

Global United Technology Services Co., Ltd.

Report No.: GTSL202106000018F01

TEST REPORT

SHENZHEN WINS ELECTRONIC TECHNOLOGY CO., LTD **Applicant:**

Address of Applicant: Baoan Xixiang Xinbaoji Industry Park, Building A1-2,

Shenzhen, Guangdong, China

SHENZHEN WINS ELECTRONIC TECHNOLOGY CO., LTD Manufacturer:

Address of Baoan Xixiang Xinbaoji Industry Park, Building A1-2,

Shenzhen, Guangdong, China Manufacturer:

Equipment Under Test (EUT)

RFID Tamper Evident Cable Seal **Product Name:**

HM-UHF-C Model No.:

Series model: N/A

Trade Mark: HM

FCC ID: 2AZ63-HM-UHF-C

FCC CFR Title 47 Part 15 Subpart C Section 15.247 **Applicable standards:**

Date of sample receipt: May.17,2021

Date of Test: May.17,2021- Jun.08,2021

Date of report issued: Jun.08,2021

Test Result: PASS *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 40

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description		
00	Jun.08,2021	Original		
9 9 9	9 9 9 9	20 5 5 5 5		
29 29 29 29	9 9 9 9	9 9 9		

Prepared By:	Jasancou Date: Jun.08	3,2021
	Project Engineer	
	Jan Lund	
Check By:	Date: Jun.08	1,2021

3 Contents

		Page
1	COVER PAGE	1
2	VERSION	2
3	CONTENTS	3
4		
5		
J		
	5.1 GENERAL DESCRIPTION OF EUT	
	5.2 TEST MODE	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	7
	5.5 ABNORMALITIES FROM STANDARD CONDITIONS	7
	5.6 TEST FACILITY	7
	5.7 TEST LOCATION	7
	5.8 ADDITIONAL INSTRUCTIONS	7
6	TEST INSTRUMENTS LIST	8
4		
7	TEST RESULTS AND MEASUREMENT DATA	10
	7.1 ANTENNA REQUIREMENT	10
	7.1 ANTENNA REQUIREMENT	
	7.3 CONDUCTED PEAK OUTPUT POWER	
	7.4 20DB EMISSION BANDWIDTH	
	7.5 CARRIER FREQUENCIES SEPARATION	101
	7.5 CARRIER FREQUENCIES SEPARATION	
	7.7 DWELL TIME	_
	7.8 BAND EDGE	
	7.9 SPURIOUS EMISSION	
	7.9 Spurious Emission	
8	TEST SETUP PHOTO	40
9	EUT CONSTRUCTIONAL DETAILS	40

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(2)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)(i)	Pass
Carrier Frequencies Separation	15.247 (a)(1)(i)	Pass
Hopping Channel Number	15.247 (a)(1)(i)	Pass
Dwell Time	15.247 (a)(1)(i)	Pass
Pseudorandom Frequency Hopping Sequence	15.247 (a)(1)(i)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Frequency Range	Measurement Uncertainty	Notes
30MHz-200MHz	3.8039dB	(1)
200MHz-1GHz	3.9679dB	(1)
1GHz-18GHz	4.29dB	(1)
18GHz-40GHz	3.30dB	(1)
0.15MHz ~ 30MHz	3.44dB	(1)
	30MHz-200MHz 200MHz-1GHz 1GHz-18GHz 18GHz-40GHz	30MHz-200MHz 3.8039dB 200MHz-1GHz 3.9679dB 1GHz-18GHz 4.29dB 18GHz-40GHz 3.30dB

5 General Information

5.1 General Description of EUT

Product Name:	RFID Tamper Evident Cable Seal
Model No.:	HM-UHF-C
Serial No.:	N/A
Test sample(s) ID:	GTSL202106000018-1(Engineer sample) GTSL202106000018-2(Normal sample)
Operation Frequency:	902.75MHz~927.25MHz
Channel numbers:	50
Channel separation:	0.5MHz
Modulation type:	GFSK
Antenna Type:	Internal Antenna
Antenna gain:	1.0dBi
Power supply:	1.8V, 120uA

