

TEST REPORT

Report No.: SHATBL2312027W02

Applicant	÷,	Jiangsu Niu Electric Technology Co., Ltd
Product Name	4	Motor-dirven cycle
Brand Name	:	NIU
Model Name	3	XQi3
FCC ID	÷X	2AZ6G-X3JW552
Test Standard	V	47 CFR 15.225
Date of Test	:	2024.01.14-2024.01.15

Report Prepared by

(Jack Suo)

Report Approved by

Ghost Li. (Ghost Li)

Authorized Signatory

Corn

(Terry Yang)

"Shanghai ATBL Technology Co., Ltd." hereby certifies that according to actual testing conditions. The test results or observations are provided in accordance with measured value, without taking risks caused by uncertainty into account. Without explicit stipulation in special agreements, standards, or regulations, ATBL shall not assume any responsibility. The test results or observations are applicable only to tested sample. Client shall be responsible for representativeness of the sample and authenticity of the material. This report will be void without authorized signature or special seal for testing report. Do not copied without authorization. Tel:+86(0)21-51298625 Web:www.atbl-lab.com

Report No.:SHATBL2312027W02

TABLE OF CONTENTS

REVISION HISTORY	
DECLARATION OF REPORT	
SUMMARY OF TEST RESULT	5
1. GENERAL DESCRIPTION	
1.1. Applicant	
1.2. Manufacturer	
1.3. Factory	
1.4. General Information of EUT	7
1.5. Equipment Specification	
1.6. Modification of EUT	8
1.7. Laboratory Information	8
1.8. Applicable Standards	
2. TEST CONFIGURATION OF EUT	9
2.1. Block Diagram of Test System	
2.2. Description of Support Units	9
2.3. Test Software and Power Level	
2.4. EUT Operating Conditions	9
2.5. Equipment List	
2.6. Measurement Uncertainty	
3. TEST RESULT	
3.1. 20dB Bandwidth and 99% Bandwidth	
3.2. Frequency Stability	
3.3. Field Strength of Fundamental Emissions	
3.4. Radiated Spurious Emissions	
3.5. AC Power-Line Conducted Emission	
3.6. Antenna Requirement	
4. Test Setup Photographs	
Appendix A _ Conducted Test Data	
Appendix B _ Radiated Test Data	
Appendix C _ AC Power-Line Conducted Emission Test Data	
Appendix D Test Setup	

P

Far

K35

1-

AN AN

ş

8

AN CAN

35

Con la contra de l

35

4

23N

N. C. L.

Kaju

A B

2 F

Kall

K35

AL BAL

12 P

535

K Shi

435V

A.L.

K B

25

A B

T Shi

AN CAL

F-35

L. P.

K3E K3E

Kaje Kaje

Kan Kan

Kate Kate

1 Ste

4 Providence

500

A.S.

F31

Report No.:SHATBL2312027W02

Kar Kar

Kape Kape

L.S.

Kate Kate

Kat Kat

Kar Kar

Kate Kate

K31

3

7

L'S

Kale Kale

1

F

REVISION HISTORY

Y

2

F

2024.01.16 Initial Release G	host Li
THE REAL PROPERTY AND	P.
F BY F BY F BY	
FAN FAN FAN	
K S T B F	S.
	2
ST B - F N	12
S & F B & S S	1-
V D' - P D' V S S	

ADE ADE

Kay Kay

173

17 B

F354

AN AN

E.S.

L.L.

Kale

25

s and a second

Kate Kate

K3W

A P

Entre F

N.

K31

4

DECLARATION OF REPORT

AT 3

1. The device has been tested by ATBL, and the test results show that the equipment under test (EUT) is in compliance with the requirements of 47 CFR 15.225. And it is applicable only to the tested sample identified in the report.

2. This report shall not be reproduced except in full, without the written approval of ATBL, this document only be altered or revised by ATBL, personal only, and shall be noted in the revision of the document.

3. The general information of EUT in this report is provided by the customer or manufacture, ATBL is only responsible for the test data but not for the information provided by the customer or manufacture.

4. The results in this report is only apply to the sample as tested under conditions. The customer or manufacturer is responsible for ensuring that the additional production units of this model have the same electrical and mechanical components.

5. In this report, ' \Box ' indicates that EUT does not support content after ' \Box ', and ' \Box ' indicates that it supports content after ' \Box '

AT3L

24

B.

Er.

K310

E BY

E.F.

RE

E B

Kale

K35

E B

Er.

P

EL.

P.F.

9

1.

24K

3

N.S.

ş

KE

R.F.

R

N.

2F

2ºF

P.P.

2F

RE

C.C.

2º

Report No.:SHATBL2312027W02

1

÷

٦

F

32

K

K

1

RE

P

RE

F.

21-

K35

Report Section	Standard Test Item		Judgment	Remark
	47 CFR 15.215(c)	20dB Bandwidth	PASS	
3.1	3-	99% Bandwidth	Report only	R
3.2	47 CFR 15.225(e)	Frequency Stability	PASS	- 7
3.3	47 CFR 15.225(a)(b)(c)	Field Strength of Fundamental Emissions	PASS	<u></u>
3.4	47 CFR 15.225(d)&15.209	Radiated Spurious Emissions	PASS	
3.5	47 CFR 15.207(a)	AC Power-Line Conducted Emission	PASS	P
3.6	47 CFR 15.203	Antenna Requirements	PASS	3

S.F.

AT AN

R

E.

E CAR

F35

A.S.

P

P

R

R

Fait

E.S.

A.S.

K3)

2P

1 AN

R

K35

Er.

F

K3

SUMMARY OF TEST RESULT

Y

S?

