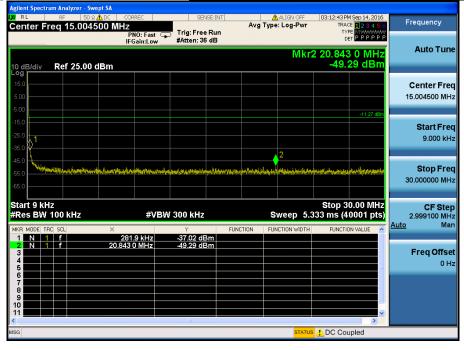


Low Band-edge

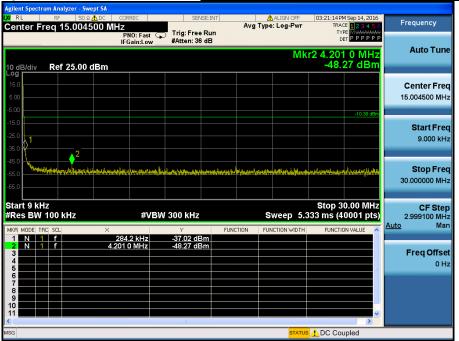

Low Band-edge

Hopping mode & Modulation : GFSK

Lowest Channel & Modulation : GFSK

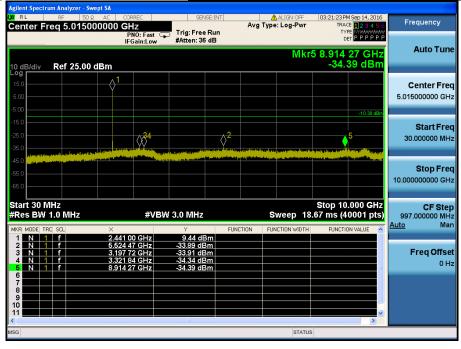
Agilent Spectrum Analyz						
Center Freq 5 (50 Ω AC CORREC	SENSE:IN		pe: Log-Pwr	03:12:52 PM Sep 14, 2016 TRACE 123456	Frequency
Conter Freq 5.0	PNO: Fast IFGain:Lov	Trig: Free Rur #Atten: 36 dB	י י (TYPE MWWWWW DET P P P P P P	
	IFGain:Lov	/ #Atten: 50 dB		Mice	5 6 272 47 CH-	Auto Tune
10 dB/div Ref 2	5.00 dBm			IVINI	5 6.372 17 GHz -34.78 dBm	
Log 15.0	1					O unit ou France
5.00						Center Freq 5.015000000 GHz
-5.00						5.01500000 GH2
-15.0					-11.27 dBm	
			_			Start Freq
-25.0			5			30.000000 MHz
-35.0	and the second	New York Department in Advantation Production				
-45.0						Stop Freq
-55.0						10.00000000 GHz
-65.0						
Start 30 MHz					Stop 10.000 GHz	CF Step
#Res BW 1.0 MH	lz #V	BW 3.0 MHz		Sweep 18	.67 ms (40001 pts)	997.000000 MHz
MKR MODE TRC SCL	×	Y	FUNCTION F	UNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f 2 N 1 f	2.402 11 GHz 3.155 60 GHz	9.25 dBm -32.75 dBm				
3 N 1 f	3.331 32 GHz 3.314 87 GHz	-33.69 dBm -34.20 dBm				Freq Offset
5 N 1 f	6.372 17 GHz	-34.20 dBm -34.78 dBm				0 Hz
6						
8						
10						
11					~	
MSG				STATUS		

Lowest Channel & Modulation : GFSK


Reference for limit

gilent Spectrum Analyzer - Swept SA RL ALIGN OFF 03:21:07 PM Sep 14, 2016 Center Freq 2.441000000 GHz PN0: Wide IFGain:Low Frequency Mkr1 2.440 953 7 GHz 9.62 dBm Auto Tune Ref 25.00 dBm I0 dB/div Center Freq 2.441000000 GHz $\mathbf{\delta}^1$ Start Freq 2.440283750 GHz Stop Freq 2.441716250 GHz **CF Step** 143.250 kHz Man <u>Auto</u> Freq Offset 0 Hz Center 2.4410000 GHz #Res BW 100 kHz Span 1.433 MHz Sweep 1.000 ms (3001 pts) #VBW 300 kHz

Middle Channel & Modulation : GFSK

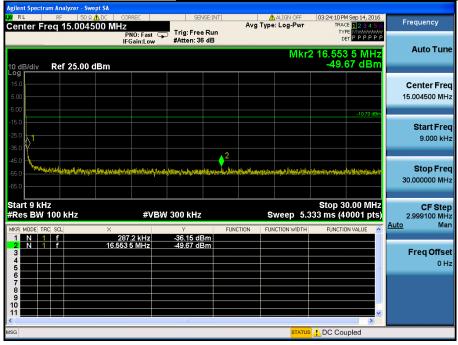


Conducted Spurious Emissions <u>Mi</u>

Agilent Spectrum Analyzer - Swept SA				
Center Freq 17.500000000 GHz	SENSE:INT	ALIGN OFF	03:21:31PM Sep 14, 2016 TRACE 123456	Frequency
PNO: Fast (IFGain:Low	Trig: Free Run #Atten: 36 dB			
		Mkr3 2	4.348 250 GHz	Auto Tune
10 dB/div Ref 25.00 dBm			-26.13 dBm	
15.0				Center Freq
5.00				17.500000000 GHz
-5.00			-10.38 dBm	
-15.0				Start Freq
-25.0		de la superiori de la constance de la	and the station of the second second	10.000000000 GHz
-35.0		Alter of the second		
-45.0				Stop Freq
-55.0				25.000000000 GHz
-65.0				
Start 10.000 GHz			Stop 25.000 GHz	CF Step
	W 3.0 MHz	-	.00 ms (40001 pts)	1.50000000 GHz Auto Man
MKR MODE TRC SCL X 1 N 1 f 23.887 375 GHz	-25.64 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 24.661 750 GHz 3 N 1 f 24.348 250 GHz	-25.91 dBm -26.13 dBm			Freq Offset
			_	0 Hz
8				
9 10 10				
11			×	
MSG		STATUS		

High Band-edge

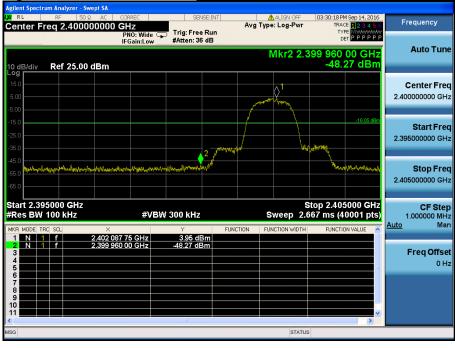
Highest Channel & Modulation : GFSK


High Band-edge

Hopping mode & Modulation : GFSK

Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>

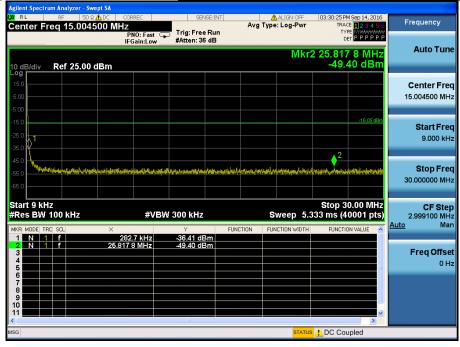
Agilent Spectrum Analyzer - Swe					
RL RF 50 Ω Center Freq 5.01500	AC CORREC	SENSE:INT	ALIGN OFF	03:24:18 PM Sep 14, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWW	Frequency
	PNO: Fast G	#Atten: 36 dB		DETPPPPP	
10 dB/div Ref 25.00 d	lBm		Mkr	5 2.675 04 GHz -34.39 dBm	Auto Tune
Log 15.0 5.00				-10.70 dBm	Center Freq 5.015000000 GHz
-15.0 -25.0 -35.0	53 4		2	A new (Department in Deck ^{a Con} trivers & P ^{A (A T} arge approx	Start Freq 30.000000 MHz
-45.0 -55.0 -65.0		er para antina de la contra de la	2 lotte comitabilitation edico per un ordeneziatem bate		Stop Freq 10.000000000 GHz
Start 30 MHz #Res BW 1.0 MHz	#VBV	/ 3.0 MHz	Sweep 18	Stop 10.000 GHz 3.67 ms (40001 pts)	CF Step 997.000000 MHz Auto Man
MKR MODE TRC SCL	× 2.480 13 GHz	Y F 9.44 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f	5.604 23 GHz 2.808 39 GHz 3.349 51 GHz 2.675 04 GHz	-33.86 dBm -34.17 dBm -34.27 dBm -34.39 dBm			Freq Offset 0 Hz
7 8 9 10					
11 <				×	
MSG			STATU	S	


