

Project No.: ZKT-2106222766E Page 51 of 75

8-DPSK Middle Channel

8-DPSK High Channel

8. Maximum Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013
Limit:	FCC:20.97 dBm

8.1 Block Diagram Of Test Setup

8.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W.

8.3 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.4 DEVIATION FROM STANDARD

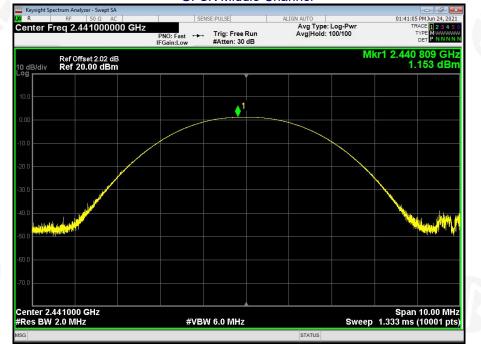
No deviation.

8.5 Test Result

Mode	Test channel	Peak Output Power (dBm)	FCC Limit (dBm)	Result
	Lowest	2.485		
GFSK	Middle	1.153	20.97	Pass
	Highest	-0.051		
	Lowest	-0.167		
π/4-DQPSK	Middle	-1.549	20.97	Pass
	Highest	-2.653		
	Lowest	-1.181		
8-DPSK	Middle	-2.598	20.97	Pass
	Highest	-3.753		

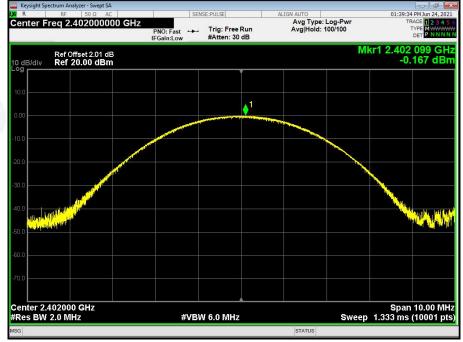
Shenzhen ZKT Technolgy Co., Ltd.

1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



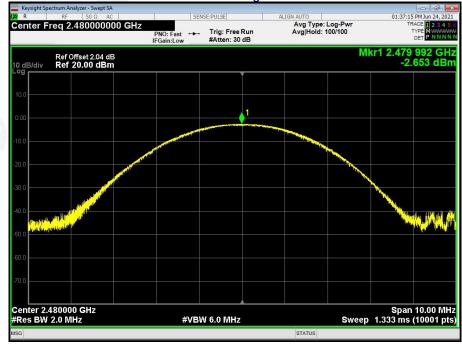
Test plots

GFSK Middle Channel



GFSK High Channel

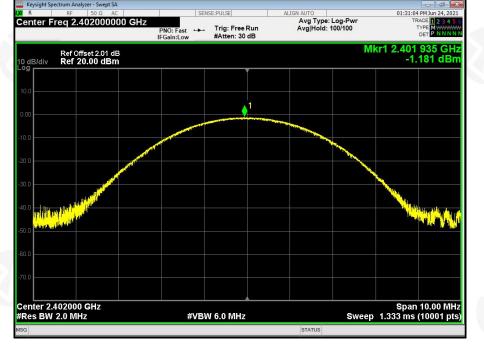
π/4-DQPSK Low Channel

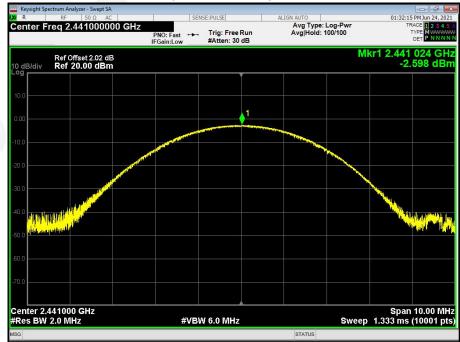


Project No.: ZKT-2106222766E Page 55 of 75

π/4-DQPSK Middle Channel

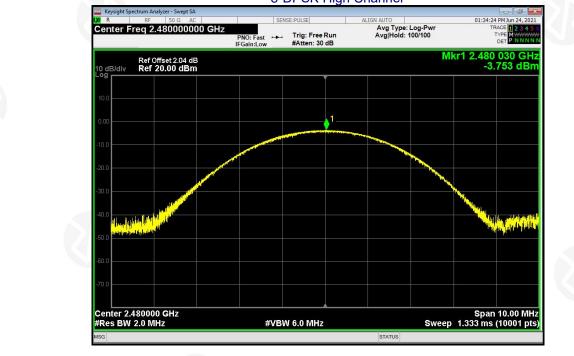
π/4-DQPSK High Channel





Project No.: ZKT-2106222766E Page 56 of 75

8-DPSK Low Channel


8-DPSK Middle Channel

8-DPSK High Channel

9. HOPPING CHANNEL SEPARATION

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak
Limit:	GFSK: 20dB bandwidth $\pi/4$ -DQPSK & 8DSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)