R

1. GENERAL DESCRIPTION

1.1. Applicant

Name

Address

: Jiangsu Niu Electric Technology Co., Ltd

No.387 Changting Road, West Taihu Science and Technology Industrial Park, Changzhou City, Jiangsu P.R. China

1.2. Manufacturer

Name	:	Jiangsu Niu Electric Technology Co., Ltd
Address	:	No.387 Changting Road, West Taihu Science and Technology Industrial Park, Changzhou City, Jiangsu P.R. China

1.3. Factory

Name	:	Jiangsu Niu Electric Technology Co., Ltd
Address	:	No.387 Changting Road, West Taihu Science and Technology Industrial Park, Changzhou City, Jiangsu P.R. China

1.4. General Information of EUT

General Information				
Equipment Name	Motor-dirven cycle			
Brand Name	NIU			
Model Name	XQi3			
Series Model	N/A			
Model Difference	N/A			
SN or IMEI Code	202311220013002			
Power Input	55V~84V			
Hardware Version	X3E13S51			
Software Version	X3E13W51			
Connecting I/O Port(s)	Refer to the remark below.			
Ge	neral Information			

Remark:

The above information of EUT was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.5. Equipment Specification

Equipment Specification				
Frequency Range	13.56MHz			
Number of Channels				
Type of Modulation	ASK			
Antenna Type	coil antenna			
Antenna Gain	3dBi			

1.6. Modification of EUT

No modifications are made to the EUT during all test items.

1.7. Laboratory Information

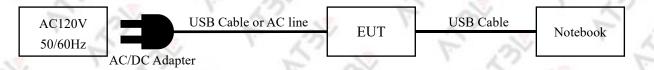
Company Name :	Shanghai ATBL Technology Co., Ltd.
Address :	Building 8,No.160 Basheng Road, Waigaoqiao Free Trade Zone, Pudong New Area, Shanghai
Telephone :	+86(0)21-51298625

1.8. Applicable Standards

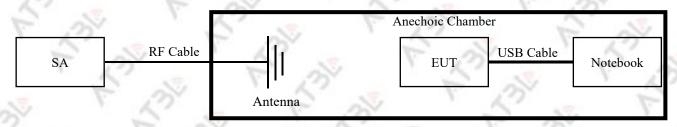
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

47 CFR Part 15 Subpart C §15.225

ANSI C63.10-2013


Remark:

All test items were verified and recorded according to the standards and without any deviation during the test.


2. TEST CONFIGURATION OF EUT

2.1. Block Diagram of Test System

2.1.1. For AC Power-Line Conducted Emission

2.1.2. For Radiated Spurious Emission

2.1.3. For Conducted Test

2.2. Description of Support Units

NO.	O. Unit Brand		Unit Brand Model I	
1	Notebook	Lenovo	DESKTOP-USDEO09	N/A
2	USB Cable	N/A	100cm	N/A

2.3. Test Software and Power Level

During the test, the channel and power control software provided by the customer is used to control the operation channel and output power level.

2.4. EUT Operating Conditions

For AC power-line conducted emission, the EUT was connected under the large package sizes transmission.

For radiated spurious emission and conducted test, the engineering test program was provided and make the EUT to continuous transmit/receive.

2.5. Equipment List

2.5.1. For AC Power-Line Conducted Emission

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Until
Test Receiver	R&S	ESPI	101679	SHATBL-E012	2024.05.09
LISN	R&S	ENV216	100300	SHATBL-E013	2024.05.30
LISN	R&S	ENV216	100333	SHATBL-E041	2024.05.09
Thermometer	DeLi	N/A	N/A	SHATBL-E016	2024.09.20
Test Software	FALA	EZ-EMC	N/A	SHATBL-E046	N/A

2.5.2. For Radiated Spurious Emission

Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Until
Signal analyzer	Agilent	N9020A	MY50200811	SHATBL-E017	2024.05.09
Amplifier	JPT	JPA0118-55-303A	1910001800055000	SHATBL-E006	2024.05.09
Amplifier	JPT	JPA-10M1G32	21010100035001	SHATBL-E005	2024.05.09
Antenna/Turn table Controller	Brilliant	N/A	N/A	SHATBL-E007	N/A
Loop Antenna	Daze	ZN30900C	20077	SHATBL-E042	2024.05.09
Bilog Antenna	SCHWARZBECK	VULB 9168	01174	SHATBL-E008	2024.05.12
Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120D	02334	SHATBL-E009	2024.05.12
Horn Antenna	COM-POWER	AH-1840	10100008	SHATBL-E043	2024.05.09
Thermometer	DeLi	N/A	N/A	SHATBL-E015	2024.09.20
Test Software	FALA	EMC-RI	N/A	SHATBL-E046	N/A

2.5.3. For Conducted Test

Report No.:SHATBL2312027W02

٩.

	A		22		1.1
Equipment Name	Manufacturer	Model	Serial No.	Equipment No.	Calibration Until
Power meter	Anritsu	ML2496A	1935001	SHATBL-W030	2024.07.09
Power sensor	Anritsu	MA2411B	1911006	SHATBL-W031	2024.07.09
Power sensor	DARE	RPR3006W	16I00054SN016	SHATBL-W008	2024.07.09
Power sensor	DARE	RPR3006W	RPR6W-2001005	SHATBL-W032	2024.07.09
Power sensor	Rediteq	RPR3006W	RPR6W-2201002	SHATBL-W033	2024.07.09
Power sensor	Rediteq	RPR3006W	RPR6W-2201003	SHATBL-W034	2024.07.09
Power sensor	Keysight	U2021XA	MY59120004	SHATBL-W035	2024.07.09
Adjustable Attenuator	Agilent	8494B	MY42144015	SHATBL-W009	2024.07.09
Adjustable Attenuator	Agilent	8496B	MY42143776	SHATBL-W010	2024.07.09
Environmental Test Chamber	KSON	THS-B6C-150	9159K	SHATBL-W019	2024.01.16
Signal analyzer	Keysight	N9020A	MY50510136	SHATBL-W003	2024.07.09
Vector signal generator	Keysight	N5182B	MY57300196	SHATBL-W005	2024.07.09
Vector signal generator	Agilent	N5182A	MY50143555	SHATBL-W037	2024.07.09
Analog signal generator	Keysight	N5173B	MY60403026	SHATBL-W038	2024.07.09
Wideband radio communication tester	R&S	CMW500	101331	SHATBL-W007	2024.07.09
Spectrum analyzer	R&S	FSV40-N	101761	SHATBL-W036	2024.07.09
Switch Box	N/A	RFSW3003328	RFSW201019	SHATBL-W029	N/A
Thermometer	DeLi	N/A	N/A	SHATBL-W012	2024.07.09
Test Software	FALA	LZ-RF	N/A	SHATBL-W020	N/A

