

RADIO TEST REPORT

Report No.: SHATBL2112037W01

Applicant: Chengdu Just Do It Information and Technology Co., Ltd.

Rm 604&605, Unit 1, Building 2, No. 1, Section 1, Huafu Avenue, Huayang Street, Tianfu New District, Chengdu, China.

Product Name	:	Bobcat LoRa Gateway Module
Brand Name	:	BOBCAT
Model Name	:	B100
Series Model	÷	N/A
FCC ID	:	2AZCK-B100
Test Standard	:	FCC Part 15.247

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization.
Tel:+86(0)21-51298625
Web:www.atbl-lab.com
Email:atbl@atbl-lab.com

TEST RESULT CERTIFICATION

Applicant's Name:	Chengdu Just Do It Information and Technology Co., Ltd.
Address:	Rm 604&605, Unit 1, Building 2, No. 1, Section 1, Huafu Avenue, Huayang Street, Tianfu New District,Chengdu, China.
Manufacture's Name	Chengdu Just Do It Information and Technology Co., Ltd.
Address:	Rm 604&605, Unit 1, Building 2, No. 1, Section 1, Huafu Avenue, Huayang Street, Tianfu New District,Chengdu, China.
Product Description	
Product Name:	Bobcat LoRa Gateway Module
Brand Name:	BOBCAT
Model Name:	B100
SeriesModel:	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2013
This device described above ha	s been tested by ATBL, the test results show that the equipment under

This device described above has been tested by ATBL, the test results show that the equipment under test (EUT) is in compliance with the FCC/IC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ATBL, this document may be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

Date of Test

Date of receipt of test item 30 Dec. 2021

Date (s) of performance of tests...... 31 Dec. 2021~07 Jan. 2022

Date of Issue..... 10 Jan. 2022

Test Result..... Pass

Report Prepared by :

Ne

(Roeanwei)

Report Approved by :

Ghost Li.

(Ghost li)

Authorized Signatory :

(Terry yang)

Table of Contents

1. SUMMARY OF TEST RESULTS	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	8
2.3 TEST SOFTWARE AND POWER LEVEL	8
2.4 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	9
2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	10
2.6 TEST FACTORY	11
2.7 MEASUREMENT UNCERTAINTY	11
2.8 EQUIPMENTS LIST	12
3. EMC EMISSION TEST	13
3.1 CONDUCTED EMISSION MEASUREMENT	13
3.2 TEST PROCEDURE	14
3.3 TEST SETUP	14
3.4 EUT OPERATING CONDITIONS	14
3.5 TEST RESULTS	15
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	20
4.4 EUT OPERATING CONDITIONS	20
4.5 FIELD STRENGTH CALCULATION	21
4.6 TEST RESULTS	22
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	26
5.1 LIMIT	26
5.2 TEST PROCEDURE	26
5.3 TEST SETUP	26
5.4 EUT OPERATION CONDITIONS	26
5.5 TEST RESULTS	27
6. POWER SPECTRAL DENSITY TEST	30
6.1 LIMIT	30
6.2 TEST PROCEDURE	30

Table of Contents

6.3 TEST SETUP	30
6.4 EUT OPERATION CONDITIONS	30
6.5 TEST RESULTS	31
7. BANDWIDTH TEST	33
7.1 LIMIT	33
7.2 TEST PROCEDURE	33
7.3 TEST SETUP	33
7.4 EUT OPERATION CONDITIONS	33
7.5 TEST RESULTS	34
8. PEAK OUTPUT POWER TEST	38
8.1 LIMIT	38
8.2 TEST PROCEDURE	38
8.3 TEST SETUP	38
8.4 EUT OPERATION CONDITIONS	38
8.5 TEST RESULTS	39
9. ANTENNA REQUIREMENT	41
9.1 STANDARD REQUIREMENT	41
9.2 EUT ANTENNA	41
APPENDIX-PHOTOS OF TEST SETUP	42

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	10 Jan. 2022	SHATBL2112037W01	ALL	Initial Issue

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part15.247,Subpart C			
Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth 99% Bandwidth	PASS	
15.247 (b)(3)	Output Power	PASS	
15.247 (c)	Radiated Spurious Emission	PASS	
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.205	Restricted bands of operation	PASS	
Part 15.247(d)/part 15.209(a)	Band Edge Emission PAS		
15.203	Antenna Requirement PASS		

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2)All tests are according to ANSI C63.10-2013.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Bobcat LoRa Gateway Module		
Trade Name	BOBCAT		
Model Name	B100		
Series Model	N/A		
Model Difference	N/A		
	The EUT is a Bobc	at Lora Module For USB	
	Operation Frequency:	902-928MHz(500KHz)	
	Modulation Type:	LoRa	
Product Description	Number Of Channel:	41 Channel	
	Antenna Designation:	Please refer to the Note 3.	
	AntennaGain (dBi)	4dBi	
Channel List	Please refer to the I	Note 2.	
Power Rating	DC 3.3V 1A		
Hardware version number	VER:03		
Software versionnumber	VER:01		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Channel List		
Channel	Frequency (MHz)	
Low	903.0	
Middle	915.0	
High	927.5	

Note: Test frequency points are declared by the customer

3.

