

Report No.: TW2104256E File reference No.: 2021-05-06

Applicant: TECHNOFASHION INC.

Product: Neckband Wireless Headset

Model No.: NTNB01

Brand Name: Nautica

Test Standards: FCC Part 15.249

Test result: It is herewith confirmed and found to comply with the requirements set up by ANSI C63.10 &FCC Part 15 Subpart C,

Paragraph 15.249 regulations for the evaluation of

electromagnetic compatibility

Dated: May 06, 2021

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: TW2104256E Page 2 of 44

Date: 2021-05-06

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number:5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

Report No.: TW2104256E

Date: 2021-05-06

Test Report Conclusion

Content

1.0	General Details	4
1.1	Test Lab Details	4
1.2	Applicant Details	4
1.3	Description of EUT	4
1.4	Submitted Sample	4
1.5	Test Duration.	5
1.6	Test Uncertainty	5
1.7	Test By	5
2.0	List of Measurement Equipment	6
3.0	Technical Details	7
3.1	Summary of Test Results	7
3.2	Test Standards	7
4.0	EUT Modification.	7
5.0	Power Line Conducted Emission Test.	8
5.1	Schematics of the Test	8
5.2	Test Method and Test Procedure	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition	9
5.5	Conducted Emission Limit.	9
5.6	Test Result	9
6.0	Radiated Emission test	12
6.1	Test Method and Test Procedure	12
6.2	Configuration of the EUT	12
6.3	EUT Operation Condition	12
6.4	Radiated Emission Limit	13
6.5	Test Result	14
7.0	Band Edge	23
7.1	Test Method and Test Procedure	23
7.2	Radiated Test Setup.	23
7.3	Configuration of the EUT	23
7.4	EUT Operating Condition.	23
7.5	Band Edge Limit.	23
7.6	Band Edge Test Result.	24
8.0	Antenna Requirement	28
9.0	20dB bandwidth measurement	29
10.0	FCC ID Label	38
11.0	Photo of Test Setup and EUT View.	39

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2021-05-06

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: TECHNOFASHION INC.

Address: 26, Park Street Ste#2340, Montclair, NJ, USA, 07042

Telephone: +1 (347) 510-2340

Fax: --

1.3 Description of EUT

Product: Neckband Wireless Headset
Manufacturer: TECHNOFASHION INC.

Address: 26, Park Street Ste#2340, Montclair, NJ, USA, 07042

Brand Name: Nautica
Model Number: NTNB01
Additional Model Name N/A
Hardware Version: V3.1
Software Version: V1

Serial No.: NTNB01202103

Rating: DC5V, 1A or Built-in DC3.7V, 110mAh Li-ion battery

Modulation Type: GFSK, Pi/4D-QPSK, 8DPSK (Bluetooth)

Operation Frequency: 2402-2480MHz

Channel Separate: 1MHz
Channel Number: 79

Antenna Designation PCB antenna with gain 0dBi Max (Declared by the applicant)

1.4 Submitted Sample: 1 Sample

1.5 Test Duration

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2104256E

Date: 2021-05-06

Page 5 of 44

2021-04-19 to 2021-04-30

1.6 Test Uncertainty

Conducted Emissions Uncertainty = 3.6dB

Radiated Emissions below 1GHz Uncertainty =4.7dB

Radiated Emissions above 1GHz Uncertainty =6.0dB

Conducted Power Uncertainty = 6.0dB

Occupied Channel Bandwidth Uncertainty =5%

Conducted Emissions Uncertainty = 3.6dB

Note: The measurement uncertainty 6stto, coverage factor of k=2 and a level of confidence of 95%.

1.7 Test Engineer

The sample tested by

Page 6 of 44

Report No.: TW2104256E

Date: 2021-05-06

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2020-06-23	2021-06-22
LISN	R&S	EZH3-Z5	100294	2020-06-23	2021-06-22
LISN	R&S	EZH3-Z5	100253	2020-06-23	2021-06-22
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2020-06-23	2021-06-22
Loop Antenna	EMCO	6507	00078608	2018-06-25	2021-06-24
Spectrum	R&S	FSIQ26	100292	2020-06-23	2021-06-22
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2020-06-23	2021-06-22
Horn Antenna	R&S	BBHA 9120D	9120D-631	2018-07-09	2021-07-08
Power meter	Anritsu	ML2487A	6K00003613	2020-06-23	2021-06-22
Power sensor	Anritsu	MA2491A	32263	2020-06-23	2021-06-22
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2018-07-04	2021-07-03
9*6*6 Anechoic			N/A	2020-07-06	2021-07-05
EMI Test Receiver	RS	ESVB	826156/011	2020-06-23	2021-06-22
EMI Test Receiver	RS	ESH3	860904/006	2020-06-23	2021-06-22
Spectrum	HP/Agilent	ESA-L1500A	US37451154	2020-06-23	2021-06-22
Spectrum	HP/Agilent	E4407B	MY50441392	2020-06-23	2021-06-22
Spectrum	RS	FSP	1164.4391.38	2021-01-16	2022-01-15
RF Cable	Zhengdi	ZT26-NJ-NJ-8 M/FA		2020-06-23	2021-06-22
RF Cable	Zhengdi	7m		2020-06-23	2021-06-22
RF Switch	EM	EMSW18	060391	2020-06-23	2021-06-22
Pre-Amplifier	Schwarebeck	BBV9743	#218	2020-06-23	2021-06-22
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2020-06-23	2021-06-22
LISN	SCHAFFNER	NNB42	00012	2021-01-06	2022-01-05

2.2 Automation Test Software

For Conducted Emission Test

Name	Version
EZ-EMC	Ver.EMC-CON 3A1.1

For Radiated Emissions

Name	Version
EMI Test Software BL410-EV18.91	V18.905
EMI Test Software BL410-EV18.806 High Frequency	V18.06

