

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZ-R12-2200083

FCC REPORT

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court Bells Yew Green

Equipment Under Test (EUT)

Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor

Helium Hotspot ROCK Pi 4 Version

Model No.: NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-

HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-868-

3, NEBHNT-HHRK4-915-3

FCC ID: 2AZDM-HHRK4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 05 Jan., 2022

Date of Test: 06 Jan., to 27 Jan., 2022

Date of report issued: 28 Jan., 2022

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	28 Jan., 2022	Original

Tested by:

Test Engineer

Date: 28 Jan., 2022

Reviewed by:

Date: 28 Jan., 2022

Project Engineer

Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4		T SUMMARY	
5		IERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	
	5.9	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	BAND EDGE	13
	6.3.1		
	6.4	Spurious Emission	26
	6.4.1	Radiated Emission Method	26
7	TES	T SETUP PHOTO	33
Ω	FIIT	CONSTRUCTIONAL DETAILS	95

Test Summary

Test Items Section in CFR 47 Test Data Result Antenna requirement 15.203 & 15.247 (b) See Section 6.1 Pass AC Power Line Conducted Emission 15.207 See Section 6.2 Pass Duty Cycle ANSI C63.10-2013 Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass Conducted Peak Output Power 15.247 (b)(3) Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass 6dB Emission Bandwidth 99% Occupied Bandwidth 15.247 (a)(2) Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass Power Spectral Density 15.247 (e) Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass Conducted Band Edge 15.247 (d) Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass Conducted Spurious Emission 15.205 & 15.209 Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass Radiated Sourious Emission 15.205 & 15.209 Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass	+ rest Carminary			
Duty Cycle	Test Items	Section in CFR 47	Test Data	Result
Duty Cycle	Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
Duty Cycle	AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Conducted Peak Output Power 15.247 (b)(3) 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass 6dB Emission Bandwidth 99% Occupied Bandwidth 15.247 (a)(2) Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass Power Spectral Density 15.247 (e) Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass Conducted Band Edge 15.247 (d) Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass Conducted Spurious Emission 15.205 & 15.209 Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass	Duty Cycle	ANSI C63.10-2013	2AI4I-AP6212 Report No.: DRTFCC1610-	Pass
6dB Emission Bandwidth 15.247 (a)(2) 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass Power Spectral Density 15.247 (e) Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass Conducted Band Edge 15.247 (d) Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass Radiated Band Edge See Section 6.3.1 Pass Conducted Spurious Emission 15.205 & 15.209 Please refer to FCC ID: 2Al4I-AP6212 Report No.: DRTFCC1610-0134 Pass	Conducted Peak Output Power	15.247 (b)(3)	2AI4I-AP6212 Report No.: DRTFCC1610-	Pass
Power Spectral Density 15.247 (e) 2AI4I-AP6212 Report No.: DRTFCC1610-0134		15.247 (a)(2)	2AI4I-AP6212 Report No.: DRTFCC1610-	Pass
Conducted Band Edge 15.247 (d) 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass Radiated Band Edge See Section 6.3.1 Pass Conducted Spurious Emission 15.205 & 15.209 Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610-0134 Pass	Power Spectral Density	15.247 (e)	2AI4I-AP6212 Report No.: DRTFCC1610-	Pass
Conducted Spurious Emission Please refer to FCC ID: 2AI4I-AP6212 Report No.: DRTFCC1610- 0134 Pass	Conducted Band Edge	15.247 (d)	2AI4I-AP6212 Report No.: DRTFCC1610-	Pass
Conducted Spurious Emission 15.205 & 15.209 2AI4I-AP6212 Report No.: DRTFCC1610- 0134 Pass	Radiated Band Edge		See Section 6.3.1	Pass
Radiated Spurious Emission See Section 6.4.1 Pass	Conducted Spurious Emission	15.205 & 15.209	2AI4I-AP6212 Report No.: DRTFCC1610-	Pass
	Radiated Spurious Emission		See Section 6.4.1	Pass

Remark:

- Pass: The EUT complies with the essential requirements in the standard.
- N/A: Not Applicable.

3. Pass*: Please refer to FCC ID: 2AI4I-AP6212, and the report No.: DRTFCC1610-0134 issue by DT&C Co., Ltd

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Page 4 of 35

5 General Information

5.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green
Manufacturer:	Nebra Ltd
Address: Unit 4 Bells Yew Green Business Court Bells Yew Green	

5.2 General Description of E.U.T.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version
Model No.:	NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 75Mbps
Antenna Type:	External Antenna
Antenna gain:	1 dBi
AC adapter:	Model No.:R241-1202500I Input: AC100-240V, 50/60Hz 1.5 A Output: DC 12.0V, 2.5A
Remark:	Model No.: NEBHNT-HHRK4-433, NEBHNT-HHRK4-470, NEBHNT-HHRK4-868, NEBHNT-HHRK4-915, NEBHNT-HHRK4-433-2, NEBHNT-HHRK4-470-2, NEBHNT-HHRK4-868-2, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-433-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, NEBHNT-HHRK4-470-3, NEBHNT-HHRK4-868-3, NEBHNT-HHRK4-915-3, The difference between the models is that the LoRa Radio module used inside is different for each variant. Along with a respective antenna for each region / frequency. The -2 and -3 flags at the end of the model number relates to the specific chip part number for the main LoRa chip.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		
Note:							
1. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel.							