Table for Filed Antenna

Ant	. Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	BOBCAT	B100	Non-common Interface Antenna	N/A	4	ANT

Forconducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Modulation
Mode 1	903.0MHz	LoRa
Mode 2	915.0 MHz	LoRa
Mode 3	927.5 MHz	LoRa

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

ForACConductedEmission

	Test Case
AC Conducted Emission	Mode2: Keeping TX

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the

RF Function	Туре	Mode Or Modulation type	Ant Gain(dBi)	Power Class	Software For Testing
LORA	500KHz	902MHz-928MHz	4	30	SecureCRTPortable

operating channel as well as the output power level.

2.4BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious EmissionTest

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand Model/Type No.		Serial No.	Note
E-3	Adapter	N/A	A-938-120100W-US1	N/A	N/A
C-2	DC Cable	N/A	N/A	110cm	N/A

Necessary accessories

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	Lenovo	DESKTOP-USDEO09	1	N/A
C-1	USB Cable	N/A	100cm	N/A	N/A

Note:

(1) For detachable type I/O cable should be specified the length in cm in ^r Length ^a column.

2.6 TEST FACTORY

Company Name:	Shanghai ATBL Technology Co., Ltd.
Address:	Building 8,No.160 BashengRoad,Waigaoqiao Free Trade Zone,Pudong New Area,Shanghai
Telephone:	+86(0)21-51298625
A2LA Number:	6184.01
CNAS Number:	CNAS L14531

2.7 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	<mark>±</mark> 0.958dB
2	Conducted spurious emissions	±2.988dB
3	All emissions, radiated 30MHz-1GHz	±2.50dB
4	All emissions, radiated 1GHz-18GHz	±3.51dB
5	Occupied bandwidth	±23.20dB
6	Power spectral density	±0.886dB

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Management number	Calibrated until
Test Receiver	R&S	ESCI	100469	SHATBL-E003	2022.07.13
Spectrum Analyzer	Agilent	N9020A	MY50200811	SHATBL-E017	2022.07.13
Bilog Antenna	SCHWARZBECK	VLUB 9168	01174	SHATBL-E008	2023.09.27
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	SHATBL-E009	2023.09.27
Pre-Amplifier (0.1M-3GHz)	JPT	JPA-10M1G35	2101010003500 1	SHATBL-E005	2022.10.07
Pre-Amplifier (1G-18GHz)	JPT	JPA0118-55-30 3A	1910001800055 000	SHATBL-E006	2022.07.13
Temperature & Humidity	DeLi	DeLi	N/A	SHATBL-E016	2022.10.08
Antenna/Turntable Controller	Brilliant	N/A	N/A	SHATBL-E007	N/A
Test SW	FALA	EMC-RI(Ver.4A2)	SHATBL-E046	N/A

RF Connected Test

Kind of Equipment	Manufactur er	Type No.	Serial No.	equipment number	Calibrated until
MIMO Power	DARE	RPR3006W	16l00054SN01 6	SHATBL-W006	2022.10.07
measurement test Set	DARE	KF N3000VV	RPR6W-20001 005	SHATBL-W013	2022.10.07
Signal Analyzer	Agilent	N9020A	MY57300196	SHATBL-W004	2022.10.07
Signal Generator	Agilent	N5182B	MY46240556	SHATBL-W005	2022.10.07
Wireless Communications Test Set	R&S	CMW500	101331	SHATBL-W007	2022.10.07
Temperature & Humidity	Deli	deli	N/A	SHATBL-W011	2022.10.07
Attenuator	Agilent	8494B	DC-18G	SHATBL-W009	2022.10.07
Attenuator	Agilent	8496B	DC-18G	SHATBL-W010	2022.10.07
nower colittor	MNK	MPD-DC/6-2	62315 G51	SHATBL-W015	2022.10.07
power splitter	IVIINIX	S	62315 G52	SHATBL-W016	2022.10.07
Filter	Chengdu kangmaiwei	ZBSF-C2400 -2483.5-T3	N/A	SHATBL-W021	N/A
Constant temperature and humidity box	KSON	THS-B6C-15 0	6159K	SHATBL-W019	2022.01.26
Test SW	FALA	LZ-RF(Ver.L	_zRF-03A3.1)	SHATBL-W020	N/A

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

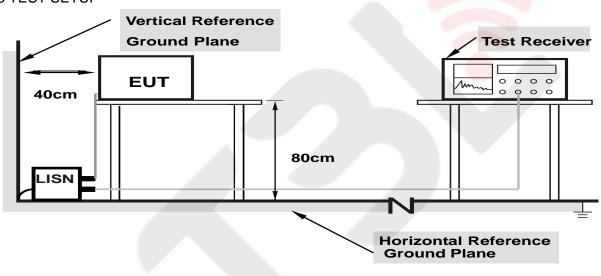
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a)&RSS-Gen Issue 5 limit in the table below has to be followed.