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2104256E Page 7 of 44

Date: 2021-05-06

3.0 Technical Details

3.1 Summary of test results

The EUT has been tested according to the following specifications:

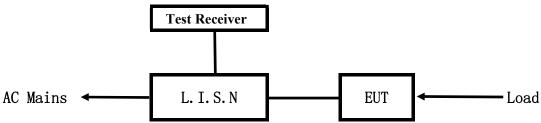
Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	PASS	Complies
FCC Part 15, Paragraph 15.209	Radiated Emission Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	PASS	Complies

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

4.0 EUT Modification

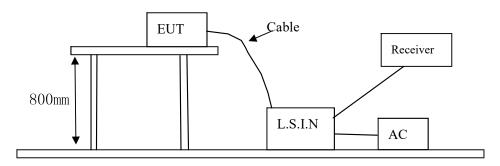
No modification by SHENZHEN TIMEWAY TESTING LABORATORIES


Report No.: TW2104256E

Date: 2021-05-06

5. Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2013. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.10-2013. Test voltage: AC 120V 60Hz.

Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.10-2013. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

One channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID	
Neckband Wireless	TECHNOFASHION INC.	NTNB01	2AZBO-N00007	
Headset	TECHNOFASHION INC.	NINDUI	2AZDO-N0000/	

Report No.: TW2104256E Page 9 of 44

Date: 2021-05-06

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model	Rating
Power Supply	KEYU	KA23-0502000DEU	Input: 100-240V~, 50/60Hz, 0.35A;
			Output: DC5V, 2A

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.10-2013

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.207

Frequency	Limits (dB μ V)			
(MHz)	Quasi-peak Level	Average Level		
$0.15 \sim 0.50$	66.0~56.0*	56.0~46.0*		
$0.50 \sim 5.00$	56.0	46.0		
$5.00 \sim 30.00$	60.0	50.0		

Notes: 1. *Decreasing linearly with logarithm of frequency.

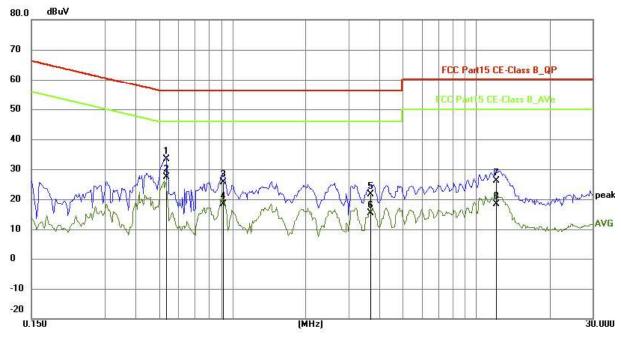
2. The tighter limit shall apply at the transition frequencies

5.6 Test Results:

Pass

Date: 2021-05-06

A: Conducted Emission on Live Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by BT

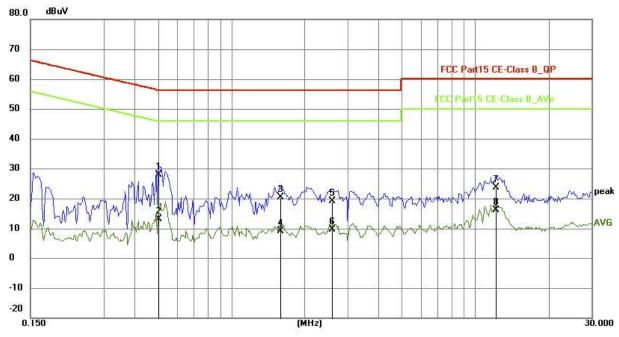
Model: NTNB01 Results: PASS

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.5361	23.54	9.77	33.31	56.00	-22.69	QP	Р
2	0.5361	17.60	9.77	27.37	46.00	-18.63	AVG	Р
3	0.9183	15.81	9.79	25.60	56.00	-30.40	QP	Р
4	0.9183	8.62	9.79	18.41	46.00	-27.59	AVG	Р
5	3.6942	11.67	9.87	21.54	56.00	-34.46	QP	Р
6	3.6942	5.46	9.87	15.33	46.00	-30.67	AVG	Р
7	12.0519	15.83	10.25	26.08	60.00	-33.92	QP	Р
8	12.0519	8.24	10.25	18.49	50.00	-31.51	AVG	Р

Date: 2021-05-06

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)


EUT Operating Environment

Temperature: 25°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by BT

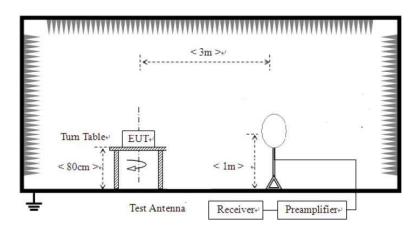
Model: NTNB01 Results: Pass

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.5010	18.18	9.77	27.95	56.00	-28.05	QP	Р
2	0.5010	3.36	9.77	13.13	46.00	-32.87	AVG	Р
3	1.5852	10.51	9.80	20.31	56.00	-35.69	QP	Р
4	1.5852	-0.61	9.80	9.19	46.00	-36.81	AVG	Р
5	2.5875	9.24	9.83	19.07	56.00	-36.93	QP	Р
6	2.5875	-0.28	9.83	9.55	46.00	-36.45	AVG	Р
7	12.1689	13.25	10.26	23.51	60.00	-36.49	QP	Р
8	12.1689	5.95	10.26	16.21	50.00	-33.79	AVG	Р