Report No.:SHATBL2312027W02

2.6. Measurement Uncertainty

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1 1	RF output power, conducted	±0.958dB
2	Conducted spurious emissions	±2.988dB
3	All emissions, radiated 30MHz-1GHz	±2.50dB
4	All emissions, radiated 1GHz-18GHz	±3.51dB
5	Occupied bandwidth	±23.20Hz
6	Power spectral density	±0.886dB

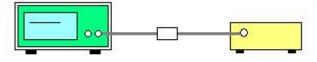
АТЗЫ

3. TEST RESULT

3.1. 20dB Bandwidth and 99% Bandwidth

3.1.1. Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.


3.1.2. Test Procedure

1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold

mode.

- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.1.3. Test Setup

EUT

Spectrum Analyzer

3.1.4. Test Result of 20dB Bandwidth and 99% Bandwidth

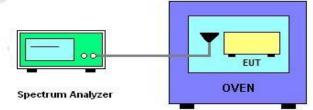
Please refer to the Appendix A.

AT3

3.2. Frequency Stability

3.2.1. Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.2.2. Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.

5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and the limit is less than ± 100 ppm.

6. Extreme temperature rule is -20°C~50°C.

3.2.3. Test Setup

3.2.4. Test Result of Frequency Stability

Please refer to the Appendix A.

3.3. Field Strength of Fundamental Emissions

3.3.1. Limit

T3

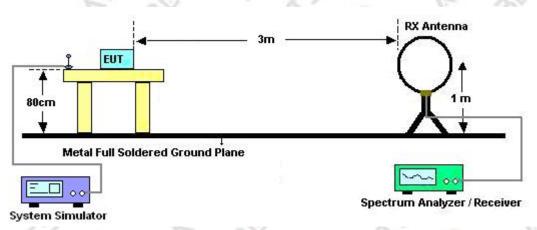
Rules and specifications	Rules and specifications							
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.							
Freq. of Emission	Field Strength	Field Strength	Field Strength	Field Strength				
(MHz)	(µV/m) at 30m	(µV/m) at 30m	(µV/m) at 30m	(µV/m) at 30m				
1.705~13.110	1.705~13.110	1.705~13.110	1.705~13.110	1.705~13.110				
30	30	30	30	30				
29.5	29.5	29.5	29.5	29.5				
48.58	48.58	48.58	48.58	48.58				
69.5	69.5	69.5	69.5	69.5				
13.110~13.410	13.110~13.410	13.110~13.410	13.110~13.410	13.110~13.410				
106	106	106	106	106				

3.3.2. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.

2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.

3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.


4. For Fundamental emissions, use the receiver to measure QP reading.

5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer han 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$.

3.3.3. Test Setup

- 3.3.4. Test Result of Field Strength of Fundamental Emissions
 - Please refer to the Appendix B.

3.4. Radiated Spurious Emissions

3.4.1. Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

3.4.2. Test Procedure

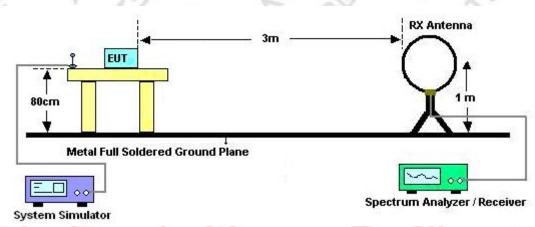
1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.

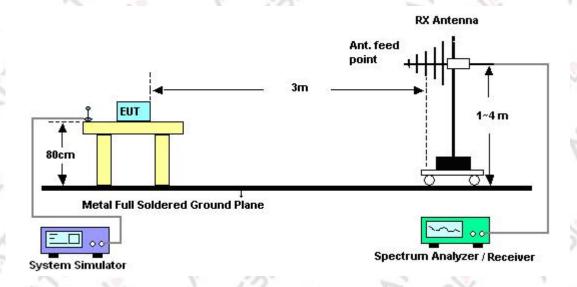
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.

4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.


6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements



Report No.:SHATBL2312027W02

- 3.4.3. Test Setup
 - 3.4.3.1. For radiated emissions below 30MHz

3.4.3.2. For radiated emissions above 30MHz

3.4.4. Test Result of Radiated Spurious Emission

3.4.4.1. For 9 kHz ~ 30 MHz

Please refer to the Appendix B.

3.4.4.2. For above 30 MHz

Please refer to the Appendix B.

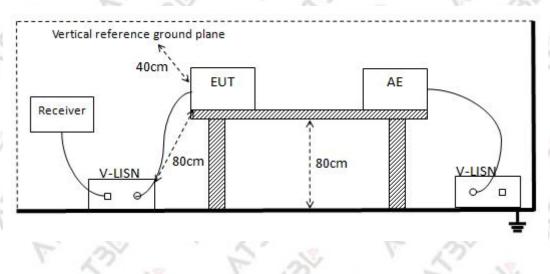
3.5. AC Power-Line Conducted Emission

3.5.1. Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table:

Encourance of omission (MILT)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.