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Transmitting mode	Keep the EUT in continuous transmitting with modulation		

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode	Data rate			
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(HT20)	6.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Radiated Emission (9kHz ~ 30MHz electric field) for 3m SAC	3.13 dB
Radiated Emission (9kHz ~ 30MHz magnetic field) for 3m SAC	3.13 dB
Radiated Emission (30MHz ~ 1GHz) for 3m SAC	4.45 dB
Radiated Emission (1GHz ~ 18GHz) for 3m SAC	5.34 dB
Radiated Emission (18GHz ~ 40GHz) for 3m SAC	5.34 dB

5.6 Additions to, deviations, or exclusions from the method

No

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022
Biconical Antenna	SCHWARZBECK	VUBA 9117	9117#359	06-17-2021	06-17-2022
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1068	04-02-2021	04-01-2022
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022
Spectrum analyzer	Keysight	N9010B	MY60240202	10-27-2021	10-26-2022
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022
EMI Test Software	Tonscend	TS+		Version:3.0.0.1	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	03-18-2021	03-17-2022
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022
Cable	Bost	JYTCE-1G-BN-3M	JYTCE-2	03-03-2021	03-02-2022
EMI Test Software	AUDIX	E3	V	ersion: 6.110919	b

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: JYTSZ-R12-2200083

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

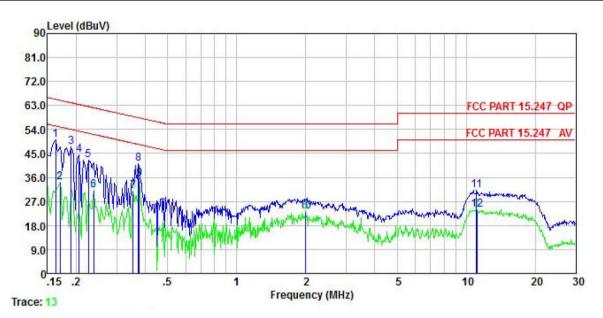
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an External antenna which cannot replace by end-user, the best case gain of the antenna is 1 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.2 Conducted Emission

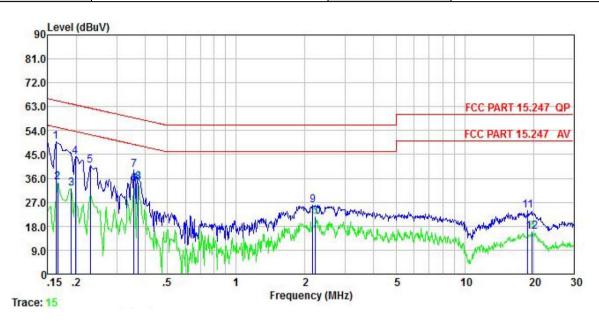

			-	
Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarit	hm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 			
Test setup:	LISN	st	er — AC power	
Test Instruments:	Refer to section 5.9 for deta	Refer to section 5.9 for details		
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.162	50.09	0.04	0.01	50.14	65.34	-15.20	QP
2	0.170	34.07	0.04	0.01	34.12	54.94	-20.82	Average
3	0.190	47.56	0.04	0.03	47.63	64.02	-16.39	QP
4	0.206	44.48	0.04	0.04	44.56	63.36	-18.80	QP
5	0.226	42.44	0.04	0.02	42.50	62.61	-20.11	QP
6	0.238	31.19	0.04	0.02	31.25	52.17	-20.92	Average
1 2 3 4 5 6 7 8 9	0.354	30.76	0.04	0.02	30.82	48.87	-18.05	Average
8	0.373	41.02	0.04	0.03	41.09	58.43	-17.34	QP
9	0.377	35.32	0.04	0.03	35.39	48.34	-12.95	Average
10	2.001	22.85	0.07	0.21	23.13	46.00	-22.87	Average
11	11.080	30.87	0.22	0.11	31.20	60.00	-28.80	QP
12	11.139	23.68	0.23	0.11	24.02	50.00	-25.98	Average


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>ab</u>	dBu₹	dBu∜	<u>dB</u>	
1 2 3	0.162	49.86	0.05	0.01	49.92		-15.42	130.7770
2	0.166	34.64	0.05	0.01	34.70	55.16	-20.46	Average
	0.190	32.07	0.04	0.03	32.14	54.02	-21.88	Average
4 5 6	0.198	44.20	0.04	0.04	44.28	63.71	-19.43	QP
5	0.230	40.71	0.04	0.02	40.77	62.44	-21.67	QP
6	0.358	33.82	0.04	0.02	33.88	48.78	-14.90	Average
7	0.358	39.08	0.04	0.02	39.14	58.78	-19.64	QP
8	0.373	34.47	0.04	0.03	34.54	48.43	-13.89	Average
9	2.167	25.71	0.06	0.18	25.95	56.00	-30.05	QP
10	2.225	21.30	0.07	0.17	21.54	46.00	-24.46	Average
11	18.920	23.40	0.29	0.15	23.84		-36.16	
12	19.740	15.37	0.30	0.15	15.82			Average