Report No.: TW2104256E Page 12 of 44

Date: 2021-05-06

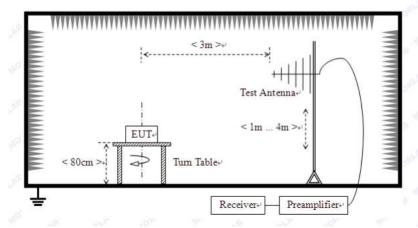


6 Radiated Emission Test

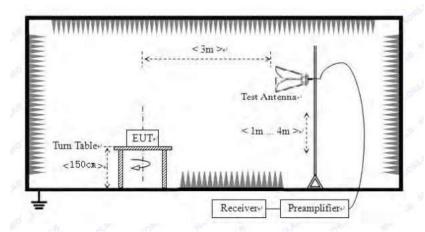
- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

For radiated emissions from 9kHz to 30MHz


Page 13 of 44

Report No.: TW2104256E


Date: 2021-05-06

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

- 6.2 Configuration of The EUT

 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Report No.: TW2104256E Page 14 of 44

Date: 2021-05-06

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency Field Street		eld Strength of Fundamental (3m)			trength of Harmo	onics (3m)
(MHz)	mV/m	dBuV/m		uV/m	dBu	V/m
2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength (dBuV) = 20 log RF Voltage (uV)
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

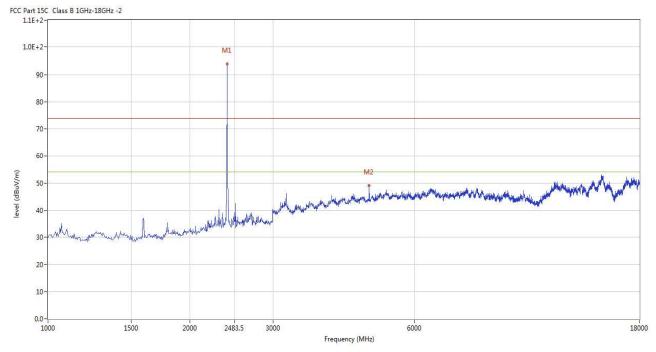
Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage $(dBuV) = 20 \log RF \text{ Voltage } (uV)$
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 5. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 6. Battery full charged during tests.
- 7. The three modulation modes of GFSK, Pi/4D-QPSK, and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: TW2104256E Page 15 of 44

Date: 2021-05-06

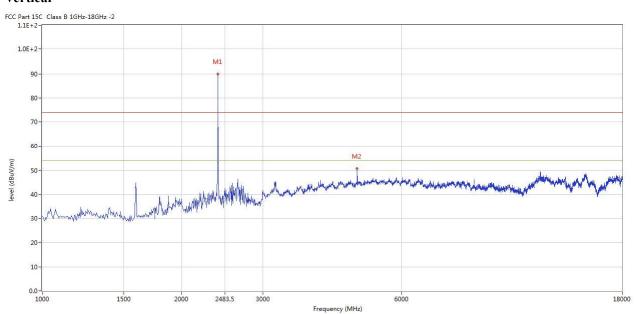


6.5 Test result

A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

Horizontal

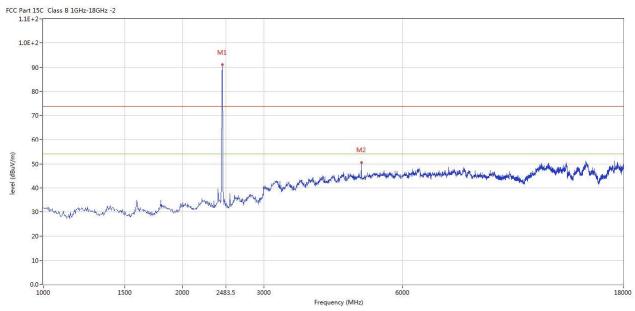

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2402.500	93.82	-3.57	114.0	-20.18	Peak	135.00	100	Horizontal	Pass
1*	2402.500	82.55	-3.57	94.0	-11.45	AV	135.00	100	Horizontal	Pass
2	4803.750	49.11	3.13	74.0	-24.89	Peak	191.00	100	Horizontal	Pass

Report No.: TW2104256E Page 16 of 44

Date: 2021-05-06

Vertical

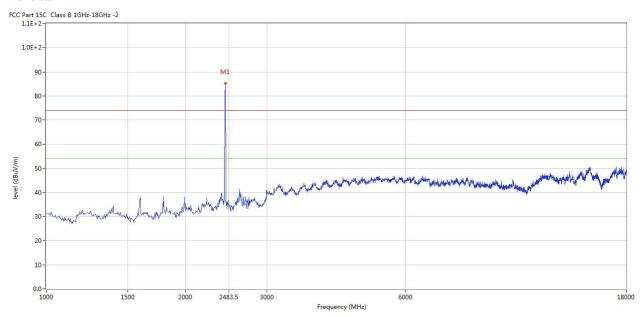
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2402.500	89.97	-3.57	114.0	-24.03	Peak	167.00	100	Vertical	Pass
2	4803.750	50.82	3.13	74.0	-23.18	Peak	186.00	100	Vertical	Pass


Report No.: TW2104256E Page 17 of 44

Date: 2021-05-06

Please refer to the following test plots for details: High Channel-2441MHz

Horizontal

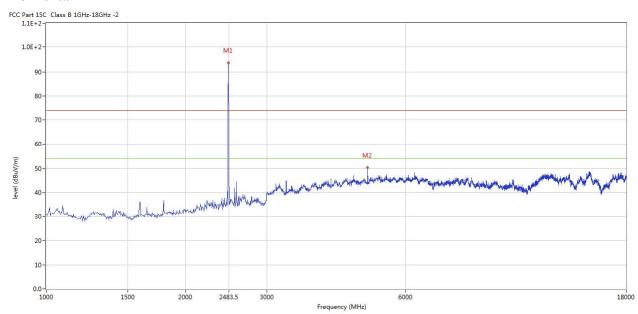

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2440.750	91.12	-3.57	114.0	-22.88	Peak	197.00	100	Horizontal	Pass
2	4880.250	50.58	3.20	74.0	-23.42	Peak	1.00	100	Horizontal	Pass