3.5.2. Test Procedure

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.

- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.

8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.5.3. Test Setup

P

E B

K3N

F35

C.C.F.

F34

N

The state

F35

2 P

S

EL B

F

B

K B

R

K SS

ES-

RE

K31

F.Sh

E.S.

F35

135

E B

EL.

KF.

C.S.

E.F.

E.S.

E Star

K.F.

F.SN

E.S.

2 P

K3N

E.S.

E Star

Fair

E B

E BE

K3N

ESS.

E 35

E31

E35

E BE

E B

23⁵⁰

K35

K35

En P

E B

E B

F35

X31

K35

The state

R. Br

Far

E.F.

4

131

4

à

÷

A. P.

EL B

P

224

ź

3.5.4. Test Result of AC Power-Line Conducted Emission Please refer to the Appendix C. R

RE

1 Sh

R. P.

17 B

F31

F35

135

Fall

A.S.

12 P

K3N

B

K35

E BE

K3N

E

K35

ESS -

2 P

E B

A PAR

E.S.

K 35

S.F.

1- Sol

K 35

135

F

E BE

K35

E Star

R. B.

E.F.

E.S.

K31

F. B

P

1

F.Sh

AT3

3.6. Antenna Requirement

3.6.1. Standard Requirement

According to <u>47 CFR 15.225</u>, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

3.6.2. EUT Antenna

The antenna used for the EUT is coil antenna antenna, which meets the antenna requirements.

P

S.F.

F31

F35

Kal

F3N

N

13H

The Bar

ES.

3

3

EL

KSN -

R?

K35

AN SA

F.Sh

K3N

R. Bar

L'SH

E B

EL ST

135

E.S.

S.F.

F.Sh

E35

E35

E B

ESS -

E35

F3V

En P

E B

R.S.

E B

K3V

K35

The state

E B

Far

E B

4

135

4

4

P

F.S.

2

E SS

EL B

P

224

-

4. Test Setup Photographs

F3N

K350

135

E B

2 Prover

RE

K3V

E.S.

E.S.

F.S.

K.F.

E.S.

E B

K31

E.S.

R. P.

N. C. L.

F31

Fast

Please refer to the Appendix D. E.F.

P

35

******END OF THE REPORT**** P

F. Sh

K3V

E

E BE

ESS -

2 P

F. Sh

K3N

F350

F.S.

AN AN

E.S.

The state

Fall

F.SN

E.S.

12 P

K3N

P

F

En Proventing

F35

F35

E B

En P

F3V

E.S.

E BU

E.S.

K31

F35

E.S.

E BE

K3N

E.S.