Conducted Spurious Emissions <u>Highest Channel & Modulation : GFSK</u>

Center Freq 17.500000000 CHz PN0: Fast IFGain:Low ep 14, 2016 Avg Type: Log-Pwr Trig: Free Run #Atten: 36 dB Auto Tune Mkr3 24.333 625 GHz -26.17 dBm Ref 25.00 dBm **Center Freq** 17.50000000 GHz $\langle \rangle^2 \langle \rangle^1 \langle \rangle^3$ Start Freq 10.000000000 GHz Stop Freq 25.00000000 GHz Start 10.000 GHz #Res BW 1.0 MHz Stop 25.000 GHz Sweep 40.00 ms (40001 pts) CF Step 1.500000000 GHz Auto Man #VBW 3.0 MHz -25.76 dBm -25.84 dBm -26.17 dBm N N N 2 23.404 000 GHz 24.333 625 GHz Freq Offset 0 Hz

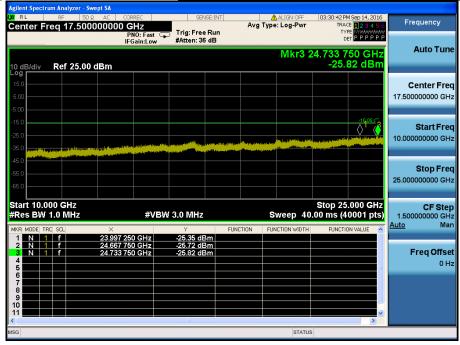
Low Band-edge

Lowest Channel & Modulation : π/4DQPSK


Low Band-edge

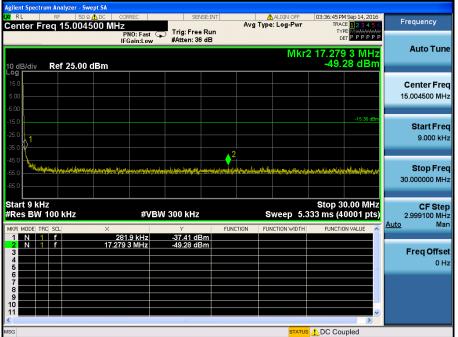
Hopping mode & Modulation : π/4DQPSK

Conducted Spurious Emissions <u>Lowest Channel & Modulation : π/4DQPSK</u>



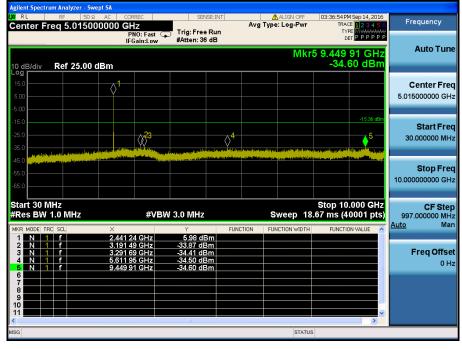
Agilent Spectrum Analyzer - Sw	rept SA				
Center Freq 5.0150		SENSE:INT	ALIGN OFF	03:30:34 PM Sep 14, 2016 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast C IFGain:Low	 Trig: Free Run #Atten: 36 dB 			
10 dB/div Ref 25.00	dBm		Mkr	5 2.634 91 GHz -34.32 dBm	Auto Tune
15.00	1				Center Fred 5.015000000 GH
-15.0 -25.0 -35.0	5-22		McGNe, Toward (192) Minet & Couple, and proceed State and America		Start Free 30.000000 MH
-45.0 -55.0 -65.0		an a	uthing is published in the second		Stop Free 10.000000000 GH
Start 30 MHz #Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	Stop 10.000 GHz .67 ms (40001 pts)	CF Ste 997.000000 MH
MKR MODE TRC SCL	× 2.401 86 GHz	Y 5.96 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2 N 1 F 3 N 1 F 4 N 1 F 5 N 1 F	3.372 69 GHz 3.200 96 GHz 8.970 60 GHz 2.634 91 GHz	-33.49 dBm -33.71 dBm -33.96 dBm -34.32 dBm			Freq Offse 0 H
6 7 8 9 10 11				~	
< ISG		ш	STATUS		

Conducted Spurious Emissions <u>Lowest Channel & Modulation : π/4DQPSK</u>

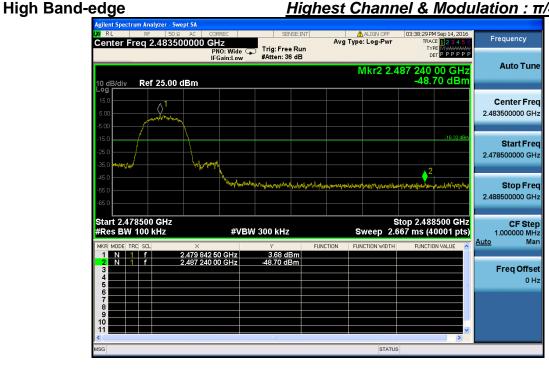


Reference for limit

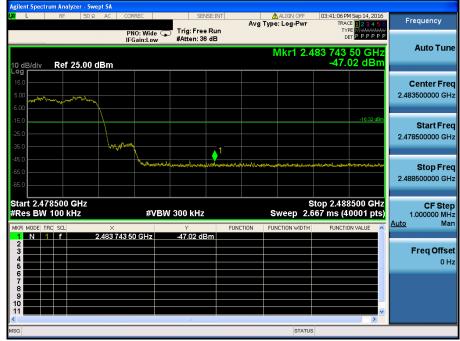
Middle Channel & Modulation : π/4DQPSK



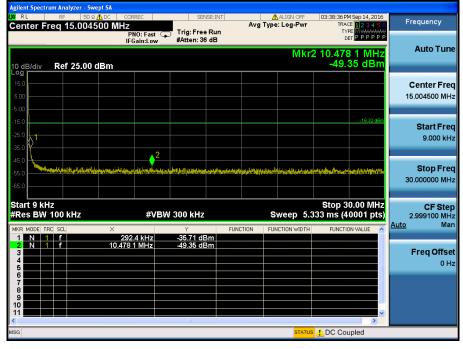
Conducted Spurious Emissions <u>Middle Channel & Modulation : π/4DQPSK</u>



Middle Channel & Modulation : π/4DQPSK


Agilent Spectrum Analyzer - Swept SA				
RL RF 50 Ω AC Center Freg 17.50000000	CORREC SENSE:IN	T ALIGN OFF Avg Type: Log-Pwr	03:37:02 PM Sep 14, 2016 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast IFGain:Low #Atten: 36 dB		TYPE MWWWWW DET PPPPP	A
10 dB/div Ref 25.00 dBm		Mkr3 2	24.329 500 GHz -25.47 dBm	Auto Tune
Log 15.0 5.00				Center Freq 17.500000000 GHz
-15.0 -25.0 -35.0		مرین المان المرین المان المرین ال مرین المرین ال	-15.30 mm	Start Freq 10.000000000 GHz
-45.0 -65.0 -65.0				Stop Freq 25.000000000 GHz
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 40	Stop 25.000 GHz .00 ms (40001 pts)	CF Step 1.50000000 GHz Auto Man
MKR MODE TRC SCL X	6 750 GHz -24.59 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Mari
3 N 1 f 24.329 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 500 GHz -24.77 dBm 9 500 GHz -25.47 dBm			Freq Offset 0 Hz
6 7 8 9 10 11				
MSG		STATUS		

