

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2200686

FCC RF Test Report

Applicant: Nebra Ltd

Address of Applicant: Unit 4 Bells Yew Green Business Court Bells Yew Green

Equipment Under Test (EUT)

Product Name: Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra

Indoor Helium Hotspot ROCK Pi 4 Version

Model No.: NNEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-

HHRK4-915-3

FCC ID: 2AZDM-HHRK4-1

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 01 Mar., 2022

Date of Test: 02 Mar., to 07 May, 2022

Date of Report Issued: 18 May, 2022

Test Result: PASS

Tested by: 18 May, 2022

Reviewed by: Date: 18 May, 2022

Approved by: Date: 18 May, 2022

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 May, 2022	Original
01	18 May, 2022	Update Model No.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

3 Contents

		Page
1 Cc	over Page	
2 Ve	ersion	2
3 Cc	ontents	3
4 Ge	eneral Information	4
4.1 4.2 4.3 4.4	Client Information	4 5
4.5 4.6 4.7 4.8 4.9	Measurement Uncertainty	5 5 5
_	easurement Setup and Procedure	
5.1 5.2 5.3	Test Channel Test Setup Test Procedure	7
6 Te	est Results	10
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Summary Antenna Requirement AC Power Line Conducted Emission Conducted Output Power 6dB Occupied Bandwidth 20dB Occupied Bandwidth Carrier Frequencies Separation Hopping Channel Number Dwell Time	
6.10 6.11	Power Spectral Density	

4 General Information

4.1 Client Information

Applicant:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green
Manufacturer/ Factory:	Nebra Ltd
Address:	Unit 4 Bells Yew Green Business Court Bells Yew Green

4.2 General Description of E.U.T.

TIE Concrai Becomp	
Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version
Model No.:	NNEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-915-3
Operation Frequency:	903.9 MHz – 905.3 MHz
Number of Channel:	8
Modulation Type:	LoRa
Modulation Technology:	Hybrid spread-spectrum
Antenna Type:	External Antenna
Antenna Gain:	3dBi (declare by applicant)
AC Adapter:	Model No.:R241-1202500I
	Input: AC100-240V, 50/60Hz 1.5 A
	Output: DC 12.0V, 2.5A
Remark:	Model No.: NEBHNT-HHRK4-915, NEBHNT-HHRK4-915-2, NEBHNT-HHRK4-915-3 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

4.3 Test Mode and Test Environment

Test Modes:					
Non-hopping mode:	Keep the EUT in continuous transmitting mode.				
Hopping mode:	eep the EUT in hopping mode.				
Remark: The report only refle	ects the test data of worst mode.				
Operating Environment					
Temperature:	15℃ ~ 35℃				
Humidity:	20 % ~ 75 % RH				
Atmospheric Pressure:	1010 mbar				

4.4 Description of Support Units

The EUT has been tested as an independent unit.

4.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
Conducted Emission for LISN (9kHz ~ 150kHz)	±3.11 dB
Conducted Emission for LISN (150kHz ~ 30MHz)	±2.62 dB
Radiated Emission (30MHz ~ 1GHz) (3m SAC)	±4.45 dB
Radiated Emission (1GHz ~ 18GHz) (3m SAC)	±5.34 dB
Radiated Emission (18GHz ~ 40GHz) (3m SAC)	±5.34 dB

Note: All the measurement uncertainty value were shown with a coverage k=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

4.6 Additions to, Deviations, or Exclusions From the Method

No

4.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

4.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-169-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

4.9 Test Instruments List

Radiated Emission(3m SAC):					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	ETS	9m*6m*6m	WXJ001-1	01-19-2021	01-18-2024
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	02-17-2022	02-16-2023
Biconical Antenna	Schwarzbeck	VUBA9117	WXJ002-1	06-20-2021	06-19-2022
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-2	02-17-2022	02-16-2023
Horn Antenna	Schwarzbeck	BBHA9120D	WXJ002-3	06-18-2021	06-17-2022
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXG001-7	02-17-2022	02-16-2023
Pre-amplifier (1GHz ~ 18GHz)	SKET	LNPA_0118G-50	WXG001-3	02-17-2022	02-16-2023
Pre-amplifier (18GHz ~ 40GHz)	RF System	TRLA- 180400G45B	WXG001-9	02-17-2022	02-16-2023
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	02-17-2022	02-16-2023
Spectrum Analyzer	KEYSIGHT	N9010B	WXJ004-2	11-27-2021	11-26-2022
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N	/A
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	02-17-2022	02-16-2023
Coaxial Cable (1GHz ~ 18GHz)	JYTSZ	JYT3M-18G-NN- 8M	WXG001-5	02-17-2022	02-16-2023
Coaxial Cable (18GHz ~ 40GHz)	JYTSZ	JYT3M-40G-SS- 8M	WXG001-7	02-17-2022	02-16-2023
Test Software	Tonscend	TS+		Version: 3.0.0.1	