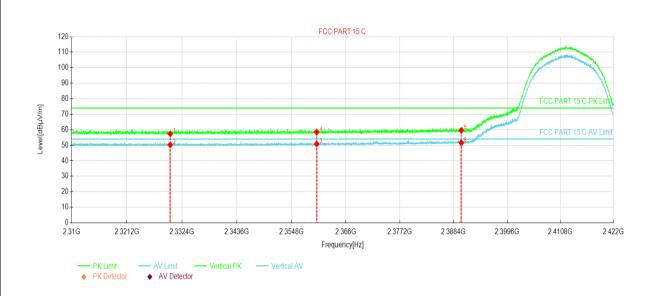
Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.3 Band Edge

6.3.1 Radiated Emission Method

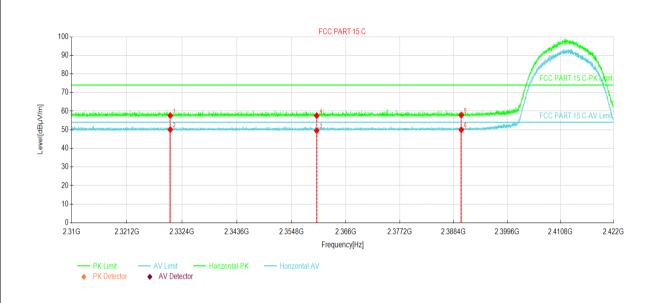

Test Requirement:	FCC Part 15 C Se	ection 15.209	and 15.205			
Test Frequency Range:	2310 MHz to 2390) MHz and 24	83.5 MHz to 2	500 MHz		
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
I instit.	Frequency	RMS	1MHz nit (dBuV/m @	3MHz	Average Value Remark	
Limit:	54.00 Average V					
	Above 1GH	z 🗀	74.00		Peak Value	
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 					
Test setup:	- 136cm	AE EUT (Turntable)	Ground Reference Plane	Antenna Antenna I	Tower	
Test Instruments:	Refer to section 5	.9 for details				
Test mode:	Refer to section 5	.3 for details				
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11b mode:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

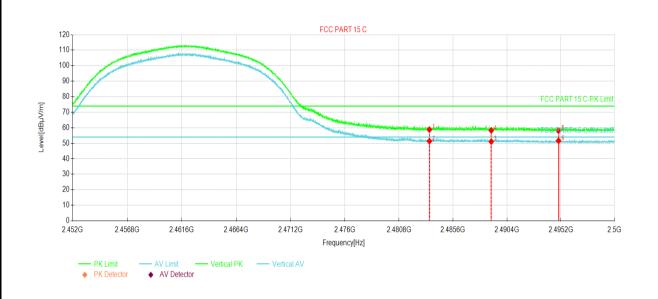
Suspe	Suspected Data List									
NO a	Freq.⊌	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	T	Delegitus		
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace₽	Polarity₽		
1₽	2330.00	21.98₽	57.39₽	35.41₽	74.00₽	16.61₽	PK₽	Vertical₽		
2↩	2330.00	14.84₽	50.25₽	35.41₽	54.00₽	3.75₽	AV₽	Vertical₽		
3↩	2360.00	15.21₽	50.84₽	35.63₽	54.00₽	3.16₽	AV₽	Vertical₽		
4₽	2360.00	22.85₽	58.48₽	35.63₽	74.00₽	15.52₽	PK₽	Vertical₽		
5↔	2390.00	23.71₽	59.55₽	35.84₽	74.00₽	14.45₽	PK₽	Vertical₽		
6↩	2390.00	15.77₽	51.61₽	35.84₽	54.00₽	2.39₽	AV₽	Vertical₽		


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 14 of 35

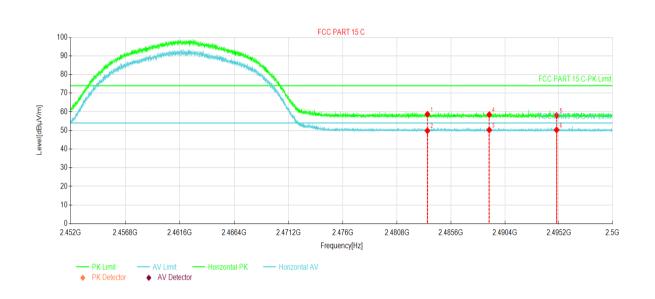
Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Suspe	Suspected Data List∂									
NO -	Freq.⊬	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	Т	Delegion		
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]∂	Trace₽	Polarity₽		
1₽	2330.00	22.24₽	57.65₽	35.41₽	74.00₽	16.35₽	PK₽	Horizontal₽		
24□	2330.00	14.68₽	50.09₽	35.41₽	54.00₽	3.91₽	AV₽	Horizontal₽		
3₽	2360.00	13.87₽	49.50₽	35.63₽	54.00₽	4.50₽	AV₽	Horizontal₽		
4 ₽	2360.00	21.93₽	57.56₽	35.63₽	74.00₽	16.44₽	PK₽	Horizontal₽		
54□	2390.00	21.98₽	57.82₽	35.84₽	74.00₽	16.18₽	PK₽	Horizontal₽		
64□	2390.00	14.16₽	50.00₽	35.84₽	54.00₽	4.00₽	AV₽	Horizontal₽		