9.1 Test Setup

EUT	SPECTRUM
5000 CON 2	ANALYZER

9.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port

to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

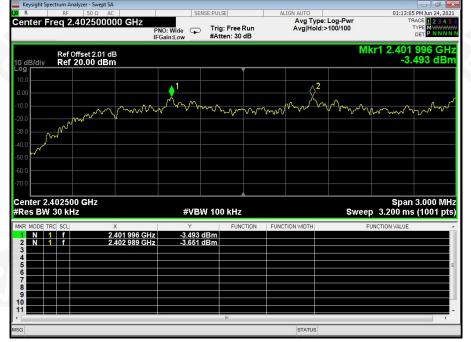
9.3 DEVIATION FROM STANDARD No deviation.

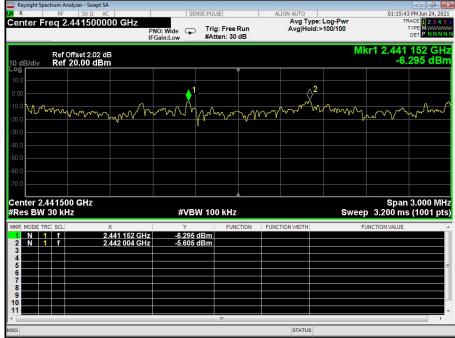
9.4 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	0.828	0.579	PASS
GFSK	Middle	1.155	0.636	PASS
GFSK	High	0.849	0.552	PASS
π/4-DQPSK	Low	0.993	0.953	PASS
π/4-DQPSK	Middle	0.952	0.917	PASS
π/4-DQPSK	High	1.335	0.949	PASS
8-DPSK	Low	1.020	0.984	PASS
8-DPSK	Middle	1.170	0.967	PASS
8-DPSK	High	0.990	0.947	PASS

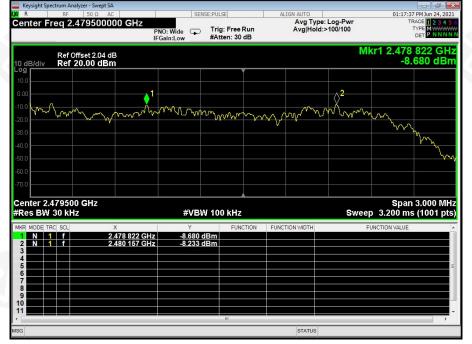

Test plots GFSK Low Channel

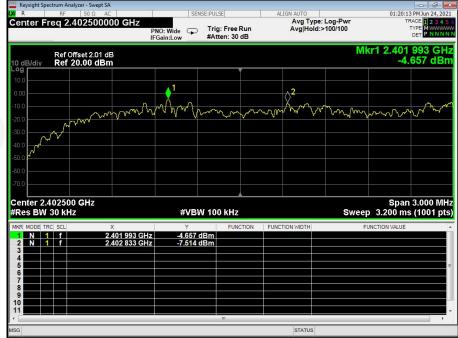
GFSK Middle Channel


GFSK High Channel

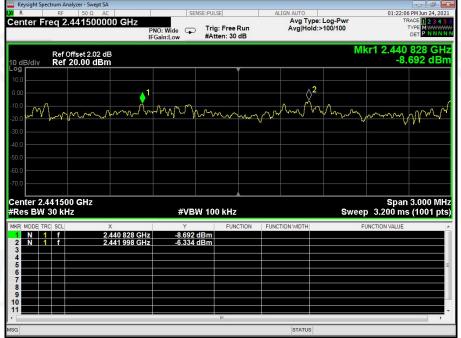


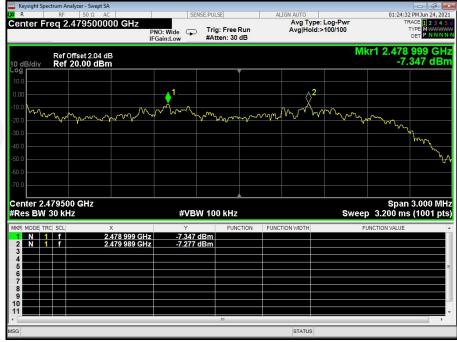
π/4-DQPSK Low Channel


$\pi/4$ -DQPSK Middle Channel



π/4-DQPSK High Channel


8-DPSK Low Channel



8-DPSK Middle Channel

8-DPSK High Channel

10.NUMBER OF HOPPING FREQUENCY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels