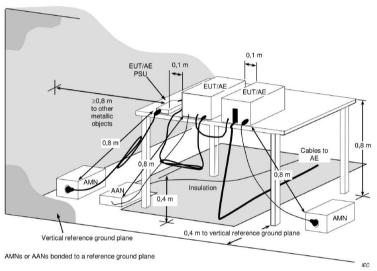
Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI 3	WXJ003	02-17-2022	02-16-2023
RF Switch	TOP PRECISION	RSU0301	WXG003	02-17-2022	02-16-2023
LISN	Schwarzbeck	NSLK 8127	QCJ001-13	02-17-2022	02-16-2023
LISN	Rohde & Schwarz	ESH3-Z5	WXJ005-1	06-18-2021	06-17-2022
LISN Coaxial Cable (9kHz ~ 30MHz)	JYTSZ	JYTCE-1G-NN-2M	WXG003-1	02-17-2022	02-16-2023
Test Software	AUDIX	E3	V	ersion: 6.110919/	b

Conducted Method:					
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date	Cal. Due date
rest Equipment	Wallalacturei			(mm-dd-yy)	(mm-dd-yy)
Spectrum Analyzer	Rohde & Schwarz	ESCI3	WXJ003	01-19-2022	01-18-2023
Spectrum Analyzer	Keysight	N9010B	WXJ004-3	10-27-2021	10-26-2022
DC Power Supply	Keysight	E3642A	WXJ025-2	10-25-2021	10-24-2022

5 Measurement Setup and Procedure

5.1 Test Channel

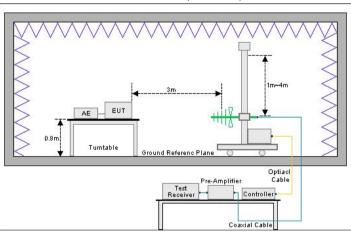
According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:


Channel	Frequency	Channel	Frequency	Channel	Frequency
1	903.9MHz	4	904.5MHz	7	905.1MHz
2	904.1MHz	5	904.7MHz	8	905.3MHz
3	904.3MHz	6	904.9MHz		

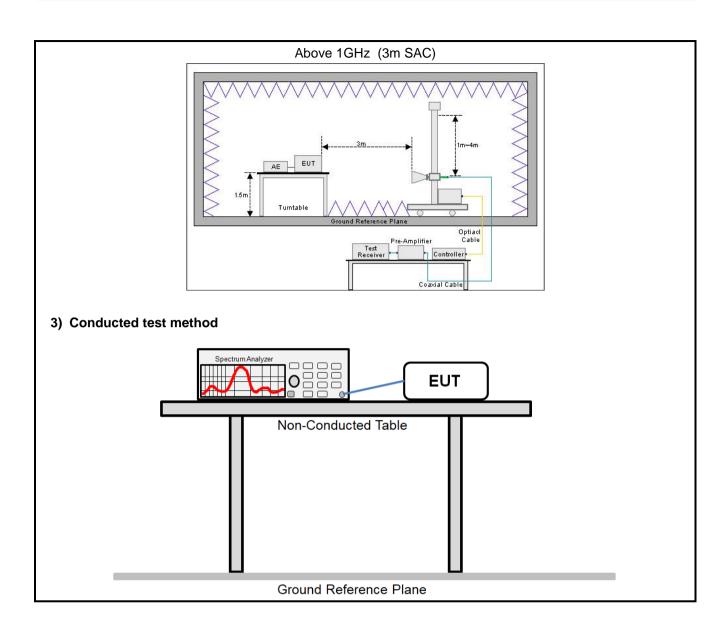
Note:

Channel No. 1, 5 & 8 were selected as Lowest, Middle and Highest channel.

5.2 Test Setup


1) Conducted emission measurement:

Note: The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m.


2) Radiated emission measurement:

Below 1GHz (3m SAC)

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-169-C No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

5.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
Conducted emission	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a
	3 m semi anechoic chamber. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
	·
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	Open the test software to control the test antenna and test turntable. Perform
	the test, save the test results, and export the test data.
Conducted test method	The antenna port of EUT was connected to the test port of the test system
	through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all
	modulation modes.
	3. Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through the test software.
	the test software.