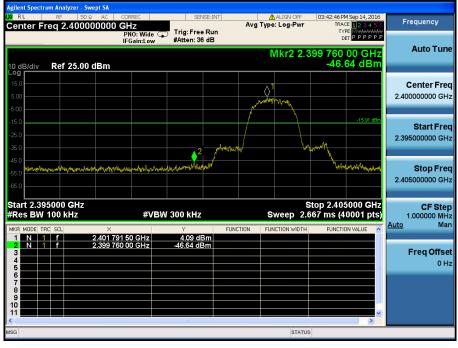
Highest Channel & Modulation : π/4DQPSK


High Band-edge

Hopping mode & Modulation : π/4DQPSK

Highest Channel & Modulation : π/4DQPSK

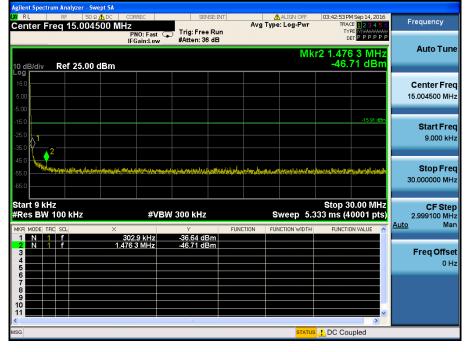
Agilent Spectrum Analyzer - Swept SA					
Center Freq 5.015000000 GHz		Avg Type		03:38:45 PM Sep 14, 2016 TRACE 1 2 3 4 5 6	Frequency
PNO: IFGain	Fast 🕞 Trig: Free Ru :Low #Atten: 36 dE		Mkr5	туре Миллини DET P P P P P P	Auto Tune
10 dB/div Ref 25.00 dBm				-34.36 dBm	
15.0 5.00 -5.00					Center Freq 5.015000000 GHz
-15.0		स प्रथव विद्यान् हे स्वीते कि			Start Freq 30.000000 MHz
-45.0 -65.0 -65.0		is metalik alder for a long fieldlich an eine seine	n, en en súfficiel cólación é de la contra en estas.		Stop Freq 10.00000000 GHz
	#VBW 3.0 MHz	S	weep 18.6	Stop 10.000 GHz 7 ms (40001 pts)	CF Step 997.000000 MHz Auto Man
MKR MODE TRC SCL X 1 N 1 f 2.479 88 G			ICTION WIDTH	FUNCTION VALUE	<u>Auto</u> mari
2 N 1 f 2.67379 G 3 N 1 f 3.14139 G 4 N 1 f 2.64987 G 5 N 1 f 2.66208 G	Hz -34.18 dBm Hz -34.21 dBm			=	Freq Offset 0 Hz
6 7 8 9 10					
				~	
MSG			STATUS		


<u>Highest Channel & Modulation : π/4DQPSK</u>

Agilent Spectrum Analyzer - Swept					
		SENSE:INT	ALIGN OFF	03:38:53 PM Sep 14, 2016 TRACE 1 2 3 4 5 6	Frequency
Center Freq 17.50000	PNO: Fast 🔾	Trig: Free Run	Avg Type. Log-t wi		
	IFGain:Low	#Atten: 36 dB		DETPPPPP	A
			Mkr3 2	24.301 750 GHz	Auto Tune
10 dB/div Ref 25.00 dB	m			-25.75 dBm	
Log 15.0					
					Center Freq
5.00					17.50000000 GHz
-5.00					
-15.0				3 🛣	Start Freq
-25.0					10.000000000 GHz
-35.0	and the second	and a second state of the		Property in the second of the second second second	
-45.0					
-55.0					Stop Freq
-65.0					25.00000000 GHz
-65.0					
Start 10.000 GHz				Stop 25.000 GHz	CF Step
#Res BW 1.0 MHz	#VBW	3.0 MHz	Sweep 40	.00 ms (40001 pts)	1.500000000 GHz
MKR MODE TRC SCL	X	Y FL	INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
	4.743 125 GHz	-25.36 dBm			
2 N 1 f 2 3 N 1 f 2	4.803 875 GHz 4.301 750 GHz	-25.58 dBm -25.75 dBm			Freq Offset
4	4.001100 0112	20.10 0.211			0 Hz
5				=	
7					
9					
10					
				×	
MSG			STATUS		
			UNITO		

Low Band-edge

Lowest Channel & Modulation : 8DPSK


Low Band-edge

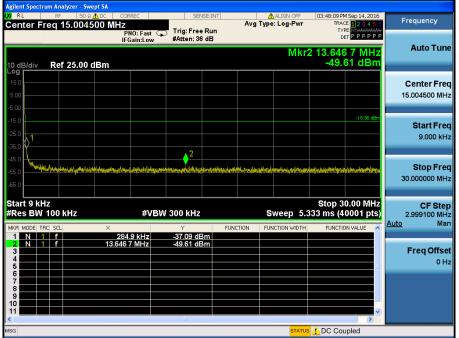
Hopping mode & Modulation : 8DPSK

Lowest Channel & Modulation : 8DPSK

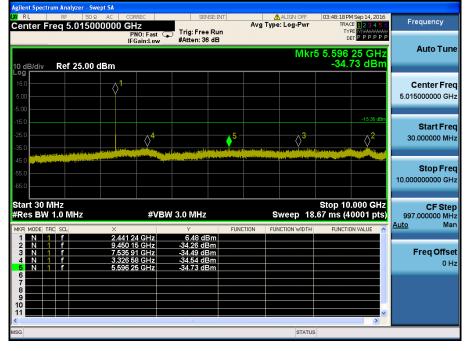
Agilent Spectrum									
Center Fre	RF 50 Ω			SENSE		ALIGN OFF	03:43:02 PM Sep 14, 2 TRACE 1 2 3		Frequency
Center Fre	q 5.01500	PI	14 10: Fast 🕞 Gain:Low	Trig: Free R #Atten: 36 d	un	Type. Log Thi		P P P	
	Ref 25.00 c	lBm				Mkr	5 3.075 84 G -34.68 dE		Auto Tune
Log 15.0 5.00		1							Center Freq 5.015000000 GHz
-15.0 -25.0 -35.0	ير من المدينة و عسر الأرابية		52 4			et an and the second			Start Freq 30.000000 MHz
-45.0 -55.0 -65.0	1					in men kanan panan panan panan pana pana pana		نه <u>م</u> بط ا	Stop Freq 10.000000000 GHz
Start 30 MH #Res BW 1.			#VBW	/ 3.0 MHz		Sweep 18	Stop 10.000 G .67 ms (40001 p	ots)	CF Step 997.000000 MHz
MKR MODE TRC	SCL f	× 2.402.3(6 GHz	۲ 6.07 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	^	<u>Auto</u> Man
2 N 1 3 N 1 4 N 1 5 N 1	f f f f	3.185 0 3.136 9 3.586 3 3.075 8	1 GHz 0 GHz 0 GHz	-34.15 dBm -34.31 dBm -34.34 dBm -34.68 dBm					Freq Offset 0 Hz
6 7 8 9 10									
<								>	
MSG						STATUS	6		