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

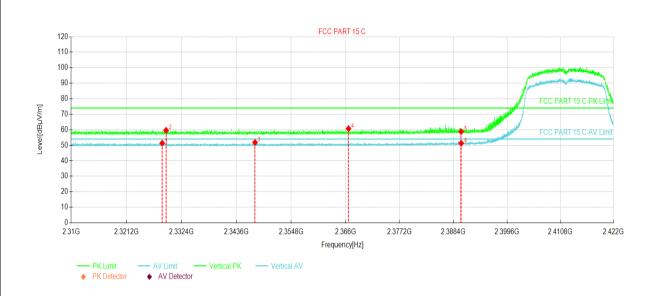


Suspe	Suspected Data List∂									
NO a	Freq.⊌	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	T	Delember		
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB] <i>₽</i>	Trace₽	Polarity₽		
1₽	2483.50	23.06₽	58.78₽	35.72₽	74.00₽	15.22₽	PK₽	Vertical₽		
2↩	2483.50	15.60₽	51.32₽	35.72₽	54.00₽	2.68₽	AV₽	Vertical₽		
3₽	2489.00	15.37₽	51.08₽	35.71₽	54.00₽	2.92₽	AV₽	Vertical₽		
4₽	2489.00	22.52₽	58.23₽	35.71₽	74.00₽	15.77₽	PK₽	Vertical₽		
5₊□	2495.00	22.37₽	58.06₽	35.69₽	74.00₽	15.94₽	PK₽	Vertical₽		
6₽	2495.00	15.96₽	51.65₽	35.69₽	54.00₽	2.35₽	AV₽	Vertical₽		

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Suspe	Suspected Data List∂							
NO.₽	Freq.⊌	Reading⊍	Level⊬	Factor⊎	Limit∉	Margin⊎	Trace₽	Polarity <i></i>
NO.	[MHz]∂	[dBµV/m]∂	[dBµV/m]₽	[dB]₽	[dBµV/m]∂	[dB]∂	Hace	1 Glanty
1₽	2483.50	22.93₽	58.65₽	35.72₽	74.00₽	15.35₽	PK₽	Horizontal₽
24□	2483.50	14.12₽	49.84₽	35.72₽	54.00₽	4.16₽	AV₽	Horizontal₽
3↩	2489.00	14.54₽	50.25₽	35.71₽	54.00₽	3.75₽	AV₽	Horizontal₽
4 42	2489.00	22.76₽	58.47₽	35.71₽	74.00₽	15.53₽	PK₽	Horizontal₽
5↔	2495.00	22.32₽	58.01₽	35.69₽	74.00₽	15.99₽	PK₽	Horizontal₽
6↩	2495.00	14.62₽	50.31₽	35.69₽	54.00₽	3.69₽	AV₽	Horizontal₽

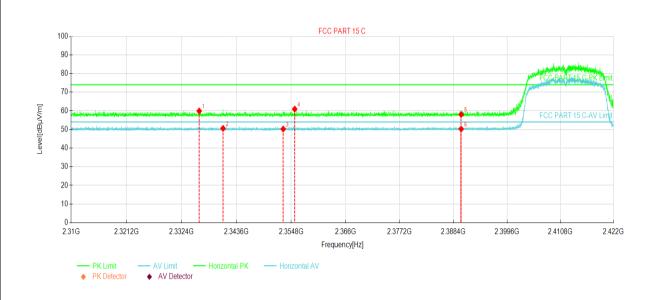

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 17 of 35

802.11g mode:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version			
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

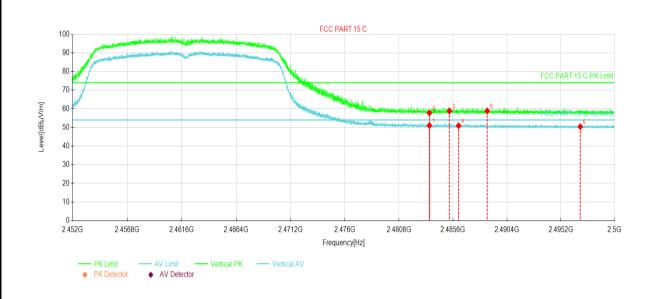
Suspe	Suspected Data List							
NO -	Freq.⊌	Reading⊎	Level⊬	Factor⊎	Limit∉	Margin⊎	T	Delesia
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]₽	Trace₽	Polarity∂
1.₽	2328.43	15.96₽	51.36₽	35.40₽	54.00₽	2.64₽	AV₽	Vertical₽
2↩	2329.22	24.19₽	59.60₽	35.41₽	74.00₽	14.40₽	PK₽	Vertical₽
3⇔	2347.38	16.24₽	51.78₽	35.54₽	54.00₽	2.22₽	AV₽	Vertical₽
4 42	2366.61	25.01₽	60.68₽	35.67₽	74.00₽	13.32₽	PK₽	Vertical₽
5⇔	2390.01	22.93₽	58.77₽	35.84₽	74.00₽	15.23₽	PK₽	Vertical₽
6↩	2390.01	15.44₽	51.28₽	35.84₽	54.00∢	2.72₽	AV₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 35