6 Test Results

6.1 Summary

6.1.1 Clause and data summary

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	See Section 6.2	Pass
AC Power Line Conducted Emission	15.207	See Section 6.3	Pass
Conducted Output Power	15.247 (b)(2)	See Section 6.4	Pass
6dB Occupied Bandwidth	15.247 (a)(1)(i)	See Section 6.5	Pass
20dB Occupied Bandwidth	15.247 (a)(1)(i)	See Section 6.5	Pass
Carrier Frequencies Separation	15.247 (a)(1)	See Section 6.6	Pass
Hopping Channel Number	5.247 (a)(1)(i)	See Section 6.7	Pass
Dwell Time	15.247 (a)(1)(i)	See Section 6.8	Pass
Power Spectral Density	15.247 (e)	See Section 6.9	Pass
	15.205		
Spurious Emission	15.209	See Section 6.10	Pass
	15.247 (d)		

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

6.1.2 Test Limit

Test items	Limit				
	Frequency		Limit (dE	3μV)	
	(MHz)	Quas	si-Peak	Average	
AC Power Line Conducted	0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1	
Emission	0.5 – 5		56	46	
	5 – 30		60	50	
	Note 1: The limit level in dBµ Note 2: The more stringent li			n of frequency.	
Conducted Output Power	For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.				
6dB Occupied Bandwidth	There is no requirement for kHz minimum bandwidth r				
20dB Occupied Bandwidth	N/A				
Carrier Frequencies Separation	Frequency hopping syster separated by a minimum channel, whichever is great	of 25 kHz or th		•	
Hopping Channel Number	N/A				
Dwell Time	The transmission must comply with a 0.4 second/channel maximum dwell time when the hopping function is turned on.				
Max Power Density	As specified in Section 15.247(f), a hybrid system must comply with the power density standard of 8 dBm in any 3 kHz band when the frequency hopping function is turned off.				
Spurious Emission	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)):				
	Frequency	Limit (d	IBμV/m)	Detector	
	(MHz)	@ 3m	@ 10m		
	30 – 88	40.0	30.0	Quasi-peak	
	88 – 216	43.5	33.5	Quasi-peak	
	216 – 960	46.0	36.0	Quasi-peak	
	960 – 1000	54.0	44.0	Quasi-peak	
	Note: The more stringent limit	applies at transition		n) @ 2m	
	Frequency		Limit (dBµV/m		
	Average Peake Above 1 GHz 54.0 74.0				
	Above 1 GHz			74.0	
	Note: The measurement bandwidth shall be 1 MHz or greater.				

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No.: JYTSZ-R12-2200686

6.2 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

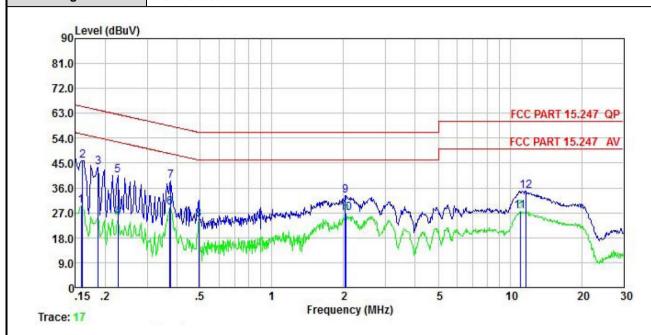
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

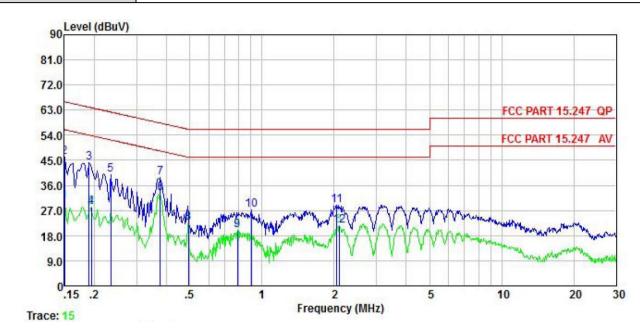
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:


The LoRa antenna is an External antenna which permanently attached, and the best case gain of the antenna is 3 dBi. See product internal photos for details.

6.3 AC Power Line Conducted Emission

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz		


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
-	MHz	dBu√	<u>dB</u>		dBu₹	dBu∜	<u>dB</u>	
1	0.158	29.67	0.00	0.01	29.68	55.56	-25.88	Average
2	0.161	45.81	0.00	0.01	45.82	65.43	-19.61	QP
3	0.186	43.55	0.00	0.02	43.57	64.20	-20.63	QP
4	0.226	25.18	0.00	0.02	25.20	52.61	-27.41	Average
5	0.226	40.49	0.00	0.02	40.51	62.61	-22.10	QP
6	0.373	28.87	0.00	0.03	28.90	48.43	-19.53	Average
1 2 3 4 5 6 7 8	0.377	38.44	0.00	0.03	38.47	58.34	-19.87	QP
8	0.494	24.64	0.00	0.03	24.67			Average
9	2.033	33.00	0.00	0.20	33.20	56.00	-22.80	QP
10	2.055	26.63	0.00	0.20	26.83			Average
11	11.021	27.36	0.00	0.11	27.47			Average
12	11.621	34.81	0.00	0.11	34.92		-25.08	