10.1 Test Setup

EUT	SPECTRUM
	ANALYZER

10.2 Test procedure

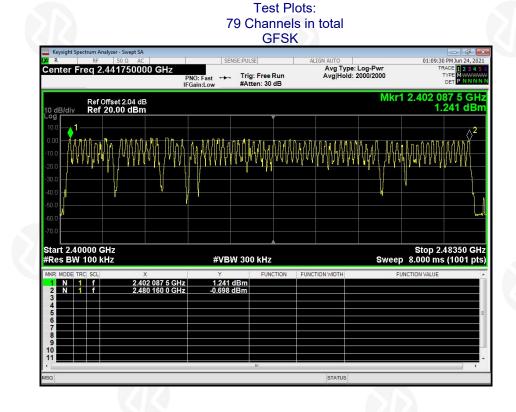
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.

4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

10.3 DEVIATION FROM STANDARD


No deviation.

昌

π/4-DQPSK

Keysight Spectrum Analyzer - Swept SA				
Center Freq 2.441750000	GHZ PNO: Fast IFGain:Low #Atten:	ree Run Avg Hol	be: Log-Pwr d: 2000/2000	01:13:33 PM Jun 24, 2021 TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
Ref Offset 2.01 dB 0 dB/div Ref 20.00 dBm		▼	Mkr1 2.4	01 753 5 GHz -5.776 dBm
	LANG ANG ANG ANG ANG ANG ANG ANG ANG ANG	hadad a galange	nh my phy how h	www.what
20.0				
50.0				
70.0 itart 2.40000 GHz	#VBW 300 k	Hz		
70.0 Start 2.40000 GHz Res BW 100 kHz KR MODE TRC SCL X	Y F	Hz		op 2.48350 GHz 00 ms (1001 pts VALUE
tart 2.40000 GHz Res BW 100 kHz NRF MODE TRC SCI N 1 N 1 2 N 1 7 2 1			Sweep 8.00	00 ms (1001 pts
Image: Start 2.40000 GHz Res BW 100 kHz Image: Start 2.4017 Image: Start 2.4017 Image: Start 2.4803 Image: Start 2.4803 Image: Start 2.4803	753 5 GHz -5.776 dBm		Sweep 8.00	00 ms (1001 pts
Arr A.40000 GHz Res BW 100 KHz KR MCR MODE TRC SCL X 1 1 1 2 N 1 3 4 5 6 6 6	753 5 GHz -5.776 dBm		Sweep 8.00	00 ms (1001 pts
35 Transmission	753 5 GHz -5.776 dBm		Sweep 8.00	00 ms (1001 pts
35 To 2.40000 GHz Start 2.40000 GHz KRes BW 100 kHz Wrok McDe Tricl Scl. X 1 N 1 f 2.4017 2 N 1 f 2.4017 3 1 5 6 6 6 7 8 9 9	753 5 GHz -5.776 dBm		Sweep 8.00	00 ms (1001 pts
N 1 f 2.4017 N 1 f 2.4803 3 - - 5 - - 6 - - 7 - - 8 - -	753 <u>5 GHz</u> -5.776 dBm 27 0 GHz -8.874 dBm		Sweep 8.00	00 ms (1001 pts
Start 2.40000 GHz KRes BW 100 KHz WR MODE TRC SCL X 1 1 1 1 1 1 2 N 1 2 3 4 5 6 7 8 9 10	753 5 GHz -5.776 dBm		Sweep 8.00	00 ms (1001 pts