E BE

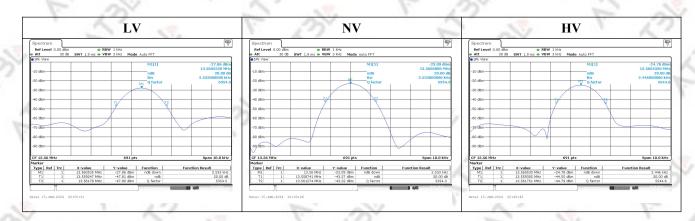
E31

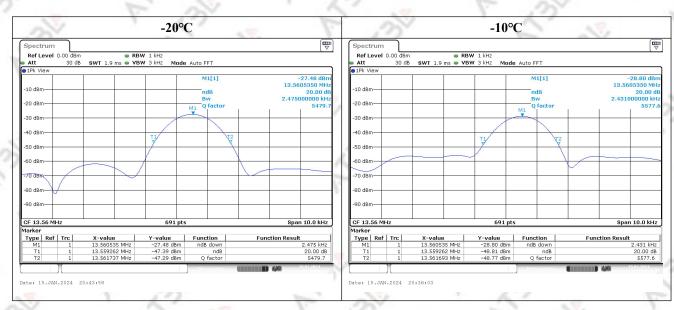
1

F3V

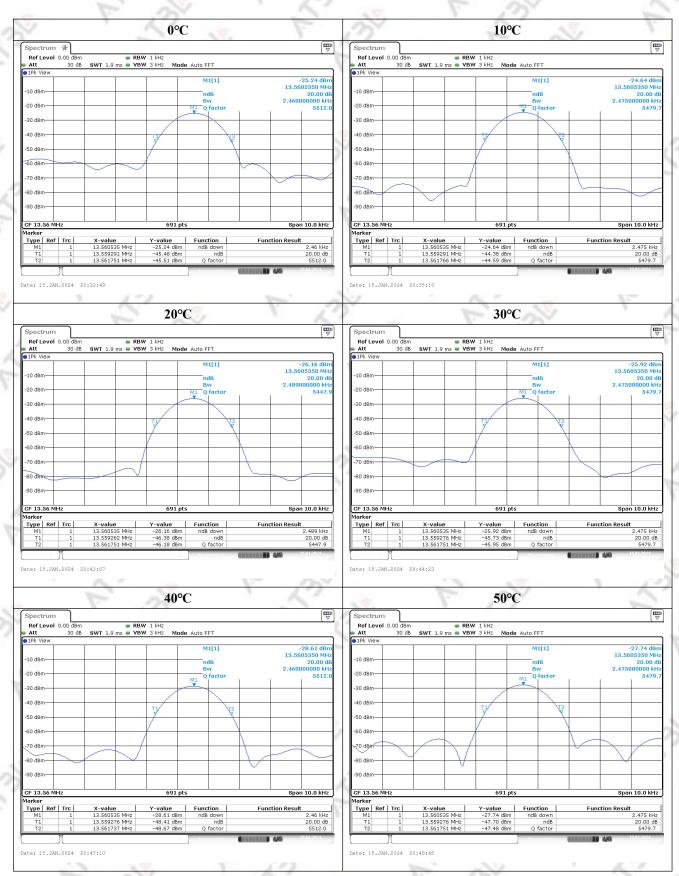
18

Appendix A Conducted Test Data

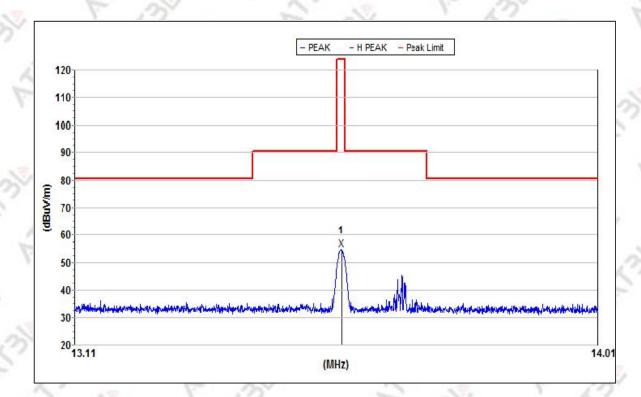

3.1.4. Test Result of 20dB Bandwidth and 99% Bandwidth


Temperature:	23.4°C	F	00	Relative	e Humidity:	55%RH	1.	25
Test Voltage:	DC 48V		F 3	Test Mo	ode:	NFC	5	F
N 17	D		P	12	1.	R		7
	20dB	3		2	N.	99% OBW	19	
	● RBW 1 kHz ns ● VBW 3 kHz Mode A	uto FFT		Spectrum Ref Level -10.00 Att	dBm • RBN 5 dB SWT 1.9 ms • VB1	W 1 kHz W 3 kHz Mode Aut	D FFT	
1Pk View -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -90 dBm -100 dBm		M1[1] ndB BW Cactor 72 72 72 72 72 72 72 72 72 72 72 72 72	-29.01 dBm 13.5604920 MHz 20.00 db 2.475000000 kHz 5479.7	-20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -90 dBm -90 dBm -100 dBm			V1[1]	-25.28 di 13.3605070 M 2.08936324 k
CF 13.56 MHz Marker	691 pts		Span 10.0 kHz	CF 13.56 MHz Marker		691 pts		Span 10.0 kH
Type Ref Trc X-value M1 1 13.560492 1 T1 1 13.559262 1 T2 1 13.561737	MHz -29.01 dBm MHz -48.88 dBm	unction ndB down ndB Q factor	Function Result 2.475 kHz 20.00 dB 5479.7	Type Ref Trc M1 1 T1 1 T2 1	13.560507 MHz 13.5594645 MHz	-25.28 dBm	Occ Bw	Function Result 2.083936324 kF
Date: 10.JAN.2024 22:03:31		Measuring		Date: 10.JAN.2024	4 21:17:14		asuring	
20dB Bandwid	lth(kHz)		2.475	99% Occ	cupied BW(k	Hz)	2.0	839
Frequency rang	ge (MHz)	fL >	> 13.553	F 1	3.559262	1	Test Result	
5 3	3	fH ·	< 13.567	1	3.561737	Se	Com	plies

Report No.:SHATBL2312027W02


Volta	age	Temperature				
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (°C)	Measurement Frequency (MHz)			
102	13.560514	-20	13.560500			
120	13.560008	-10	13.560478			
138	13.560528	0	13.560521			
- 2	- N	10	13.560529			
- 10	12	20	13.560507			
5	F 13	30	13.560514			
V 23	2- ~	40	13.560507			
P al	- 42	50	13.560514			
Max.Deviation (MHz)	0.000528	Max.Deviation (MHz)	0.000528			
Max.Deviation (ppm)	38.9381	Max.Deviation (ppm)	38.9749			
Limit	FS < ±100 ppm	Limit	FS < ±100 ppm			
Test Result	PASS	Test Result	PASS			

3.2.4. Test Result of Frequency Stability



******END OF APPENDIX A*****

Appendix B _ Radiated Test Data

3.3.4. Test Result of Field Strength of Fundamental Emissions

Temperature:	23.4°C	Relative Humidity:	55%RH
Test Voltage:	DC 48V	Test Mode:	NFC H

		1000			and the second sec					
	Mk.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Cbl.L.	Pol.
2	IVIK.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(deg.)	(cm)	(dB/m)	(dB)	
2	Peak:									
	1	13.561082	54.9	124.0	69.1	10	200	19.6	0.2	Н
	1000			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					10 m 10	

10

Ĥ

F

E.

R

2

A.Y.

4×

N.V.V

K.F.

P

1

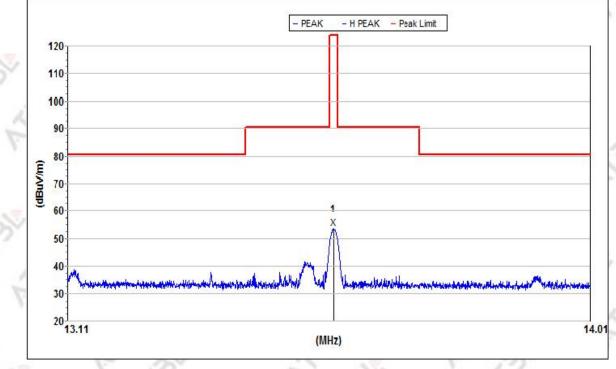
Report No.:SHATBL2312027W02

1

2

F

K


4

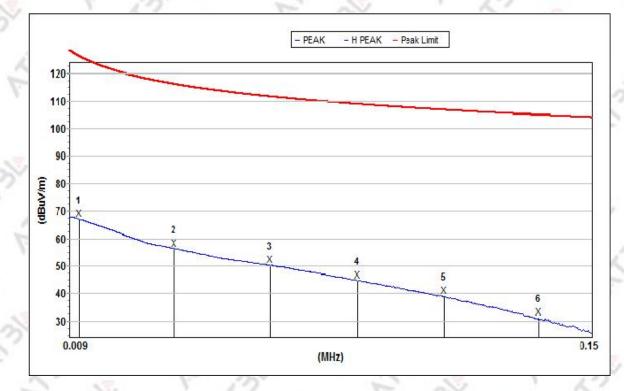
N

Temperature:	23.4°C	Relative Humidity:	55%RH
Test Voltage:	DC 48V	Test Mode:	NFC V
E B	5	E F D	2 2

