

TEST REPORT						
Report Number:	Report Number					
Date of issue:	2023-03-08					
Tested by (+signature):	Duke	Roke Chen Jason gao				
Approved by (+signature):	Jason	Jason gao				
Testing Laboratory name:	SLG-CPC Testlaboratory Co., Ltd.					
Address:	No. 11, Wu Song Road, Dongcheng I Province, China 523117	District, Dongguan, Guangdong				
Applicant's name:	Guangzhou Langston Electronic Tech	nnology Co,Ltd				
Address:	Room 502, Building 4, Phoenix Creative Industry Park, No. 67 North Gongye Avenue, Haizhu District, Guangzhou,Chinaongguan					
Manufacturer's name:	Guangzhou Langston Electronic Technology Co,Ltd					
Address:	Room 502, Building 4, Phoenix Creative Industry Park, No. 67 North Gongye Avenue, Haizhu District, Guangzhou,Chinaongguan					
Factory's name:	Guangzhou Langston Electronic Technology Co,Ltd					
Address:	Room 502, Building 4, Phoenix Creat Gongye Avenue, Haizhu District, Gua					
Standard(s):	FCC 47 CFR Part 15, Subpart C					
Test item description:	Directional Sound Headphone					
Trade Mark:	N/A					
Model/Type reference:	BE09, BE10, BS17, BE01A, BE08, B	E02, BE06				
FCC ID:	2AZDD-BE09					
Date of receipt of test item:	2023-02-22					
Date (s) of performance of test:	2023-02-23 to 2023-03-07					
Summary of Test Results:	Pass					
The Summary of Test Results bas	sed on a technical opinion belongs to	the standard(s).				

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SLG-CPC Testlaboratory Co., Ltd. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1	EU	TECHNICAL DESCRIPTION	4
2	SU	MMARY OF TEST RESULT	5
3	TES	ST METHODOLOGY	6
	3.1	GENERAL DESCRIPTION OF APPLIED STANDARDS	6
	3.2	MEASUREMENT EQUIPMENT USED	6
	3.3	DESCRIPTION OF TEST MODES	7
4	FAC	CILITIES AND ACCREDITATIONS	8
	4.1	FACILITIES	8
	4.2	LABORATORY ACCREDITATIONS AND LISTINGS	8
5	TES	ST SYSTEM UNCERTAINTY	9
6	SET	TUP OF EQUIPMENT UNDER TEST	10
	6.1	RADIO FREQUENCY TEST SETUP 1	10
	6.2	RADIO FREQUENCY TEST SETUP 2	10
	6.3	CONDUCTED EMISSION TEST SETUP	12
	6.4	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	13
	6.5	SUPPORT EQUIPMENT	13
7	TES	ST REQUIREMENTS	14
	7.1	20DB BANDWIDTH	
	7.2	CARRIER FREQUENCY SEPARATION	
	7.3	NUMBER OF HOPPING FREQUENCIES	
	7.4	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	24
	7.5	MAXIMUM PEAK CONDUCTED OUTPUT POWER	27
	7.6	CONDUCTED SUPRIOUS EMISSION	31
	7.7	RADIATED SPURIOUS EMISSION	38
	7.8	CONDUCTED EMISSION TEST	
	7.9	ANTENNA APPLICATION	53

Modified Information

Report No.	Revision Data	Summary
90135-23-72-23-PP001	2023-03-08	Original Version

1 EUT TECHNICAL DESCRIPTION

Characteristics	Description
Product	Directional Sound Headphone
Model Number	BE09, BE10, BS17, BE01A, BE08, BE02, BE06 (All models are identical except for appearance color and model number, We choose model BE09 to do all tests.)
Device Type	Bluetooth V5.0
Data Rate	1Mbps for BT V5.0 GFSK modulation 2Mbps for BT V5.0 pi/4-DQPSK modulation
Modulation:	GFSK modulation for BT V5.0 (1Mbps) pi/4-DQPSK modulation for BT V5.0 (2Mbps)
Operating Frequency Range(s):	2402-2480MHz
Number of Channels:	79 channels
Transmit Power Max:	2.09 dBm
Antenna Type	Chip Antenna
Antenna Gain	1.70 dBi
Power supply	⊠DC supply: DC 3.7 by battery 250mAh
Temperature Range:	0°C ~ +45°C

Note: for more details, please refer to the User's manual of the EUT.

2 SUMMARY OF TEST RESULT

FCC Part	Test Parameter	Verdict	Remark
Clause			
15.247(a)(1)	20 dB Bandwidth	PASS	
15.247(a)(1)	Carrier Frequency Separation	PASS	
15.247(a)(1)	Number of Hopping Frequencies	PASS	
15.247(a)(1)	Average Time of Occupancy (Dwell Time)	PASS	
15.247(b)(1)	Maximum Peak Conducted Output Power	PASS	
15.247(d)	Conducted Spurious Emissions	PASS	
15.247(d)		PASS	
15.209	Radiated Spurious Emissions		
15.205			
15.207	Conducted Emission	N/A	
15.203	Antenna Application	PASS	
15.247 (a)	Frequency Hopping System	PASS	
(1)/g/h			
NOTE1: N/A (No	ot Applicable)		
NOTE2: Accordi	ng to FCC KDB 558074 D01 15.247 Meas Guidance v	05r02, the report	use
	ments in the restricted frequency bands. In addition, th		
	ire the emissions emanating from the device cabinet a	llso comply with th	е
applicable limits.			

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2AZDD-BE09 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

3 TEST METHODOLOGY

3.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

FCC 47 CFR Part 15, Subpart C

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

3.2 MEASUREMENT EQUIPMENT USED

Equipment Manufacturer Mode		Model	S/N	Last Cal.	DUE Cal.			
	RF Connected Test							
Vector Signal Generater	Rohde & Schwarz	SMBV100B(6G)	101166	2022/06/29	1 year			
Analog Signal Generator	Rohde & Schwarz	SMB100A(40G)	181333	2022/06/29	1 year			
Signal Analyzer	Rohde & Schwarz	FSV40	101527	2022/04/19	1 year			
Power Analyzer	Rohde & Schwarz	OSP-B157W8	N/A	2022/06/29	1 year			
Wideband Radio Communication Tester	R&S	CMW270	101985	2022/07/05	1 year			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	166898	2022/07/14	1 year			
Temperature&Hu midity test chamber	ESPEC	VC 4018	/	2022/03/23	1 year			
	Ra	adiated Emission	Fest					
EMI Test Receiver	KEYSIGHT	N9010A	MY56070465	2022/12/07	1 year			
EMI Test Receiver	Rohde & Schwarz	FSV40	101511	2022/04/19	1 year			
Bilog Antenna	Schwarzbeck	VULB 9163	01335	2020/04/28	3 year			
Power Amplifier	EMEC	EM330	060676	2022/12/07	3 year			
Cable	Tuyue	F4309	L-400-NmNm- 12000	2022/12/07	1 year			
Horn Antenna	Schwarzbeck	BBHA9120D	1779	2022/04/21	3 year			
Horn Antenna	Schwarzbeck	BBHA9170	00954	2022/09/13	3 year			
Power Amplifier	Rohde & Schwarz	SCU-18F	180118	2022/04/21	3 year			
Active Loop Antenna	ETS LINDGREN	6512	41623	2022/04/23	3 year			
Test Software	Farad	EZ-EMC	Ver.CPC-3A1	/	/			
Conducted Emission Test								
LISN	Schwarzbeck	NSLK 8127	8127-892	2022/03/19	1 year			
LISN	Schwarzbeck	NSLK 8127	8127-437	2022/08/26	1 year			
EMI Test Receiver	R&S	ESR3	102124	2022/12/07	1 year			
Pulse Limiter	R&S	ESH3-Z2	357.8810.52	2022/12/07	1 year			
	Farad	EZ-EMC	Ver.CPC-3A1		/			

3.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for Bluetooth V5.0 GFSK modulation; 2Mbps for Bluetooth V5.0 pi/4-DQPSK modulation) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441		
1	2403	40	2442	76	2478
2	2404	41	2443	77	2479
				78	2480
Note: fc=2402MHz+(k-1)×1MHz k=1 to 79					

Frequency and Channel list for Bluetooth V5.0

Test Frequency and channel for Bluetooth V5.0

Lowest Frequency		Middle F	Frequency	Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	39	2441	78	2480

4 FACILITIES AND ACCREDITATIONS

4.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 11, Wu Song Road, Dongcheng District, Dongguan, Guangdong Province, China 523117 The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.10 and CISPR Publication 32.