8-DPSK

R	RE	Analyzer - Swept 9 50 Ω	AC		SEI	NSE:PULSE		ΔL	IGN AUTO	1	01.	ے 🕞 🕞 20:42 PM Jun 24, 20
		2.4417500		PNO: Fa	st ↔	Trig: Free #Atten: 3		AL	Avg Typ	e: Log-Pwr d: 2000/2000	01.	TRACE 1 2 3 4 TYPE MWWW DET P NNN
) dB/div		Offset 2.01 f 20.00 dB								Mk	(r1 2.40 1	837 0 GI -3.443 dB
	1											
	ΨW	han have	water gladen a	MMM	VUM	wwww	WWW	styste	MMANAL	NUNANA	upor the fight	+manner?
0.0												
0.0												
V.												
0.0											Stop	2.48350 G
tart 2.4 Res BV	N 100					W 300 KH:				Swe	ep 8.000	ms (1001 p
0.0 tart 2.4 Res BW KR MODE 1 N 2 N	N 100	kHz 2.	× 401 837 0 G 480 327 0 G	GHz GHz -	#VB\ Y -3.443 11.231	FUI	Z	FUNCT	FION WIDTH	Swe	Stop ep 8.000 FUNCTION VAL	ms (1001 p
0.0 tart 2.4 Res BW R Mode 1 N 2 N 3 4	N 100 TRC SCL	kHz 2.	401 837 0 G	GHz GHz -	Y -3.443	FUI		FUNCT	FION WIDTH	Swe	ep 8.000	ms (1001 p
tart 2.4 Res BV Res BV RR MODE 1 N 2 N 3 4 5 6 6 6 6 7 7 8	N 100 TRC SCL	kHz 2.	401 837 0 G	iHz iHz ·	Y -3.443	FUI		FUNCT	TION WIDTH	Swe	ep 8.000	o 2.48350 G ms (1001 p ^{UE}
4	N 100 TRC SCL	kHz 2.	401 837 0 G	Hz .	Y -3.443	FUI		FUNCT	TION WIDTH	Swe	ep 8.000	ms (1001 p

D

11. DWELL TIME

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second

11.1 Test Setup

	7 <u></u>
UT	SPECTRUM
	ANALYZER

11.2 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0Hz;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.3 DEVIATION FROM STANDARD

No deviation.

11.4 Test Result

GFSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	DH1	121.60	400	Pass
2441MHz	DH3	261.76	400	Pass
2441MHz	DH5	307.63	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2402MHz time slot= $0.380(ms)^{*}(1600/(2^{*}79))^{*}31.6=121.60ms$

C(1,2402) (112 (111e Sl0t=0.380(111s) (1000/ (2.79)) (31.0-121.0011s)

CH:2441MHz time slot=1.636(ms)*(1600/ (4*79))*31.6=261.76ms CH:2480MHz time slot=2.884(ms)*(1600/ (6*79))*31.6=307.63ms

π/4-DQPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	2DH1	124.48	400	Pass
2441MHz	2DH3	262.56	400	Pass
2441MHz	2DH5	308.16	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2402MHz time slot= $0.389(ms)^{*}(1600/(2^{*}79))^{*}31.6=124.48ms$

CH:2441MHz time slot=1.641(ms)*(1600/ (4*79))*31.6=262.56ms

CH:2480MHz time slot=2.889(ms)*(1600/ (6*79))*31.6=308.16ms

8-DPSK mode:

Frequency	Packet	Dwell time(ms)	Limit(ms)	Result
2441MHz	3DH1	124.48	400	Pass
2441MHz	3DH3	262.40	400	Pass
2441MHz	3DH5	308.37	400	Pass

Remarks:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s Test channel: as blow CH:2402MHz time slot=0.389(ms)*(1600/ (2*79))*31.6=124.48ms CH:2441MHz time slot=1.640(ms)*(1600/ (4*79))*31.6=262.40ms CH:2480MHz time slot=2.891(ms)*(1600/ (6*79))*31.6=308.37ms

Test Plots

GFSK 2441MHz

R RF	er - Swept SA 50 Ω AC	C C PAC	E:PULSE	ALIGN AUTO		ص مع
	1000000 GHz	PNO: Fast ↔ IFGain:Low	Trig Delay-1.000 r Trig: Video #Atten: 30 dB		e: Log-Pwr	TRACE 123 TYPE WWW DET P NI
Ref Offs B/div Ref 20	et 2.02 dB .00 dBm					ΔMkr1 380.0 6.95
	1∆2					
X2						TF
				1	Nin Karal	
		kaladi bahatan atala <mark>Antong sharifan dara dara</mark>	n het ne de set de de de de de de set de Regione de set de se	Nord <mark>1, P</mark> oorly	alat <mark>APP</mark> aaa	terpenditiketiketiketekendi <mark>paⁿnjaketerika</mark> tiketekendi
nter 2.4410000	00 GHz					Span
BW 1.0 MHz			3.0 MHz			10.00 ms (10001
MODE TRC SCL Δ2 1 t (Δ) F 1 t	× 380.0 998.0) μs (Δ) 6.95) μs -7.70 d		FUNCTION WIDTH	FI	UNCTION VALUE