Report No.: TW2104256E Page 18 of 44

Date: 2021-05-06

Vertical

	No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
Ī	1	2440.750	85.15	-3.57	114.0	-28.85	Peak	184.00	100	Vertical	Pass

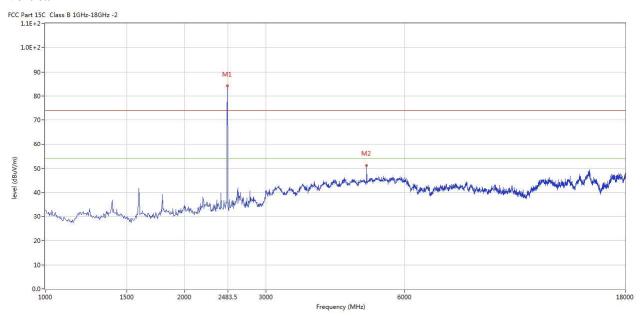

Report No.: TW2104256E Page 19 of 44

Date: 2021-05-06

Please refer to the following test plots for details: High Channel-2480MHz

Horizontal

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2479.750	93.55	-3.57	114.0	-20.45	Peak	146.00	100	Horizontal	Pass
1*	2479.750	82.92	-3.57	94.0	-11.08	AV	146.00	100	Horizontal	Pass
2	4961.000	50.29	3.36	74.0	-23.71	Peak	161.00	100	Horizontal	Pass


Page 20 of 44

Report No.: TW2104256E

Date: 2021-05-06

Vertical

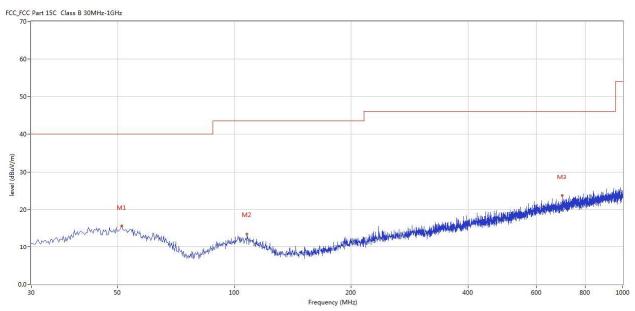
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2479.750	84.13	-3.57	114.0	-29.87	Peak	168.00	100	Vertical	Pass
2	4961.000	51.16	3.36	74.0	-22.84	Peak	178.00	100	Vertical	Pass

Note: (2) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (3) Margin=Emission-Limits
- (4) According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (5) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz and Below 30MHz, It is only the floor noise. No necessary to take down.
- (6) the measured PK value less than the AV limit.

Report No.: TW2104256E Page 21 of 44

Date: 2021-05-06



B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

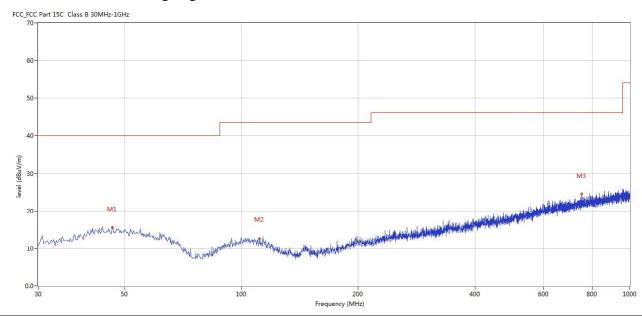
Results: Pass

Please refer to following diagram for individual

No	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	51.335	15.55	-11.41	40.0	-24.45	Peak	360.00	100	Horizontal	Pass
2	107.823	13.48	-13.41	43.5	-30.02	Peak	278.00	100	Horizontal	Pass
3	697.921	23.63	-4.26	46.0	-22.37	Peak	348.00	100	Horizontal	Pass

Report No.: TW2104256E Page 22 of 44

Date: 2021-05-06



Radiated Emission In Vertical (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

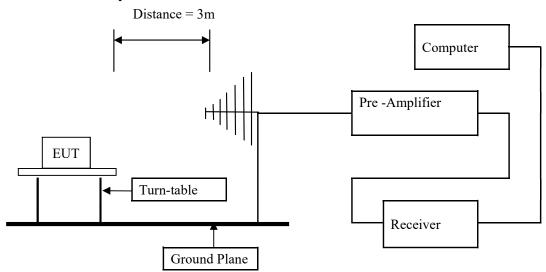
Results: Pass

Please refer to following diagram for individual

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	46.486	15.55	-11.43	40.0	-24.45	Peak	246.00	100	Vertical	Pass
2	111.460	12.69	-13.72	43.5	-30.81	Peak	310.00	100	Vertical	Pass
3	751.985	24.46	-3.43	46.0	-21.54	Peak	286.00	100	Vertical	Pass

Report No.: TW2104256E

Date: 2021-05-06



7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz, VBW=3MHz and Peak detector used for PK value. RBW=1MHz, VBW=10Hz and Peak detector used for AV value.
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of The EUT

Same as section 5.3 of this report

7.4 EUT Operating Condition

Same as section 5.4 of this report.