4.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description EMC Lab.	: Accredited by ISED, October 04 2021 CAB identifier: CN0126 Company Number: 27767
	Accredited by A2LA, October 04 2021 The Certificate Registration Number is 6325.01
	Accredited by FCC Designation Number: CN1287 Test Firm Registration Number: 394054
Name of Firm Site Location	 SLG-CPC Testlaboratory Co., Ltd. No. 11, Wu Song Road, Dongcheng District, Dongguan, Guangdong Province, China 523117

5 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0%
Conducted Emissions Test	±3.08dB
Radiated Emission Test	±4.60dB
Power Density	±0.9%
Occupied Bandwidth Test	±2.3%
Band Edge Test	±1.2%
Antenna Port Emission	±3dB
Temperature	±3.2%
Humidity	±2.5%

Measurement Uncertainty for a level of Confidence of 95%

6 SETUP OF EQUIPMENT UNDER TEST

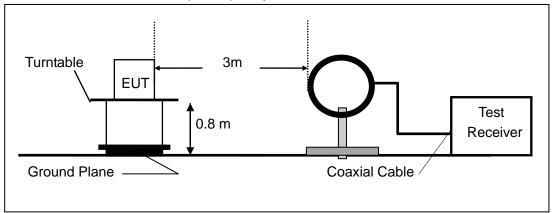
6.1 RADIO FREQUENCY TEST SETUP 1

The Bluetooth V5.0 component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

6.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 32.

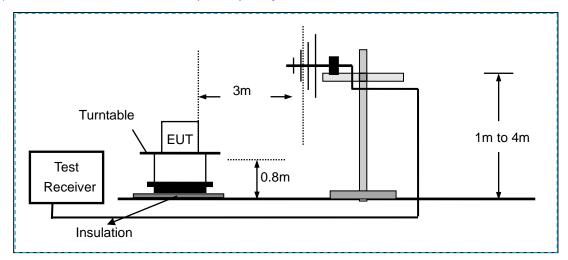
Below 30MHz:

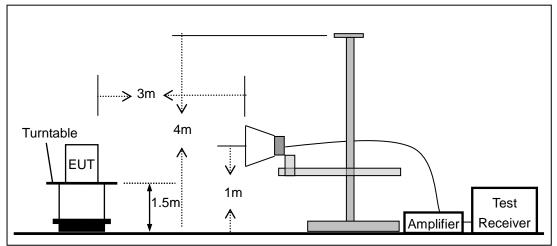

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

Above 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

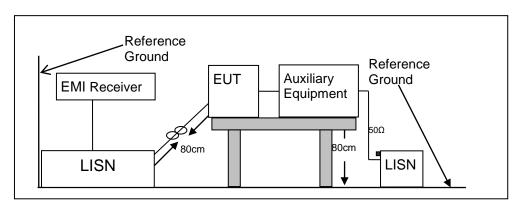
Above 1GHz:


(Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

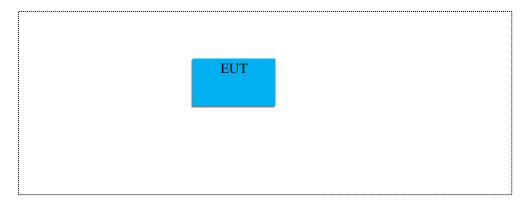
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



6.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (Perfect Share Mini) must be connected to LISN. The LISN shall be placed 0.8m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.8m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

6.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

6.5 SUPPORT EQUIPMENT

EUT Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielde d	With / Without Ferrite		

Auxiliary Cable List and Details					
Cable Description	Length (m)	Shielded/Unshielde d	With / Without Ferrite		

Auxiliary Equipment List and	d Details		
Description	Manufacturer	Model	Serial Number

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7 TEST REQUIREMENTS

7.1 20DB BANDWIDTH

7.1.1 Applicable Standard

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.1.2 Conformance Limit

No limit requirement.

7.1.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.1.4 Test Procedure

The EUT was operating in Bluetooth V5.0 mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 30 kHz.

Set the video bandwidth (VBW) =100 kHz.

Set Span= approximately 2 to 3 times the 20 dB bandwidth

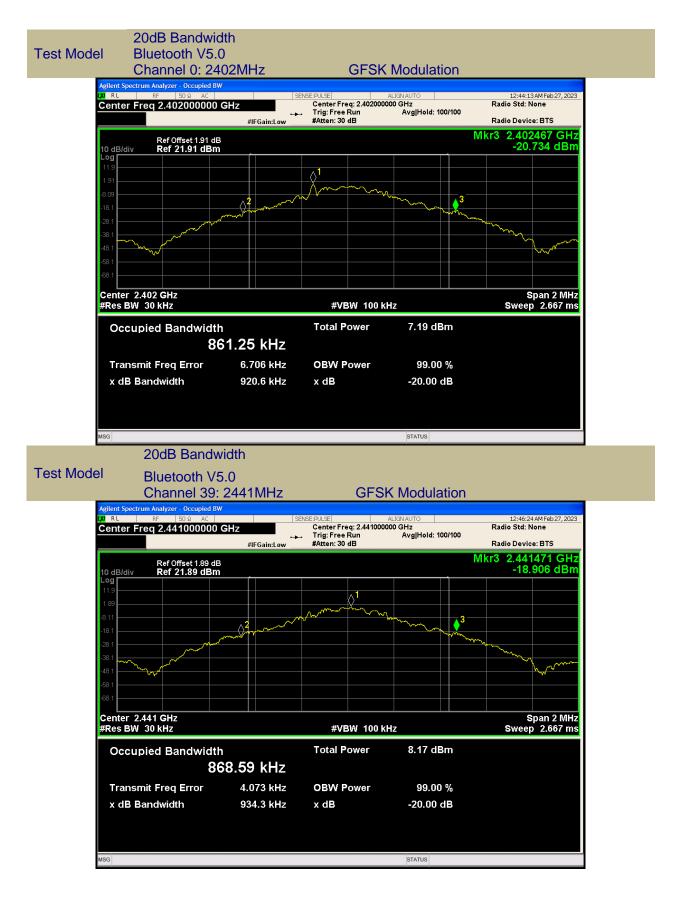
Set Detector = Peak.

Set Trace mode = max hold.

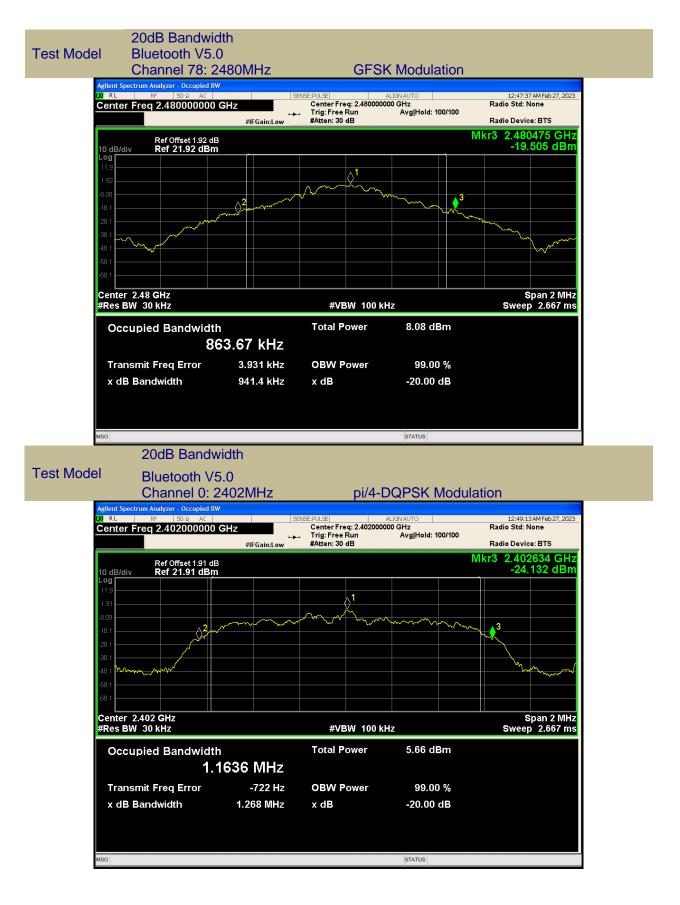
Set Sweep = auto couple.

