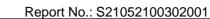


RADIO TEST REPORT FCC ID: 2AZ4Y-RX01

Product: Rally X Trade Mark: WeGym Model No.: RX01 Family Model: RX02, RX03, RX04, RX05, RX06, RX07, RX08 Report No.: S21052100302001 Issue Date: Jun 11. 2021

Prepared for


Shenzhen Osmartlink Technology Co., Ltd.

702, Building B, Block 1, Phase 1, Shenzhen International Innovation Valley, Xingke 1st Street, Nanshan District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

<u>NTEK北测</u>

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

ilac-M

1	TEST	RESULT CERTIFICATION	4
2	SUM	MARY OF TEST RESULTS	5
3		LITIES AND ACCREDITATIONS	
	3.1 H 3.2 I	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS	6
		MEASUREMENT UNCERTAINTY	
4	GENI	ERAL DESCRIPTION OF EUT	7
5	DESC	CRIPTION OF TEST MODES	9
6	SETU	JP OF EQUIPMENT UNDER TEST	
e	5.1 I	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
e		SUPPORT EQUIPMENT	
6	5.3 I	EQUIPMENTS LIST FOR ALL TEST ITEMS	12
7	TEST	REQUIREMENTS	
		-	
1		CONDUCTED EMISSIONS TEST	
	7.1.1 7.1.2	Applicable Standard Conformance Limit	
	7.1.2	Measuring Instruments	
	7.1.3	Test Configuration	
	7.1.4	Test Procedure	
	7.1.6	Test Results	
7		RADIATED SPURIOUS EMISSION	
	7.2.1	Applicable Standard	
	7.2.2	Conformance Limit	
	7.2.3	Measuring Instruments	
	7.2.4	Test Configuration	18
	7.2.5	Test Procedure	19
	7.2.6	Test Results	20
7	7.3 6	5DB BANDWIDTH	
	7.3.1	Applicable Standard	
	7.3.2	Conformance Limit	
	7.3.3	Measuring Instruments	
	7.3.4	Test Setup	
	7.3.5	Test Procedure	
_	7.3.6		
,		DUTY CYCLE Applicable Standard	
	7.4.1 7.4.2	Conformance Limit	
	7.4.2	Measuring Instruments	
	7.4.4	Test Setup	
	7.4.5	Test Procedure	
	7.4.6	Test Results	
7		PEAK OUTPUT POWER	
	7.5.1	Applicable Standard	
	7.5.2	Conformance Limit	
	7.5.3	Measuring Instruments	29
	7.5.4	Test Setup	
	7.5.5	Test Procedure	29
	7.5.6	Test Results	
	7.6 I	POWER SPECTRAL DENSITY	

Page 2 of 64

NTEKJLW

Report No.: S21052100302001

7.6.1	Applicable Standard	
7.6.2	Conformance Limit	.30
7.6.3	Measuring Instruments	.30
7.6.4	Test Setup	
7.6.5	Test Procedure	.30
7.6.6	Test Results	
7.7 C	ONDUCTED BAND EDGE MEASUREMENT	
7.7.1	Applicable Standard	
7.7.2	Conformance Limit	.32
7.7.3	Measuring Instruments	.32
7.7.4	Test Setup	.32
7.7.5	Test Procedure	.32
7.7.6	Test Results	
7.8 S	PURIOUS RF CONDUCTED EMISSIONS	.33
7.8.1	Conformance Limit	.33
7.8.2	Measuring Instruments	
<i>7.8.3</i>	Test Setup	
7.8.4	Test Procedure	.33
7.8.5	Test Results	
7.9 A	NTENNA APPLICATION	
<i>7.9.1</i>	Antenna Requirement	.34
7.9.2	Result	.34
8 TEST	RESULTS	35
8.1.1	MAXIMUM CONDUCTED OUTPUT POWER	
8.1.2	OCCUPIED CHANNEL BANDWIDTH	
8.1.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.1.4	BAND EDGE	
8.1.5	CONDUCTED RF SPURIOUS EMISSION	
8.1.6	MAXIMUM CONDUCTED OUTPUT POWER	.50
8.1.7	OCCUPIED CHANNEL BANDWIDTH	
8.1.8	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
8.1.9	BAND EDGE	
8.1.10	CONDUCTED RF SPURIOUS EMISSION	.61