Lowest Channel & Modulation : 8DPSK

Agilent Spectr	um Analyzer - Sv RF 50 S		REC	ortio	E:INT		ALIGN OFF	03:43:10 PM	0	
	req 17.500	000000 G	Hz				: Log-Pwr	TRACE	1 2 3 4 5 6	Frequency
10 dB/div	Ref 25.00	IFC	NO: Fast G Sain:Low	#Atten: 36			Mkr3 2	DE ⁻	PPPPP	Auto Tune
Log 15.0 5.00										Center Freq 17.50000000 GHz
-15.0 -25.0 -35.0					san fina ay ay midan finan a	in Course Station and	and the second s		3 ³¹ 01 dBn	Start Freq 10.00000000 GHz
-45.0 -55.0 -65.0										Stop Fred 25.000000000 GH2
Start 10.0 #Res BW	1.0 MHz	×	#VBV	/ 3.0 MHz	FUNCT		weep 40	Stop 25. .00 ms (40	0001 pts)	CF Step 1.500000000 GHz <u>Auto</u> Mar
1 N 1 2 N 1 3 N 1 4 5		24.892 750 24.730 379 23.813 879	5 GHz	-24.49 dBr -25.10 dBr -25.68 dBr	n n			TO NOTION		Freq Offset 0 Hz
6 7 8 9 10 11										
<									>	
MSG							STATUS			



Reference for limit


Conducted Spurious Emissions <u>Middle Channel & Modulation : 8DPSK</u>

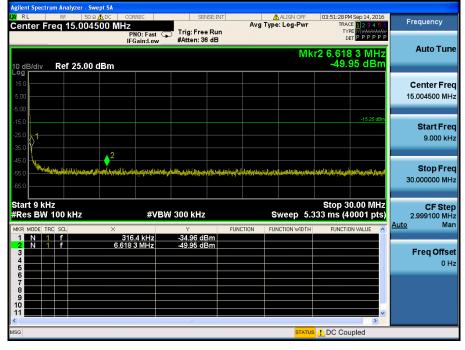
Middle Channel & Modulation : 8DPSK



RL	RF	50 Ω AC	CORREC	SENS	E:INT	ALIGN OFF	03:48:26 PM S		Frequency
enter F	req 17.	.50000000	0 GHz PNO: Fas IFGain:Lo	Trig: Free F	Run	g Type: Log-Pwr	TYPE	123456 Maaaaaa PPPPPP	Frequency
			IF Gain: Lo	W WAtten. 00		Mkr3 2	24.764 87	5 GHz) dBm	Auto Tun
0 dB/div .og r	Ref 2	5.00 dBm					-20.00	лавш	
15.0									Center Fre
5.00									17.50000000 GH
5.00									
15.0								-15.36 dBm	01
25.0									Start Fre
35.0			ليجهدوه وتوجيلي	and ship any said base from a said of the	destroyed to all your the bard same	Alasen et al.	And Street Street Street Street	free of contracts	10.00000000 Gr
45.0	Contraction (and other		and the second secon						
55.0									Stop Fre
65.0									25.00000000 GH
tart 10.0 Res BW			#\	/BW 3.0 MHz		Sweep 40	Stop 25.0		CF Ste 1.50000000 GF
IKR MODE T	BC SCI	X		Y	FUNCTION	FUNCTION WIDTH	FUNCTION		<u>Auto</u> M
1 N	1 f	24.99	2 500 GHz	-25.79 dBr	n				
2 N 3	1 f 1 f		6 250 GHz 4 875 GHz	-25.81 dBr -26.00 dBr	n				Freq Offs
4 5									
6									
7 8									
9									
1								~	
				111			,		
G						STATUS	6		

High Band-edge

Highest Channel & Modulation : 8DPSK


High Band-edge

Hopping mode & Modulation : 8DPSK

Highest Channel & Modulation : 8DPSK

	Ω AC CORREC	SENSE:INT	ALIGN OFF	03:51:36 PM Sep 14, 2016	
Center Freq 5.0150		Trig: Free Run	Avg Type: Log-Pwr	TRACE 2 3 4 5 6 TYPE MW444444	Frequency
	PNO: Fast C IFGain:Low	#Atten: 36 dB		DETPPPP	
			Mkr	5 3.208 44 GHz	Auto Tune
0 dB/div Ref 25.00	dBm			-34.73 dBm	
- °g 15.0	<u>1</u>				Center Fred
5.00	Ŷ.				5.015000000 GH
5.00					0.0100000000011
15.0				-15.25 dBm	
25.0					Start Fred
				\diamond^2	30.000000 MH;
35.0			na statemen open sen at de la frankrigen til støre open open som provinser at de som en som en som en som en s Norder som en stør ståd at de la frankrige som en som e		
					Stop Free
55.0					10.00000000 GH
65.0					
Start 30 MHz				Stop 10.000 GHz	CF Step
Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 18	.67 ms (40001 pts)	997.000000 MH
MKR MODE TRC SCL	×		UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Mar
	2.480 13 GHz	6.56 dBm			
1 N 1 f		-34 25 dBm			
1 N 1 f 2 N 1 f 3 N 1 f	9.479 82 GHz 3.357 74 GHz	-34.25 dBm -34.58 dBm			
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f	9.479 82 GHz	-34.25 dBm			
1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6 7	9.479 82 GHz 3.357 74 GHz 2.647 62 GHz	-34.25 dBm -34.58 dBm -34.69 dBm			
6 7 8	9.479 82 GHz 3.357 74 GHz 2.647 62 GHz	-34.25 dBm -34.58 dBm -34.69 dBm			
6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9.479 82 GHz 3.357 74 GHz 2.647 62 GHz	-34.25 dBm -34.58 dBm -34.69 dBm			
6 7 8	9.479 82 GHz 3.357 74 GHz 2.647 62 GHz	-34.25 dBm -34.58 dBm -34.69 dBm			Freq Offse 0 H:

Highest Channel & Modulation : 8DPSK

LXI RL	um Analyzer - So RF 50 req 17.500	Ω AC CORREC		SENS		ALIGN OFF : Log-Pwr	TRAC	1 Sep 14, 2016 E <mark>1 2 3 4 5</mark> 6 E M WWWW	Frequency
10 dB/div	Ref 25.00	IFGain:	ast 😱 Low	#Atten: 36 d		Mkr3 2	DE 23.797 3	TPPPPP	Auto Tune
Log 15.0 5.00									Center Free 17.500000000 GH
-15.0	a gay in the set of the set of the							3 ²⁵ dBn	Start Fre 10.000000000 GH
-45.0 -55.0 -65.0									Stop Fre 25.000000000 G⊦
Start 10.0 #Res BW	1.0 MHz	×	#VBW 3	3.0 MHz	FUNC	weep 40	.00 ms (4	.000 GHz 0001 pts)	CF Ste 1.50000000 GF <u>Auto</u> Ma
1 N 1 2 N 1 3 N 1 4 5	f f f	23.949 250 GF 24.764 500 GF 23.797 375 GF	-Iz	-25.08 dBr -25.19 dBr -25.30 dBr	n				Freq Offso 0 H
6 7 8 9 10 11									
< //SG				110		 STATUS	6	>	

8. Transmitter AC Power Line Conducted Emission

8.1 Test Setup

Not Applicable

8.2 Limit

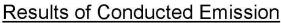
According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

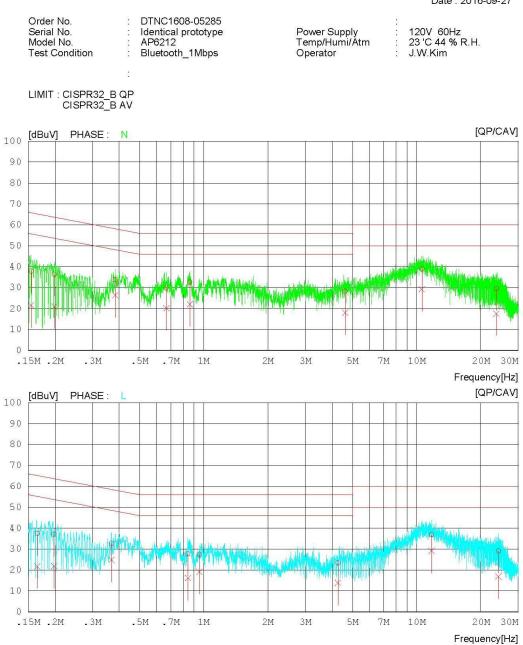
Frequency Range (MHz)	Conducted I	Limit (dBuV)
Frequency Range (Minz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency

8.3 Test Procedures


Conducted emissions from the EUT were measured according to the ANSI C63.10.

- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.



8.4 Test Results

AC Line Conducted Emissions (Graph) = Modulation : <u>GFSK</u>

DT&C Date : 2016-09-27

AC Line Conducted Emissions (List) = Modulation : <u>GFSK</u>

Results of Conducted Emission

DT&C Date : 2016-09-27

Order No. Serial No. Model No. Test Condition	DTNC1608-05285 Identical prototype AP6212 Bluetooth_1Mbps	Power Supply Temp/Humi/Atm Operator	: 120V 60Hz 23 'C 44 % R.H. J.W.Kim
LIMIT : CISPR32 CISPR32			
NO FREQ [MHz]	READING C.FACTOR QP CAV [dBuV] [dBuV] [dB]	RESULT LIMIT QP CAV QP CAV [dBuV][dBuV][dBuV]	MARGIN PHASE QP CAV] [dBuV] [dBuV]
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.79 34.26 N 27.27 32.65 N 24.34 21.83 N 26.24 25.89 N 23.28 24.00 N 27.72 27.88 N 21.06 20.73 N 30.43 32.41 N 27.75 33.46 L 26.68 31.81 L 25.78 23.69 L 28.32 29.84 L 28.32 29.84 L 32.61 32.10 L 32.61 32.10 L 23.16 20.87 L

9. Antenna Requirement

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

Conclusion: Comply

The intenal antenna employs a unique antenna connector.

- Minimum Standard :

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

10. Occupied Bandwidth (99 %)

10.1 Test Setup

Refer to the APPENDIX I.

10.2 Limit

Limit : Not Applicable

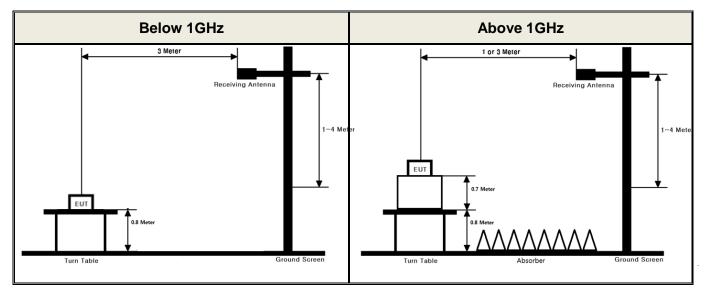
10.3 Test Procedure

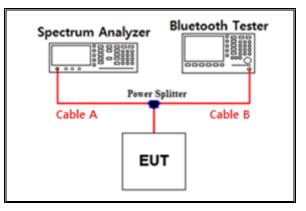
The 99 % power bandwidth was measured with a calibrated spectrum analyzer.

The resolution bandwidth (RBW) shall be in the range of 1 % to 5 % of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately $3 \times RBW$.

Spectrum analyzer plots are included on the following pages.

10.4 Test Results


Not Applicable


APPENDIX I

Test set up diagrams

Radiated Measurement

Conducted Measurement

Path loss information

Frequency (GHz)	Path Loss (dB)	Frequency (GHz)	Path Loss (dB)
0.03	6.47	15	11.10
1	7.17	20	12.50
2402 & 2440 & 2480	7.54	25	13.21
5	8.07	-	-
10	9.87	-	-

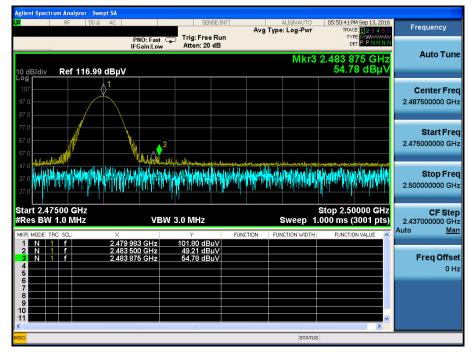
Note 1 : The path loss from EUT to Spectrum analyzer were measured and used for test.

Path loss (S/A's Correction factor) = Cable A + Power splitter

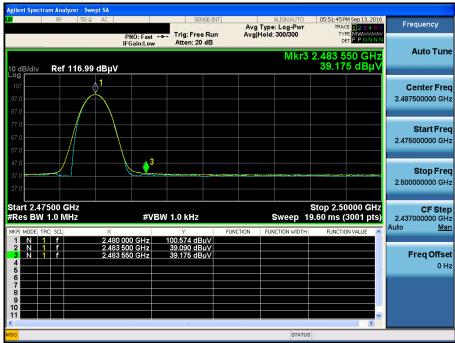
APPENDIX II

Unwanted Emissions (Radiated) Test Plot

GFSK & Lowest & X & Hor


Frequency Avg Type: Log-Pwr TRACE TYPE MWWWW DET P P N N N PNO: Fast Free Run IFGain:Low Atten: 20 dB Auto Tune Mkr3 2.389 31 GHz 49.10 dBµ\ Ref 116.99 dBµV dB/div **Center Freq** 2.357500000 GHz Start Freq 2.310000000 GHz <mark>-}</mark>3 and part the line of a first from the second strategy of the second second second second second second second s Stop Freq 2.405000000 GHz Stop 2.40500 GHz Sweep 1.000 ms (3001 pts) CF Step 2.437000000 GHz uuto <u>Man</u> Start 2.31000 GHz #Res BW 1.0 MHz VBW 3.0 MHz 02.92 dBµ\ 47.28 dBµ\ 49.10 dBµ\ Freq Offset 0 Hz

GFSK & Lowest & X & Hor



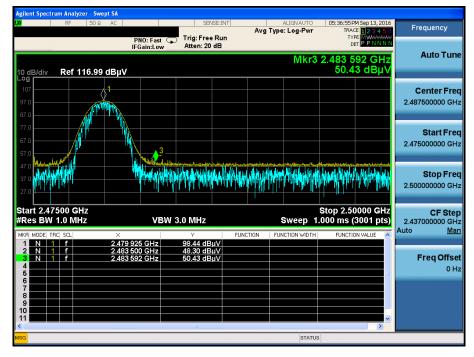
GFSK & Highest & X & Hor

Detector Mode : AV

GFSK & Highest & X & Hor

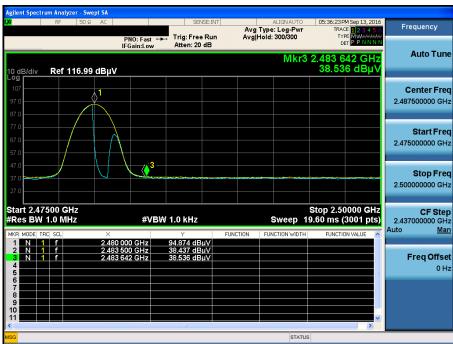
$\pi/4DQPSK$ & Lowest & X & Hor

Agilent Spectrum Analyzer - Swept SA						
LXI RF 50Ω AC	_	SENSE:IN	Avg T	ALIGNAUTO ype: Log-Pwr	05:26:03 PM Sep 13, 2016 TRACE 1 2 3 4 5 (TYPE M WARANA	Frequency
10 dB/div Ref 116.99 dBµV	PNO: Fast 🖵 IFGain:Low	Atten: 20 dB		Mkr	^{рет} ^{р р} NNN 3 2.386 64 GHz 48.61 dBµV	
107 97.0 87.0						Center Freq 2.357500000 GHz
77.0 67.0 57.0		4.1			³ ₂ −	Start Freq 2.310000000 GHz
47.0 37.0 44.0 10 10 10 10 10 10 10 10 10 10 10 10 10	(Mahaha))))	Ningrowally and get		(1) The design of the second		Stop Freq 2.405000000 GHz
Start 2.31000 GHz #Res BW 1.0 MHz	VBW 3	.0 MHz		Sweep 1	Stop 2.40500 GHz .000 ms (3001 pts)	2.437000000 GHz
MKR MODE TRC SCL X	01 96 GHz	Y 100.38 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 2.3	90 00 GHz 36 64 GHz	46.95 dBµV 48.61 dBµV			=	Freq Offset 0 Hz
7						
K MSG				STATUS		