FREQUENCY (MHz)	Conducted Emissionlimit (dBuV)		
	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	<u>50.00</u>	

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.4EUT OPERATING CONDITIONS

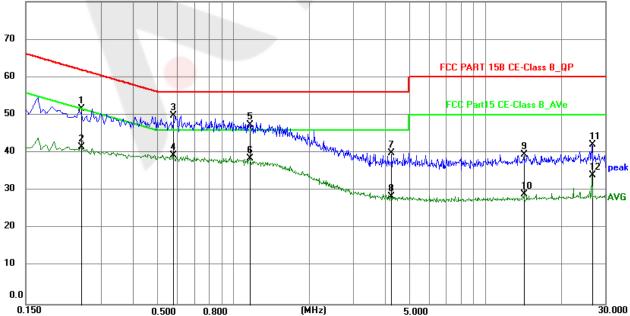
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.3 TEST SETUP

3.5TEST RESULTS

Temperature:	21.9(C)	Relative Humidity:	52%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 1		

No.	Frequen cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.2490	41.51	10.08	51.59	61.7 <mark>9</mark>	-10.20	QP
2	0.2490	31.50	10.08	41.58	51.79	-10.21	AVG
3	0.5774	39.86	10.02	49.88	56.00	-6.12	QP
4	0.5774	29.46	10.02	39.48	46.00	<mark>-6</mark> .52	AVG
5	1.1624	37.52	9.95	47.47	56.00	-8.53	QP
6	1.1624	28.70	9.95	38.65	46.00	-7.35	AVG
7	4.2404	29.89	10.05	39.94	56.00	-16.06	QP
8	4.2404	18.50	10.05	28.55	46.00	-17.45	AVG
9	14.3340	29.02	10.62	39.64	60.00	-20.36	QP
10	14.3340	18.52	10.62	29.14	50.00	-20.86	AVG
11	26.6235	31.10	11.12	42.22	60.00	-17.78	QP
12	26.6235	22.96	11.12	34.08	50.00	-15.92	AVG

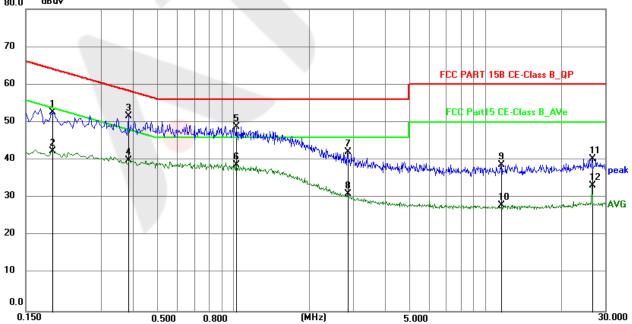

Remark:

1. All readings are Quasi-Peak and Average values

2. Margin = Result (Result = Reading + Factor)-Limit

3.Factor=LISN factor+Cableloss+Limiter (10dB)

80.0 dBuV


Page 16 of 44 Report No.: SHATBL2112037W01

1				
	Temperature:	21.9(C)	Relative Humidity:	52%RH
	Test Voltage:	AC 120V/60Hz	Phase:	N
	Test Mode:	Mode 1		

No.	Frequen cy	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1905	42.21	10.39	52.60	64.01	-11.41	QP
2	0.1905	32.11	10.39	42.50	54.01	-11.51	AVG
3	0.3840	41.33	10.28	51.61	58.19	-6.58	QP
4	0.3840	29.66	10.28	39.94	48.19	-8.25	AVG
5	1.0274	38.75	10.15	48.90	56.00	-7.10	QP
6	1.0274	28.73	10.15	38.88	46.00	-7.12	AVG
7	2.8500	31.92	10.28	42.20	56.00	<mark>-13</mark> .80	QP
8	2.8500	20.95	10.28	31.23	46.00	-14.77	AVG
9	11.5620	28.69	10.20	38.89	60.00	-21.11	QP
10	11.5620	17.85	10.20	28.05	50.00	-21.95	AVG
11	26.6235	29.37	11.08	40.45	60.00	-19.55	QP
12	26.6235	22.36	11.08	33.44	50.00	-16.56	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result = Reading + Factor)-Limit
- 3. Factor=LISN factor+Cableloss+Limiter (10dB)
- 80.0 dBuV

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified onPart15.205(a)&209(a), RSS-Gen Issue 5 and RSS-247 Issue 2, February 2017 (5.5) limit in the table and according to ANSI C63.10-2013below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT(Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FCC:

FREQUENCY (MHZ)	FREQUENCY (MHz)	FREQUENCY (GHz)
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
108-121.94	1718.8-1722.2	13.25-13.4
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	Above 38.6
	16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710108-121.941718.8-1722.2123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP/AV	
Start Frequency	9 KHz/150KHz(Peak/QP/AV)	
Stop Frequency	150KHz/30MHz(Peak/QP/AV)	
	200Hz (From 9kHz to 0.15MHz)/	
PP ()/P (omission in restricted hand)	9KHz (From 0.15MHz to 30MHz);	
RB/VB (emission in restricted band)	200Hz (From 9kHz to 0.15MHz)/	
	9KHz (From 0.15MHz to 30MHz)	

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB/VB (emission in restricted band)	120 KHz / 300 KHz

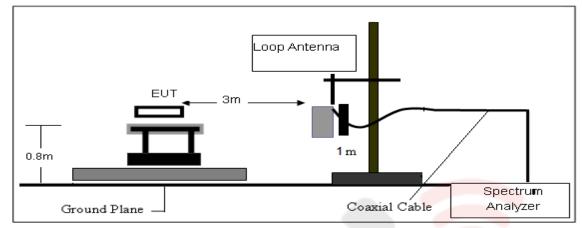
Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
PR ()/P (amission in restricted hand)	1MHz / 3MHz(Peak)	
RB/VB (emission in restricted band)	1 MHz/1/T MHz(AVG)	

For Band Edge

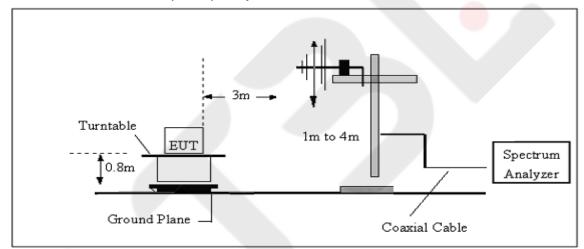
Note: The EUT main frequency is too far away from the restricted band, so the band edge of the radiation method is not tested.

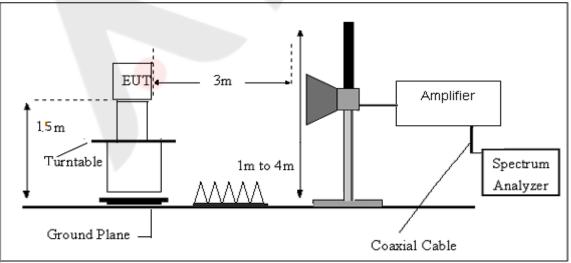
Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were testedand performed pretest to three orthogonal axis. The worst case emissions were reported.




(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

(Between 9KHz - 30 MHz)

Temperature:	23.3(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.3V	Polarization:	
Test Mode:	TX Mode		

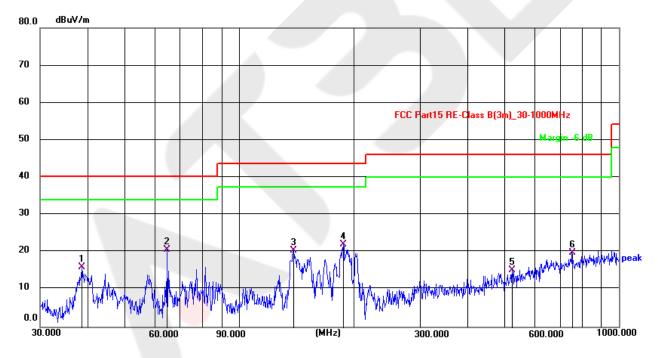
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

(30MHz-1000MHz)

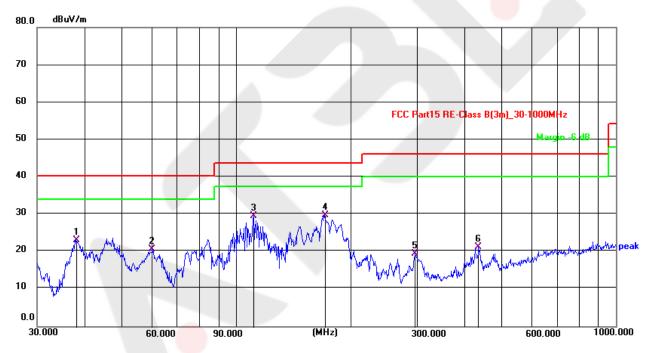

Temperature:	23.3(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.3 V	Phase:	Horizontal
Test Mode:	Mode 1		

N 0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	38.6160	34.05	-18.06	15.99	40.00	-24.01	QP
2	64.8865	41.26	-20.60	20.66	40.00	-19.34	QP
3	138.8735	39.04	-18.56	20.48	43.50	-23.02	QP
4	188.4125	42.57	-20.52	22.05	43.50	-21.45	QP
5	524.5541	27.87	-12.67	15.20	46.00	-30.80	QP
6	752.7432	28.62	-8.69	19.93	46.00	-26.07	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain


Temperature:	23.3(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 3.3V	Phase:	Vertical
Test Mode:	Mode 1		