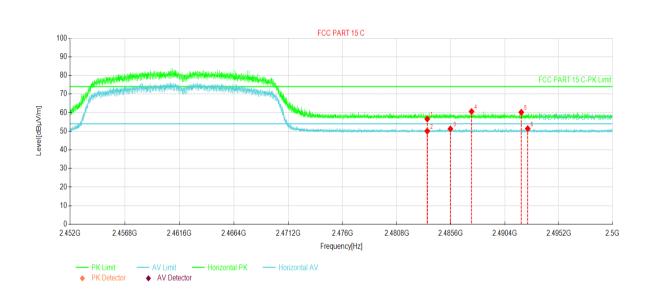
Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


Suspe	Suspected Data List							
NO a	Freq.⊬	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	T	Delegitus
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]∂	Trace₽	Polarity∉
1₽	2335.97	24.43₽	59.89₽	35.46₽	74.00₽	14.11₽	PK₽	Horizontal₽
2↩	2340.84	15.08₽	50.57₽	35.49₽	54.00₽	3.43₽	AV₽	Horizontal₽
3↩	2353.16	14.65₽	50.23₽	35.58₽	54.00₽	3.77₽	AV₽	Horizontal₽
4₽	2355.52	25.33₽	60.92₽	35.59₽	74.00₽	13.08₽	PK₽	Horizontal₽
5↩	2390.01	22.20₽	58.04₽	35.84₽	74.00₽	15.96₽	PK₽	Horizontal₽
6↩	2390.01	14.40₽	50.24₽	35.84₽	54.00₽	3.76₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

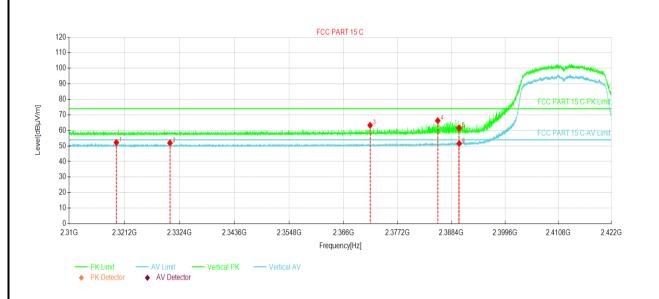

Suspe	Suspected Data List							
NO -	Freq.⊌	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	T	Delegitera
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]₽	[dBµV/m]∂	[dB]₽	Trace₽	Polarity₽
1₽	2483.50	15.31₽	51.03₽	35.72₽	54.00₽	2.97₽	AV₽	Vertical₽
24□	2483.50	22.03₽	57.75₽	35.72₽	74.00₽	16.25₽	PK₽	Vertical₽
3⇔	2485.28	23.12₽	58.83₽	35.71₽	74.00₽	15.17₽	PK₽	Vertical₽
4 43	2486.09	15.19₽	50.90₽	35.71₽	54.00₽	3.10₽	AV₽	Vertical₽
5⇔	2488.64	23.15₽	58.86₽	35.71₽	74.00₽	15.14₽	PK₽	Vertical₽
64□	2496.94	14.72₽	50.41₽	35.69₽	54.00₽	3.59₽	AV₽	Vertical₽

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List							
NO -	Freq.⊌	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	Т	Delegitus
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]∂	[dB]∂	[dBµV/m]∂	[dB]₽	Trace₽	Polarity∉
1₽	2483.50	20.85₽	56.57₽	35.72₽	74.00₽	17.43₽	PK₽	Horizontal₽
2↩	2483.50	14.35₽	50.07₽	35.72₽	54.00₽	3.93₽	AV₽	Horizontal₽
3↩	2485.55	15.56₽	51.27₽	35.71₽	54.00₽	2.73₽	AV₽	Horizontal₽
4₽	2487.43	24.88₽	60.59₽	35.71₽	74.00₽	13.41₽	PK₽	Horizontal₽
5↔	2491.86	24.48₽	60.18₽	35.70₽	74.00₽	13.82₽	PK₽	Horizontal₽
6⇔	2492.43	15.69₽	51.39₽	35.70₽	54.00₽	2.61₽	AVℯℷ	Horizontal₽

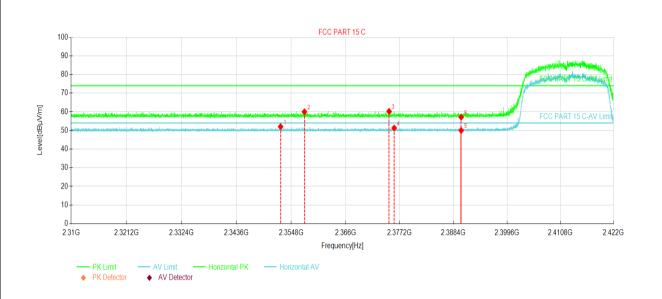

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 21 of 35

802.11n(HT20):