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the markerdelta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

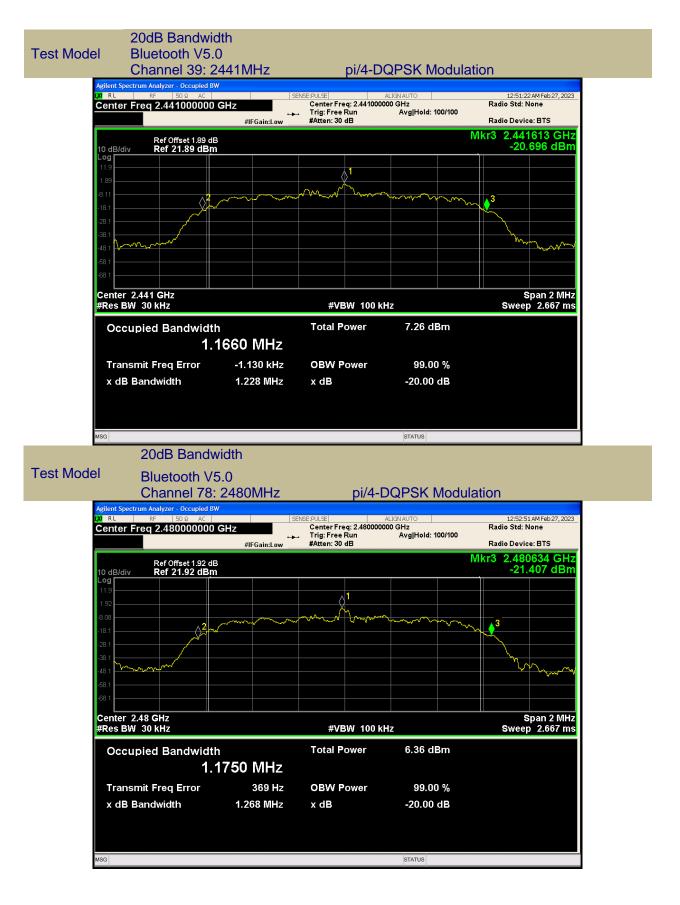
If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation.


Measure and record the results in the test report.

Test Results


Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Modulation Mode	Channe I	Channel Frequency (MHz)	Measurement Bandwidth (MHz)	Limit (MHz)	Verdict
	Number				
	00	2402	0.921	N/A	PASS
GFSK	39	2441	0.934	N/A	PASS
	78	2480	0.941	N/A	PASS
	00	2402	1.268	N/A	PASS
pi/4-DQPSK	39	2441	1.228	N/A	PASS
	78	2480	1.268	N/A	PASS
Note: N/A (No	t Applicable	e)			



Address:No.11,WuSongRoad, DongchengDistrict,Dongguan, GuangdongProvince,China523117

Address:No.11,WuSongRoad, DongchengDistrict,Dongguan, GuangdongProvince,China523117

7.2 CARRIER FREQUENCY SEPARATION

7.2.1 Applicable Standard

According to FCC Part 15.247(a)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.2.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

In case of an output power less than 125mW, the frequency hopping system may have channels separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.2.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.2.4 Test Procedure

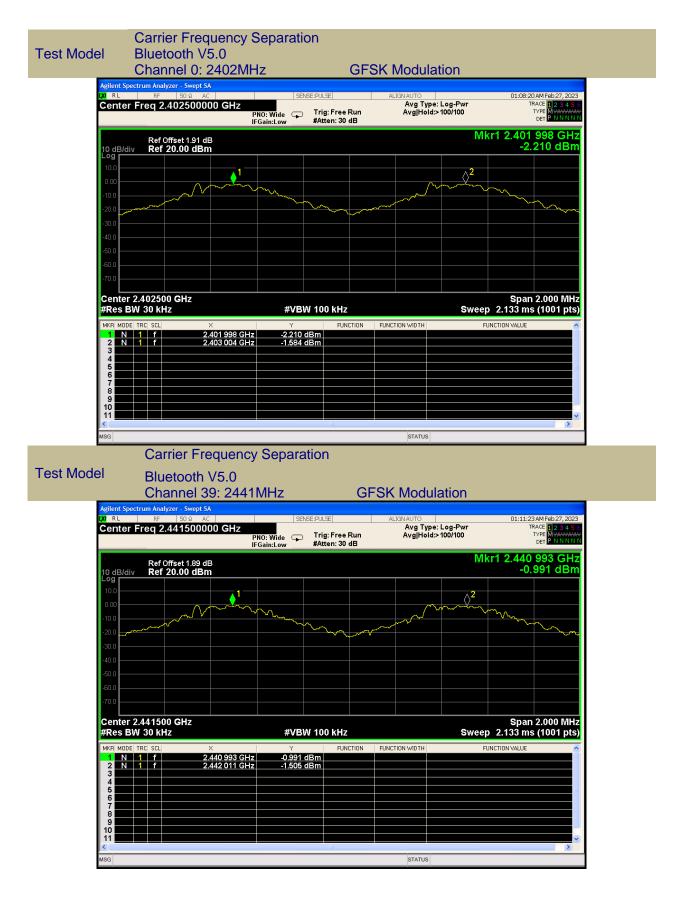
According to FCC Part15.247(a)(1)

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Set the RBW =30kHz. Set VBW =100kHz.

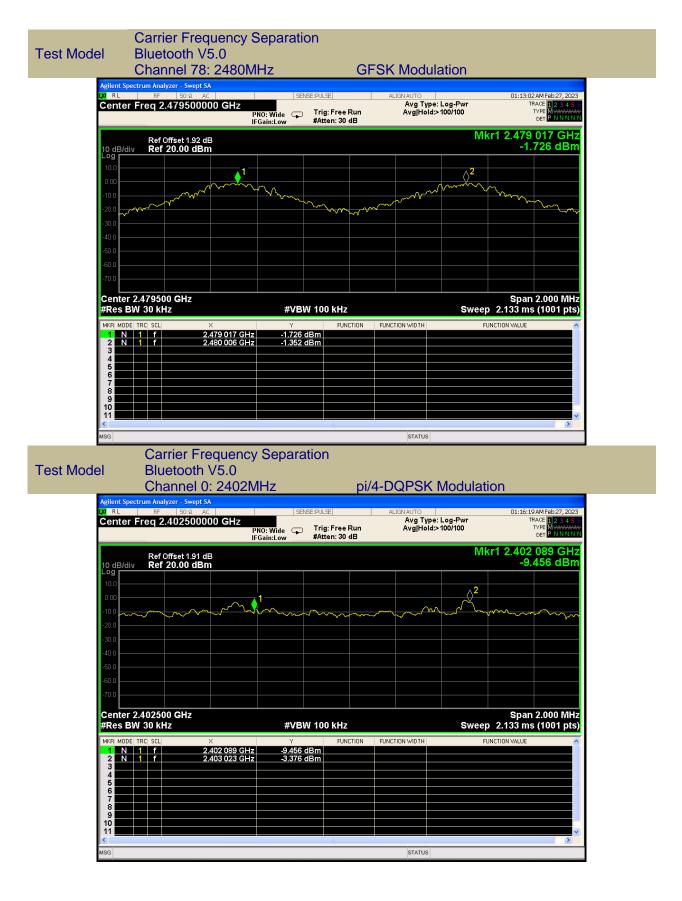
Set the span = wide enough to capture the peaks of two adjacent channels

Set Sweep time = auto couple.

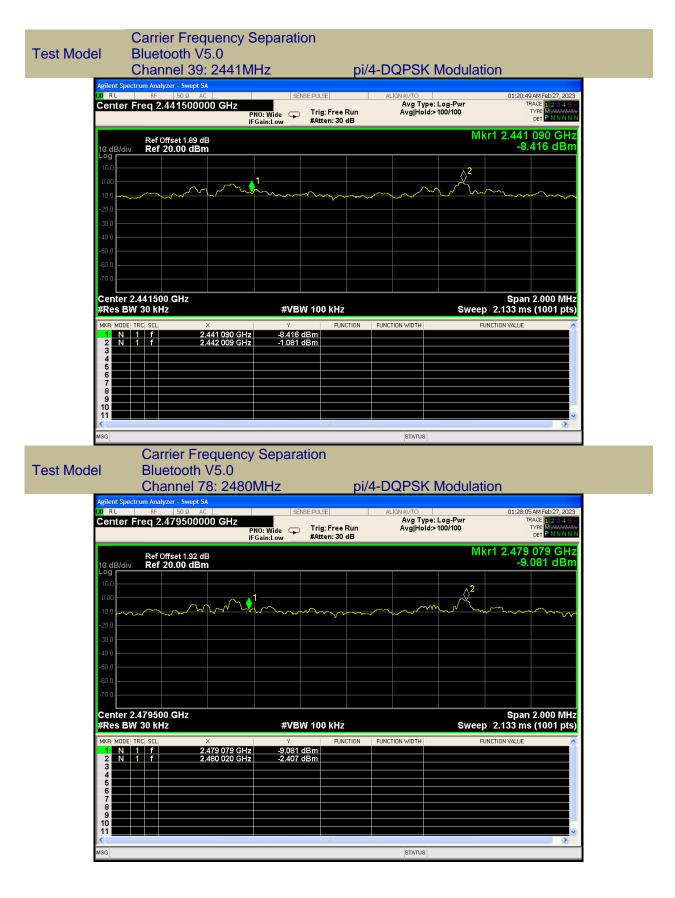
Set Detector = peak. Set Trace mode = max hold.


Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section. Submit this plot.