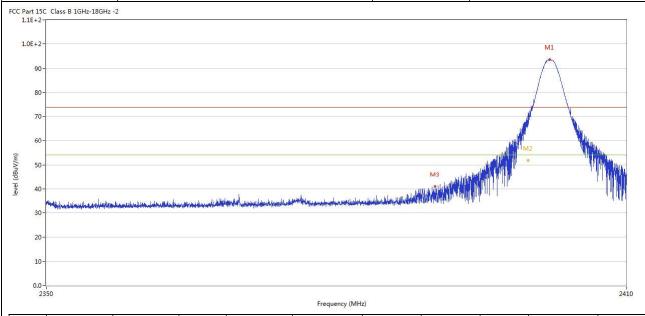
7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: TW2104256E Page 24 of 44

Date: 2021-05-06

7.6 Test Result

Product:	Neckband Wireless Headset	Polarity	Horizontal
Mode	Keeping Transmitting	Test Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH
Test Result:	Pass		

N	lo.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
2		2399.770	71.47	-3.57	74.0	-2.53	Peak	140.00	100	Horizontal	Pass
2	**	2399.770	51.87	-3.57	54.0	-2.13	AV	140.00	100	Horizontal	Pass
3		2390.065	41.11	-3.53	74.0	-32.89	Peak	197.00	100	Horizontal	Pass

Report No.: TW2104256E Page 25 of 44 Date: 2021-05-06

	ESTING LABOR
E	E T

Mode	Vacania a Tana amittin a		
	Keeping Transmitting	Test Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH
Test Result:	Pass		

1.08	+2-	
		M1.
	90-	
	80-	
	70-	
	60-	
	50-	
	40-	But white the later white the state of the s
	30-	
	20-	
	10-	
	0.0 - 23	

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
2	2399.995	66.30	-3.57	74.0	-7.70	Peak	159.00	100	Vertical	Pass
2**	2399.995	49.89	-3.57	54.0	-4.11	AV	159.00	100	Vertical	Pass
3	2389.975	44.07	-3.53	74.0	-29.93	Peak	85.00	100	Vertical	Pass

Report No.: TW2104256E Page 26 of 44

P	roduct:	Ne	ckband	Wireless He	adset	Polarit	y]	Horizontal	l
]	Mode		Keeping	g Transmitti	ng	Test Volt	age		DC3.7V	
Ten	nperature		24 deg. C,			Humidi	ity	56% RH		
Tes	t Result:			Pass						
1.1E+2- 1.0E+2- 90- 80- 70- 60- 60- 60- 30- 20-	The same of the sa	-2								
10-	170				2483.5					2500
0.0 - 24	470				Frequency (MH	łz)				230

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
2	2483.395	70.00	-3.57	74.0	-4.00	Peak	147.00	100	Horizontal	Pass
2**	2483.395	51.77	-3.57	54.0	-2.23	AV	147.00	100	Horizontal	Pass

Report No.: TW2104256E Page 27 of 44

F	Product:	Ne	eckband	Wireless He	eadset	Detect	or		Vertical	
	Mode		Keeping	g Transmitti	ng	Test Volt	tage		DC3.7V	_
Teı	mperature		24	l deg. C,		Humidi	ity		56% RH	
Te	est Result:			Pass						
CC Part 15	5C Class B 1GHz-18GHz	-2					•			
1.0E+2	2-									
90	0-									
80	0-		/							
70	0-		w/	1						
	10.00 p. 1		dela	V	e e					
60	0-				ALI:					
		1144								
	0-	Hallow water and the state of t		`		holin har		.14		
(m/n) 50 50 40		Helponoming light help the				Mulyway	Mandbody Artificial before		and the second second second second	stratular algebrasia
(W/nngp) laval 40		Harmon and the state of the sta				Millippadnia	Aladhahin inggalakana		a ay hily de	the desired to
(E) 500 500 900 900 900 900 900 900 900 900		Harmon Harman				Maharana	Madhaluni viridhiloni		a en plantical inferior	industrial)
(W/nngp) laval 40		Herman Hill Hope of				Military	olandi Jarrinski boko	i ciliforni di Antonomia	aretal a l'adiaden l'estife	in the color and a state of the color and a st
300 200 100 0.00 0.00 0.00 0.00 0.00 0.00		Highward Hill Happy			2483.5		dadi Janus dalam		aretyl i fryfatal fretsier	2500
300 200 100 0.00 200 200 200 200 200 200 200 200	0-	Pacults	Factor	Limit	Frequency (MF	(z)			111111111111111111111111111111111111111	2500
300 200 100 0.00 200 200 200 200 200 200 200 200	o- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	Results (dBu)/(m)	Factor	Limit	Over Limit		Table (o)	Height	ANT	
(E)/ngp) 500 300 200 100 No.	Frequency (MHz)	(dBuV/m)	(dB)	(dBuV/m)	Over Limit (dB)	Detector	Table (o)	Height (cm)	ANT	2500 Verdict
300 300 300 300 300 300 300 300 300 300	o- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-				Over Limit	(z)		Height	111111111111111111111111111111111111111	2500

Note: 1. The PK emission level less than the AV limit. No necessary to record the AV emission level.

- 2. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 3. The three modulation modes of GFSK, Pi/4D-QPSK, and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: TW2104256E Page 28 of 44

Date: 2021-05-06

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a PCB antenna. The antenna gain is 0dBi Max. It fulfills the requirement of this section.