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	902.75MHz	16	910.25MHz	31	917.75MHz	46	925.25MHz
2	903.25MHz	17	910.75MHz	32	918.25MHz	47	925.75MHz
3	903.75MHz	18	911.25MHz	33	918.75MHz	48	926.25MHz
4	904.25MHz	19	911.75MHz	34	919.25MHz	49	926.75MHz
5	904.75MHz	20	912.25MHz	35	919.75MHz	50	927.25MHz
6	905.25MHz	21	912.75MHz	36	920.25MHz		- 8 s
7	905.75MHz	22	913.25MHz	37	920.75MHz		8 8
8	906.25MHz	23	913.75MHz	38	921.25MHz		8
9	906.75MHz	24	914.25MHz	39	921.75MHz		
10	907.25MHz	25	914.75MHz	40	922.25MHz	i68	
11	907.75MHz	26	915.25MHz	41	922.75MHz	26	8 8
12	908.25MHz	27	915.75MHz	42	923.25MHz		
13	908.75MHz	28	916.25MHz	43	923.75MHz	38	
14	909.25MHz	29	916.75MHz	44	924.25MHz		
15	909.75MHz	30	917.25MHz	45	924.75MHz		6

Test CH

Channel	Frequency
The lowest channel	902.75MHz
The middle channel	915.25MHz
The Highest channel	927.25MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default S S S S S S S S S S S S S S S S S S S

6 Test Instruments list

Rad	iated Emission:		7 2 2	1 17	7 27	
Item	Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	€ E3 €	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021	
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 25 2020	June. 24 2021	

RF Conducted Test:							
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021	
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021	
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021	
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021	
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021	
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021	

Gene	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021	
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

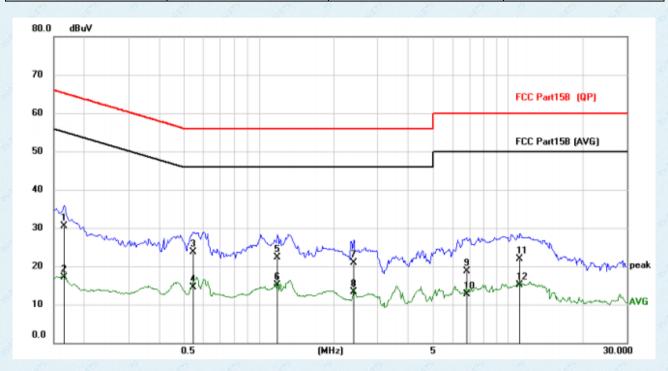
The antenna is Internal Antenna, the best case gain of the is 1.00dBi, reference to the appendix II for

7.2 Conducted Emissions

71E Conducted Emissions						
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013 150KHz to 30MHz Class B					
Test Frequency Range:						
Class / Severity:						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:		Limit	t (dBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
Test setup:	* Decreases with the logarithm Reference Plane	3500				
Test procedure:	Test procedure: 1. The E.U.T and simulators are connected to the main line impedance stabilization network (L.I.S.N.). This p 500hm/50uH coupling impedance for the measuring of 2. The peripheral devices are also connected to the main line impedance of the main line impedance are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the main line impedance for the measuring of the peripheral devices are also connected to the measuring of the peripheral devices are also connected to the measuring of the peripheral devices are also connected to the					
	LISN that provides a 50ohn	n/50uH coupling imp	edance with 50ohm			
Test Instruments:	LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2	n/50uH coupling importhe block diagram checked for maximud the maximum emistall of the interface of 2013 on conducted residue.	edance with 50ohm of the test setup and m conducted ssion, the relative cables must be changed			
Test Instruments:	LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details	n/50uH coupling imported the block diagram checked for maximud the maximum emismall of the interface of 2013 on conducted research.	edance with 50ohm of the test setup and m conducted ssion, the relative cables must be changed			
Test mode:	LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details	n/50uH coupling imported the block diagram checked for maximud the maximum emistral all of the interface of 2013 on conducted research.	m conducted ssion, the relative cables must be changed measurement.			
Test mode: Test environment:	LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are dinterference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details Temp.: 24 °C Hum	n/50uH coupling imported the block diagram checked for maximud the maximum emistral all of the interface of 2013 on conducted research	edance with 50ohm of the test setup and m conducted ssion, the relative cables must be changed			
Test mode:	LISN that provides a 50ohn termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details	n/50uH coupling imported the block diagram checked for maximud the maximum emistral all of the interface of 2013 on conducted research.	m conducted ssion, the relative tables must be changed measurement.			