Detector Mode : AV

$\pi/4DQPSK$ & Lowest & X & Hor

RF	50 Ω AC		SENSE:IN		ALIGN AUTO	05:25:34 PM Sep 13, 20:	
	P	NO: Fast ↔ Gain:Low	Trig: Free Run Atten: 20 dB		Type: Log-Pwr Hold: 300/300	TRACE 12345 TYPE MWWWW DET PPNNN	
0 dB/div Ref 1	16.99 dBµV				Mkr	3 2.386 23 GH 37.932 dBµ	Z Auto Tun
107							Center Fre
97.0						Ň	2.357500000 GH
77.0							Otent Fre
67.0							Start Fre 2.310000000 GH
57.0							
47.0						3 2	Stop Fre
27.0							2.405000000 GH
tart 2.31000 GH Res BW 1.0 MH		#VBV	V 1.0 kHz		Sweep 74	Stop 2.40500 GH 4.20 ms (3001 pts	2.437000000 GH
IKR MODE TRC SCL	×		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto <u>Ma</u>
1 N 1 f 2 N 1 f 3 N 1 f	2.402 0 2.390 0 2.386 2	0 GHz	96.688 dBµV 37.802 dBµV 37.932 dBµV				Freq Offs
4	2.386 2	3 GHZ	37.932 dBµV				01
6							
8							
10							
			ш			>	



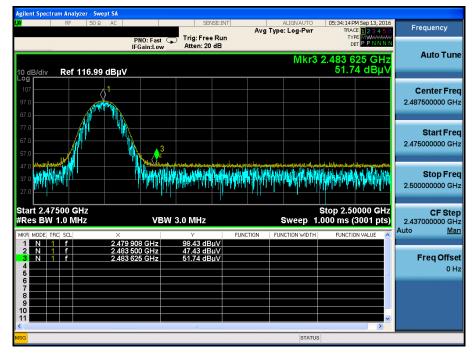
$\pi/4DQPSK$ & Highest & X & Hor

Detector Mode : AV

$\pi/4DQPSK$ & Highest & X & Hor

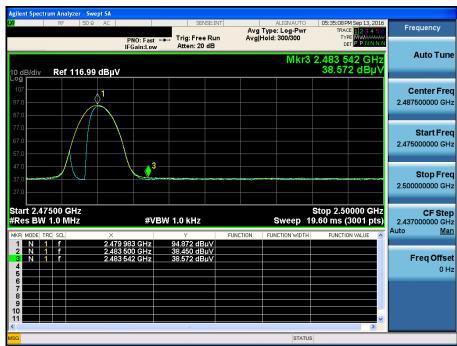
8DPSK & Lowest & X & Hor

Agilent Spectrum Analyzer - Swept SA			
LX / RF 50 Ω AC	SENSE:INT	ALIGNAUTO 05:26:32 PM Sep 13, 2016 Avg Type: Log-Pwr TRACE 23456 TYPE MWWWWWW	Frequency
10 dB/div Ref 116.99 dBµV	PNO: Fast 🏹 Trig: Free Run IFGain:Low Atten: 20 dB	Mkr3 2.386 80 GHz 49.41 dBµV	Auto Tune
107 97.0 87.0			Center Freq 2.357500000 GHz
77.0 67.0 57.0			Start Freq 2.310000000 GHz
47.0 37.0 	na har ann han har an ha an hann an har an h	hadlette antippendant the second	Stop Freq 2.405000000 GHz
Start 2.31000 GHz #Res BW 1.0 MHz	VBW 3.0 MHz	Stop 2.40500 GHz Sweep 1.000 ms (3001 pts)	CF Step 2.437000000 GHz Auto <u>Man</u>
1 N 1 f 2.40 2 N 1 f 2.39	01 93 GHz 100.40 dBµV 20 00 GHz 47.64 dBµV 36 80 GHz 49.41 dBµV		Freq Offset 0 Hz
0 7 8 9 10 11			
MSG		STATUS	

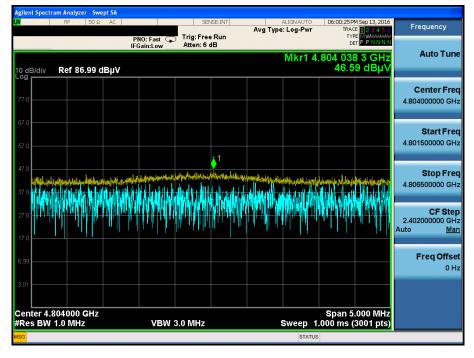

Detector Mode : AV

8DPSK & Lowest & X & Hor

<mark>d</mark> A	RF	er - Swept SA 50 Ω AC	PNO: Fast	SENSE:	Avg un Avg	ALIGNAUTO 3 Type: Log-Pwr Hold: 300/300	05:27:50 PM Sep 13 TRACE 1 2 3 TYPE MWW DET P N	456	Frequency
10 dB/div	Ref 1	16.99 dBµ\	IFGain:Low	Atten: 20 dE		Mkr	3 2.386 77 G 37.574 dB	Hz	Auto Tun
107 97.0 87.0									Center Fre 2.357500000 G⊦
77.0 67.0 57.0									Start Fre 2.310000000 GH
47.0 37.0 27.0							• ³ √ ²		Stop Fre 2.40500000 GH
	1000 GH V 1.0 MH	z	#VE	3W 1.0 kHz	FUNCTION		Stop 2.40500 (4.20 ms (3001)	ots)	CF Ste 2.437000000 GI Auto <u>M</u>
1 N 2 N 3 N 4 5	1 f 1 f 1 f	2.3	401 99 GHz 390 00 GHz 386 77 GHz	96.663 dBµV 37.525 dBµV 37.574 dBµV		FUNCTION WIDTH	FUNCTION VALUE		Freq Offs
6 7 8 9 10 11									
SG				Ш		STATUS		>	