Test Result: Pass

Report No.: TW2104256E Page 29 of 44

GFSK Modulation							1			
Product:		nd Wireless				est Mode:		Keep trai		
Mode	Keep	oing Transm				est Voltage		DC3		
Temperature		24 deg. C,				Humidity			RH	
Test Result:		Pass				Detector	PK		K	
20dB Bandwidth		1.028MHz								
	Delta	1 [T1]	0.5		3W	30 k		RF Att	20 dB	
Ref Lvl 10 dBm		1.028056	05 dB 511 MHz		BW √T	100 k 8.5 m		Unit	dBr	n
10		1				v ₁	[T1]	1,	3 60 dD=]
			$\frac{2}{2}$			т.		2.40147	7.60 dBm 7395 GHz	A
0				$\sqrt{-}$		<u> 1</u>	[T1]	- (0.05 dB	1
			$\sqrt{}$		\setminus			1.02805	611 MHz	
-10		 				∇_2	[T1]		2.18 dBm	0
D1 17 00	dD	1 N				$\sqrt{1}$		2.40199	9699 GHz	
-20 -17.82	abm-	 				→				1
1MAX	~~						γ_{ι}			1M
-30	,/						~~~~	mylana		
-40									Work with	
-50										
-60										1
-70										
-80										-
-90										
Center 2.40	2 GHz		300	kHz/				Spa	an 3 MHz	

Report No.: TW2104256E Page 30 of 44

GFSK Modulatio	n					
Product:	Neckband Wireless He	adset	Test Mode:	Keep trar	smitting	
Mode	Keeping Transmitti	ng	Test Voltage	DC3	.7V	
Temperature	24 deg. C,		Humidity	56% RH PK 		
Test Result:	Pass		Detector			
20dB Bandwidth	1000kHz					
	Delta 1 [T1]		BW 30 kHz		20 dB	
Ref Lvl 10 dBm	-0.1 937.8757515		BW 100 kHz WT 8.5 ms	Unit	dBm	
10 asin	937.0737313	U KHZ 51		UIIIC	Q.B.III	
		2	v 1 [:	-	65 dBm	
0		<u>~~</u> ~	<u> </u>	2.440546 [1] -0.	13 dB	
		\bigvee	↑		50 kHz	
-10	<u> </u>		Vy ∇2 [1	r1] 1.	58 dBm	
—D1 -15.42	dBm 1		V 1	2.440996	99 GHz	
	dBm		<u> </u>			
1MAX	\bigvee				1MA	
-30						
٠,٠				harm		
-40					whom	
-50						
-60						
-70						
, ,						
-80						
-90 Center 2.4	41 GHz	300 kHz/		Span	3 MHz	
	APR.2021 11:23:31			1		

Page 31 of 44

Report No.: TW2104256E

Product:	N	leckband	Wireless 1	Headset		T	est Mode:		Keep tra	ansmitting	
Mode		Keepin	g Transmi	tting		Te	est Voltage		DC	C3.7V	
Temperature		2	4 deg. C,]	Humidity		569	% RH	
Test Result:			Pass				Detector			PK	
0dB Bandwidth		1.	028MHz								
Ref Lvl	1	Delta 1	0.	18 dB	RE VE	ВW	30 k 100 k	Hz	RF Att	20 dB	
10 dBm			.028056	OII MHZ	SV	N.T.	8.5 m	s 	Unit	dBm	1
0				2	- 1		V ₁		-19 2.47947	3.05 dBm 7395 GHz	A
					مرس	\	▲ 1	[T1]	1.02805	1.18 dB 5611 MHz	
-10 -10 -10 -10	02 dBm-		1				M		2.47999	9699 GHz	
1MAX	UZ QBM	/	J					<u> </u>			1M2
-30	morrow							The state of the s	My		
-40)-W	m	
-50											
-60											
-70											
-80											
-90 Center 2	48 CH ₂			300	kHz/				Sn:	an 3 MHz	
	.10 GHZ)21 11		300	/				Spe	0 11112	

Report No.: TW2104256E Page 32 of 44

Pi/4D-QPSK Mod	lulation					
Product:	Neckband Wireless H	[eadset	Test Mode:	Keep tra	nsmitting	
Mode	Keeping Transmitt	ting	Test Voltage	DC	3.7V	
Temperature	24 deg. C,		Humidity	56%	RH	
Test Result:	Pass		Detector	PK		
20dB Bandwidth	1.365MHz			-	-	
Ř.	Marker 1 [T1 no	dB] R	BW 30 kHz	RF Att	20 dB	
Ref Lvl	ndB 20.0	00 dB V	BW 100 kHz			
10 dBm	BW 1.3647294	46 MHz S	WT 8.5 ms	Unit	dBm	
10			V 1 [3	71] -1	.27 dBm	
		1		2.40182	866 GHz	
0	M	, MM 1	ndE	20	.00 dB	
		/	~ VBW	1.36472	946 MHz	
-10				2.40132	966 GHz	
	m/		∇_{T2}	[Ţ1] -21	.47 dBm	
-20	7			2.40269	439 GHz	
-30				\.	1MA	
				Muly	w ~~~	
-40						
-50						
-60						
-70						
-80						
-90 Center 2.40	02 GHz	300 kHz/		Spai	n 3 MHz	
Date: 27.A	APR.2021 11:58:38					

Report No.: TW2104256E Page 33 of 44

Pi/4D-QPSK M	lodulation								
Product:	Neckba	and Wireless H	Headset	Т	Test Mode:		Keep tr	ansmitting	
Mode	Kee	ping Transmit	ting	Т	est Voltage		DO	C3.7V	
Temperature		24 deg. C,			Humidity		569	% RH	
Test Result:		Pass			Detector		PK		
20dB Bandwidth		1.365MHz							
Ŕ	Marke	er 1 [T1 n	dB]	RBW	30 kH	z RI	7 Att	20 dB	
Ref Lvl	ndB		00 dB	VBW	100 kH	Z			
10 dBm	BW	1.364729	46 MHz	SWT	8.5 ms	Ur	nit	dBm	
10					v ₁ [T1]	-:	1.83 dBm	A
			1				2.44082	2866 GHz	
0		~	, M	Λ Λ .	ndB		20	0.00 dB	
1.0			<i>)</i> \(\text{\tin}\text{\tein}\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\tin}\text{\ti}\text{\text{\text{\texi}\text{\texit{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\texi}\tex	040	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1.36472 -21	2946 MHz	
-10							2.44032	2966 GHz	
	-				$\nabla_{\mathrm{T}2}$	[T1]	-22	2.03 dBm	
-20	,	1				Ÿ	2.44169	9439 GHz	1MA
	. /								
-30	mund					<u> </u>			
\	Mull					V _M M		mm.	
-40								1. 1	
-50									
-60									
-70									
-80									
-90				'					
Center 2			300	kHz/			Spa	an 3 MHz	
Date: 27	.APR.2021	11:51:38							