Remark: Both high and low voltages have been tested to show only the worst low voltage test data. Pre-scan all channels, found worst case at 915.25MHz, and so only show the test result of 915.25MHz

Measurement data:


Test mode:	915.25MHz mode	Phase Polarity:	Line
------------	----------------	-----------------	------

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	18.13	10.92	29.05	66.00	-36.95	QP
2	0.1500	5.46	10.92	16.38	56.00	-39.62	AVG
3	0.1655	19.70	10.92	30.62	65.18	-34.56	QP
4	0.1655	7.09	10.92	18.01	55.18	-37.17	AVG
5	0.5868	12.30	10.92	23.22	56.00	-32.78	QP
6	0.5868	4.14	10.92	15.06	46.00	-30.94	AVG
7	1.1873	12.43	10.92	23.35	56.00	-32.65	QP
8 *	1.1873	5.78	10.92	16.70	46.00	-29.30	AVG
9	2.4042	10.19	10.98	21.17	56.00	-34.83	QP
10	2.4042	2.33	10.98	13.31	46.00	-32.69	AVG
11	9.7470	11.44	11.34	22.78	60.00	-37.22	QP
12	9.7470	6.89	11.34	18.23	50.00	-31.77	AVG

Test mode:	915.25MHz mode	Phase Polarity:	Neutral	6
------------	----------------	-----------------	---------	---

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1655	19.52	10.92	30.44	65.18	-34.74	QP
2	0.1655	6.20	10.92	17.12	55.18	-38.06	AVG
3	0.5439	12.76	10.92	23.68	56.00	-32.32	QP
4	0.5439	3.50	10.92	14.42	46.00	-31.58	AVG
5	1.1873	11.35	10.92	22.27	56.00	-33.73	QP
6 *	1.1873	4.17	10.92	15.09	46.00	-30.91	AVG
7	2.4081	9.85	10.98	20.83	56.00	-35.17	QP
8	2.4081	2.40	10.98	13.38	46.00	-32.62	AVG
9	6.8064	7.54	11.19	18.73	60.00	-41.27	QP
10	6.8064	1.52	11.19	12.71	50.00	-37.29	AVG
11	11.1822	10.52	11.39	21.91	60.00	-38.09	QP
12	11.1822	3.76	11.39	15.15	50.00	-34.85	AVG

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(2)
Test Method:	ANSI C63.10:2013
Limit:	30dBm(for GFSK)
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
Lowest	21.057		
Middle	20.739	30.00	Pass
Highest	20.804		

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(i)
Test Method:	ANSI C63.10:2013
Limit:	N/A
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass Pass Pass Pass Pass Pass Pass Pass

Measurement Data

Test channel	20dB Emission Bandwidth (kHz)	Result	
Lowest	89.46		
Middle	94.14	Pass	
Highest	95.55	8 8 8	

Test plot as follows:

Test mode: GFSK mode

Lowest channel

Middle channel

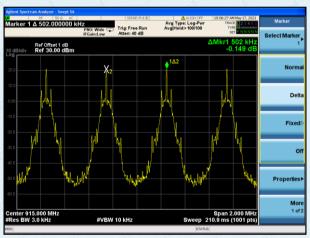
Highest channel

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(i)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=30KHz, VBW=100KHz, detector=Peak
Limit:	20dB bandwidth
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	500	0.025MHz or 20dB bandwidth	Pass
Middle	502	0.025MHz or 20dB bandwidth	Pass
Highest	500	0.025MHz or 20dB bandwidth	Pass



Test plot as follows:

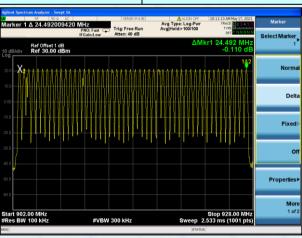

Modulation mode: GFSK

Lowest channel

Middle channel

Highest channel

7.6 Hopping Channel Number


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(i)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=30kHz, VBW=100kHz, Frequency range=916.5MHz-922.5MHz, Detector=Peak				
Limit:	50 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass @ @ @ @ @ @				

Measurement Data:

Mode	Hopping channel numbers	Limit	Result		
GFSK	50	50	Pass		

Test plot as follows:

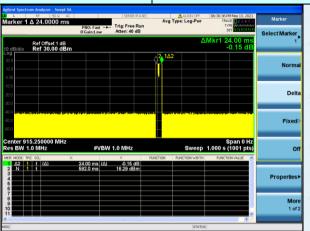
Test mode: GFSK

7.7 Dwell Time

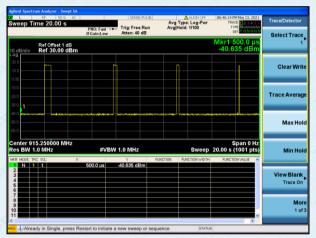
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(i)			
Test Method:	ANSI C63.10:2013			
Receiver setup:	RBW=10kHz, VBW=30kHz, Span=0Hz, Detector=Peak			
Limit:	0.4 Second			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Frequency(MHz)		Dwell time Per Hop (s)	Number of hopping channels in 20s	Dwell time (s)	Limit (s)
	915.25	0.038	20	0.348	0.4


Note: For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

Dwell Time = Number of hopping channels in 20s * Pulse Width



Test plot as follows:

Test channel Lowest

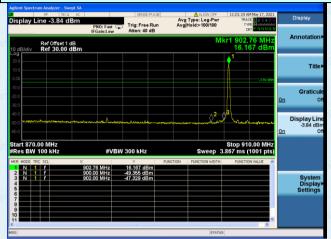
Ton

Ton times in 20s

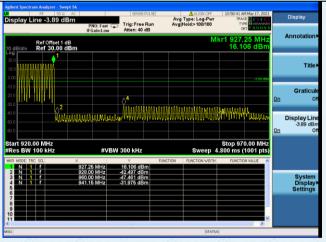
7.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass Pass

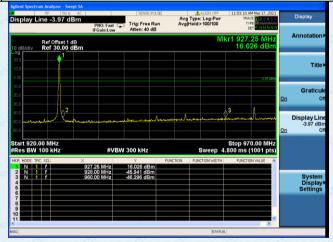
Out of Band Conducted Emissions, FCC Rule 15.247(d):


In any 100 KHz bandwidth outside the EUT passband, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

Test channel: | Adjust Spectrum Analyzer Sweet State | August Company | A


Hopping mode

Lowest channel


No-hopping mode

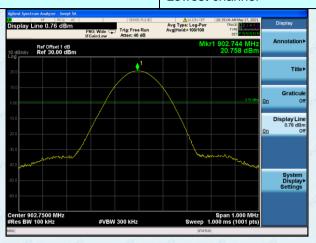
Test channel:

Hopping mode

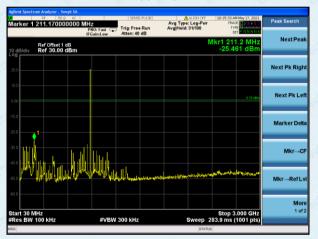
Highest channel

No-hopping mode

7.9 Spurious Emission


7.9.1 Conducted Emission Method

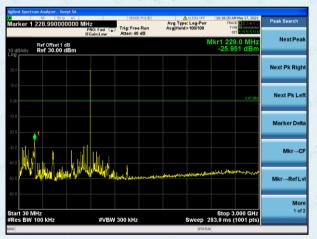
Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

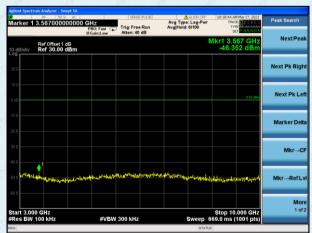

All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20 dB below the highest level of the desired power in the passband.