N

52

			and the second sec							
2	ML	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Cbl.L.	Pol.
	Mk.	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(deg.)	(cm)	(dB/m)	(dB)	P01.
	Peak:									
	1	13.559732	53.9	124.0	70.1	0	200	19.6	0.2	V


i.

F

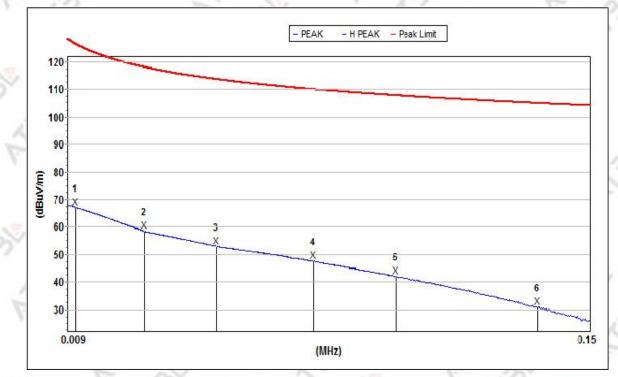
3.4.4. Test Result of Radiated Spurious Emission

(9kHz-150kHz)

Temperature:	23.4°C	Relative Humidity:	55%RH	5 25
Test Voltage:	DC 48V	Test Mode:	NFC H	F

		- A. C		1. S.	0					. <u> </u>
	Mk.	Freq.(M	Level(dBuV/	Limit(dBuV/	Margin(d	Deg.(de	Hi.(c	Ant.F/G.(dB/	Cbl.L.(d	Pol.
4	IVIK.	Hz)	m)	m)	B)	g.)	m)	m)	B)	POI.
	Peak:									
	1	0.011610	67.0	126.3	59.3	360	200	-15.4	0.0	Н
ę	2	0.037210	56.4	116.2	59.8	360	200	-24.4	0.0	Н
	3	0.062972	50.3	111.6	61.3	360	200	-27.5	0.1	Н
	4	0.086662	44.8	108.8	64.0	360	200	-28.6	0.1	Н
	5	0.109920	39.0	106.8	67.8	153	200	-28.9	0.1	Н
5	6	0.135552	31.1	105.0	73.9	96	200	-29.0	0.1	Н
1								and the second se	1	

<u>N</u>


P

Report No.:SHATBL2312027W02

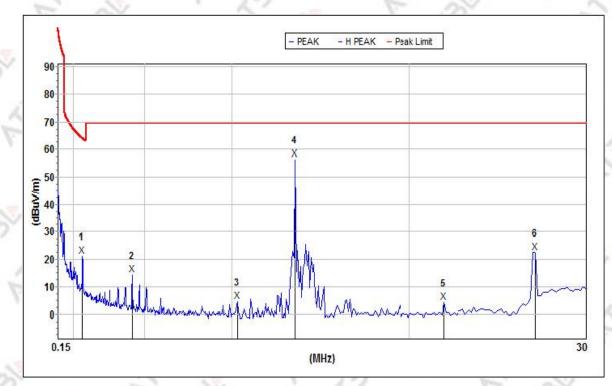
2

Temperature:	23.4°C	Relative Humidity:	55%RH	
Test Voltage:	DC 48V	Test Mode:	NFC V	

Y

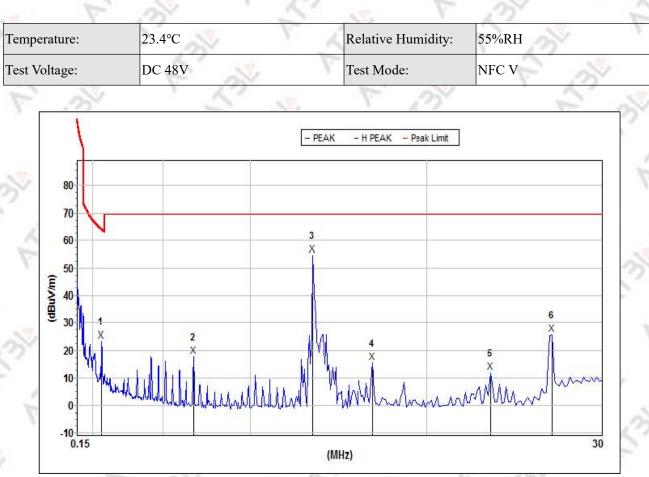
10				· /					
Mk.	Freq.(MH	Level(dBu	Limit(dBuV/	Margin(d	Deg.(de	Hi.(c	Ant.F/G.(dB/	Cbl.L.(Pol.
	z)	V/m)	m)	B)	g.)	m)	m)	dB)	
Peak:									
1	0.011114	67.2	126.7	59.5	0	200	-15.2	0.0	V
2	0.029669	58.5	118.1	59.6	0	200	-23.0	0.0	V
3	0.048955	53.0	113.8	60.8	0	200	-26.6	0.1	V
4	0.075396	47.5	110.0	62.5	0	200	-28.2	0.1	V
5	0.097532	42.0	107.8	65.8	0	200	-28.8	0.1	V
6	0.135742	30.9	104.9	74.0	0	200	-29.0	0.1	V
_							1.4		