N 0.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1	37.9450	41.30	-18.12	23.18	40.00	-16.82	QP
2	60.2801	40.34	-19.70	20.64	40.00	-19.36	QP
3	111.3468	50.34	-20.70	29.64	43.50	-13.86	QP
4	171.3926	48.33	-18.57	29.76	43.50	-13.74	QP
5	296.1836	36.77	-17.32	19.45	46.00	-26.55	QP
6	435.5898	35.64	-14.26	21.38	46.00	-24.62	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

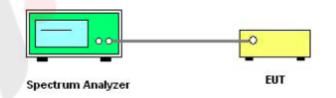
(1GHz-12.75GHz)Restricted band and Spurious emission Requirements

·	LoRa							
Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Deg.(deg.)	Ant.F/G.(dB/m)	Amp.G.(dB)	Detector	Polarity
Low channel								
1818.841662	50.6	74.0	23.4	31	21.7	52.7	PK	Horizontal
1818.841662	30.8	74.0	43.2	306	21.7	52.7	AV	Horizontal
1809.605356	48.7	74.0	25.3	119	21.7	52.8	PK	Vertical
1818.841662	29.5	74.0	44.5	346	21.7	52.7	AV	Vertical
2525.839248	54.0	74.0	20.0	126	22.9	50.3	PK	Horizontal
2456.094628	47.0	74.0	27.0	5	22.8	50.2	AV	Horizontal
2525.839248	51.0	74.0	23.0	91	23.4	50.3	PK	Vertical
2406.583938	46.2	74.0	27.8	0	23.1	50.2	AV	Vertical
5230.962662	50.6	74.0	23.4	9	24.9	49.2	PK	Horizontal
5244.295203	28.0	74.0	46.0	344	49.2	49.2	AV	Horizontal
5164.806665	38.9	74.0	35.1	2	25.6	49.2	PK	Vertical
5311.469368	28.8	74.0	45.2	71	25.5	49.1	AV	Vertical
9985.761911	45.8	74.0	28.2	185	27.6	48.5	РК	Horizontal
10011.213360	36.3	74.0	37.7	0	27.6	48.5	AV	Horizontal
10062.311034	46.0	74.0	28.0	123	28.5	48.5	PK	Vertical
10011.213360	36.2	74.0	37.8	302	28.4	48.5	AV	Vertical
			Hig	gh channel				
1818.841662	47.2	74.0	26.8	277	21.7	52.7	PK	Horizontal
1842.139200	21.5	74.0	52.5	53	21.7	52.4	AV	Horizontal
1856.260721	44.6	74.0	29.4	135	21.8	52.2	PK	Vertical
1809.605356	24.3	74.0	49.7	354	21.7	52.8	AV	Vertical
2782.371360	38.4	74.0	35.6	72	23.6	51.1	PK	Horizontal
2768.242130	23.2	74.0	50.8	1	23.5	51.1	AV	Horizontal
2782.371360	39.2	74.0	34.8	245	24.0	51.1	PK	Vertical
2691.804172	26.7	74.0	47.3	335	23.8	50.8	AV	Vertical
6379.863906	39.0	74.0	35.0	164	25.3	48.9	PK	Horizontal
6412.427012	27.2	74.0	46.8	42	25.3	48.9	AV	Horizontal
6379.863906	40.5	74.0	33.5	151	25.8	48.9	PK	Vertical
6251.256700	30.2	74.0	43.8	360	25.8	48.9	AV	Vertical
9042.037624	42.4	74.0	31.6	228	26.9	48.6	PK	Horizontal
9042.037624	30.7	74.0	43.3	360	26.9	48.6	AV	Horizontal
9042.037624	42.3	74.0	31.7	41	27.5	48.6	PK	Vertical
9042.037624	33.1	74.0	40.9	195	27.5	48.6	AV	Vertical

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

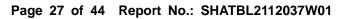
According to FCC section 15.247(d)&RSS-247 Issue 2,in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).


5.2TEST PROCEDURE

Spectrum Parameter	Setting
Detector	AV
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	RMS hold

For Band edge

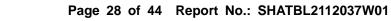
Spectrum Parameter	Setting
Detector	AV
Span	Measure to the appropriate range of Band edge
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	RMS hold


5.3 TEST SETUP

The EUT which is powered by the DC Power, is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

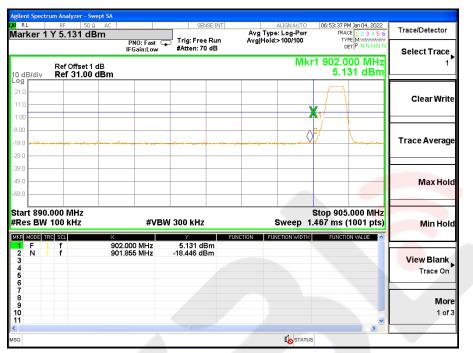

Temperature:	25℃	Relative Humidity:	50%
Test Voltage:	DC 3.3V	Test Mode:	TX Mode 1/2/3