Test channel: Lowest channel

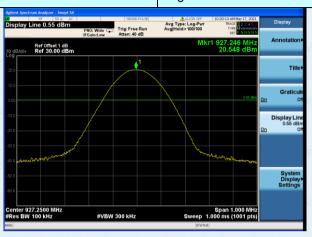
902.75

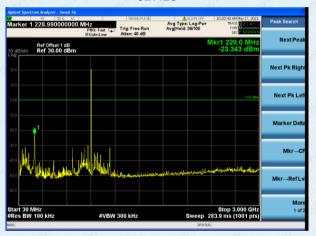

1M-1G


900M-10G


Test channel: Middle channel

915.25

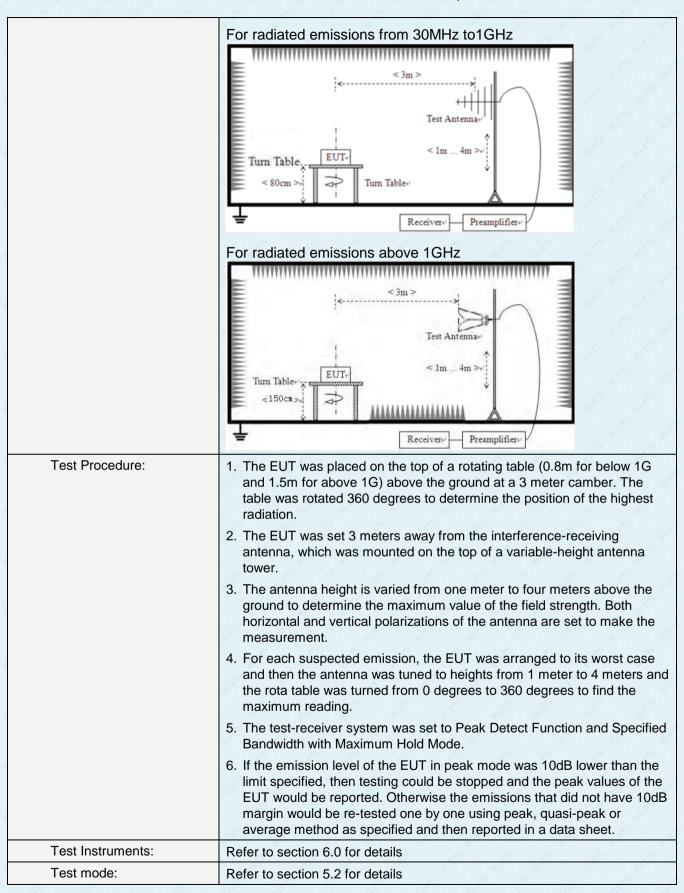

1M-1G


900M-10G

Test channel: Highest channel

927.25

1M-1G


900M-10G

7.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013	g P	j)	g .		250		
Test Frequency Range:	9kHz to 10GHz		9 9	1		9	2	
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency	D	Detector RBV		W VBW		Value	
	9KHz-150KHz	Qu	asi-peak	200H	lz	600Hz	Quasi-peak	
	150KHz-30MHz	Qu	asi-peak	9KH	z	30KHz	z Quasi-peak	
	30MHz-1GHz	Qu	asi-peak	120KH	Hz	300KH	z Quasi-peak	
	Above 4011-	0	Peak	1MH	z	3MHz	Peak	
	Above 1GHz		Peak	1MH	z	10Hz	Average	
Limit:	Frequency	50	Limit (u\	//m)	Va	lue	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)	C	(P	300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)	(Hz) QP		30m	
	1.705MHz-30MH	30	C		(P	30m		
	30MHz-88MHz	100	100		(P			
	88MHz-216MHz	150	48"	C	(P			
	216MHz-960MH	z	200	200		(P	3m	
	960MHz-1GHz	50	500 A		C	QP		
	Above 1GHz				Average			
	Above Toriz	4	5000 F		Pe	Peak		
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MHz			
	Tum Table Sum		< 3m > Test A	nntenna 1m Preceiver-		**************************************		

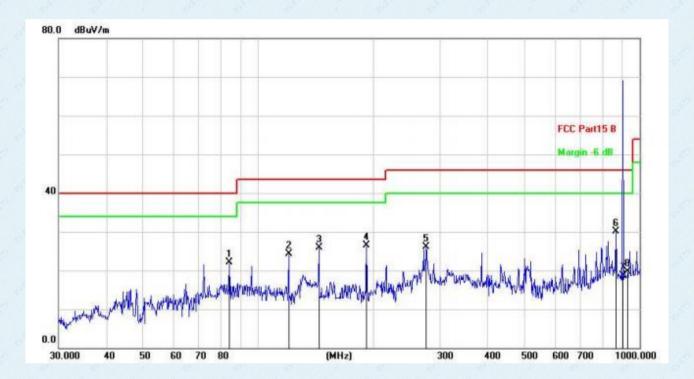
Test environment:	Temp.:	24-25 °C	Humid.:	48-49%	Press.:	1012mbar	
Test voltage:	AC 120V, 6	AC 120V, 60Hz					
Test results:	Pass	7 4	8			8 8	

Measurement data:

Remarks:

1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

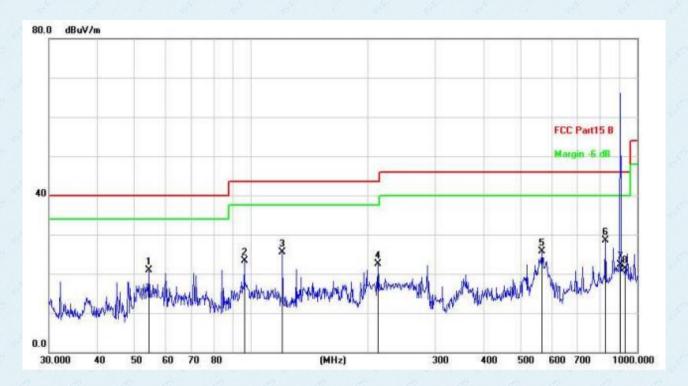
■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