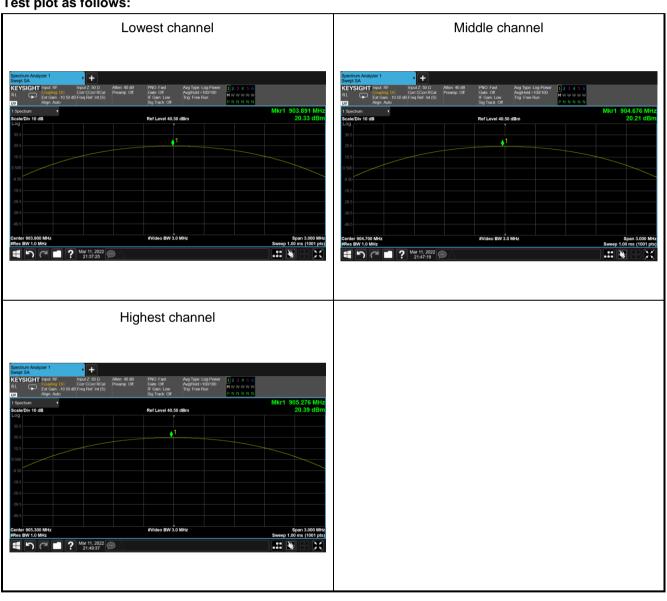
Remark:

1. Level = Read level + LISN Factor + Cable Loss.

Product name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product model:	NEBHNT-HHRK4-915
Test by:	Mike	Test mode:	Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu√	<u>dB</u>	dB	dBu₹	dBu√	dB	
1	0.150	30.33	0.00	0.01	30.34			Average
2	0.150	46.17	0.00	0.01	46.18	66.00	-19.82	QP
3	0.190	44.19	0.00	0.03	44.22	64.02	-19.80	QP
4	0.194	28.11	0.00	0.03	28.14	53.84	-25.70	Average
1 2 3 4 5 6 7	0.234	39.81	0.00	0.02	39.83		-22.47	
6	0.377	33.17	0.00	0.03	33.20	48.34	-15.14	Average
7	0.377	38.73	0.00	0.03	38.76		-19.58	
8	0.494	22.39	0.00	0.03	22.42			Average
8	0.792	19.85	0.00	0.03	19.88			Average
10	0.904	27.05	0.00	0.04	27.09	56.00	-28.91	QP
11	2.055	28.65	0.00	0.20	28.85		-27.15	
12	2.099	21.42	0.00	0.19	21.61			Average

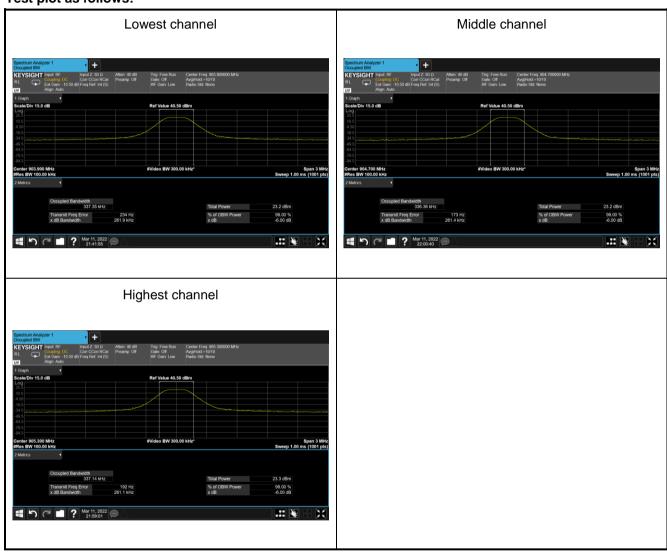
1. Level = Read level + LISN Factor + Cable Loss.



6.4 Conducted Output Power

Test channel	Maximum Output Power (dBm)	Limit (dBm)	Result
Lowest channel	20.33	24.00	Pass
Middle channel	20.21	24.00	Pass
Highest channel	20.39	24.00	Pass

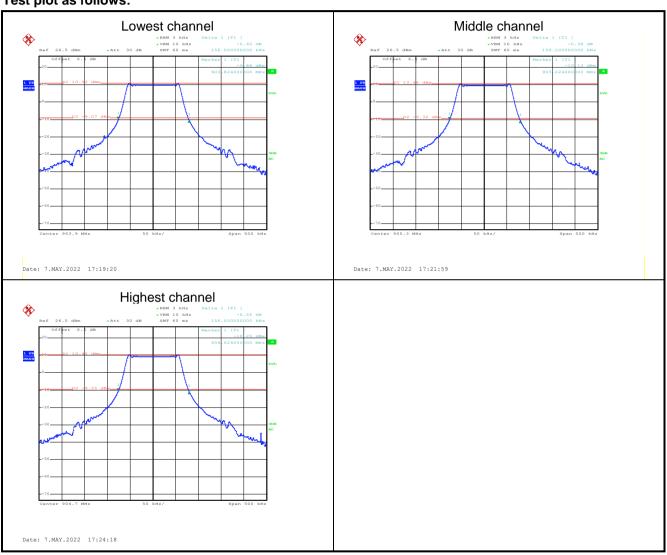
Test plot as follows:



6.5 6dB Occupied Bandwidth

Test channel	6dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest channel	261.9		Pass
Middle channel	261.4	N/A	Pass
Highest channel	261.1		Pass

Test plot as follows:



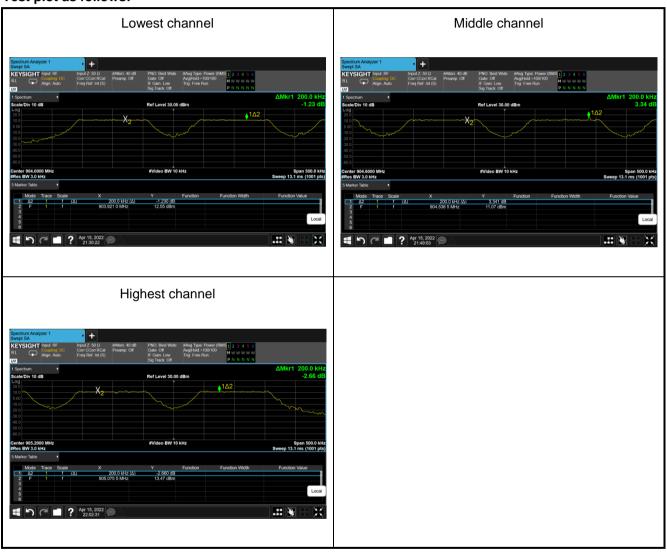
6.6 20dB Occupied Bandwidth

Test channel	20dB Occupy Bandwidth (kHz)	Limit (kHz)	Result
Lowest channel	156.0		Pass
Middle channel	156.0	N/A	Pass
Highest channel	156.0		Pass

Test plot as follows:

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



6.7 Carrier Frequencies Separation

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest channel	200		Pass
Middle channel	200	156.0	Pass
Highest channel	200		Pass

Test plot as follows:

6.8 Hopping Channel Number

Hopping channel numbers	Limit	Result
8	N/A	Pass

Test plot as follows:

6.9 Dwell Time

T _{on} (s)	Hopping numbers (10 s or 20 s period)	Dwell time (s)	Limit (s)	Result
0.055	3	0.165	0.4	Pass

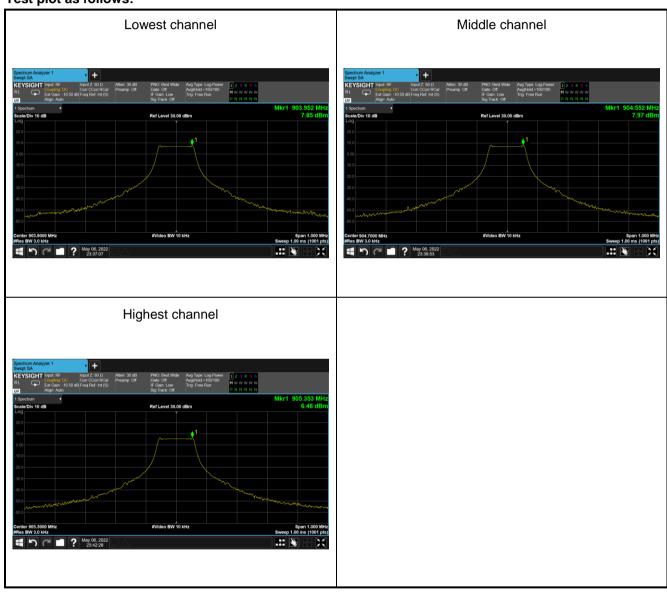
Note:

- 1. Ton is time per hop.
- 2. Dwell time = T_{on} * Hopping numbers.

Test plot as follows:

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

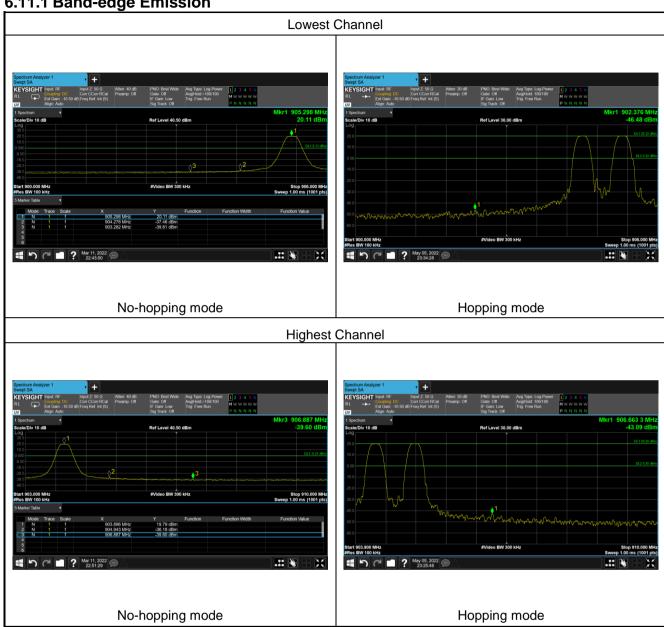
This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.