Test Results


Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Modulation Mode	Channe I Number	Channel Frequency (MHz)	Measurement Bandwidth (kHz)	Limit (kHz)	Verdict
	0	2402	1006	>614	PASS
GFSK	39	2441	1018	>622	PASS
	78	2480	989	>627	PASS
	0	2402	934	>845	PASS
pi/4-DQPSK	39	2441	919	>818	PASS
	78	2480	941	>845	PASS
Note: Limit = 2	20dB bandv	width * 2/3			



7.3 NUMBER OF HOPPING FREQUENCIES

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.3.2 Conformance Limit

Frequency hopping systems operating in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.3.4 Test Procedure

According to FCC Part15.247(a)(1)(iii)
 The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
 Span = the frequency band of operation (2400-2483.5MHz)
 RBW ≥ 100KHz
 VBW ≥ RBW
 Sweep = auto
 Detector function = peak
 Trace = max hold
 Allow the trace to stabilize. It may prove necessary to break the span up to sections, in order to clearly show all of the hopping frequencies.

Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Modulation Mode	Hopping Channel Frequency Range	Quantity of Hopping Channel	Quantity of Hopping Channel limit
GFSK	2402-2480	79	>15
pi/4-DQPSK	2402-2480	79	>15

Test Model Bluetooth V5.0 Span: 2400-2483.5MHz GFSK Modulation Agilent Spectrum Analyzer - Swept SA Val RL RL RE SO R AC SENSE-PULSE ALIGNAUTO D1:06:48 AM Feb 27, 2023 Center Freq 2.441750000 GHz Trig: Free Run AvgiHold>100/100 Trig: Free Run RAtten: 30 dB	
Agilent Spectrum Analyzer - Swept SA Sense: PULSE ALIGN AUTO 01:08:48 AM Feb 27, 2023 MI R.L R.F 50.0 AC SENSE: PULSE ALIGN AUTO 01:08:48 AM Feb 27, 2023	
00 R L RF 50 Ω AC SENSE;PULSE ALIGN AUTO 01:08:48 AM Feb 27, 2023	
Center Freq 2.441750000 GHz Avg Type: Log-Pwr TRACE 12.3.45.6	
PNO: Fast C Trig: Free Run Avg Hold:>100/100 TVPE MANAGEMENT IFGain:Low #Atten: 30 dB DET P N NN NN	
Ref Offset 1.91 dB Mkr1 2.402 004 0 GHz	
10 dB/div Ref 20.00 dBm -0.365 dBm	
੶ ₽₽₽ ੶₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
-40.0	
-70.0	
Start 2.40000 GHz Stop 2.48350 GHz	
#Res BW 100 kHz #VBW 300 kHz Sweep 8.000 ms (1001 pts)	
MKR MODE TRC SCL X Y FUNCTION WIDTH FUNCTION VALUE	
1 F 2.402 004 0 GHz -0.365 dBm 2 N 1 f 2.480 243 5 GHz -0.915 dBm	
MSG STATUS	
Number Of Hopping Frequencies	
Test Model Bluetooth V5.0	
Span: 2400-2483.5MHz pi/4-DQPSK Modulatio	n
Agilent Spectrum Analyzer - Swept SA	
X RL RF 50 Ω AC SENSE:PULSE ALIGNAUTO 01:11:47 AM Feb 27, 2023 Center Freq 2.441750000 GHz Avg Type: Log-Pwr TRACE 12 3 4 5 6	
PNO: Fast PDO: Fast Trig: Free Run Avg Hold>100/100 TYPE	
Mkr1 2 402 004 0 GHZ	
Ref Offset 1.89 dB Mkr1 2.402 004 0 GHz 10 dB/div Ref 20.00 dBm -0.205 dBm	
Ref Unset 1.69 dD	

-10.0			₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	AAAAAAAAA	<u> </u>	U V V V V V V V V V V V V V V V V V V V	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	₩₩₩₩	L L L L L L L L L L L L L L L L L L L
Start 2. #Res B	W 100	kHz	×	Y	W 300 kHz		TION WIDTH		Stop 2. 8.000 ms	48350 ((1001	GHz pts)
1 N 2 N 3 4 5 6 7 8 9 10 11		2.4(02 004 0 GHz 79 993 0 GHz	<u>-0.205</u> 1.299	dBm dBm						

7.4 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.4.2 Conformance Limit

For frequency hopping systems operating in the 2400-2483.5MHz band, the average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.4.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.4.4 Test Procedure

According to FCC Part15.247(a)(1)(iii)
 The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:
 Span = zero span, centered on a hopping channel
 RBW = 1 MHz
 VBW ≥ RBW
 Sweep = as necessary to capture the entire dwell time per hopping channel
 Detector function = peak
 Trace = max hold
 If possible, use the marker-delta function to determine the dwell time. If this value
 varies with different modes of operation (e.g., data rate, modulation format, etc.),
 repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section.

7.4.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Bluetooth (GFSK, pi/4-DQPSK) mode have been tested, and the worst result(GFSK) was report as below:

Modulation Mode	Channe I	Packet type	Pluse width	Dwell Time (ms)	Limit (ms)	Verdict
	Number		(ms)			
	0	DH1	0.372	119.040	<400	PASS
GFSK	0	DH3	1.620	259.200	<400	PASS
	0	DH5	2.868	305.920	<400	PASS
Note: Dwell	Time(DH1)	=PW*(160	0/2/79)*31.6			
Dwell	Time(DH3)	=PW*(160	0/4/79)*31.6			
Dwell	Time(DH5)	=PW*(160	0/6/79)*31.6			

Test Model

Average Time Of Occupancy (Dwell Time) Bluetooth V5.0 CH 0: 2402MHz GFSK DH1

RL RF 50 Ω	AC	SENSE:	PULSE	ALIGN AUTO		12:55:20 AM	4 Feb 27, 200
enter Freq 2.402000	0000 GHz	PNO East ↔ 1	Γrig Delay-500.0 μ Γrig: Video /Atten: 30 dB	s Avg Typ	e: Log-Pwr	TRAC	E 1 2 3 4 5 E WAAAAA T P N N N
Ref Offset 1.91 dB/div Ref 20.00 dl						ΔMkr1 3 -	72.0 μ 1.09 d
g 							
							TRIG L
.0							
.0		ut , Jadas					
			transfer and the second	at about the terms		and the second second	
					ann Charanna Charanna Ruis ann an Christian	<mark>, source and a sourc</mark>	
	n nd High to		in an	and a the state of the second s	enne franskriger og en Henerige og ser felser og en ser Henerige og ser felser og en ser og en	<mark>i kininya ki padi</mark> nya	
enter 2.402000000 G	n nd High to		in the second	der Gereinen der Gereinen der Statischer Der Gereinen der Gereinen der Gereinen der Gereinen der Gereinen der G Gereinen der Gereinen der G	dhulouyan, soith pua, p	<mark>i kininya ki padi</mark> nya	pan 0 H
enter 2.402000000 G BW 1.0 MHz	Hz ×	#VBW (3.0 MHz		Sweep	s S	pan 0 H
enter 2.402000000 GF	Hz 372.0 μs	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H
Model Market 0	Hz ×	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H
enter 2.402000000 GF BW 1.0 MHz R MODE TRC SCL A2 1 t (A)	Hz 372.0 μs	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	Hz 372.0 μs	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H
BWHI Har (orrespondent) Image: state s	Hz 372.0 μs	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H
Application Application 0	Hz 372.0 μs	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H
Model Market 0 Image: Control of the control of	Hz 372.0 μs	#VBW ((Δ) -1.09 d	3.0 MHz	a series and the series of the	Sweep	10.00 ms (1	pan 0 H

Test Model Average Time Of Occupancy (Dwell Time)