Report No.: TW2104256E Page 34 of 44

Pi/4D-QPSK M	Iodulation						
Product:	Neckband	l Wireless Headset	,	Test Mode:	Keej	transmitting	
Mode	Keepii	ng Transmitting	П	est Voltage		DC3.7V	
Temperature	2	24 deg. C,		Humidity		56% RH	
Test Result:		Pass		Detector	PK		
20dB Bandwidth	1	.365MHz					
Ŕ	Marker	1 [T1 ndB]	RBW	30 kHz	z RF Att	20 dB	
Ref Lvl	ndB	20.00 dB	VBW	100 kHz			
10 dBm	BW	1.36472946 MHz	SWT	8.5 ms	Unit	dBm 	
10				v ₁ [T1]	-2.37 dBm A	
0		1			2.47		
		m MM	Λ Λ	ndB	1.36	20.00 dB	
1.0		~~~			[T1]	472946 MHz -22.91 dBm	
-10		J			2.47	932966 GHz	
	/	1		∇ _{T2}	[T1]	-21.97 dBm	
-20	7				2.48	069439 GHz	
-30	man				My and		
Many	and Market				Mund	nun	
-40							
-50							
-60							
-70							
-80							
-90							
Center 2	.48 GHz	300	kHz/		:	Span 3 MHz	
Date: 27	'.APR.2021 1	1:49:01					

Page 35 of 44

Report No.: TW2104256E

Product: Neck		eckband Wireless Headset			Test Mode:		Keep transmitting		
Mode	Keepin	Keeping Transmitting 24 deg. C, Pass 1.353MHz			Test Voltage Humidity Detector		DC3.7V 56% RH PK		
Temperature	2								
Test Result:									
dB Bandwidth	1								
6 m	Marker	1 [T1 n	dB]	RBW	30 k	Hz R	F Att	20 dB	
Ref Lvl	ndB	20.	00 dB	VBW	100 k	Hz			
10 dBm	BW	1.352705	41 MHz	SWT	8.5 m	s U	nit	dBm	
10					$lacktriangledown_1$	[T1]	-1	.18 dBm	Α
							2.40211	122 GHz	
0			~~~	/\	nd∃ ~		20	.00 dB	
				1 0 1	V BW		1.35270	541 MHz	
-10					7	<u> [:I: I]</u>	2 40132	.89 dBm 966 GHz	
	m 1	/			$ abla_{\mathrm{T2}}$	(T1)	-20	1.78 dBm	
-20						7	2.40268	236 GHz	
1MAX						\			1M
-30	war Aller					W	Morry		
-40							V		1
-50									
-60									1
									1
-70									1
									1
-80									1
									1
-90									ı
Center 2.40	2 GHz		300 k	kHz/			Spa	ın 3 MHz	

Page 36 of 44

Report No.: TW2104256E

8QPSK Modula	ation						
Product: Neckband Wireless Headset		Headset	Test Mode:	Keep transmitting DC3.7V			
Mode	Keeping Transmi	ping Transmitting					
Temperature	24 deg. C,		Humidity	56% RH PK			
Test Result:	Pass		Detector				
20dB Bandwidth	1.353MHz						
Ŕ	Marker 1 [T1 m	ndB] F	RBW 30 kHz	RF Att	20 dB		
Ref Lvl			7BW 100 kHz				
10 dBm	BW 1.352705	541 MHz S	SWT 8.5 ms	Unit	dBm		
		1	V 1 [5	r1] -1 2.44111	.69 dBm 122 GHz		
0		~~~~	ndB M BW	1.35270	.00 dB 541 MHz		
-10			V _{T2}	[T1] -21 2.44032 [T1] -21	.52 dBm 966 GHz .78 dBm		
-20				2.44168	236 GHz 1MA		
-40 -40	Made March			Jan Van	ym M		
-40							
-50							
-60							
-70							
-80							
-90 Center 2	.441 GHz	300 kHz/	,	Spa	n 3 MHz		
Date: 27	.APR.2021 12:01:03						

Report No.: TW2104256E Page 37 of 44

Product: Neckband Wire		Wireless	Vireless Headset		Test Mode: Test Voltage Humidity Detector		Keep transmitting DC3.7V 56% RH PK		
Mode	Keepin	Keeping Transmitting 24 deg. C, Pass							
Temperature	2								
Test Result:									
20dB Bandwidth 1.35		.353MHz	53MHz						
	Marker	1 [T1 r		RBW	30 ki		F Att	20 dB	
Ref Lvl	ndB		.00 dB	VBW	100 ki			-10	
10 dBm	BW 1	1.352705	041 MHZ	SWT	8.5 m	5 Ui	nit	dBm	ı
					v ₁		-2	3.35 dBm	A
0				11	200		2.48011	122 GHz	
			m		ndH M BW		1.35270)541 MHz	
-10		_~~		4 1	V TT	[T1]	-22	.44 dBm	
					_ \	(2.47932	966 GHz	
-20	T /				$ abla_{\mathrm{T2}}$	[T1]	-22	1.18 dBm	
1MAX							2.48068	236 GHZ	1M2
-40 M	hry Mura					A. Mar	young	~~~	
-40									
-50									
-60									
-70									
-80									
-90									
Center 2.48	GHz		300	kHz/			Spa	ın 3 MHz	•