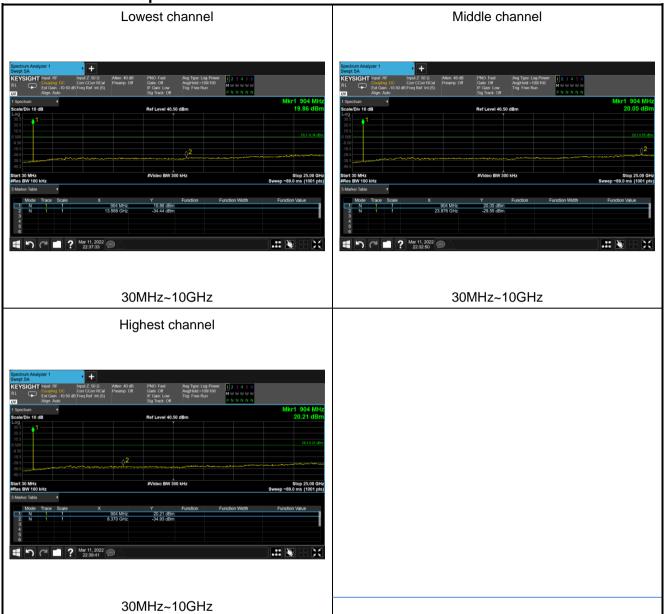
6.10 Power Spectral Density

Test Channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
Lowest channel	7.85		
Middle channel	7.97	8.00	Pass
Highest channel	6.48		

Test plot as follows:



6.11 Spurious Emission

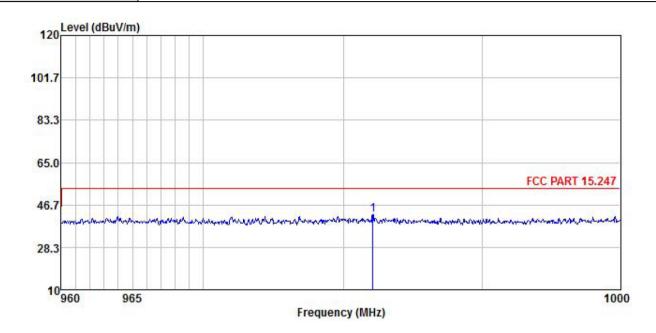

6.11.1 Band-edge Emission

6.11.2 Conducted Spurious Emission

6.11.3 Emissions in Restricted Frequency Bands

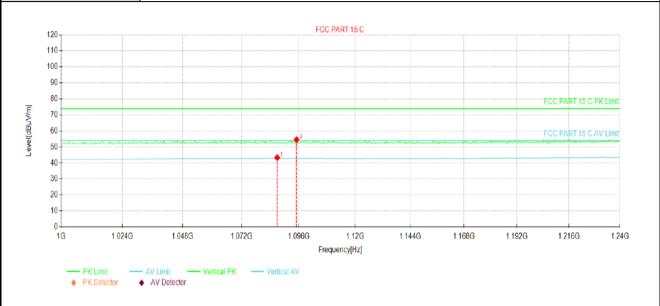
oduct Nan	Hotspot ROCK Pi 4 Version				Product M	lodel:	NEBHNT-HHRK4-915		
est By:		Mike				Test mode):	Tx mode	
est Channe	el:	960 MHz	960 MHz ~ 1 GHz			Polarizatio	on:	Vertica	ļ
est Voltage):	AC 120/6	0Hz						
120 Lev	el (dBuV/m)								
101.7									
83.3									
65.0								FC	C PART 15.247
65.0 46.7	No. Language Commence of the C	boland Abyrland Byr	and have not as a factor	and the co	an mand de la companya de la company	monana	Marine		C PART 15.247
125/756-5	Application of the second	hopeway have plant of the	ang began ang ang ang ang ang ang ang ang ang	and the second of the second o	and the second of the second o	1 Walaraka	Professional and the second		4000 1 - 1 - 1 - 1 - 1 - 1 - 1 -
46.7	965	holand Ship factor Phys	sanftage and parties reco		equency (M		Parameter		4000 1 - 1 - 1 - 1 - 1 - 1 - 1 -
46.7 /www. 28.3		ReadA	ıntenna	Fre Cable	equency (M Preamp	lHz)	Limit	Over	10
46.7 /www. 28.3		ReadA Level	intenna Factor	Fre Cable Loss	equency (M Preamp Factor	lHz)	Limit Line	Over Limit	10

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.