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

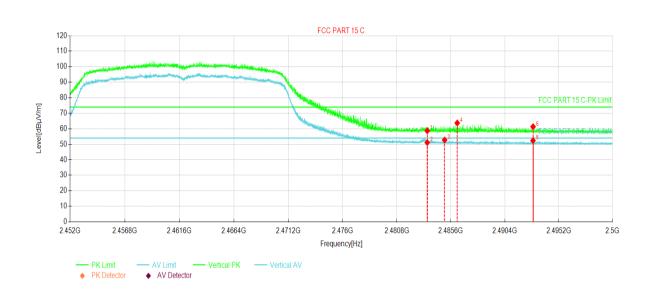
Suspe	Suspected Data List								
NO.₽	Freq.⊬	Reading⊎	Level⊬	Factor⊎	Limit⊬	Margin⊎	T	Delevitor	
NO.₽	[MHz]∂	[dBµV/m]∂	[dBµV/m]₽	[dB]∂	[dBµV/m]₽	[dB]∂	Trace₽	Polarity₽	
1₽	2319.54	16.90₽	52.24₽	35.34₽	54.00₽	1.76₽	AV₽	Vertical₽	
2↩	2330.42	16.50₽	51.92₽	35.42₽	54.00₽	2.08₽	AV₽	Vertical₽	
3₽	2371.50	27.63₽	63.34₽	35.71₽	74.00₽	10.66₽	PK₽	Vertical₽	
4₽	2385.54	30.48₽	66.29₽	35.81₽	74.00₽	7.71₽	PK₽	Vertical₽	
5↩	2390.01	25.73₽	61.57₽	35.84₽	74.00₽	12.43₽	PK₽	Vertical₽	
6↩	2390.01	15.74₽	51.58₽	35.84₽	54.00₽	2.42₽	AV₽	Vertical₽	


Remark:

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 35

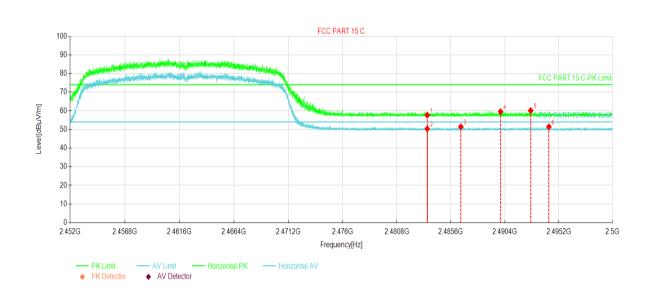
Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model: NEBHNT-HHRK4-915		
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	


Suspe	Suspected Data List										
NO.₽	Freq.↵ [MHz]↵	Reading⊬ [dBµV/m]∂	Level⊬ [dBµV/m]∂	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽			
1₽	2352.63	16.46₽	52.03₽	35.57₽	54.00₽	1.97₽	AV₽	Horizontal₽			
2↔	2357.53	24.38₽	59.99₽	35.61₽	74.00₽	14.01₽	PK₽	Horizontal₽			
3⇔	2375.01	24.49₽	60.22₽	35.73₽	74.00₽	13.78₽	PK₽	Horizontal₽			
4 42	2376.08	15.55₽	51.29₽	35.74₽	54.00₽	2.71₽	AV₽	Horizontal₽			
5⇔	2390.01	14.15₽	49.99₽	35.84₽	54.00₽	4.01₽	AV₽	Horizontal₽			
64□	2390.01	21.31₽	57.15₽	35.84₽	74.00₽	16.85₽	PK₽	Horizontal₽			

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 23 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	


Suspe	Suspected Data List										
NO.₽	Freq.↵ [MHz]↵	Reading⊬ [dBµV/m]∂	Level⊬ [dBµV/m]∂	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]∂	Margin⊬ [dB]∉	Trace₽	Polarity₽			
1₽	2483.50	22.97₽	58.69₽	35.72₽	74.00₽	15.31₽	PK₽	Vertical₽			
2₽	2483.50	15.38₽	51.10₽	35.72₽	54.00₽	2.90₽	AV₽	Vertical₽			
3↩	2485.04	17.03₽	52.74₽	35.71₽	54.00₽	1.26₽	AV₽	Vertical₽			
4₽	2486.16	28.00₽	63.71₽	35.71₽	74.00₽	10.29₽	PK₽	Vertical₽			
5↩	2492.90	16.68₽	52.38₽	35.70₽	54.00₽	1.62₽	AV₽	Vertical₽			
6↩	2492.91	25.61₽	61.31₽	35.70₽	74.00₽	12.69₽	PK₽	Vertical₽			