GFSK 2441MHz

	RF 50 Ω A q 2.4410000	00 GHz	NO: Fast ++ Gain:Low	Trig Delay Trig: Video #Atten: 30	r-1.000 ms o	LIGN AUTO Avg Type:	Log-Pwr	TF	2 PM Jun 24, 202 RACE 1 2 3 4 5 TYPE WWWWW DET P NNNN
	Ref Offset 2.02 d Ref 20.00 dBr							ΔMkr1	1.636 m -6.48 dl
0.0 .00	X ₂	<u>1</u> Δ2	2						
0.0	7.2								TRIG LY
0.0								2	
0.0									
0.0			1.32						
0.0 <mark>140 140 140 140 1</mark>							allardar handi da Tiburu (argani da Tiburu		<mark>dag Mugalahi</mark>
	1000000 GHz		alpur di baba phirubh		and a papel fragment		nethann folinne die.		Span 0 H
enter 2.44 es BW 1.0	1000000 GHz MHz scl	×	#VB	W 3.0 MHz	ada nada ka t		Sweep	<mark>hain haran an a</mark>	Span 0 H
enter 2.44 es BW 1.0 R MODE TRC 5 1 A2 1 2 F 1	1000000 GHz MHz	1044 2	#VB (Δ) -6.	마하다이다 W 3.0 MHz	ada nada ka t	nt filler (name	Sweep	10.00 ms	Span 0 H
enter 2.44 es BW 1.0 kr Mode Trc 5 1 A2 1 2 F 1	1000000 GHz MHz scL t (Δ)	× 1.636 ms	#VB (Δ) -6.	W 3.0 MHz	ada nada ka t	nt filler (name	Sweep	10.00 ms	Span 0 H
0.0 μμι μ. enter 2.44? es BW 1.0 KR MODE TRC S 1 Δ2 1 2 F 1 3 4	1000000 GHz MHz scL t (Δ)	× 1.636 ms	#VB (Δ) -6.	W 3.0 MHz	ada nada ka t	nt filler (name	Sweep	10.00 ms	Span 0 H
enter 2.44 es BW 1.0 KR MODE TRC S 2 F 1 3 4 5 5 6 6	1000000 GHz MHz scL t (Δ)	× 1.636 ms	#VB (Δ) -6.	W 3.0 MHz	ada nada ka t	nt filler (name	Sweep	10.00 ms	Span 0 H
enter 2.44 es BW 1.0 kR MODE TRC S 1 A2 1 2 F 1 3 S 5 5 6 7 8	1000000 GHz MHz scL t (Δ)	× 1.636 ms	#VB (Δ) -6.	W 3.0 MHz	ada nada ka t	nt filler (name	Sweep	10.00 ms	Span 0 H

GFSK 2441MHz

			g: Video tten: 30 dB				
Ref Offset 2 dB/div Ref 20.00						AMkr1	2.884 ms 3.07 dB
0.0		1∆2 -					
.00 X2							TRIG LVL
0.0							
0.0	0						
0.0							
0.0 tilet arettertet		al public and	en helitiste nedeper		rada baha kepakai kerkeraki		
		aigenteen Allenarie Allenarie	un alti un a dalta Un di un alti a		<mark>nga karangan karangan sa ka</mark> r		<mark>hand Allystery</mark>
o.o <mark>white physical constants of the second se</mark>	GHz	्याला के गुणारथ न #∨BW 3.0	and a second		nya kinenya entinya kini		Span 0 Hz
CO NH an Instantion CO AND	X	۳۱۹۹۹ میلیم #VBW 3.0	O MHZ		Sweep	n a faile an	Span 0 Hz
enter 2.441000000 es BW 1.0 MHz 1 $\Delta 2$ 1 t (Δ) 3 t		۳۱۹۹۹ میلی #VBW 3.0	O MHZ	aran in standard	Sweep	10.00 ms	Span 0 Hz
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	x 2.884 ms	#VBW 3.0	O MHZ	aran in standard	Sweep	10.00 ms	Span 0 Hz
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	x 2.884 ms	#VBW 3.0	O MHZ	aran in standard	Sweep	10.00 ms	Span 0 Hz