CH 0: 24	402MHz		GFS	SK DH3			
Agilent Spectrum Analyzer - Swe							
<mark>₩</mark> RL RF 50Ω Center Freq 2.40200		ast 🛶 Trig:	Delay-500.0 µ Video n:30 dB	ALIGNAUTO s Avg Type	: Log-Pwr		9 AM Feb RACE 1 TYPE W DET P
Ref Offset 1.9 10 dB/div Ref 20.00 d						ΔMkr1	1.62 1.9
	<u>1Δ2</u>						
-10.0							
-20.0							
-40.0		de anticipada de las pasas telem	a atraca. a the d		nd burn harmada birn ad	unical and a static seco	t i transsort
	The large states and the second states and t	a na dina kan kana ana ana ana ana ana ana ana	<mark>ta de transmission de la filma de la fi Tanga de la filma de la film</mark>	aliyatin karata karata ila karata Aliyatin karata karata ila karata	an fai tribpiù lin An fai anna an an	er of for the first of the form	<mark>lutana</mark> (http://
-50.0 -60.0 -70.0 Center 2.402000000 G	in the second		inge _l d inge _l d	nin kanan nin antipa pana pana Aptipatipatin pana pana pana pana pana pana Antipatipatin	and a supply dist		Spa
60.0 60.0 70.0 Center 2.402000000 G Res BW 1.0 MHz	Hz	#VBW 3.0 I	Mitta Mit	apite aller on the present present president	and a supply dist	p 10.00 ms	Spai
-50.0 -60.0 -70.0 Center 2.402000000 G Res BW 1.0 MHz MKR MODE TRC SCL 1 A2 1 t (A) 2 F 1 t	in the second		inge _l d inge _l d		and a supply dist		Spar
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hz × 1.620 ms (Δ)	#VBW 3.0 I	Mitta Mit	apite aller on the present present president	and a supply dist	p 10.00 ms	Spar
50 0 60 0 70 0 Center 2.402000000 G Res BW 1.0 MHz MKR MODEL TRC SCL 1 A2 1 t (A) 2 F 1 t (A) 2 F 1 t 3 F 1 t 3 F 1 t 4 5 6 0 7 8 8 4 4 5 6 0 7 8 8 4 4 5 5 7 8 8 4 4 5 5 8 8 4 4 5 5 8 8 4 5 5 8 8 4 5 5 8 8 7 7 8 5 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Hz × 1.620 ms (Δ)	#VBW 3.0 I	Mitta Mit	apite aller on the present present president	and a supply dist	p 10.00 ms	Spa
-50.0 -60.0 -70.0 Center 2.402000000 G Res BW 1.0 MHz MKR MODE TRC SCL -1 42 1 t (Δ) 2 F 1 t 3 4 4 5 5 5 6 7 8	Hz × 1.620 ms (Δ)	#VBW 3.0 I	Mitta Mit	apite aller on the present present president	and a supply dist	p 10.00 ms	Spar

Test Model

Average Time Of Occupancy (Dwell Time) Bluetooth V5.0

CH 0: 2402MHz GFSK DH5 ectrum Analyzer - Swept SA KI RL 01:08:55 AM Feb 27, 202 SENSE PN0: Fast IFGain:Low PN0: Fast HTig Delay-500.0 µs Trig Video #Atten: 30 dB Center Freq 2.402000000 GHz TRACE 12 TYPE WW DET P N Avg Type: Log-Pwr ΔMkr1 2.868 ms 1.17 dB Ref Offset 1.91 dB Ref 20.00 dBm l0 dB/div ₋og **r** <u>1Δ2</u> X2 un haistan and the second second second ah<mark>a daa kata kaalaan kaalaa</mark> المرك بكرابا فرزياتهم All hand to day Mara di Kanada di Ka an na h Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) #VBW 3.0 MHz FUNCTION WIDTH 1.17 dB -2.93 dBm 2.868 ms (Δ) 498.0 μs STATUS

7.5 MAXIMUM PEAK CONDUCTED OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(1) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.5.2 Conformance Limit

The max For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

7.5.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.5.4 Test Procedure

According to FCC Part15.247(b)(1)

As an alternative to a peak power measurement, compliance with the limit can be based on a measurement of the maximum conducted output power.

Use the following spectrum analyzer settings:

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

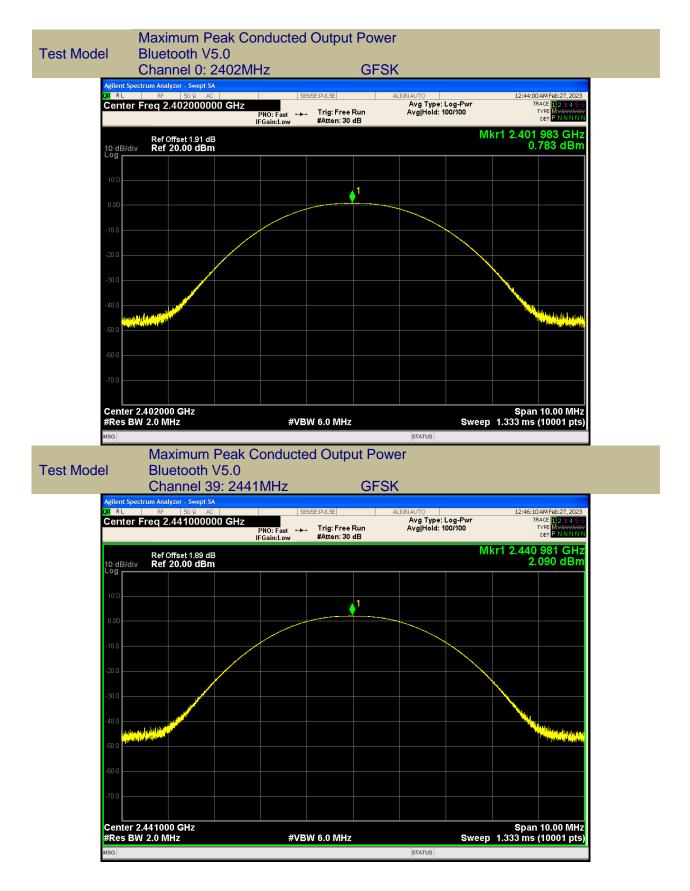
Set RBW > the 20 dB bandwidth of the emission being measured

Set $VBW \ge RBW$

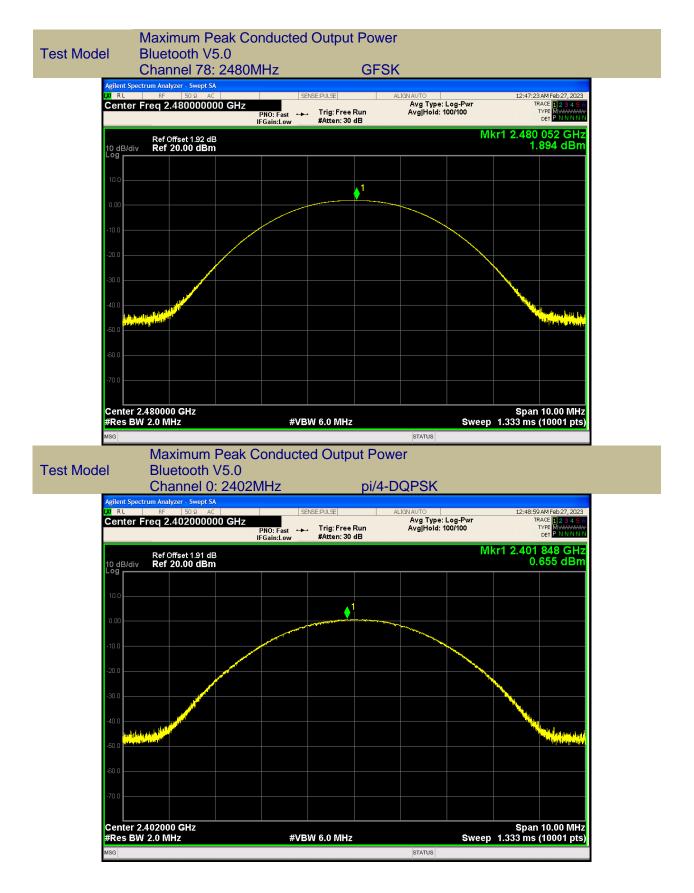
Set Sweep = auto

Set Detector function = peak

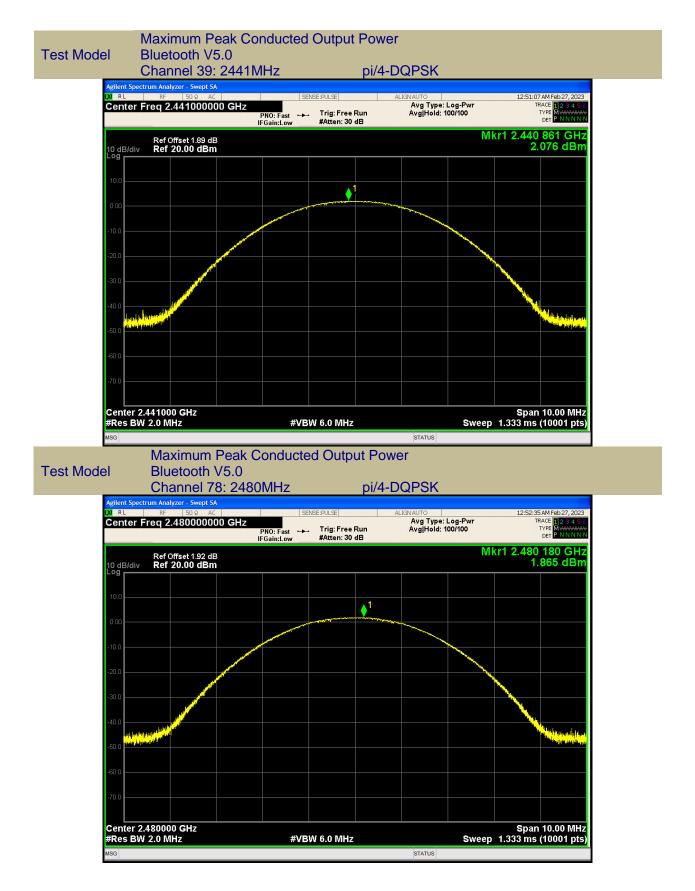
Set Trace = max hold


Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission to determine the peak amplitude level.