1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

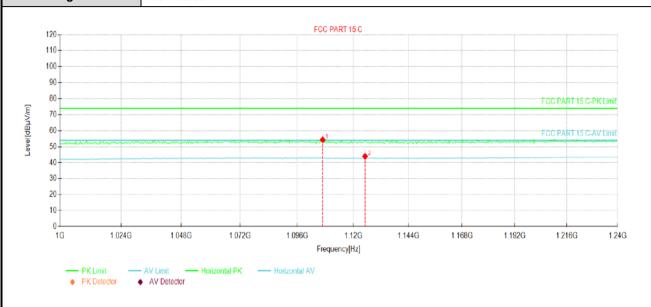
Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Channel:	960 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		



	Freq		Antenna Factor					Over Limit	
	MHz	dBuV		₫B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	982.078	16.05	23.00	3.61	0.00	42.66	54.00	-11.34	QP

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Channel:	1000 MHz ~ 1240 MHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		

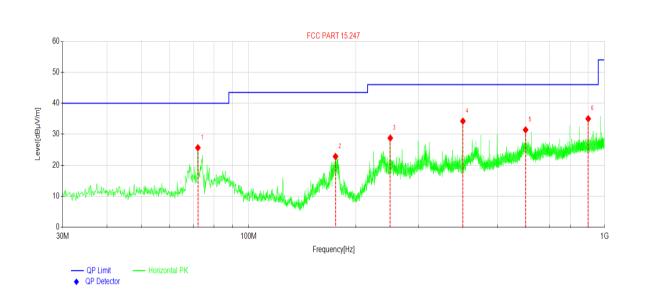


Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	1086.88	13.18	43.28	30.10	54.00	10.72	AV	Vertical
2	1095.04	24.39	54.53	30.14	74.00	19.47	PK	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Channel:	1000 MHz ~ 1240 MHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		

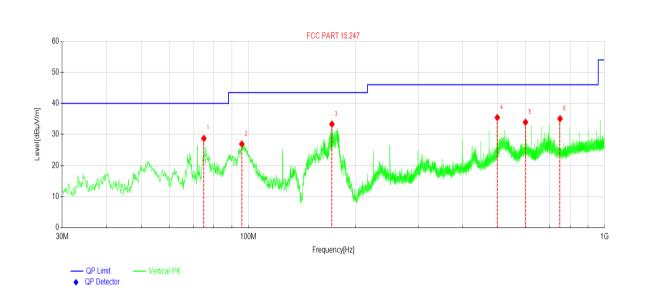
Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	1106.80	24.13	54.31	30.18	74.00	19.69	PK	Horizontal
2	1125.04	13.77	43.97	30.20	54.00	10.03	AV	Horizontal


1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

6.11.4 Emissions in Non-restricted Frequency Bands

Below 1GHz:

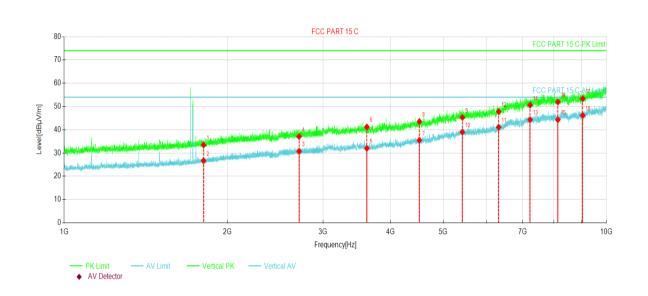
Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspe	Suspected Data List							
NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	72.0052	42.66	25.66	-17.00	40.00	14.34	PK	Horizontal
2	175.417	39.79	22.83	-16.96	43.50	20.67	PK	Horizontal
3	250.018	42.57	28.78	-13.79	46.00	17.22	PK	Horizontal
4	399.995	44.70	34.24	-10.46	46.00	11.76	PK	Horizontal
5	600.029	36.90	31.42	-5.48	46.00	14.58	PK	Horizontal
6	900.080	36.37	35.00	-1.37	46.00	11.00	PK	Horizontal

Remark:

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

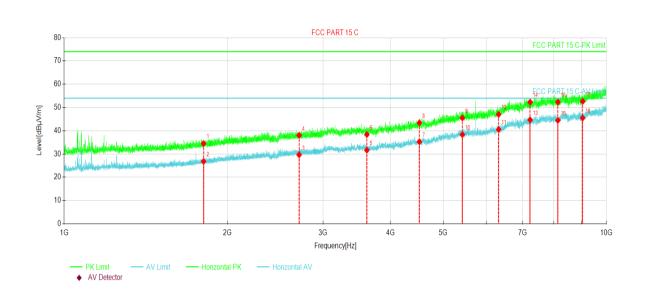
Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz		