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

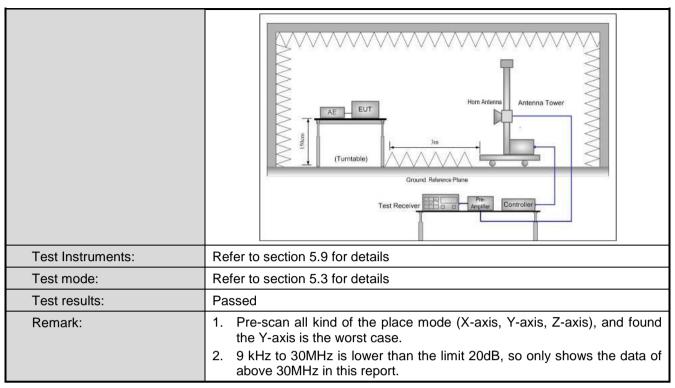
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

Suspe	Suspected Data List∂										
NO.₽	Freq. <i>⊍</i> [MHz] <i>⊍</i>	Reading√ [dBµV/m]∂	Level⊬ [dBµV/m]∂	Factor⊍ [dB]∉	Limit⊬ [dBμV/m]∂	Margin↵ [dB]↵	Trace₽	Polarity₽			
1₽	2483.50	21.92₽	57.64₽	35.72₽	74.00₽	16.36₽	PK₽	Horizontal₽			
24□	2483.50	14.60₽	50.32₽	35.72₽	54.00₽	3.68₽	AV₽	Horizontal₽			
3↩	2486.48	15.74₽	51.45₽	35.71₽	54.00₽	2.55₽	AV₽	Horizontal₽			
4 42	2490.01	23.83₽	59.53₽	35.70₽	74.00₽	14.47₽	PK₽	Horizontal₽			
54□	2492.69	24.41₽	60.11₽	35.70₽	74.00₽	13.89₽	PK₽	Horizontal₽			
6↩	2494.32	15.70₽	51.39₽	35.69₽	54.00₽	2.61₽	AV₽	Horizontal₽			

- 1. Final Level = Receiver Read level + Factor(Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

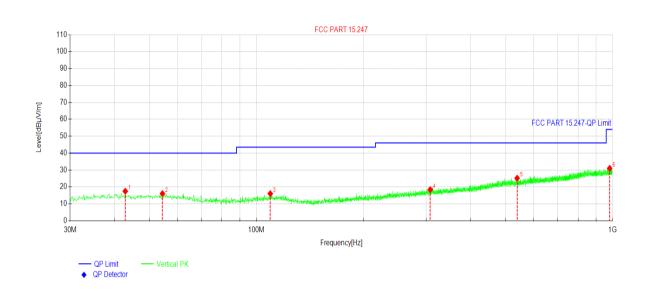
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


6.4 Spurious Emission

6.4.1 Radiated Emission Method

Test Requirement:	FCC Part 15 C Se	ction 15.	209 ar	nd 15.205			1
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m						
Receiver setup:	Frequency D		ctor	RBW	V	BW	Remark
Receiver setup.	30MHz-1GHz	Quasi-		120KHz)KHz	Quasi-peak Value
		Pea	•	1MHz		ЛНz	Peak Value
	Above 1GHz R		S	1MHz	31	MHz Average Value	
Limit:	Frequency		Limi	t (dBuV/m @3	m)		Remark
	30MHz-88MH			40.0			uasi-peak Value
	88MHz-216MH			43.5			uasi-peak Value
	216MHz-960M			46.0			uasi-peak Value
	960MHz-1GH	Z		54.0 54.0			uasi-peak Value Average Value
	Above 1GHz	-		74.0		,	Peak Value
Test Procedure:	The table was highest radiated 2. The EUT was antenna, which tower. 3. The antenna ground to det horizontal and measurement 4. For each sustand then the and the rota towarimum reasonable and the rota towarimum reasonable and the self-rece specified Bar 6. If the emission limit specified the EUT would be a self-table and the self-table and table and	above 10 s rotated tion. s set 3 m ch was m height is ermine the divertical t. pected e antenna able was ading. iver system dwidth was not level of l, then teld be repwould be	eters and an analysis of the maximum was turned em was turned et an analysis of the Elsting coorted. On the energy of the energy	way from the don the top of from one medimum value of the top of t	einterrof a value eter to of the eas arrest from the Model word are emisone us	t a 3 mile the professions and the professions ing peak	eter chamber. Position of the e-receiving height antenna heters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the etion and dB lower than the beak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz EUT Turn Table Ground B	3m → 3m → 0.8m				Ant	enna Tower Search ntenna

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

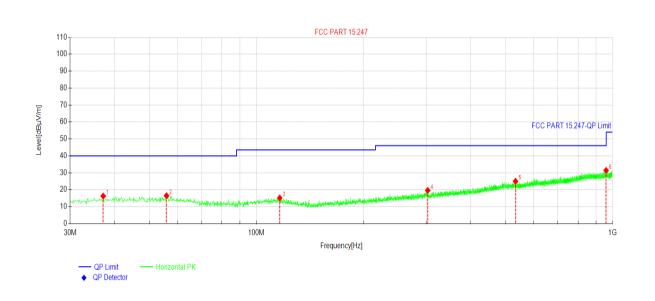

Page 27 of 35

Measurement Data (worst case):