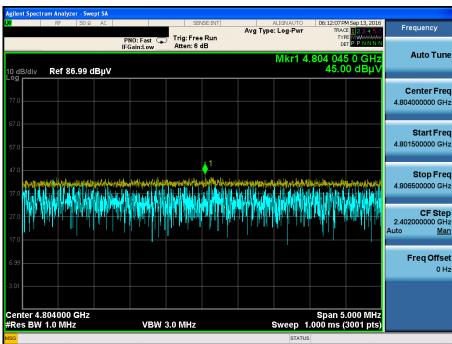


8DPSK & Highest & X & Hor

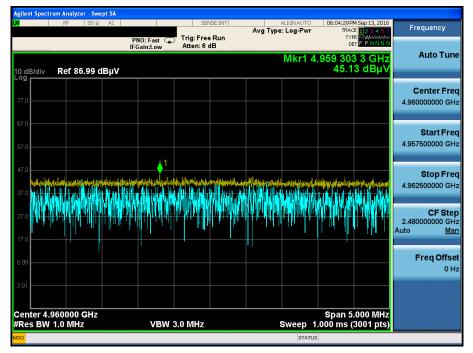


Detector Mode : AV

8DPSK & Highest & X & Hor



GFSK & Lowest & X & Hor


π /4DQPSK & Lowest & X & Hor

Detector Mode : PK

8DPSK & Highest & X & Hor

GFSK & Hopping mode & X & Hor

Agilent Spectrum Analyzer - Swept SA					
LXU RF 50Ω AC	SENS				Frequency
	PNO: Fast 😱 Trig: Free F	Avg Type: Log		23456 Marianana	Trequency
	PNO: Fast Frig: Free F IFGain:Low Atten: 20 d		DET P	NNNN	
	II Gam.eow	-			Auto Tune
			Mkr3 2.388 86	GHZ	
10 dB/div Ref 116.99 dBµV			49.38 c	вμν	
Log				_∧1	
107				$-\forall$	Center Freq
97.0				1	2.357500000 GHz
87.0					
77.0					Start Freq
67.0					2.310000000 GHz
57.0			.3.		2.51000000 GH2
			. <mark>.</mark>		
47.0 Kenter and deliver and the second second second	an aith for talaine, als a baileant à sin	and the needless with a stall	det i les dellas i bli de du s	L. AL	Oton Ener
37.0 HANNANANANANANANANANANANAN	MATH THE AND A COMPANY AND A DATA	nai Pali Pastra II ang	No. (NAV. AN ALL AN ALL.	ALAMI, MA	Stop Freq
27.0	i and a land a land a land a la l	le and ell forderska l bel evel and a sec	e dada da d	11. W 1	2.405000000 GHz
27.0					
Start 2.31000 GHz			Stop 2.4050		0.5.01
#Res BW 1.0 MHz	VBW 3.0 MHz	Swo	ep 1.000 ms (300		CF Step 2.437000000 GHz
#Res Bw 1.0 Will2	* D** 5.0 MHz	awe	ep 1.000 ms (500	r ptsj	Auto Man
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION	WIDTH FUNCTION VAL	LUE 🔼	Auto <u>Man</u>
1 N 1 f 2.40	01 80 GHz 102.40 dBµ				
2 N 1 f 2.39	90 00 GHz 46.43 dBµ' 38 86 GHz 49.38 dBµ'				Freq Offset
4	43.00 GHZ 43.00 GDµ	v			0 Hz
5				=	0 112
6					
8					
9					
10					
11				>	
			()		
MSG			STATUS		

Detector Mode : AV

GFSK & Hopping mode & X & Hor

			Teles Free Pr	Type: Log-Pwr	TRACE	123456 MW MMMM	Frequency
		PNO: Fast ← FGain:Low	 Trig: Free Ru Atten: 20 dB 	Hold: 300/300	DET	PPNNNN	Auto Tu
0 dB/div Ref 11	16.99 dBµV			Mkr	3 2.388 8 37.668	0 GHz dBµV	Autoru
og 107 97.0						1 	Center Fr 2.357500000 G
7.0							Start Fr
7.0							2.310000000 G
7.0					× ³²	<u></u>	Stop Fi 2.405000000 0
tart 2.31000 GH Res BW 1.0 MHz		#VB	N 1.0 kHz	Sweep 7	Stop 2.405 4.20 ms (30	00 GHz 101 pts)	CF SI 2.437000000 G
KR MODE TRC SCL	× 2.401	96 GHz	⊻ 102.215 dBµV	FUNCTION WIDTH	FUNCTION	/ALUE	Auto <u>N</u>
2 N 1 f 3 N 1 f 4 5		00 GHz 80 GHz	37.638 dBµV 37.668 dBµV				Freq Off 0
6 7							
1						~	

GFSK & Hopping mode & X & Hor

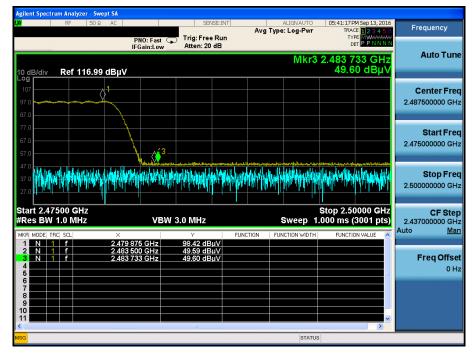
μα RF 50 Ω AC SENSE:INT ALIGNALITO 05:54:23 PM Sep 13:2016 Frequency PNO: Fast IFGain:Low Trig: Free Run Atten: 20 dB Avg Type: Log-Pwr Type: Log-Pwr Def P PI NN N Def P PI NN N Frequency Auto Tu
PN0: Fast Free Run IFGain:Low Atten: 20 dB DEF P PINN N Mkr3 2.483 658 GHz Auto Tu
PRO: Past Company Atten: 20 dB Det PRINING Atten: 20 dB Det PRINING Atten: 20 dB At
Mkr3 2.483 658 GHz
WIKI'S 2.483 658 GHZ
10 dB/div Ref 116.99 dBμV 52.43 dBμV
107 Center F
97.0 2.487500000
87.0
77.0 Start F
2.475000000
57.0
47.0 The second se
37.0 MARKING ANA ANA ANA ANA ANA ANA ANA ANA ANA A
Start 2,47500 GHz Stop 2,50000 GHz CES
#Res BW 1.0 MHz VBW 3.0 MHz Sweep 1.000 ms (3001 pts) 2.437000000 0
MKR MODE TRC SCL X Y FUNCTION FUNCTION VALUE ALLO
1 N 1 f 2.480 125 GHz 100.77 dBµV
2 N 1 f 2.483 500 GHz 47.97 dBµV 3 N 1 f 2.483 658 GHz 52.43 dBµV Freq Off
MSG STATUS

Detector Mode : AV

GFSK & Hopping mode & X & Hor

	50Ω AC		SENSE:II	Avg	ALIGNAUTO Type: Log-Pwr Hold: 300/300	05:53:48 PM Se TRACE	ep 13, 2016 2 3 4 5 6 WANNAM	Frequency
		IO: Fast ↔ Jain:Low	Trig: Free Ru Atten: 20 dB	n Avg	Hold: 300/300	DET	PNNNN	
0 dB/div Ref 11	l6.99 dBµV				Mkr3	2.483 858 39.118	∃ GHz dBμV	Auto Tur
og 107	1							Center Fre
7.0	\sim							2.487500000 G
7.0								
7.0								Start Fr
7.0								2.475000000 G
7.0		<mark>3</mark>						
7.0								Stop Fr 2.500000000 G
27.0								
27.0 tart 2.47500 GHz Res BW 1.0 MHz		#VBV	√ 1.0 kHz		Sweep 1	Stop 2.5000 9.60 ms (300	00 GHz 01 pts)	
tart 2.47500 GHz Res BW 1.0 MHz	z ×		Y	FUNCTION	Sweep 1	Stop 2.5000 9.60 ms (300	01 pts)	2.437000000 G
tart 2.47500 GHz Res BW 1.0 MHz KR MODE TRC SCL 1 N 1 f 2 N 1 f	z 2.479 975 2.483 500	5 GHz) GHz	γ 100.544 dBμV 38.943 dBμV	FUNCTION		9.60 ms (30	01 pts)	2.437000000 G Auto <u>M</u>
tart 2.47500 GHz Res BW 1.0 MHz R MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f	z × 2.479 975	5 GHz) GHz	⊻ 100.544 dBµV	FUNCTION		9.60 ms (30	01 pts)	- Freq Offs
tart 2.47500 GH2 Res BW 1.0 MH2 R MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 5	z 2.479 975 2.483 500	5 GHz) GHz	γ 100.544 dBμV 38.943 dBμV	FUNCTION		9.60 ms (30	01 pts)	2.437000000 G Auto <u>M</u> Freq Offs
tart 2.47500 GHX Res BW 1.0 MHz KR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 6 6 7 7 8	z 2.479 975 2.483 500	5 GHz) GHz	γ 100.544 dBμV 38.943 dBμV	FUNCTION		9.60 ms (30	01 pts)	2.437000000 G Auto <u>M</u>
tart 2.47500 GHz Res BW 1.0 MHz KR MODE TRC SCL 1 N 1 f 2 N 1 f	z 2.479 975 2.483 500	5 GHz) GHz	γ 100.544 dBμV 38.943 dBμV	FUNCTION		9.60 ms (30	01 pts)	2.437000000 G Auto <u>M</u> Freq Offs