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Osmartlink Technology Co., Ltd.
Address:	702, Building B, Block 1, Phase 1, Shenzhen International Innovation Valley, Xingke 1st Street, Nanshan District, Shenzhen, China
Manufacturer's Name:	Shenzhen Osmartlink Technology Co., Ltd.
Address:	702, Building B, Block 1, Phase 1, Shenzhen International Innovation Valley, Xingke 1st Street, Nanshan District, Shenzhen, China
Product description	
Product name:	Rally X
Model and/or type reference:	RX01
Family Model:	RX02, RX03, RX04, RX05, RX06, RX07, RX08

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J	
FCC 47 CFR Part 15, Subpart C	Complied
ANSI C63.10-2013	Complied
KDB 558074 D01 15.247 Meas Guidance v05r02	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	May 21. 2021 ~Jun 09, 2021	
Testing Engineer	:	Allen Lin	
		(Allen Liu)	
Technical Manager	:	(Jason Chen)	
		(Jason Chen)	
Authorized Signatory	:	Alex	
		(Alex Li)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
C C	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Rally X		
Trade Mark	WeGym		
FCC ID	2AZ4Y-RX01		
Model No.	RX01		
Family Model	RX02, RX03, RX04, RX05, RX06, RX07, RX08		
Model Difference	All models are the same circuit and RF module, except the model name.		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK		
Number of Channels	40 Channels		
Antenna Type	Chip Antenna		
Antenna Gain	5.19 dBi		
Power supply	DC 3.7V/300mAh from battery or DC 5V from USB Port		
Adapter	N/A		
HW Version	V04		
SW Version	N/A		
Firmware version	V1.8.9		

Certificate #4298.01

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

ACCREDITED

Certificate #4298.01

	Re	evision History	
Report No.	Version	Description	Issued Date
S21052100302001	Rev.01	Initial issue of report	Jun 11, 2021

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps&2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

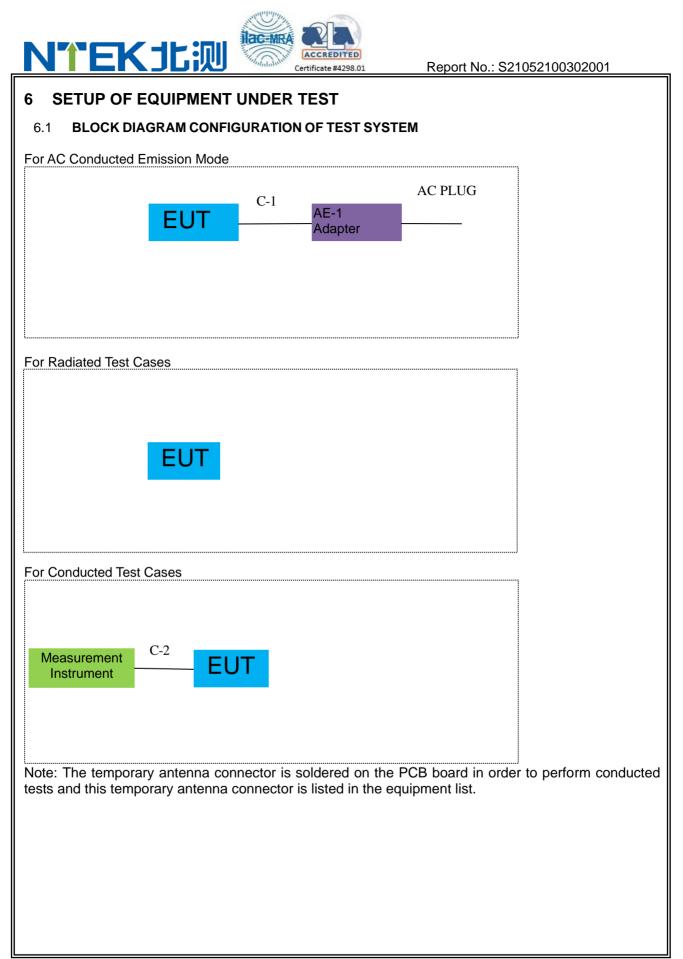
Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	


Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

		•		
Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

ualatic		est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2021.04.27	2022.04.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2021.04.27	2022.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2021.03.29	2022.03.28	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2021.03.29	2022.03.28	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2020.11.19	2021.11.18	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2020.11.19	2021.11.18	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2021.04.27	2022.04.26	1 year	
2	LISN	R&S	ENV216	101313	2021.04.27	2022.04.26	1 year	
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2021.04.27	2022.04.26	1 year	
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year	
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year	
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year	
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

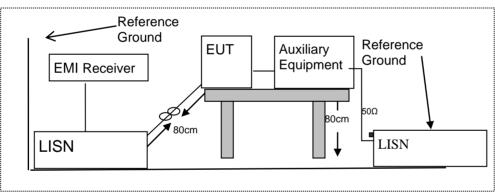
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Rally X	Model Name :	RX01
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

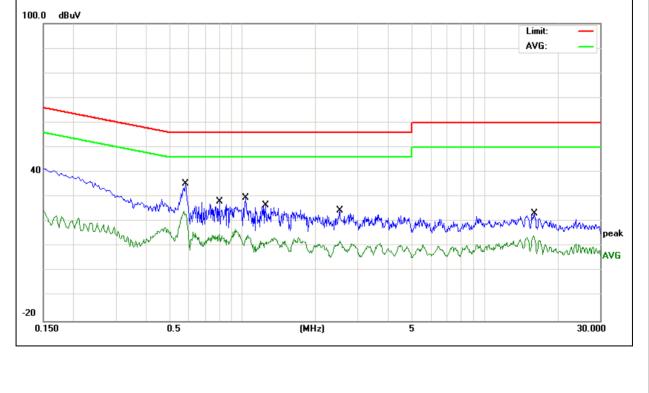
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5780	29.24	9.55	38.79	56.00	-17.21	QP
0.5780	18.47	9.55	28.02	46.00	-17.98	AVG
0.9460	18.83	9.56	28.39	56.00	-27.61	QP
0.9460	8.80	9.56	18.36	46.00	-27.64	AVG
1.3540	15.81	9.56	25.37	56.00	-30.63	QP
1.3540	5.69	9.56	15.25	46.00	-30.75	AVG
1.7100	15.78	9.58	25.36	56.00	-30.64	QP
1.7100	5.53	9.58	15.11	46.00	-30.89	AVG
2.5340	15.76	9.59	25.35	56.00	-30.65	QP
2.5340	5.55	9.59	15.14	46.00	-30.86	AVG
3.9940	16.13	9.60	25.73	56.00	-30.27	QP
3.9940	5.09	9.60	14.69	46.00	-31.31	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Rally X	Model Name :	RX01
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5820	25.89	9.54	35.43	56.00	-20.57	QP
0.5820	15.79	9.54	25.33	46.00	-20.67	AVG
0.8020	18.52	9.54	28.06	56.00	-27.94	QP
0.8020	8.71	9.54	18.25	46.00	-27.75	AVG
1.0300	20.15	9.55	29.70	56.00	-26.30	QP
1.0300	8.60	9.55	18.15	46.00	-27.85	AVG
1.2460	17.02	9.55	26.57	56.00	-29.43	QP
1.2460	6.78	9.55	16.33	46.00	-29.67	AVG
2.5260	14.83	9.58	24.41	56.00	-31.59	QP
2.5260	4.57	9.58	14.15	46.00	-31.85	AVG
16.0819	13.47	9.78	23.25	60.00	-36.75	QP
16.0819	3.47	9.78	13.25	50.00	-36.75	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC Fait 13.203, Restricted bands					
MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