π/4-DQPSK 2441MHz

W R RF 50 Ω AC	SENSE:PULSE		01:46	
Center Freq 2.441000000 GHz	PNO: Fast ++ Trig:			TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNN
Ref Offset 2.02 dB 10 dB/div Ref 20.00 dBm			ΔMkr	1 389.0 µs 1.09 dB
10.0 0.00 1Δ2				
-10.0 2				TRICLVL
-30.0				
-50.0 (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	an da fan in sen selsen de ar de sinder Alexan (ole ar de ar (ar fan gele i Al		la mini en en antañ a la plana e la plana en en en artena 19 mini en	
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 I	ЛНz	Sweep 10.00 ms	Span 0 Hz (10001 pts
MKR MODE TRC SCI X 1 Δ2 1 t (Δ) 389.0 μ 2 F 1 t 998.0 μ		FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
3 4 5 6				E
7 8 9 10				
		1.		-

π/4-DQPSK 2441MHz

Keysight Spectrum Analyzer - Swept R RF 50 Ω	SA AC	SENSE:P	uu er l	ALIGN AUTO	T	01:46:5	1 PM Jun 24, 202
enter Freq 2.441000	000 GHz	PNO: Fast ↔ T	rig Delay-1.000 m rig: Video Atten: 30 dB		e: Log-Pwr	TI	RACE 1 2 3 4 5 TYPE WWWWW DET PNNNN
Ref Offset 2.02 dB/div Ref 20.00 dE						ΔMkr1	1.641 m 3.99 d
.0	162						
							TRIC LA
.0							
	itere and it						
		ing the second secon Second second			and the second second	1 91 -	
nter 2.441000000 GF			net le se le de le fine.		nilitan ^{da} ran ¹⁴ nanal	1 91 -	Span 0 H
o (μ. 4. μ.	لی اور	#VBW 3	.0 MHz		Sweep	ner (balant)	Span 0 H
Δ Δ	Iz ×	#VBW 3	.0 MHz	nan di kanan ka Kanan kanan kana	Sweep	10.00 ms	Span 0 H
Δ 1 t Δ Δ 1.0 MHz R MODE TRC SCL Δ2 1 t (Δ) F 1 t (Δ)	لی اور	#VBW 3	.0 MHz	nan di kanan ka Kanan kanan kana	Sweep	10.00 ms	Span 0 H
C (μμμμη c) (μμμη c)	لی اور	#VBW 3	.0 MHz	nan di kanan ka Kanan kanan kana	Sweep	10.00 ms	Span 0 H
	لی اور	#VBW 3	.0 MHz	nan di kanan ka Kanan kanan kana	Sweep	10.00 ms	Span 0 H

π/4-DQPSK 2441MHz

Keysight Spectrum Analyzer - Swept SA R RF 50 Ω AC	SENSE:PU		ALIGN AUTO		01:47:08 PM Jun 24	2021
enter Freq 2.441000000 GH	PNO: Fast +++ Tri	ig Delay-1.000 ms ig: Video tten: 30 dB	Avg Type:	Log-Pwr	TRACE 1 2 3 TYPE WWW DET P N N	AWW?
Ref Offset 2.02 dB 0 dB/div Ref 20.00 dBm °g					ΔMkr1 2.889 -3.43	
0.00	142					
						GLVI
40.0						
50.0 stands or wester	la de la constante de	s day better shot stating	t minis i kirke on sister &	and the followit, tone the t	berry whitte to batche a shitting	
		angan pangan pangan pangan pangan Angan pangan p		1.1		
50.0 44900 000 50.0 1000 000 50.0 2000 50.0 20000 50.0 20000 50.0 2000 50.0 2000		ngelolitan <mark>)</mark> (tytes) ⁽ terologi		<mark>lanjelshinal salasin</mark>		р <mark>и</mark> н
enter 2.441000000 GHz tes BW 1.0 MHz	#VBW 3.	D MHz		Sweep	Span (р <mark>и</mark> н
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>и</mark> р Н
$\begin{array}{c} 0.0 \\ \hline 0.0 \\ \hline$	#VBW 3.	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>и</mark> р Н
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>и</mark> р Н
0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>и</mark> н
30 <td>#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB</td> <td>D MHz</td> <td><mark>) ¹ an air an </mark></td> <td>Sweep</td> <td>Span (10.00 ms (10001</td> <td>р<mark>ф</mark></td>	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>ф</mark>
So 0 μ μ Scenter 2.441000000 GHz tes BW 1.0 MHz Les BW 1.0 MHz X L Δ2 1 t KR MODE TRC SCL X L Δ2 1 t G Δ2 1 t G Δ2 1 t A Δ3 1 t A Δ4 4 85 5 6 6 7 8 8	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>ф</mark>
0.0 Image: Constraint of the second sec	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>и</mark> н
NO	#υμιμί #VBW 3. 389 ms (Δ) - 3.43 dB	D MHz	<mark>) ¹ an air an </mark>	Sweep	Span (10.00 ms (10001	р <mark>и</mark> н