2 7


4

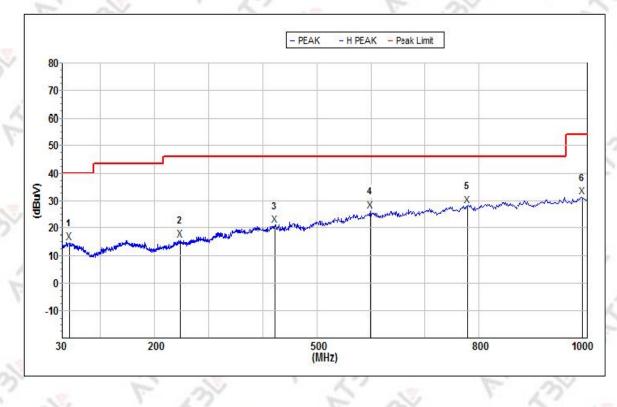
Report No.:SHATBL2312027W02

(150kHz~30MHz)


18

Temperature:	23.4°C	Relative Humidity:	55%RH	
Test Voltage:	DC 48V	Test Mode:	NFC H	2
1 A.S.		25	N. 1	10

	1 A			1 . C		100			1 A.	
	Mk.	Freq.	Level(dB	Limit(dBuV/	Margin(d	Deg.(de	Hi.(c	Ant.F/G.(dB/	Cbl.L.(d	Pol
	IVIK.	(MHz)	uV/m)	m)	B)	g.)	m)	m)	B)	
	Peak:									
3	1	1.519292	21.4	64.0	42.6	0	100	-30.0	0.1	Н
	2	4.337558	14.3	69.5	55.2	0	100	-30.2	0.1	Н
	3	10.287579	4.7	69.5	64.8	0	100	-31.7	0.2	Н
	4	13.550857	56.4	69.5	13.1	47	100	-31.9	0.2	Н
	5	21.946258	4.4	69.5	65.1	83	100	-31.8	0.3	Н
	6	27.126995	22.7	69.5	46.8	47	100	-32.1	0.3	Н

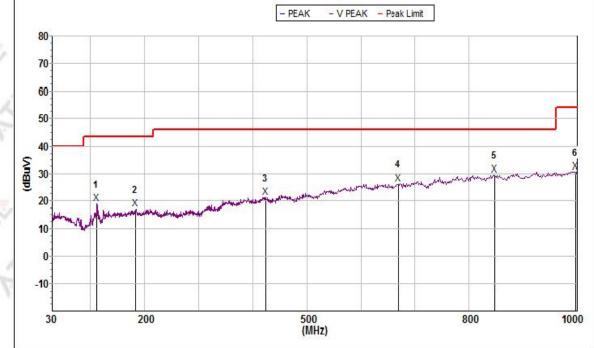

10			-	A	- A				
Mk.	Freq.(MH	Level(dBu	Limit(dBuV/	Margin(d	Deg.(de	Hi.(c	Ant.F/G.(dB/	Cbl.L.(d	Pol
IVIK.	z)	V/m)	m)	B)	g.)	m)	m)	B)	
Peak:									
1	1.519292	23.6	64.0	40.4	353	100	-30.0	0.1	V
2	6.769114	17.9	69.5	51.6	106	100	-31.4	0.1	V
3	13.550857	54.7	69.5	14.8	56	100	-31.9	0.2	V
4	16.928170	15.5	69.5	54.0	22	100	-31.9	0.2	V
5	23.636050	12.0	69.5	57.5	22	100	-31.9	0.3	V
6	27.126995	25.7	69.5	43.8	22	100	-32.1	0.3	V
				•					

3

Report No.:SHATBL2312027W02

(30MHz~1000MHz)

Temperature:	23.4°C	Relative Humidity:	55%RH
Test Voltage:	DC 48V	Test Mode:	NFC H
1 1.1	- T-	25	St. V D



				1 A.			10			100	
	M(1.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	D-1
	Mk.	(MHz)	(dBuV)	(dBuV)	(dB)	(deg.)	(cm)	(dB)	(dB)	(dB)	Pol.
	Peak:										
3	1	43.050457	14.9	40.0	25.1	1	396	18.0	32.0	0.5	Н
	2	248.551929	15.8	46.0	30.2	107	100	16.9	32.0	1.9	Н
	3	422.798335	21.2	46.0	24.8	129	299	21.5	32.1	2.4	Н
	4	599.321287	26.3	46.0	19.7	0	100	25.6	31.1	3.1	Н
	5	779.606783	28.5	46.0	17.5	338	299	27.6	31.3	3.5	Н
	6	991.271918	31.4	54.0	22.6	33	299	29.8	31.9	4.0	Н
								1 m			100 C

10

Temperature:	23.4°C	Relative Humidity:	55%RH
Test Voltage:	DC 48V	Test Mode:	NFC V
10 7	Nº SE	F 3	2 3

		Sec.	100 C		- A. C.			7 A		
Mk.	Freq.	Level	Limit	Margin	Deg.	Hi.	Ant.F/G.	Amp.G.	Cbl.L.	Pol.
	(MHz)	(dBuV)	(dBuV)	(dB)	(deg.)	(cm)	(dB)	(dB)	(dB)	
Peak:										
1	111.346842	19.2	43.5	24.3	0	300	15.7	32.0	1.1	V
2	183.200514	17.2	43.5	26.3	249	300	18.4	31.9	1.5	V
3	423.540268	21.5	46.0	24.5	51	200	22.1	32.1	2.4	V
4	670.489256	26.4	46.0	19.6	0	101	26.5	31.2	3.2	V
5	846.570751	29.8	46.0	16.2	344	101	28.6	31.6	3.6	V
6	996.499583	30.8	54.0	23.2	207	200	30.0	31.9	4.0	V
									A	