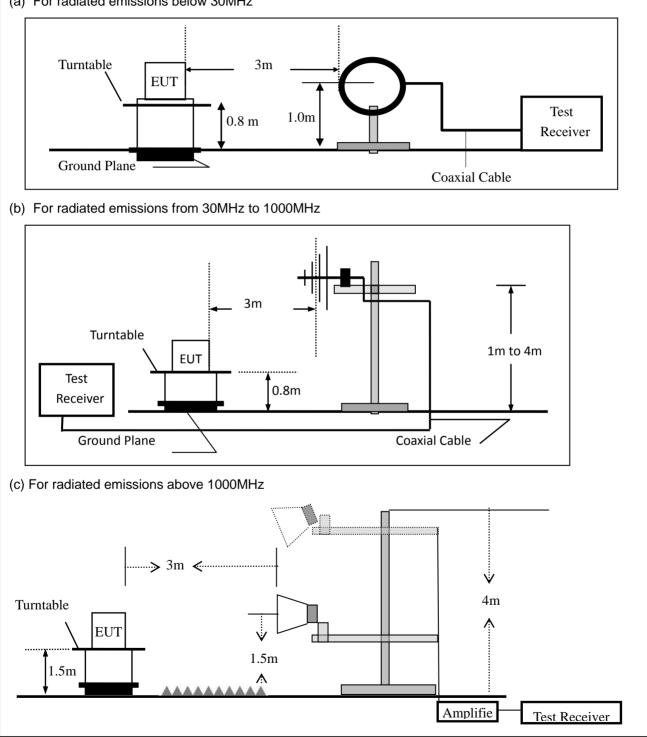
	Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(IMF	Trequency(MITZ)	PEAK	AVERAGE	
	Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


7.2.3 Measuring Instruments

N

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Above 1000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

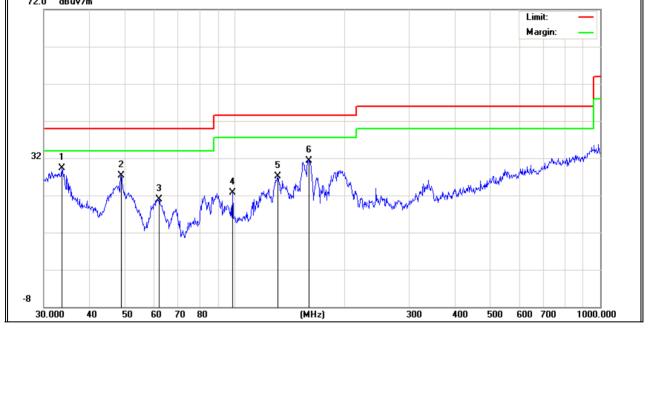
Spurious Err	Spurious Emission below 30MHz (9KHz to 30MHz)										
EUT:	Rally X		Model No.:	RX01							
Temperature:	20 ℃		Relative Humidity:	48%							
Test Mode:	Mode1/Mo Mode4	de2/Mode3/	Test By:	Allen Liu							
				an / dD \ //mn \	$O_{1} = \pi (dD)$						

(MHz)	H/V	PK	AV	PK	AV	PK	AV
Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Ove	r(dB)

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation	modes have been tested	, and the worst resu	It was report as below:


EUT:	Rally X	Model Name :	RX01	
Temperature:	25 ℃	Relative Humidity:	55%	
Pressure:	1010hPa	Test Mode:	Mode 1	
Test Voltage :	DC 3.7V			