Shenzhen ZKT Technolgy Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen,China

8-DPSK 2441MHz

Keysight Spe R	RF	50 Ω AC			SENSE:PUL	LSE		ALIGN AUTO				💶 🗟 🗾
enter Fi	req 2.44	1000000	1	PNO: Fast ← FGain:Low	🖌 Tri	g Delay-1 g: Video tten: 30 d		Avg Ty	pe: Log-P	wr		TRACE 1 2 3 4 5 TYPE WWWWW DET P NNNN
0 dB/div og √		et 2.02 dB 00 dBm									ΔMkr	1 389.0 µs 7.70 dE
10.0 1.00		1∆2									2	
0.0	-X2											TRIG LVI
30.0 			<u>(11)</u>								0 2	
212	11		14. 14.									
o.o <mark>ruttini</mark>		<mark>olan di mananan Turun di mananan di ma</mark>			tubbo tu tubbo tu			landon la				ner blet om en der Fri fers om en der
0.0 0.0 enter 2.4	4410000	- <mark>Maylay Inderse</mark>		<mark>, 1.1 1 1 1 1 1 1 1</mark>	(BW 3.0	<mark>dulpi sibili</mark>			li i i i i i i i i i i i i i i i i i i		, ^{na} lten t _{err}	
enter 2.4	4410000 .0 MHz	- <mark>Maylay Inderse</mark>	389.0 µs	# \ #V (∆)	/BW 3.0	<mark>dulpi sibili</mark>	all a faith and a second		li i i i i i i i i i i i i i i i i i i	weep	, ^{na} lten t _{err}	Span 0 Hz (10001 pts
enter 2.4 es BW 1 kR MODE TF 1 A2 1 2 F 1 3	4410000 .0 MHz c scl t (Δ)	00 GHz	սի <mark>ս, երերին</mark>	# \ #V (∆)	/////// /BW 3.0	ринини D MHz	all a faith and a second	<mark>, a la fabrica da suce d</mark> e	li i i i i i i i i i i i i i i i i i i	weep	10.00 ms	Span 0 Hz (10001 pts
enter 2.4 es BW 1 kr MODE TF 1 A2 1 2 F 1 3 4 5 6	4410000 .0 MHz c scl t (Δ)	00 GHz	<mark>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </mark>	# \ #V (∆)	/BW 3.0	ринини D MHz	all a faith and a second	<mark>, a la fabrica da esca d</mark> e	li i i i i i i i i i i i i i i i i i i	weep	10.00 ms	Span 0 Hz (10001 pts
Center 2.4 Ces BW 1 1 0.0 2 F 1 2 F 1 3 6 6 7 8	4410000 .0 MHz c scl t (Δ)	00 GHz	<mark>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </mark>	# \ #V (∆)	/BW 3.0	ринини D MHz	all a faith and a second	<mark>, a la fabrica da esca d</mark> e	li i i i i i i i i i i i i i i i i i i	weep	10.00 ms	Span 0 Hz (10001 pts
Center 2.4 center 2.4 ces BW 1 kr MODE TF 1 A2 1 2 F 1 3 4 5 C 5 6 6 7	4410000 .0 MHz c scl t (Δ)	00 GHz	<mark>4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </mark>	# \ #V (∆)	/BW 3.0	ринини D MHz	all a faith and a second	<mark>, a la fabrica da esca d</mark> e	li i i i i i i i i i i i i i i i i i i	weep	10.00 ms	Span 0 Hz (10001 pts