Susp	Suspected Data List							
NO.	Freq. [MHz]	Reading[d BuV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBuV/m]	Margin [dB]	Trace	Polarity
1	75.0125	45.83	28.73	-17.10	40.00	11.27	PK	Vertical
2	95.8696	43.86	26.93	-16.93	43.50	16.57	PK	Vertical
3	171.634	50.30	33.31	-16.99	43.50	10.19	PK	Vertical
4	500.012	42.40	35.44	-6.96	46.00	10.56	PK	Vertical
5	600.029	39.41	33.93	-5.48	46.00	12.07	PK	Vertical
6	750.103	38.80	35.06	-3.74	46.00	10.94	PK	Vertical

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Above 1GHz:

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915
Test By:	Mike	Test mode:	Tx mode
Test Frequency:	1 GHz ~ 10 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz		


Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	1807.80	54.40	33.43	-20.97	74.00	40.57	PK	Vertical
2	1807.80	47.68	26.71	-20.97	54.00	27.29	AV	Vertical
3	2711.70	47.86	30.71	-17.15	54.00	23.29	AV	Vertical
4	2711.70	54.24	37.09	-17.15	74.00	36.91	PK	Vertical
5	3615.60	46.56	31.99	-14.57	54.00	22.01	AV	Vertical
6	3615.60	55.75	41.18	-14.57	74.00	32.82	PK	Vertical
7	4519.50	46.31	35.52	-10.79	54.00	18.48	AV	Vertical
8	4519.50	54.30	43.51	-10.79	74.00	30.49	PK	Vertical
9	5423.40	51.22	45.25	-5.97	74.00	28.75	PK	Vertical
10	5423.40	44.96	38.99	-5.97	54.00	15.01	AV	Vertical
11	6327.30	45.02	41.10	-3.92	54.00	12.90	AV	Vertical
12	6327.30	51.69	47.77	-3.92	74.00	26.23	PK	Vertical
13	7231.20	44.40	44.33	-0.07	54.00	9.67	AV	Vertical
14	7231.20	50.65	50.58	-0.07	74.00	23.42	PK	Vertical
15	8135.10	43.52	44.32	0.80	54.00	9.68	AV	Vertical
16	8135.10	51.17	51.97	0.80	74.00	22.03	PK	Vertical
17	9039.00	51.61	53.37	1.76	74.00	20.63	PK	Vertical
18	9039.00	44.41	46.17	1.76	54.00	7.83	AV	Vertical

Remark

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

Product Name:	Nebra Indoor LoRa Gateway ROCK Pi 4 Version / Nebra Indoor Helium Hotspot ROCK Pi 4 Version	Product Model:	NEBHNT-HHRK4-915	
Test By:	Mike	Test mode:	Tx mode	
Test Frequency:	1 GHz ~ 10 GHz	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz			

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Polarity
1	1807.80	55.45	34.48	-20.97	74.00	39.52	PK	Horizontal
2	1807.80	47.77	26.80	-20.97	54.00	27.20	AV	Horizontal
3	2711.70	46.79	29.64	-17.15	54.00	24.36	AV	Horizontal
4	2711.70	55.16	38.01	-17.15	74.00	35.99	PK	Horizontal
5	3615.60	46.22	31.65	-14.57	54.00	22.35	AV	Horizontal
6	3615.60	52.92	38.35	-14.57	74.00	35.65	PK	Horizontal
7	4519.50	46.03	35.24	-10.79	54.00	18.76	AV	Horizontal
8	4519.50	54.23	43.44	-10.79	74.00	30.56	PK	Horizontal
9	5423.40	51.47	45.50	-5.97	74.00	28.50	PK	Horizontal
10	5423.40	44.31	38.34	-5.97	54.00	15.66	AV	Horizontal
11	6327.30	44.48	40.56	-3.92	54.00	13.44	AV	Horizontal
12	6327.30	50.96	47.04	-3.92	74.00	26.96	PK	Horizontal
13	7231.20	44.75	44.68	-0.07	54.00	9.32	AV	Horizontal
14	7231.20	52.36	52.29	-0.07	74.00	21.71	PK	Horizontal
15	8135.10	43.68	44.48	0.80	54.00	9.52	AV	Horizontal
16	8135.10	51.54	52.34	0.80	74.00	21.66	PK	Horizontal
17	9039.00	50.87	52.63	1.76	74.00	21.37	PK	Horizontal
18	9039.00	43.74	45.50	1.76	54.00	8.50	AV	Horizontal

1. Level = Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

-----End of report-----