Test Results


Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	0	2402	0.78	21	PASS
GFSK	39	2441	2.09	21	PASS
	78	2480	1.89	21	PASS
	0	2402	0.66	21	PASS
pi/4-DQPSK	39	2441	2.08	21	PASS
	78	2480	1.87	21	PASS
Note: N/A					



7.6 CONDUCTED SUPRIOUS EMISSION

7.6.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.6.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted, provided the transmitter demonstrates compliance with the peak conducted power limits.

7.6.3 Test Configuration

Test according to clause 6.1 radio frequency test setup 1

7.6.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DSS channel center frequency.

Set Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel.

Set the RBW = 100 kHz. Set the VBW \ge 3 x RBW.

Set Detector = peak. Set Sweep time = auto couple.

Set Trace mode = max hold. Allow trace to fully stabilize.

Use the peak marker function to determine the maximum Maximum conduceted level.

Note that the channel found to contain the maximum conduceted level can be used to establish the reference level.

Band-edge Compliance of RF Conducted Emissions

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation

Set RBW \geq 1% of the span=100kHz Set VBW \geq RBW

Set Sweep = auto Set Detector function = peak Set Trace = max hold

Allow the trace to stabilize. Set the marker on the emission at the bandedge, or on the highest modulation product outside of the band, if this level is greater than that at the bandedge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission. The marker-delta value now displayed must comply with the limit specified in this Section.

Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Conduceted Spurious RF Conducted Emission

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th

harmonic.(30MHz to 25GHz). Set RBW = 100 kHz Set VBW \ge RBW

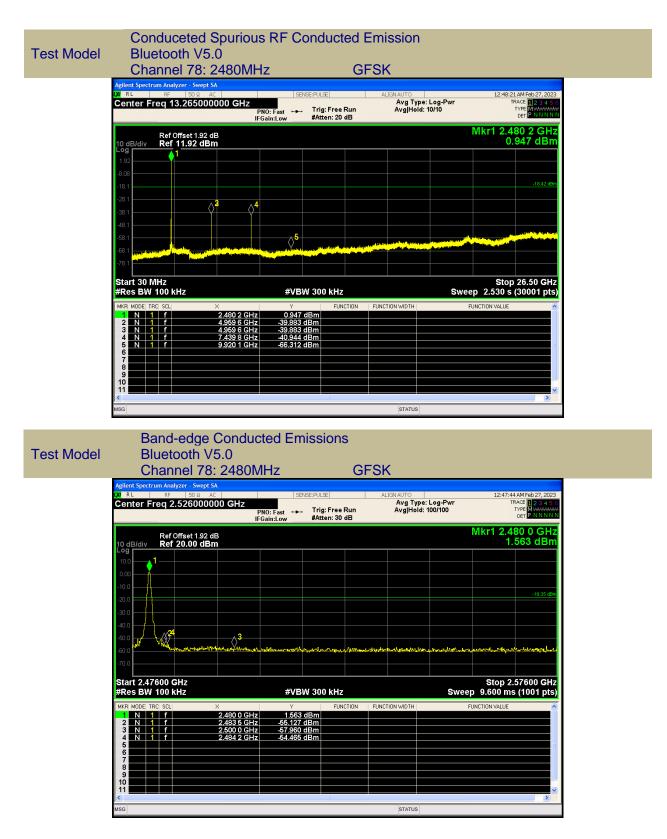
Set Sweep = auto Set Detector function = peak Set Trace = max hold

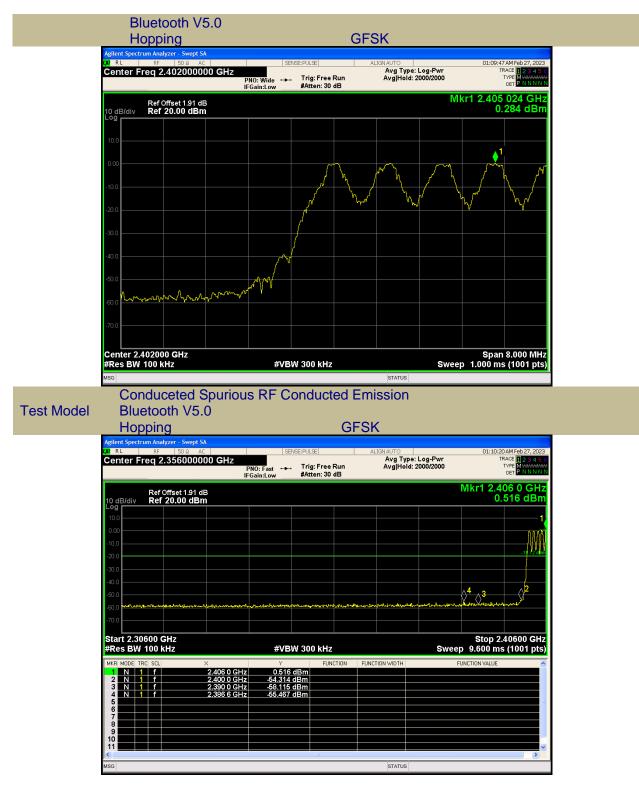
Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this Section.



7.6.5 Test Results

Bluetooth (GFSK, pi/4-DQPSK) mode have been tested, and the worst result(GFSK) was report as below:





Test Model Maximum Conduceted Level RBW=100kHz

Address:No.11,WuSongRoad, DongchengDistrict,Dongguan, GuangdongProvince,China523117 Tel: 86-769-22607797 Fax: 86-769-22607907 http://www.cpcteam.com

90135-23-72-23-PP001

Test Model	Band-edge Conducted Emissi Bluetooth V5.0 Hopping	ions GFSK	
Address:No.11, Dongo	WuSongRoad, hengDistrict,Dongguan,		Tel: 86-769-22607797 Fax: 86-769-22607907
GuangdongProvince, China523117			http://www.cpcteam.com

Test Model

Band-edge Conducted Emissions Bluetooth V5.0

Hopping		GFSK		
Agilent Spectrum Analyzer - Swept SA VXI RL RF 50 Q AC Center Freq 2.526000000 GHz	PNO: Fast Trig: Fre	e Run Avg Hol	be: Log-Pwr d: 2000/2000	01:14:58 AM Feb 27, 2023 TRACE 12 3 4 5 6 TYPE M
Ref Offset 1.92 dB 10 dB/div Ref 20.00 dBm 10 dB/div 1	IFGain:Low #Atten: 3		N	lkr1 2.477 9 GHz 1.522 dBm
0 00 -10.0				-18.72 dBm
-40.0 -50.0 -60.0 -70.0	Turperstanding and a second and the		ՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠՠ	๛ูระเทร่านใ-เหรือจ _อ าระโต่างสูงเรื _{อกา} รแกร่งเห
Start 2.47600 GHz #Res BW 100 kHz	#VBW 300 kH	lz	Sweep	Stop 2.57600 GHz 9.600 ms (1001 pts)
MKR MODE TRC SCL X 1 1 f 2.477 9 GH 2 N 1 f 2.483 5 GH 3 N 1 f 2.600 0 GH 4 N 1 f 2.484 1 GH 6 7 7 7 7 8 9 9 9 10 10 1 1 1 1	z <u>1.522 dBm</u> z <u>-57.170 dBm</u> z <u>-58.287 dBm</u>	UNCTION FUNCTION WIDTH	FUN	
MSG		STATUS		

7.7 RADIATED SPURIOUS EMISSION

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 MEAS GUIDANCE v05r02

7.7.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to FCC Part 15.205, Restricted bands						
MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

According to FCC Part15.205, Restricted bands

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

7.7.3 Test Configuration

Test according to clause 6.2 radio frequency test setup 2

7.7.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings: For Above 1GHz: The EUT was placed on a turn table which is 1.5m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 1 MHz $VBW \ge RBW$ Sweep = autoDetector function = peak Trace = max holdFor Below 1GHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 100 kHz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max holdFor Below 30MHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 9kHz $VBW \ge RBW$ Sweep = autoDetector function = peak Trace = max holdFor Below 150KHz: The EUT was placed on a turn table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Span = wide enough to fully capture the emission being measured RBW = 200Hz $VBW \ge RBW$ Sweep = auto Detector function = peak Trace = max holdFollow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data. Repeat above procedures until all frequency measured was complete.