RF 50 Ω AC		SENSE:INT	ALIGNAUTO Ava Type: Log-Pwr	06:17:05 PM Jan 04, 2022	Trace/Detector
.10012000000		➡ Trig: Free Run #Atten: 70 dB		TYPE MWWWWWW DET P N N N N N	Select Trace
Ref Offset 1 dB Ref 31.00 dBm			Ν	/kr2 5.767 GHz -14.014 dBm	1
1					
				5.13 dBm	Clear Write
		<u>2</u>			
and	where and second	edun white and a superman	and a second and a second and a second se	and a pressing of the second and the second	Trace Averag
					Max Hol
	#\/P	W 200 KU5	Sween	Stop 12.750 GHz	
	#VB		•		Min Hol
f	908 MHz	25.343 dBm			
					View Blank View
					Mor
					1 of 3
	766720000000	76672000000 GHz PN0: Fast C IFGaint.ow Ref Offset 1 dB Ref 31.00 dBm 1 2 2 2 2 2 2 2 2 2 2 2 2 2	.76672000000 GHz PN0: Fast IFGain:Low Trig: Free Run #Atten: 70 dB Ref Offset 1 dB Ref 31.00 dBm	.766720000000 GHz PN0: Fast IF GainLow Trig: Free Run #Atten: 70 dB Avg Type: Log-Pwr Ref Offset 1 dB Ref 31.00 dBm N 1 2 2 2 2 2 3 2 3 3 2 3 3 3 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 4 4 5 4	Avg Type: Log-Pwr Trace: 1.2.3 s 5.0 PR0: Fast Trig: Free Run #Avg Type: Log-Pwr Trace: 1.2.3 s 5.0 Der PNNNN Mkr2 5.767 GHz Ref 31.00 dBm -14.014 dBm 1 -14.014 dBm 2 -14.014 dBm 1 -14.014 dBm 2 -14.014 dBm 2 -14.014 dBm 1 -14.014 dBm 2 -14.014 dBm 2 -14.014 dBm 1 -14.014 dBm 2 -14.014 dBm 1 -14.014 dBm <td< td=""></td<>

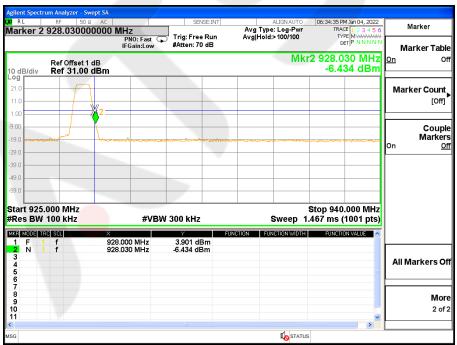
Mode 1

Q AC OCO GHZ PNO: Fast IFGain:Low 1 dB 0 dBm		Avg Type: Log	g-Pwr TRA T) Mkr2 3.0	5.43 dBm	Trace/Detector Select Trace 1 Clear Write Trace Average
IFGain:Low	#Atten: 70 dB		Mkr2 3.(-14.5	032 GHz 30 dBm	Clear Write
2 dBm				5.43 dBm	
2			on	h Marana Maralana ang kang kang kang kang kang kang ka	Trace Average
				I II-	
					Max Hold
#VI	BW 300 kHz		weep 1.216 s	2.750 GHz (1001 pts)	Min Hold
920 MHz 3.032 GHz	25.497 dBm -14.530 dBm				View Blank View
				×	More 1 of 3

Mode 2



1 0		Ω AC		SENSE:INT		ALIGNAUTO :: Log-Pwr	06:20:23 PM Jan 0 TRACE 1	
Ker 2	3.082800		D: Fast 😱 T	rig: Free Run	Avgiype	. ∟og-rwr	TYPE MV	2 3 4 5 6
		IFGa	iin:Low [*] #	Atten: 70 dB				Select Trace
B/div	Ref Offset Ref 31.0					N	1kr2 3.083 -14.497	
	V1							
								Clear Wri
								3.90 dBm
		2						
		monorman		man man man	manunda	- Andrew Margan	mannender	Trace Average
A CONTRACT			·					
								Maxilo
rt 30 N	/IHz 100 kHz		#VBW 30	0 141-		Curson	Stop 12.750 1.216 s (100	
			#VBW 30				•	
MODE TI		× 933	MHz 2	3.943 dBm	UNCTION FUN	ICTION WIDTH	FUNCTION VAL	
N 1	f	3.083	GHz -14	1.497 dBm				View Blank
								View
								Mo
								1 of



For Band edge(it's also the reference level for conducted spurious emission)

Mode 1

Mode 3

6.1LIMIT

	FCC Pa	art15.247,Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	902-928	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = AV.
- 6. Sweep time = auto couple.
- 7. Trace mode = RMS hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

