14.62	32.65	60.45	74	-13.55	Vertical
15540.33	63.76	11.93	17.66	34.46	58.89	74	-15.11	Vertical
10360.79	64.94	9.4	14.62	32.65	56.31	74	-17.69	Horizontal
15540.07	68.52	8.5	17.66	34.46	60.22	74	-13.78	Horizontal
		I.		a(HT20) 52				
Гиалиланан	Read	Antenna	Cable	Preamp		Lineit Line	Over	
Frequency	Level	Factor	Loss	Factor	Level	Limit Line	Limit	polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	·
10360.33	67.45	11.25	14.62	32.65	60.67	74	-13.33	Vertical
15540.27	63.25	11.93	17.66	34.46	58.38	74	-15.62	Vertical
10360.31	64.70	9.4	14.62	32.65	56.07	74	-17.93	Horizontal
15540.24	67.69	8.5	17.66	34.46	59.39	74	-14.61	Horizontal
			802.11	la(HT20) 52	40MHz		•	
Fragues 61	Read	Antenna	Cable	Preamp	Lovel	Limit Line	Over	
Frequency	Level	Factor	Loss	Factor	Level		Limit	polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
10360.76	67.01	11.25	14.62	32.65	60.23	74	-13.77	Vertical
15540.97	63.40	11.93	17.66	34.46	58.53	74	-15.47	Vertical
10360.81	65.04	9.4	14.62	32.65	56.41	74	-17.59	Horizontal
15540.56	68.26	8.5	17.66	34.46	59.96	74	-14.04	Horizontal
			802.11	In(HT20) 51	80MHz			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
, ,	(dBuV)	(dB/m)	(dB)	(dB)	,	(ubu v/III)	(dB)	
10360.52	67.65	11.25	14.62	32.65	60.87	74	-13.13	Vertical
15540.05	62.79	11.93	17.66	34.46	57.92	74	-16.08	Vertical
10360.88	64.26	9.4	14.62	32.65	55.63	74	-18.37	Horizontal
15540.11	68.45	8.5	17.66	34.46	60.15	74	-13.85	Horizontal
				In(HT20) 52	00MHz			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
(1411-12)	(dBuV)	(dB/m)	(dB)	(dB)	,	(abav/III)	(dB)	
10360.92	67.51	11.25	14.62	32.65	60.73	74	-13.27	Vertical
15540.80	63.20	11.93	17.66	34.46	58.33	74	-15.67	Vertical
10360.60	64.58	9.4	14.62	32.65	55.95	74	-18.05	Horizontal
15540.34	68.23	8.5	17.66	34.46	59.93	74	-14.07	Horizontal
				n(HT20) 52	40MHz			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
, ,	(dBuV)	(dB/m)	(dB)	(dB)	,	,	(dB)	
10360.20	67.14	11.25	14.62	32.65	60.36	74	-13.64	Vertical
15540.87	63.40	11.93	17.66	34.46	58.53	74	-15.47	Vertical
10260 20	64.27	0.4	1460	22.65	EE 61	7/	10.26	Harizantal

55.64

59.84

74

74

-18.36

-14.16

Horizontal

Horizontal

802.11n(HT40) 5190MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.85	67.11	11.25	14.62	32.65	60.33	74	-13.67	Vertical
15540.65	63.69	11.93	17.66	34.46	58.82	74	-15.18	Vertical
10360.02	64.86	9.4	14.62	32.65	56.23	74	-17.77	Horizontal
15540.37	67.93	8.5	17.66	34.46	59.63	74	-14.37	Horizontal

802.11n(HT40) 5230MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360.97	67.66	11.25	14.62	32.65	60.88	74	-13.12	Vertical
15540.70	63.37	11.93	17.66	34.46	58.50	74	-15.50	Vertical
10360.61	65.08	9.4	14.62	32.65	56.45	74	-17.55	Horizontal
15540.75	67.64	8.5	17.66	34.46	59.34	74	-14.66	Horizontal

Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.
- 4. Except for mode a, other modes test the MIMO status.
- 5. Mode a represents the worst data of antenna 1

4.8 Frequency stability

Test limit	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
Test results:	Pass

Measurement Data:

Mode	Voltage	FHL	Deviation	FHH	Deviation
	(V)	(5180MHz)	(KHz)	(5240MHz)	(KHz)
Band 1	DC 6.29V	5179.992	8	5239.987	13
(5150-5250	DC 7.40V	5179.992	8	5239.992	8
MHz)	DC 8.51V	5179.989	11	5239.987	13

Mode	Temperature (°C)	FHL (5180MHz)	Deviation (KHz)	FHH (5240MHz)	Deviation (KHz)
Band 1 (5150-5250 MHz)	-20℃	5179.991	9	5239.991	9
	-10℃	5179.990	10	5239.988	12
	-5℃	5179.987	13	5239.990	10
	0℃	5179.988	12	5239.990	10
	+10℃	5179.988	12	5239.987	13
	+20℃	5179.987	13	5239.990	10
	+30℃	5179.990	10	5239.991	9
	+40 ℃	5179.986	14	5239.987	13
	+50℃	5179.988	12	5239.991	9

-----END OF REPORT-----