8-DPSK 2441MHz

Keysight Spectrum Analyzer - Swept SA W R RF 50 Ω AC Center Freq 2.441000000	PNO: Fast +++ T	rig Delay-1.000 ms rig: Video	ALIGN AUTO Avg Type: Log-	01:47:39 PM Jun 24, 2021 Pwr TRACE 12:3:4:5 TYPE W
Ref Offset 2.02 dB 10 dB/div Ref 20.00 dBm Logy	IFGain:Low #	Atten: 30 dB		ΔMkr1 1.640 ms -1.51 dB
10.0 0.00 -10.0 X2	1Δ2			TRIO LVL
-20.0				
-40.0	and a state of a state		entile i live de la ferilite elle Spécification de la constitu	na beerden in poweren en en besterden in bester na period staat op de gedigeperiod fan te staat de gedige
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3	.0 MHz		Span 0 H Sweep 10.00 ms (10001 pts
MKR MODE TRC SCL X 1 Δ2 1 t (Δ) 2 F 1 t 3 3 4 5 5 5	Y <u>1.640 ms (Δ) -1.51 dB</u> 998.0 μs -5.51 dBn	3	UNCTION WIDTH	FUNCTION VALUE
5 6 7 8 9 9				
II MSG		m	STATUS	

8-DPSK 2441MHz

X R RF 50 Ω AC Center Freq 2.441000000 GHz	PNO: Fast ++ T	rig Delay-1.000 ms rig: Video Atten: 30 dB	ALIGN AUTO Avg Type: Lo		48:26 PM Jun 24, 2021 TRACE 1 2 3 4 5 TYPE DET PNNNN
Ref Offset 2.02 dB 10 dB/div Ref 20.00 dBm				ΔΜκ	r1 2.891 ms -3.60 dB
10.0					
0.00	1Δ2				
-10.0					TRIGLVL
-30.0					
-40.0					
-50.0 Internet standard		inen ili pitti pe pit intil sini di la		nte lle de la décembre	and a brill fundation in the pro-
-50.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		n an his state and factorized by a Ny Falin Level of the state of the	an an an an ann an an an an an an an an	ng pangang at kapang dapat Mga pang at kapang dapat	<mark>ordere de contrateres de la contratere Contrateres de la contrateres de la cont</mark>
-60.0 4444 4444 4444 4444 4444 4444 4444		v _{la} tilinger og som	dent kon den nen en den ber Hen gener en nyt binder ber	Sweep 10.00 r	Span 0 Hz
-00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#VBW 3	B.O MHZ	Inction width	anderer of the second of the	Span 0 Hz ns (10001 pts)
-60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	#VBW 3	3.0 MHz	¹ 611 port ou plant province	Sweep 10.00 r	Span 0 Hz ns (10001 pts)
-60.0	#VBW 3	3.0 MHz	¹ 611 port ou plant province	Sweep 10.00 r	Span 0 Hz ns (10001 pts)
60 0 μμμμ μ μ 70 0 Δ Δ Center 2.441000000 GHz Res BW 1.0 MHz MKR MODE TRC SCL X 1 Δ2 1 t 2 F 1 t 3 4 998. 5 6 7	#VBW 3	3.0 MHz	¹ 611 port ou plant province	Sweep 10.00 r	Span 0 Hz ns (10001 pts)
60 0 μμμμ μ μ 70 0 Center 2.441000000 GHz Res BW 1.0 MHz X 1 Δ2 1 t 1 Δ2 1 t (Δ) 2.891 3 4 998. 5 5 6 6 6 7 8 9 9 9 9 9	#VBW 3	3.0 MHz	¹ 611 port ou plant province	Sweep 10.00 r	Span 0 Hz ns (10001 pts)
60.0 Image: Conter 2.441000000 GHz Res BW 1.0 MHz MRR MODE TRCI SCI X 1 A2 1 t (A) 2.891 2 F 1 t (A) 2.891 3 I t 5 998. 4 5 5 5 5 7 8 9 8 1 1	#VBW 3	3.0 MHz	¹ 611 port ou plant province	Sweep 10.00 r	Span 0 Hz ns (10001 pts)

12. Antenna Requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

Г

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB permanent antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

13. Test Setup Photo

Reference to the appendix I for details.

14. EUT Constructional Details

Reference to the appendix II for details.

***** END OF REPORT *****