Report No.: TW2104256E Page 38 of 44

Date: 2021-05-06

10.0 FCC ID Label

FCC ID: 2AZBO-N00007

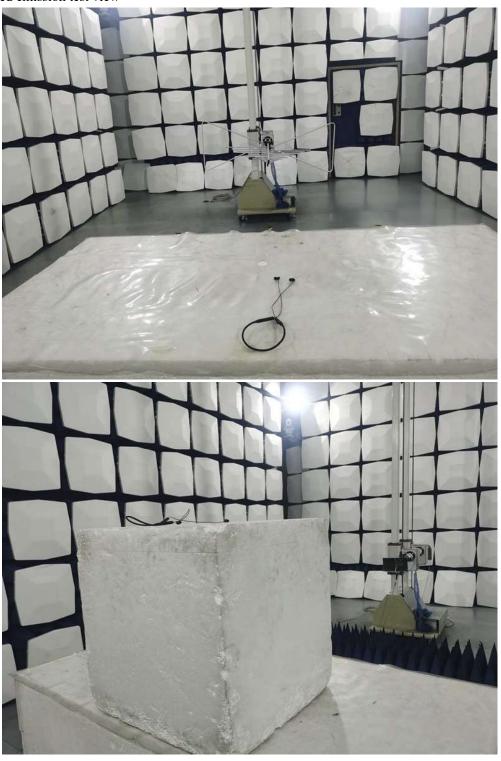
The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Report No.: TW2104256E Page 39 of 44

Date: 2021-05-06

11.0 Photo of testing

11.1 Conducted test View--


Page 40 of 44

Report No.: TW2104256E

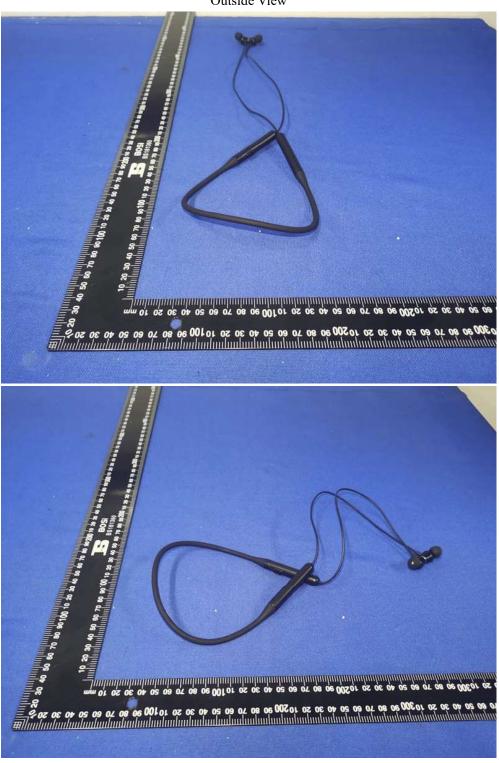
Date: 2021-05-06

Radiated emission test view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: TW2104256E

Date: 2021-05-06

11.2 Photographs – EUT

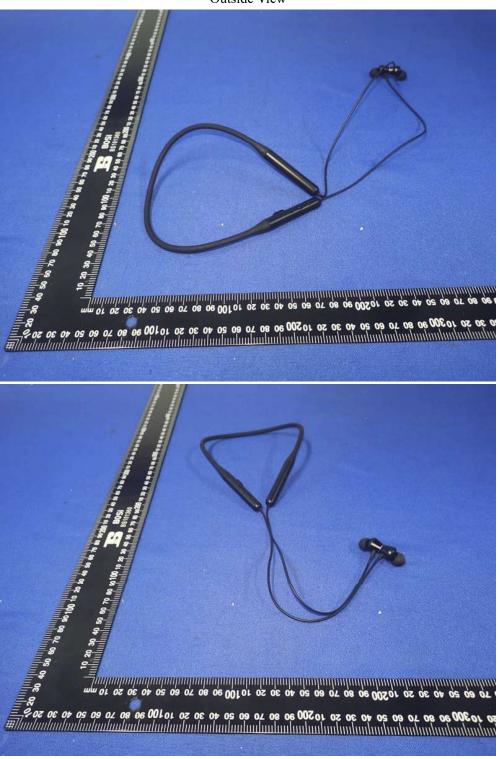
Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Page 42 of 44


Report No.: TW2104256E

Date: 2021-05-06

Photographs – EUT

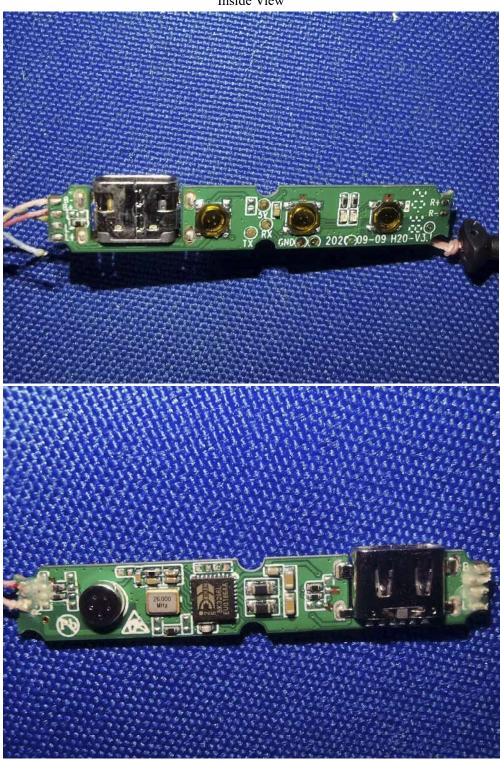
Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES, reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: TW2104256E

Date: 2021-05-06

Photographs - EUT

Inside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Report No.: TW2104256E Page 44 of 44

Date: 2021-05-06

Photographs - EUT

Inside View

--End of the report--