7.7.5 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK È	AÝ	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible

limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz (1GHz to 25GHz)

Bluetooth (GFSK, pi/4-DQPSK) mode have been tested, and the worst result(GFSK) was report as below:

Test mode:	GFS	K	Frequ	lency:	Channe	el 0: 2402MH	lz
Freq. (MHz)	Ant.Pol.		ssion IBuV/m)	Limit 3m	(dBuV/m)	Ove	er(dB)
(IVI⊓∠)	H/V	PK	AV	PK	AV	PK	AV
4840.09	V	55.05	41.26	74	54	-18.95	-12.74
7183.63	V	61.63	47.82	74	54	-12.37	-6.18
12256.92	V	60.21	46.40	74	54	-13.79	-7.60
4759.04	Н	57.52	43.70	74	54	-16.48	-10.30
7203.96	Н	59.55	45.76	74	54	-14.45	-8.24
14080.13	Н	59.67	45.86	74	54	-14.33	-8.14

Test mode: GFSK Frequency: Channel 39: 2441MHz

Freq.	Ant.Pol. Emission Level(dBuV/m)		Ant.Pol. Level(dBu\//m) Limit 3m(dBuV/m)		(dBuV/m)	Over	(dB)
(MHz)	H/V	PK	ÂV	PK	AV	PK	AV
4822.68	V	57.08	43.27	74	54	-16.92	-10.73
7245.58	V	59.72	45.89	74	54	-14.28	-8.11
12288.85	V	59.40	45.59	74	54	-14.60	-8.41
4761.09	Н	57.22	43.33	74	54	-16.78	-10.67
7156.32	Н	59.64	45.82	74	54	-14.36	-8.18
14798.92	Н	58.99	45.19	74	54	-15.01	-8.81

Test mode:

GFSK

Frequency:

Channel 78: 2480MHz

Freq.	Ant.Pol. Emission Level(dBuV/m)			Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4825.74	V	58.02	44.22	74	54	-15.98	-9.78
7178.34	V	59.99	46.18	74	54	-14.01	-7.82
12289.16	V	59.96	46.17	74	54	-14.04	-7.83
4781.90	Н	56.81	42.02	74	54	-17.19	-11.98
7196.48	Н	59.24	44.38	74	54	-14.76	-9.62
14528.64	Н	58.41	43.63	74	54	-15.59	-10.37

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

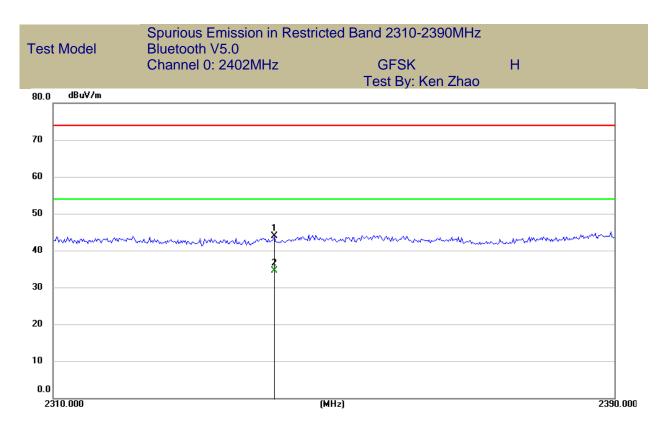
(3) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

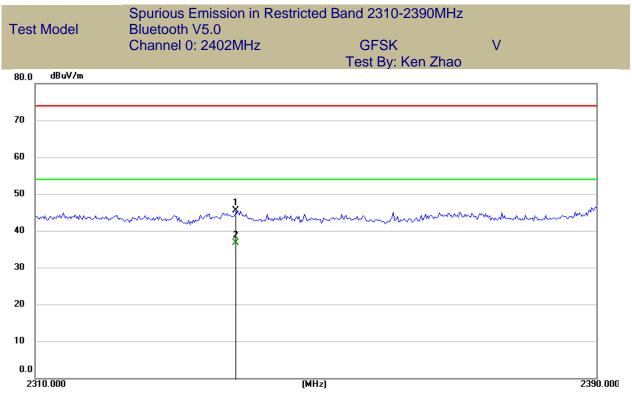
Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz Bluetooth (GFSK, pi/4-DQPSK, Hopping) mode have been tested, and the worst result(GFSK, Hopping) was report as below:

Test mode:	GFSK	Frequency: (Channel 0: 2402MHz	
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2341.20	Н	43.94	74	34.62	54
2338.63	V	45.52	74	36.85	54

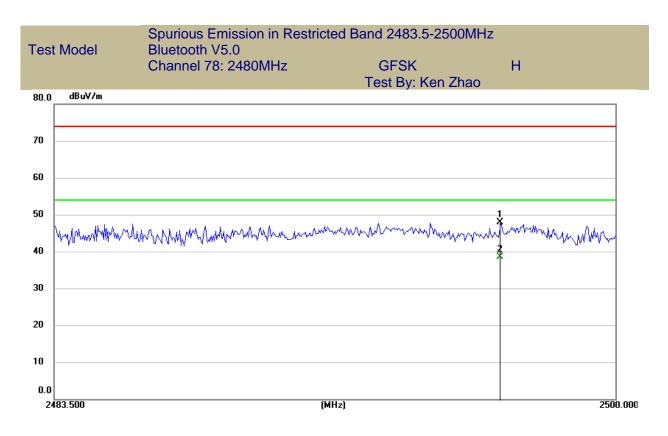
Test mode:	GFSK	Frequen	cy: Ch	annel 78: 2480M	lHz
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2496.63	Н	47.75	74	38.37	54
2493.49	V	47.97	74	38.60	54

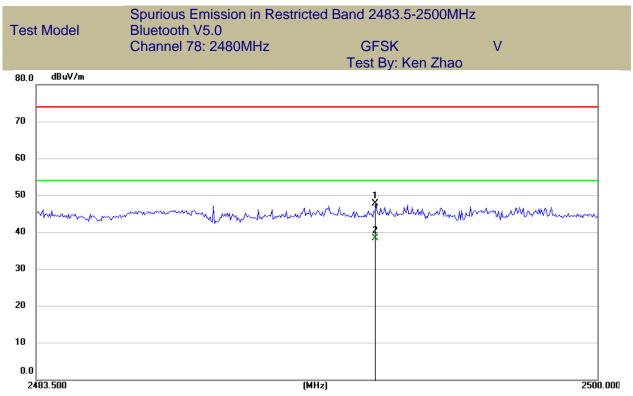
Test mode:	GFSK	Frequen	су: Но	pping	
Frequency (MHz)	Polarity H/V	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2400.00	Н	53.39	74	41.60	54
2483.50	Н	47.14	74	38.95	54
2400.00	V	51.34	74	41.35	54
2483.50	V	48.30	74	39.32	54

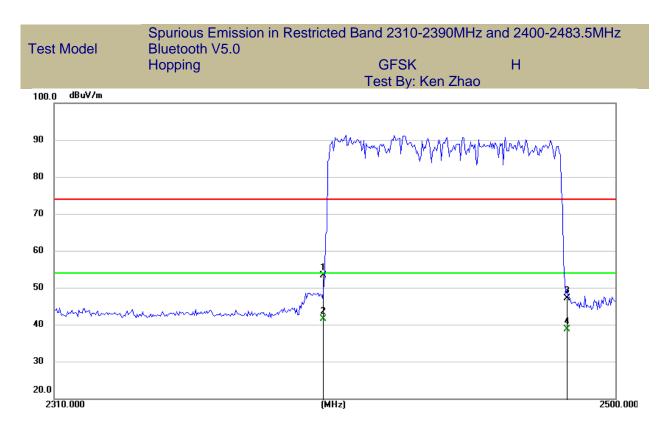

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

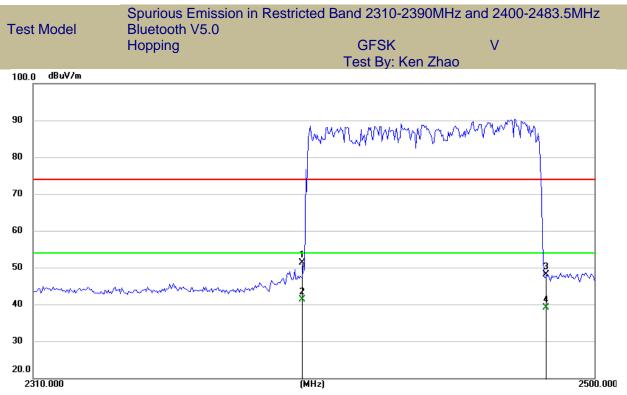

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

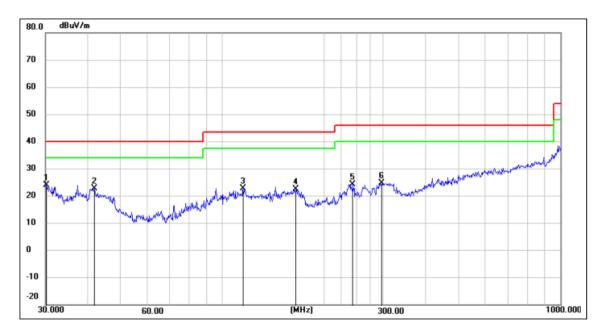
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the


field strength is too small to be measured.