■ Below 1GHz

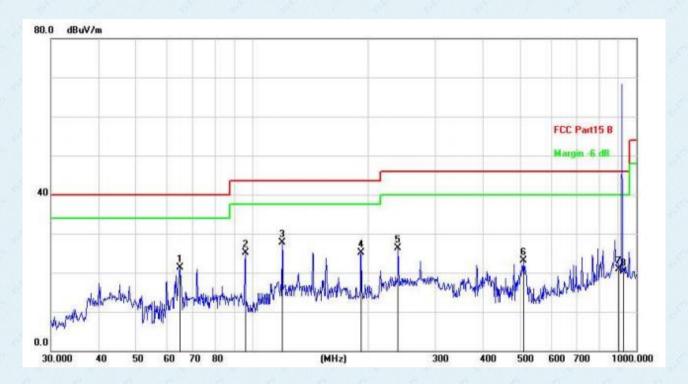
Antenna Polarity:	Horizontal	Test channel:	Lowest
Antenna Polarity:	Horizontal	l est channel:	Lowest



-	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
ľ			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
-	1		84.1100	43.10	-21.02	22.08	40.00	-17.92	QP
ľ	2		120.2766	44.24	-19.89	24.35	43.50	-19.15	QP
	3		144.3348	43.99	-18.11	25.88	43.50	-17.62	QP
	4		192.4183	46.55	-19.96	26.59	43.50	-16.91	QP
	5		276.1235	45.12	-19.00	26.12	46.00	-19.88	QP
	6	*	866.0878	39.82	-9.71	30.11	46.00	-15.89	QP
	7		902.0000	28.23	-9.55	18.68	46.00	-27.32	QP
	8		928.0000	28.88	-9.25	19.63	46.00	-26.37	QP

Note:Correct Factor=Antenna Factor-Preamplifier Gain+Cable Loss Measurement=Reading Level+Correct Factor

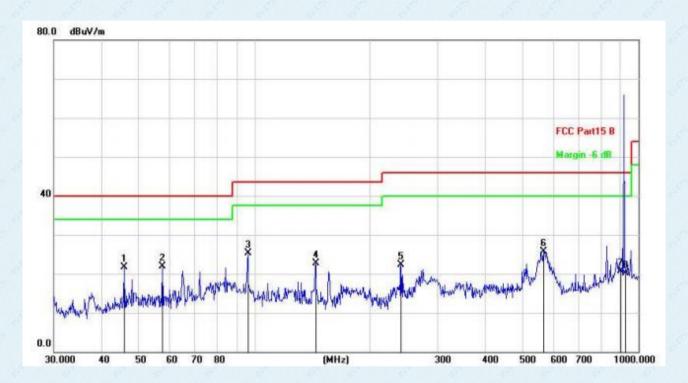
Antenna Polarity:	Vertical	Test channel:	Lowest
-------------------	----------	---------------	--------



No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	,
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		54.4515	39.43	-18.59	20.84	40.00	-19.16	QP
2		96.0986	44.16	-20.82	23.34	43.50	-20.16	QP
3		120.6991	45.37	-19.87	25.50	43.50	-18.00	QP
4		213.0149	42.13	-19.67	22.46	43.50	-21.04	QP
5		566.6221	39.61	-13.89	25.72	46.00	-20.28	QP
6	*	827.4932	38.42	-9.87	28.55	46.00	-17.45	QP
7		902.0000	31.90	-9.55	22.35	46.00	-23.65	QP
8		928.0000	30.63	-9.31	21.32	46.00	-24.68	QP

Note:Correct Factor=Antenna Factor-Preamplifier Gain+Cable Loss Measurement=Reading Level+Correct Factor