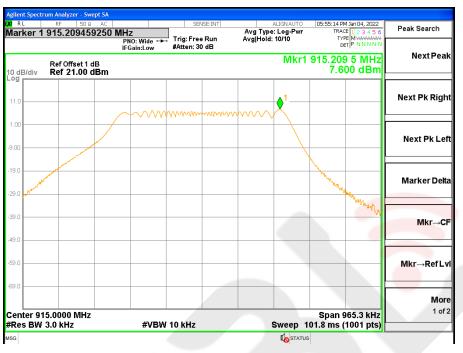
6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

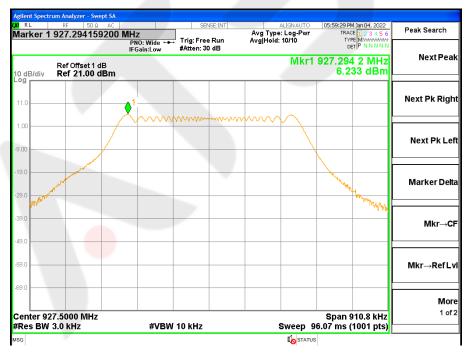
6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.3V	Test Mode:	TX Mode 1/2/3

Test mode	Power Density	Limit (dPm/2KHz)	Deput	
Test mode	(dBm/3kHz)	Limit (dBm/3KHz)	Result	
Mode 1	7.670	≤8	PASS	
Mode 2	7.600	≤8	PASS	
Mode 3	6.233	≤8	PASS	



Mode 1



Mode 2

Mode 3

7.1LIMIT

FCC Part15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	902-928	PASS

7.2 TEST PROCEDURE

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	For 6 dB Bandwidth :100KHz For 99% Bandwidth :1% to 5% of the occupied bandwidth
VBW	For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

7.3 TEST SETUP

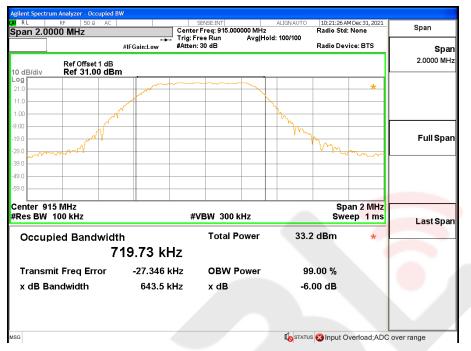
EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.3V	Test Mode:	TX Mode 1/2/3

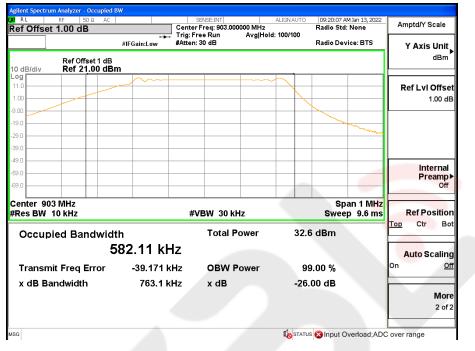

Test mode	6dB Bandwidth (KHz)	99% Bandwidth (KHz)	Limit (KHz)	Result
Mode 1	674.9	582.11	≥500KHz	PASS
Mode 2	643.5	544.15	≥500KHz	PASS
Mode 3	607.2	501.77	≥500KHz	PASS

6dB BandwidthMode 1

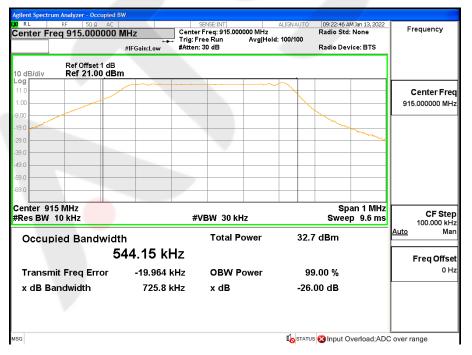
RL RF 50 Ω AC dB -6.00 dB #IFGai	Center I		ALIGN AUTO z Hold: 100/100	05:23:26 PM Jan 10, 2022 Radio Std: None Radio Device: BTS	Trac	e/Detector
Ref Offset 1 dB 0 dB/div Ref 31.00 dBm						
•g 11.0 1.0			1 h			Clear Write
00 00 9.0			mm			Averag
9.0				whorman		
3.0						Max Hol
enter 903 MHz Res BW 100 kHz	#V	BW 300 kHz		Span 2 MHz Sweep 1 ms		Min Hol
Occupied Bandwidth		Total Power	32.7	dBm		
751.9	32 kHz					Detecto Peak
Transmit Freq Error -4	7.767 kHz	OBW Power	99	.00 %	Auto	Ma
x dB Bandwidth	674.9 kHz	x dB	-6.	00 dB		
g			~	Sinput Overload;AD		