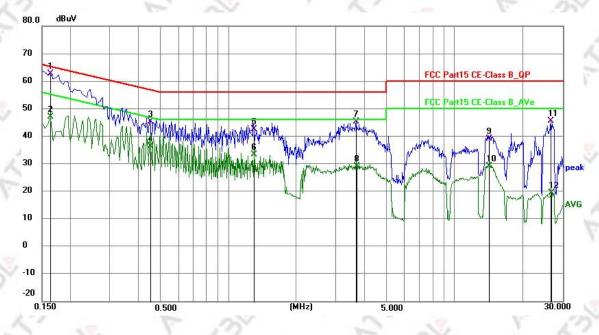
Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

*****END OF APPENDIX B****


Appendix C _ AC Power-Line Conducted Emission Test Data

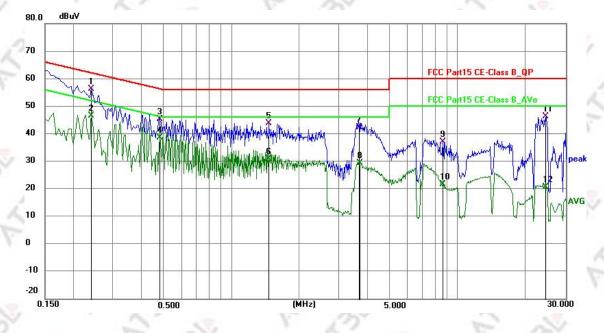
3.5.4. Test Result of AC Power-Line Conducted Emission

]	Femperature:	23.4°C	Relative Humidity:	55%RH
]	Test Voltage:	AC 120V/60Hz	Phase:	L

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor)–Limit.
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1635	52.04	10.69	62.73	65.28	-2.55	QP
2	0.1635	36.27	10.69	46.96	55.28	-8.32	AVG
3	0.4515	34.66	10.66	45.32	56.85	-11.53	QP
4	0.4540	25.73	10.67	36.40	46.80	-10.40	AVG
5	1.3020	31.76	10.74	42.50	56.00	-13.50	QP
6	1.3020	22.71	10.74	33.45	46.00	-12.55	AVG
7	3.6644	34.56	10.81	45.37	56.00	-10.63	QP
8	3.6960	18.22	10.81	29.03	46.00	-16.97	AVG
9	14.1900	28.25	10.80	39.05	60.00	-20.95	QP
10	14.2800	18.30	10.80	29.10	50.00	-20.90	AVG
11	26.6054	34.23	11.24	45.47	60.00	-14.53	QP
12	26.7180	8.25	11.24	19.49	50.00	-30.51	AVG

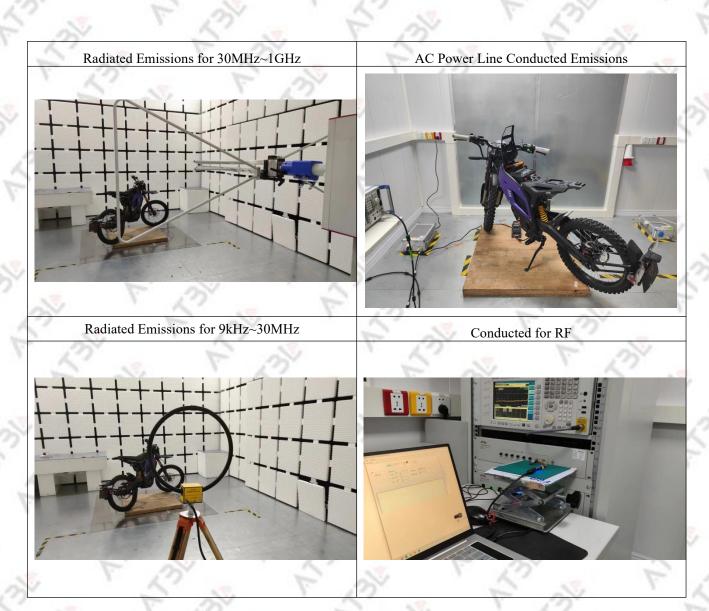


Report No.:SHATBL2312027W02

Temperature:	23.4°C	Relative Humidity:	55%RH	
Test Voltage:	AC 120V/60Hz	Phase:	N	

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Margin = Result (Result = Reading + Factor)–Limit.
- 3. Factor=LISN factor+Cable loss+Limiter (10dB)



No.	Frequency (MHz)	Reading (dBuV)	Correct	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
			(dB)				
1	0.2400	45.76	10.37	56.13	62.10	-5.97	QP
2	0.2400	36.08	10.37	46.45	52.10	-5.65	AVG
3	0.4811	35.05	10.31	45.36	56.32	-10.96	QP
4	0.4811	28.25	10.31	38.56	46.32	-7.76	AVG
5	1.4640	33.49	10.38	43.87	56.00	-12.13	QP
6	1.4640	20.37	10.38	30.75	46.00	-15.25	AVG
7	3.6780	31.87	10.43	42.30	56.00	-13.70	QP
8	3.6825	18.92	10.43	29.35	46.00	-16.65	AVG
9	8.6100	26.76	10.37	37.13	60.00	-22.87	QP
10	8.6132	11.26	10.37	21.63	50.00	-28.37	AVG
11	24.5174	35.21	11.08	46.29	60.00	-13.71	QP
12	24.5174	9.48	11.08	20.56	50.00	-29.44	AVG

*****END OF APPENDIX C*****

Appendix D _ Test Setup

******END OF APPENDIX D****