Below 1GHz:

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	42.8525	32.26	17.47	-14.79	40.00	22.53	PK	Vertical
2	54.4925	30.68	16.06	-14.62	40.00	23.94	PK	Vertical
3	109.418	31.90	16.04	-15.86	43.50	27.46	PK	Vertical
4	307.783	30.92	18.43	-12.49	46.00	27.57	PK	Vertical
5	539.735	31.97	25.17	-6.80	46.00	20.83	PK	Vertical
6	981.812	31.89	31.01	-0.88	54.00	22.99	PK	Vertical


Remark:

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 28 of 35

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915	
Test By:	Mike	Test mode:	Wi-Fi Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	37.1538	31.03	16.26	-14.77	40.00	23.74	PK	Horizontal
2	55.9475	31.15	16.46	-14.69	40.00	23.54	PK	Horizontal
3	116.330	30.76	15.14	-15.62	43.50	28.36	PK	Horizontal
4	302.812	32.27	19.64	-12.63	46.00	26.36	PK	Horizontal
5	534.278	31.83	24.99	-6.84	46.00	21.01	PK	Horizontal
6	959.502	32.28	31.40	-0.88	46.00	14.60	PK	Horizontal

- 1. Final Level = Receiver Read level + Factor (Antenna Factor + Cable Loss Preamplifier Factor).
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Above 1GHz

Above 1GHz						
			802.11b			
		Test ch	annel: Lowest ch	nannel		
		De	tector: Peak Valu	ie		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	54.25	-9.46	44.79	74.00	29.21	Vertical
4824.00	55.48	-9.46	46.02	74.00	27.98	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	47.09	-9.46	37.63	54.00	16.37	Vertical
4824.00	48.11	-9.46	38.65	54.00	15.35	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ie		_
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	54.45	-9.11	45.34	74.00	28.66	Vertical
4874.00	55.60	-9.11	46.49	74.00	27.51	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	47.45	-9.11	38.34	54.00	15.66	Vertical
4874.00	47.87	-9.11	38.76	54.00	15.24	Horizontal
		Test cha	annel: Highest cl	nannel		
	1	Det	tector: Peak Valu		1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	54.62	-8.74	45.88	74.00	28.12	Vertical
4924.00	55.60	-8.74	46.86	74.00	27.14	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	47.19	-8.74	38.45	54.00	15.55	Vertical
4924.00	47.81	-8.74	39.07	54.00	14.93	Horizontal
Remark:						

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

	802.11g								
		Test ch	annel: Lowest ch	nannel					
	Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	54.09	-9.46	44.63	74.00	29.37	Vertical			
4824.00	55.31	-9.46	45.85	74.00	28.15	Horizontal			
		Dete	ctor: Average Va	alue					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4824.00	47.44	-9.46	37.98	54.00	16.02	Vertical			
4824.00	48.20	-9.46	38.74	54.00	15.26	Horizontal			
			nannel: Middle ch						
	T	De	tector: Peak Valu						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	54.00	-9.11	44.89	74.00	29.11	Vertical			
4874.00	55.42	-9.11	46.31	74.00	27.69	Horizontal			
		Dete	ctor: Average Va	alue	_				
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			
4874.00	47.53	-9.11	38.42	54.00	15.58	Vertical			
4874.00	47.97	-9.11	38.86	54.00	15.14	Horizontal			
		Test ch	annel: Highest c	hannel					
		De	tector: Peak Valu	ne					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization			

Detector: Peak Value									
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
	4924.00	54.16	-8.74	45.42	74.00	28.58	Vertical		
	4924.00	55.04	-8.74	46.30	74.00	27.70	Horizontal		
	Detector: Average Value								
	Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization		
	4924.00	47.49	-8.74	38.75	54.00	15.25	Vertical		
	4924.00	48.36	-8.74	39.62	54.00	14.38	Horizontal		

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11n(HT20)							
		Test ch	annel: Lowest ch	nannel						
		De	tector: Peak Valu	ie						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	54.38	-9.46	44.92	74.00	29.08	Vertical				
4824.00	55.33	-9.46	45.87	74.00	28.13	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	47.44	-9.46	37.98	54.00	16.02	Vertical				
4824.00	48.61	-9.46	39.15	54.00	14.85	Horizontal				
		Test ch	annel: Middle ch	nannel						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4874.00	54.21	-9.11	45.10	74.00	28.90	Vertical				
4874.00	54.98	-9.11	45.87	74.00	28.13	Horizontal				
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4874.00	47.92	-9.11	38.81	54.00	15.19	Vertical				
4874.00	49.08	-9.11	39.97	54.00	14.03	Horizontal				
			annel: Highest c							
		De	tector: Peak Valu		Τ					
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	54.34	-8.74	45.60	74.00	28.40	Vertical				
4924.00	55.36	-8.74	46.62	74.00	27.38	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	48.07	-8.74	39.33	54.00	14.67	Vertical				
4924.00	48.67	-8.74	39.93	54.00	14.07	Horizontal				
Remark: 1. Final Level =	Receiver Read level	+ Factor.								

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 32 of 35

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.