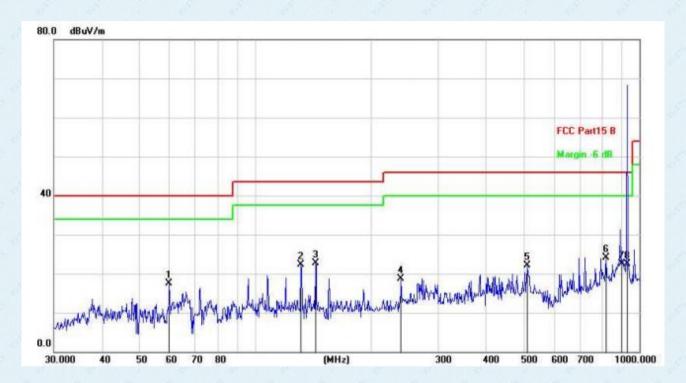
Antenna Polarity:	Horizontal	Test channel:	Middle
-------------------	------------	---------------	--------



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		64.8863	40.66	-19.33	21.33	40.00	-18.67	QP
2		96.0986	45.89	-20.82	25.07	43.50	-18.43	QP
3	*	119.8555	47.61	-19.91	27.70	43.50	-15.80	QP
4		192.4183	45.02	-19.96	25.06	43.50	-18.44	QP
5		239.9874	45.52	-19.19	26.33	46.00	-19.67	QP
6		508.2581	37.73	-14.62	23.11	46.00	-22.89	QP
7		902.0000	30.52	-9.55	20.97	46.00	-25.03	QP
8		928.0000	29.46	-9.25	20.21	46.00	-25.79	QP

Note:Correct Factor=Antenna Factor-Preamplifier Gain+Cable Loss Measurement=Reading Level+Correct Factor

Antenna Polarity:	Vertical	Test channel:	Middle
-------------------	----------	---------------	--------



MHz dBuV dB dBuV/m dB/m dB Detector 1 45.6948 39.92 -18.30 21.62 40.00 -18.38 QP 2 * 57.5938 40.54 -18.69 21.85 40.00 -18.15 QP 3 96.0986 46.14 -20.82 25.32 43.50 -18.18 QP 4 144.3348 40.79 -18.11 22.68 43.50 -20.82 QP 5 240.8301 41.93 -19.57 22.36 46.00 -23.64 QP 6 566.6221 39.56 -13.89 25.67 46.00 -20.33 QP 7 902.0000 30.23 -9.55 20.68 46.00 -25.32 QP		No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 * 57.5938 40.54 -18.69 21.85 40.00 -18.15 QP 3 96.0986 46.14 -20.82 25.32 43.50 -18.18 QP 4 144.3348 40.79 -18.11 22.68 43.50 -20.82 QP 5 240.8301 41.93 -19.57 22.36 46.00 -23.64 QP 6 566.6221 39.56 -13.89 25.67 46.00 -20.33 QP	_			MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
3 96.0986 46.14 -20.82 25.32 43.50 -18.18 QP 4 144.3348 40.79 -18.11 22.68 43.50 -20.82 QP 5 240.8301 41.93 -19.57 22.36 46.00 -23.64 QP 6 566.6221 39.56 -13.89 25.67 46.00 -20.33 QP		1		45.6948	39.92	-18.30	21.62	40.00	-18.38	QP
4 144.3348 40.79 -18.11 22.68 43.50 -20.82 QP 5 240.8301 41.93 -19.57 22.36 46.00 -23.64 QP 6 566.6221 39.56 -13.89 25.67 46.00 -20.33 QP		2	*	57.5938	40.54	-18.69	21.85	40.00	-18.15	QP
5 240.8301 41.93 -19.57 22.36 46.00 -23.64 QP 6 566.6221 39.56 -13.89 25.67 46.00 -20.33 QP		3		96.0986	46.14	-20.82	25.32	43.50	-18.18	QP
6 566.6221 39.56 -13.89 25.67 46.00 -20.33 QP		4		144.3348	40.79	-18.11	22.68	43.50	-20.82	QP
		5		240.8301	41.93	-19.57	22.36	46.00	-23.64	QP
7 902.0000 30.23 -9.55 20.68 46.00 -25.32 QP		6		566.6221	39.56	-13.89	25.67	46.00	-20.33	QP
		7		902.0000	30.23	-9.55	20.68	46.00	-25.32	QP
8 928.0000 29.32 -9.31 20.01 46.00 -25.99 QP		8		928.0000	29.32	-9.31	20.01	46.00	-25.99	QP

Note:Correct Factor=Antenna Factor-Preamplifier Gain+Cable Loss Measurement=Reading Level+Correct Factor

Antenna Polarity:	Horizontal	Test channel:	Highest
-------------------	------------	---------------	---------