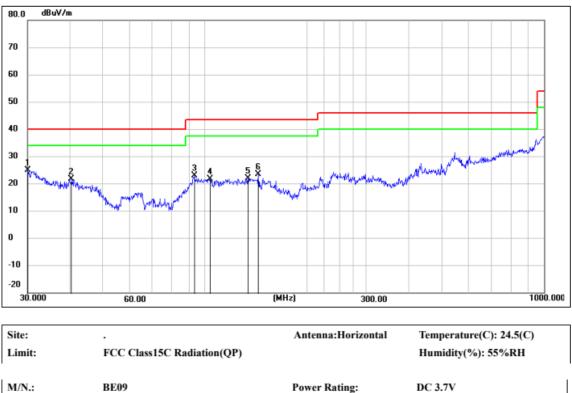






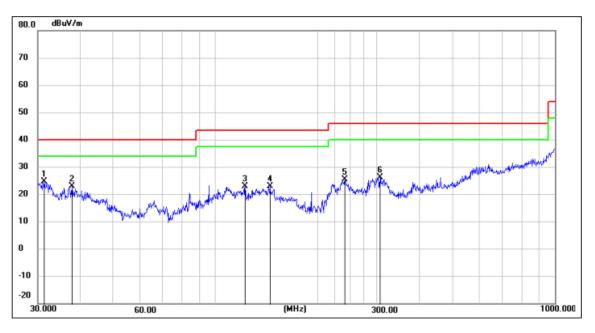


Spurious Emission below 1GHz (30MHz to 1GHz)


Bluetooth (GFSK, pi/4-DQPSK) mode have been tested, and the worst result(GFSK) was report as below:

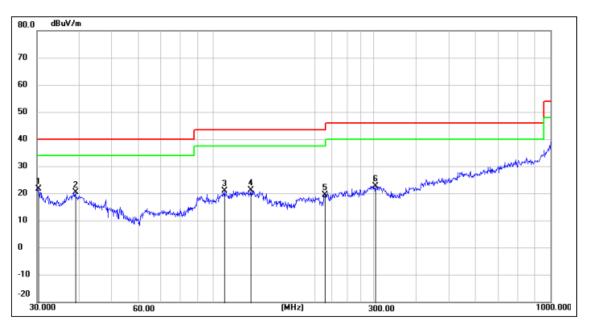
Site: Limit:	FCC Class15C Radiation(QP)	Antenna:Vertical	Temperature(C): 24.5(C) Humidity(%): 55%RH
M/N.:	BE09	Power Rating:	DC 3.7V
Mode:	BT 2402	Test Engineer:	Ken
Note:			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.210800	23.96	0.14	24.10	40.00	-15.90	QP
2	41.859400	28.61	-5.75	22.86	40.00	-17.14	QP
3	115.320400	26.43	-3.65	22.78	43.50	-20.72	QP
4	165.486600	27.47	-4.90	22.57	43.50	-20.93	QP
5	243.377100	28.54	-4.30	24.24	46.00	-21.76	QP
6	297.223800	25.99	-1.17	24.82	46.00	-21.18	QP



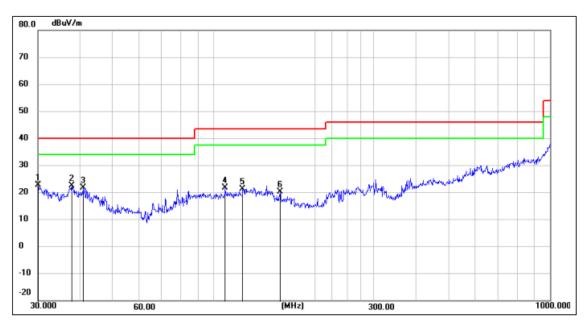
M/N.:	BE09	Power Rating:	DC 3.7V
Mode:	BT 2402	Test Engineer:	Ken
Note:			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.105100	24.85	0.26	25.11	40.00	-14.89	QP
2	40.417000	27.06	-5.20	21.86	40.00	-18.14	QP
3	93.440200	30.37	-7.47	22.90	43.50	-20.60	QP
4	103.805400	26.37	-4.55	21.82	43.50	-21.68	QP
5	134.087700	24.95	-2.99	21.96	43.50	-21.54	QP
6	143.829100	26.33	-2.91	23.42	43.50	-20.08	QP



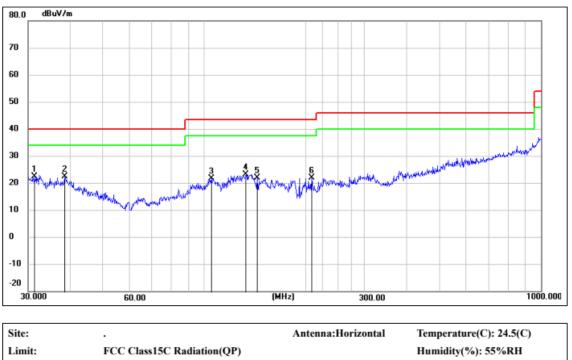
Site:		Antenna:Vertical	Temperature(C): 24.5(C)
Limit:	FCC Class15C Radiation(QP)		Humidity(%): 55%RH
M/N.: Mode: Note:	BE09 BT 2441	Power Rating: Test Engineer:	DC 3.7V Ken

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.399200	26.01	-1.15	24.86	40.00	-15.14	QP
2	37.812100	28.11	-5.05	23.06	40.00	-16.94	QP
3	122.403800	26.23	-3.20	23.03	43.50	-20.47	QP
4	144.841700	26.02	-3.00	23.02	43.50	-20.48	QP
5	240.830000	30.01	-4.62	25.39	46.00	-20.61	QP
6	305.680000	27.81	-1.47	26.34	46.00	-19.66	QP



Site: Limit:	FCC Class15C Radiation(QP)	Antenna:Horizontal	Temperature(C): 24.5(C) Humidity(%): 55%RH
M/N.:	BE09	Power Rating:	DC 3.7V
Mode:	BT 2441	Test Engineer:	Ken
Note:			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.317000	21.72	0.03	21.75	40.00	-18.25	QP
2	39.024200	25.48	-5.03	20.45	40.00	-19.55	QP
3	107.887600	25.37	-4.31	21.06	43.50	-22.44	QP
4	129.467700	24.49	-3.26	21.23	43.50	-22.27	QP
5	214.514100	26.40	-6.75	19.65	43.50	-23.85	QP
6	302.481100	24.13	-1.33	22.80	46.00	-23.20	QP



Site: Limit:	FCC Class15C Radiation(QP)	Antenna:Vertical	Temperature(C): 24.5(C) Humidity(%): 55%RH
M/N.:	BE09	Power Rating:	DC 3.7V
Mode:	BT 2480	Test Engineer:	Ken
Note:			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.000000	22.37	0.38	22.75	40.00	-17.25	QP
2	37.812100	27.58	-5.05	22.53	40.00	-17.47	QP
3	40.844400	27.11	-5.35	21.76	40.00	-18.24	QP
4	108.266400	26.13	-4.28	21.85	43.50	-21.65	QP
5	121.975300	24.54	-3.19	21.35	43.50	-22.15	QP
6	157.558600	24.52	-4.22	20.30	43.50	-23.20	QP

M/N.:	BE09	Power Rating:	DC 3.7V
Mode:	BT 2480	Test Engineer:	Ken
Note:			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.399200	23.56	-1.15	22.41	40.00	-17.59	QP
2	38.480800	27.49	-5.04	22.45	40.00	-17.55	QP
3	104.903000	26.36	-4.48	21.88	43.50	-21.62	QP
4	133.618400	26.25	-3.02	23.23	43.50	-20.27	QP
5	143.829200	25.04	-2.91	22.13	43.50	-21.37	QP
6	208.580000	28.94	-6.89	22.05	43.50	-21.45	QP

7.8 CONDUCTED EMISSION TEST

7.8.1 Applicable Standard

According to FCC Part 15.207(a)

7.8.2 Conformance Limit

cted Emission Limit	
Quasi-peak	Average
66-56	56-46
56	46
60	50
	Quasi-peak 66-56 56

Note: 1. The lower limit shall apply at the transition frequencies

Remark: Test results were obtained from the following equation: Measurement (dB μ V) = LISN Factor (dB) + Cable Loss (dB) + Reading (dB μ V) Margin (dB) = Measurement (dB μ V) - Limit (dB μ V)

7.8.3 Test Configuration

Test according to clause 6.3 conducted emission test setup

7.8.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

7.8.5 Test Results

Not Applicable

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

Standard	Requirement
FCC CRF Part 15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

7.9.2 Result

PASS.

Note:

The EUT has 1 antenna: Chip Antenna for BT V5.0 with classic model, the gain is 1.70 dBi;

Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement

The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

----- END OF REPORT ------