AT3

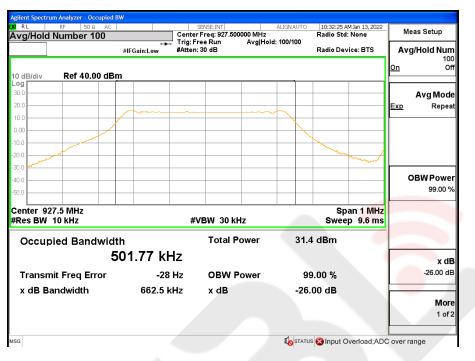
6dB Bandwidth Mode 2



6dB Bandwidth Mode 3



99% BandwidthMode 1


99% BandwidthMode 2

99% BandwidthMode 3

8.1LIMIT

FCC Part15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz) Resu				Result
15.247(b)(3) Output Power 1 watt or 30dBm 902-928 PASS				

8.2 TEST PROCEDURE

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shalluse a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

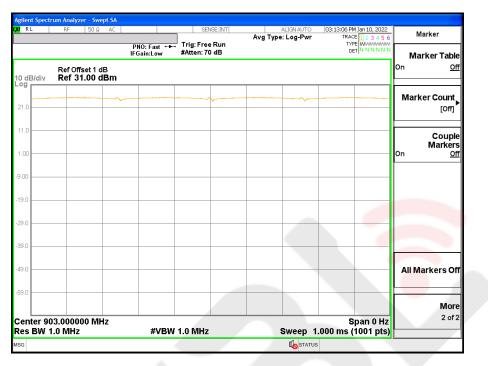
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.3V	Test Mode:	TX Mode 1/2/3

Test mode	Frequency	Peak Conducted Output Power	AVG Conducted Output Power	LIMIT
i cot mode	(MHz)	(dBm)	(dBm)	dBm
Mode 1	903.0	24.28	24.24	30
Mode 2	915.0	24.26	24.19	30
Mode 3	927.5	22.97	22.92	30

Note: Our power sensor test AVG power has no duty cycle display. The power sensor measures AVG power is Burst power. The software has considered the factor of the duty cycle factor, so it is unnecessary to add it again.


EIRP Power

Test mode	Frequency	Peak Conducted Output Power	Antenna Gain	ERP Power	EIRP Power	LIMIT
	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)	dBm
Mode 1	903.0	24.28	4.00	26.13	28.28	36
Mode 2	915.0	24.26	4.00	26.11	28.26	36
Mode 3	927.5	22.97	4.00	24.82	26.97	36

Note: EIRP = ERP+2.15dB.

Duty cycle

Ton	Тр	Duty cycle(%)	Duty factor(dB)
/	/	100.00%	0.00

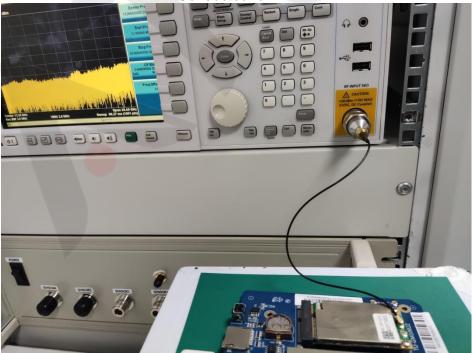
9.1 STANDARD REQUIREMENT

15.203&RSS GEN requirement: For intentional device, according to 15.203&RSS GEN: an intentional ra requirement: For intentional device, according to 15.203: an intentional radiator shallbe designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

9.2 EUT ANTENNA

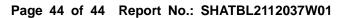
Antenna Type	Frequency range	Gain (dBi)
Non-common Interface Antenna	902MHz-928MHz	4

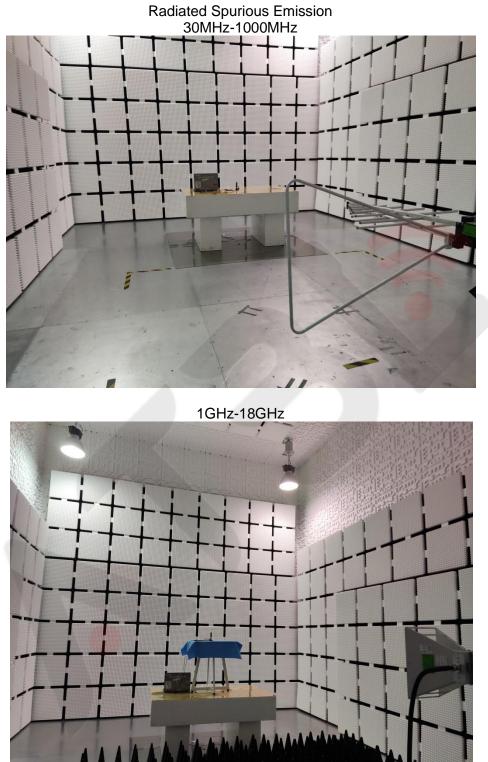
It comply with the standard requirement.



Note: See test photos in setup photo document for the actual connections between Product and support equipment.

Conducted for EMC


Conducted for RF



Radiation Emission 30HHz-1000HHz

* * * * * END OF THE REPORT * * * *