$\pi/4DQPSK$ & Hopping mode & X & Hor


Agilent Spectrum Ana	lyzer - Swept SA							
LXI RF	50 Ω AC		SENSE:I		ALIGNAUTO	05:29:07 PM		Frequency
			Trig: Free Ru		Type: Log-Pwr	TRACE	123456 MW////////////////////////////////////	ricqueriey
		PNO: Fast G	Atten: 20 dB			DET	PPNNNN	
		II Galli.Eow						Auto Tune
					MKr	3 2.389 4		
10 dB/div Ref	116.99 dBµ'	V				49.37	dBµV	
Log							.1	
107								Center Freq
97.0							porter	2.357500000 GHz
87.0								
77.0								Start Freq
67.0								2.310000000 GHz
57.0						3		
	متنار مربق الدرسيمر املاقا م	استرفيلات وسقمانين	ورجا ومعامر والمعام المعالية المعالية	والمتعادية والمتعالمة والمتعادية	الحاصر تعادلته معرام المعلي	1		
47.0 47.0	dillo a section in addition	atta ditta dia sila data dat	and the state of the sec	and & I. M. L. Mite and	a state at a second	استيالا الاركالية وتعاريل	diata ani da M	Stop Freq
37.0 PH TAPA ANY					werne nige gaar	nann a san in		2.405000000 GHz
27.0	يركبه مباليهاه	n di cilitik kom	a sul contrat to	that and set with	of the state of the second sec	անի դեր	11 J.A.	2.405000000 GH2
	'							
Start 2.31000 C	GHz					Stop 2.405	00 GHz	CF Step
#Res BW 1.0 N	1Hz	VBW	3.0 MHz		Sweep 1	.000 ms (30	001 pts)	2.437000000 GHz
MKR MODE TRC SCL	×	1		FUNCTION	FUNCTION WIDTH	FUNCTION		Auto <u>Man</u>
1 N 1 f		402 97 GHz	Y 100.05 dBµV	FUNCTION	FUNCTION WIDTH	FUNCTION	VALUE	
2 N 1 f		390 00 GHz	47.94 dBuV					
3 N 1 f	2.	389 49 GHz	49.37 dBµV					Freq Offset
4 5								0 Hz
6							-	
7								
8								
10								
11							~	
<							>	
MSG					STATUS	5		
and a second								

$\pi/4DQPSK$ & Hopping mode & X & Hor

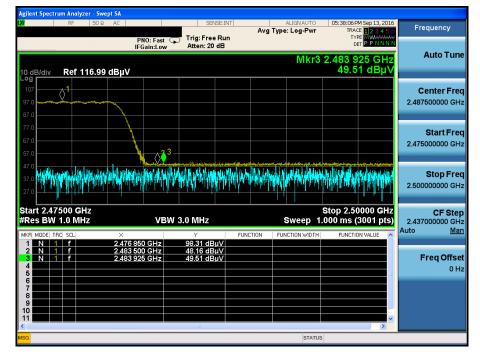
nt Spectrum Analyzer - Swept SA p 13, 201 Frequency Avg Type: Log-Pwr Avg|Hold: 300/300 Trig: Free Run Atten: 20 dB DET PNO: Fast ↔ IFGain:Low Auto Tune Mkr3 2.389 62 GHz 37.643 dBµV Ref 116.99 dBµV Bidiv **Center Freq** 2.357500000 GHz Start Freq 2.310000000 GHz 73 Stop Freq 2.405000000 GHz Stop 2.40500 GHz Sweep 74.20 ms (3001 pts) Start 2.31000 GHz #Res BW 1.0 MHz CF Step 2.437000000 GHz Auto <u>Man</u> #VBW 1.0 kHz .565 dBu Freq Offset 0 Hz STATUS

π /4DQPSK & Hopping mode & X & Hor

π /4DQPSK & Hopping mode & X & Hor

eilent Spectrum Analyzer - Swept SA ep 13, 201 Frequency Avg Type: Log-Pwr Avg|Hold: 300/300 RACE 12345 TYPE MWWWW DET PPNNN Trig: Free Run Atten: 20 dB PNO: Fast +++ Auto Tune Mkr3 2.483 550 GHz 38.506 dBµV Ref 116.99 dBµV Bidiv **Center Freq** 2.487500000 GHz Start Fred 2.475000000 GHz 3 Stop Freq 2.50000000 GHz CF Step 2.437000000 GHz luto Stop 2.50000 GHz Sweep 19.60 ms (3001 pts) Start 2.47500 GHz #Res BW 1.0 MHz #VBW 1.0 kHz 8.337 dBµ\ 8.506 dBu\ Freq Offset 0 Hz STATUS

8DPSK & Hopping mode & X & Hor


Agilent Spectrum Analyzer - Swept SA				
LXI RF 50 Ω AC	SENSE	INT ALIGNAUTO Avg Type: Log-Pwr	05:32:16 PM Sep 13, 2016 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast 😱 Trig: Free R		TYPE M MAAAAAAAAA	
	IFGain:Low Atten: 20 dE	3	DET PPNNN	
Mkr3 2.389 75 GHz				Auto Tune
10 dB/div Ref 116.99 dBµV 49.40 dBµV				
Log			4	
107				Center Freq
97.0				2.357500000 GHz
87.0				
77.0				Otort From
67.0				Start Freq 2.310000000 GHz
57.0			3	2.31000000 GHZ
47.0 مەرىيەلەر يەرىيەلەر يەرىيە يەرىيەر يەرىيەر يەرىيەر 47.0	والمتعادية والمتعارية المتعارية والمتعارية والمتعادية والمتعادية والمتعادية	ومغيب الاستخد ومحروف فرفي عزوا وللاطر ور	malerana	
فالمربع التابط والالألاد فالعام موافع البانعير والوام فال	A Lufatored A Martin and Ash and ash	Line Contracts and the strength and	and the state where we are the	Stop Freq
	an a	viði le hálsamhliðing í sínn í nörð		2.405000000 GHz
27.0				
Start 2.31000 GHz			Stop 2.40500 GHz	0.5.01
#Res BW 1.0 MHz	VBW 3.0 MHz	Sweep 1	.000 ms (3001 pts)	CF Step 2.437000000 GHz
MKR MODE TRC SCL X	Y	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto <u>Man</u>
	02.97 GHz 100.68 dBuV		FUNCTION VALUE	
2 N 1 f 2.39	90 00 GHz 47.57 dBµV			Eron Offect
3 N 1 f 2.38	39 75 GHz 49.40 dBµV			Freq Offset 0 Hz
5			=	UHZ
6				
8				
9				
11			~	
MSG STATUS				

8DPSK & Hopping mode & X & Hor

Swept SA nt Spectrum Analyze p 13, 20; Frequency Avg Type: Log-Pwr Avg|Hold: 300/300 Trig: Free Run Atten: 20 dB PNO: Fast ↔ IFGain:Low Auto Tune Mkr3 2.389 72 GHz 37.748 dBµV Ref 116.99 dBµV Bidiv **Center Freq** 2.357500000 GHz Start Freq 2.310000000 GHz Stop Freq 2.405000000 GHz Stop 2.40500 GHz Sweep 74.20 ms (3001 pts) Start 2.31000 GHz #Res BW 1.0 MHz CF Step 2.437000000 GHz Auto <u>Man</u> #VBW 1.0 kHz 3 dBµ∖ 3 dBu∖ Freq Offset 0 Hz STATUS

8DPSK & Hopping mode & X & Hor

8DPSK & Hopping mode & X & Hor

eilent Snectrum Analyzer Swent SA ep 13, 201 Frequency Avg Type: Log-Pwr Avg|Hold: 300/300 Trig: Free Run Atten: 20 dB PNO: Fast +++ Auto Tune Mkr3 2.484 158 GHz 38.347 dBµV Ref 116.99 dBµV Bidiv **Center Freq** 2.487500000 GHz Start Fred 2.475000000 GHz _**⊘²∮**³ Stop Freq 2.50000000 GHz CF Step 2.437000000 GHz luto Stop 2.50000 GHz Sweep 19.60 ms (3001 pts) Start 2.47500 GHz #Res BW 1.0 MHz #VBW 1.0 kHz 8.032 dBµ 8.347 dBµ Freq Offset 0 Hz STATUS