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		59.8588	36.34	-18.75	17.59	40.00	-22.41	QP
2		131.7575	41.45	-19.16	22.29	43.50	-21.21	QP
3	*	143.8293	40.82	-18.16	22.66	43.50	-20.84	QP
4		239.9874	37.99	-19.19	18.80	46.00	-27.20	QP
5		511.8351	36.69	-14.57	22.12	46.00	-23.88	QP
6		818.8341	33.99	-9.90	24.09	46.00	-21.91	QP
7		902.0000	32.04	-9.55	22.49	46.00	-23.51	QP
8		928.0000	31.74	-9.25	22.49	46.00	-23.51	QP

Note:Correct Factor=Antenna Factor-Preamplifier Gain+Cable Loss Measurement=Reading Level+Correct Factor

Antenna Polarity:	Vertical	Test channel:	Highest
-------------------	----------	---------------	---------

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	65.1145	39.29	-19.35	19.94	40.00	-20.06	QP
2		96.0986	38.19	-20.82	17.37	43.50	-26.13	QP
3		143.8292	38.00	-18.16	19.84	43.50	-23.66	QP
4		271.3245	36.76	-19.35	17.41	46.00	-28.59	QP
5		352.9433	34.21	-17.53	16.68	46.00	-29.32	QP
6		570.6100	36.41	-13.82	22.59	46.00	-23.41	QP
7		902.0000	28.92	-9.55	19.37	46.00	-26.63	QP
8		928.0000	28.06	-9.31	18.75	46.00	-27.25	QP

Note:Correct Factor=Antenna Factor-Preamplifier Gain+Cable Loss Measurement=Reading Level+Correct Factor

■ Above 1GHz(1-10GHz)

Low channel

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	6
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	57.14	-9.08	48.06	74	-25.94	peak
1240	46.02	-9.08	36.94	54	-17.06	AVG
1805.5	59.96	-8.67	51.29	74	-22.71	peak
1805.5	46.98	-8.67	38.31	54	-15.69	AVG
2708.25	54.35	-4.12	50.23	74	-23.77	peak
2708.25	41.59	-4.12	37.47	54	-16.53	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	<i>\$</i> 0
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detecto Type
1240	57.55	-9.08	48.47	74	-25.53	peak
1240	46.12	-9.08	37.04	54	-16.96	AVG
1805.5	62.35	-8.67	53.68	74	-20.32	peak
1805.5	46.59	-8.67	37.92	54	-16.08	AVG
2708.25	54.82	-4.12	50.7	74	-23.3	peak
2708.25	44.04	-4.12	39.92	54	-14.08	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Mid channel

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	26
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	57.59	-9.08	48.51	74	-25.49	peak
1240	46.82	-9.08	37.74	54	-16.26	AVG
1830.5	59.82	-8.79	51.03	74	-22.97	peak
1830.5	45.73	-8.79	36.94	54	-17.06	AVG
2745.75	56.72	-4.05	52.67	74	-21.33	peak
2745.75	42.28	-4.05	38.23	54	-15.77	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	6
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	57.59	-9.08	48.51	74	-25.49	peak
1240	41.58	-9.08	32.5	54	-21.5	AVG
1830.5	61.26	-8.79	52.47	74	-21.53	peak
1830.5	45.79	-8.79	37	54	-17	AVG
2745.75	53.58	-4.05	49.53	74	-24.47	peak
2745.75	40.57	-4.05	36.52	54	-17.48	AVG

High channel

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Morgin	- 6
Frequency	weter Reading	Factor	Emission Level	LITTIES	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
1240	58.76	-9.08	49.68	74	-24.32	peak
1240	42.15	-9.08	33.07	54	-20.93	AVG
1854.5	60.93	-8.85	52.08	74	-21.92	peak
1854.5	45.29	-8.85	36.44	54	-17.56	AVG
2781.75	57.02	-4.01	53.01	74	-20.99	peak
2781.75	42.36	-4.01	38.35	54	-15.65	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
1240	56.79	-9.08	47.71	74	-26.29	peak
1240	45.71	-9.08	36.63	54	-17.37	AVG
1854.5	59.72	-8.85	50.87	74	-23.13	peak
1854.5	42.25	-8.85	33.4	54	-20.6	AVG
2781.75	54.79	-4.01	50.78	74	-23.22	peak
2781.75	44.20	-4.01	40.19	54	-13.81	AVG

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. There are measurements in 18~25GHz, but they are not recorded in the report due to only the bottom noise

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----