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.5624	11.83	17.42	29.25	40.00	-10.75	QP
V	48.8429	17.27	10.13	27.40	40.00	-12.60	QP
V	61.9951	15.02	5.89	20.91	40.00	-19.09	QP
V	98.4866	11.97	10.68	22.65	43.50	-20.85	QP
V	130.8369	14.61	12.55	27.16	43.50	-16.34	QP
V	159.7844	20.56	10.83	31.39	43.50	-12.11	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Roman
Н	50.4089	10.13	8.84	18.97	40.00	-21.03	QP
Н	159.7844	10.88	10.83	21.71	43.50	-21.79	QP
Н	289.0020	11.54	14.32	25.86	46.00	-20.14	QP
Н	348.0274	10.41	16.06	26.47	46.00	-19.53	QP
Н	431.0316	12.34	18.32	30.66	46.00	-15.34	QP
H Remark	932.2715	7.61	27.82	35.43	46.00	-10.57	QP
	n Level= Meter F BuV/m	Reading+ Fac	ctor, Margin	= Emission Le	evel - Limit	Limit: Margin:	
							6
32					5 3 4 X X V	Handline persolution and the second	which a wind
hondelin	and and a second and a second	Manaka	mula markabury	5 MUNMUMMUM			
	1 million and	- And Canada and And Canada					
-8							
30.000	40 50 60	70 80	(Mł	lz)	300 400 5	00 600 700	1000.000
-830.000	40 50 60	70 80	(Mł	lz)	300 400 5	00 600 700	1000.000

Spurious	s Emissio	n Above	1GHz (1G	Hz to	25G	Hz)					
EUT:	Ra	ally X			Mod	el No.:		RX0	1		
Temperature	e: 20	°C		Relative Humidity:		ty:	48%				
Test Mode:	Mo	ode2/Mo	de3/Mode4	Ļ	Test By: Allen Liu						
						•					
Frequency	Read Level	Cable loss	Antenna Prea Factor Fac			Emission Level	Lim	iits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dl	3)	(dBµV/m)	(dBµ\	V/m)	(dB)		
			Low Cha	annel (2402	MHz)(GFSK	()Abo	ve 1G			
4804.338	61.88	5.21	35.59	44.	30	58.38	74.	00	-15.62	Pk	Vertical
4804.338	41.42	5.21	35.59	44.	30	37.92	54.	00	-16.08	AV	Vertical
7206.107	61.83	6.48	36.27	44.	60	59.98	74.	00	-14.02	Pk	Vertical
7206.107	40.87	6.48	36.27	44.	60	39.02	54.	00	-14.98	AV	Vertical
4804.169	63.58	5.21	35.55	44.	30	60.04	74.	00	-13.96	Pk	Horizontal
4804.169	42.97	5.21	35.55	44.	30	39.43	54.	00	-14.57	AV	Horizontal
7206.214	62.23	6.48	36.27	44.52		60.46	74.	00	-13.54	Pk	Horizontal
7206.214	42.04	6.48	36.27	44.	52	40.27	54.	00	-13.73	AV	Horizontal
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.473	64.12	5.21	35.66	44.	20	60.79	74.	00	-13.21	Pk	Vertical
4880.473	44.09	5.21	35.66	44.	20	40.76	54.	00	-13.24	AV	Vertical
7320.265	65.79	7.10	36.50	44.	43	64.96	74.	00	-9.04	Pk	Vertical
7320.265	41.87	7.10	36.50	44.	43	41.04	54.	00	-12.96	AV	Vertical
4880.366	62.37	5.21	35.66	44.	20	59.04	74.	00	-14.96	Pk	Horizontal
4880.366	42.03	5.21	35.66	44.	20	38.70	54.	00	-15.30	AV	Horizontal
7320.234	60.63	7.10	36.50	44.	43	59.80	74.	00	-14.20	Pk	Horizontal
7320.234	43.30	7.10	36.50	44.	43	42.47	54.	00	-11.53	AV	Horizontal
			High Cha	annel (2480	MHz)(GFSK	() Abc	ove 10	6		
4960.482	62.90	5.21	35.52	44.	21	59.42	74.	00	-14.58	Pk	Vertical
4960.482	42.68	5.21	35.52	44.	21	39.20	54.	00	-14.80	AV	Vertical
7440.131	64.41	7.10	36.53	44.	60	63.44	74.	00	-10.56	Pk	Vertical
7440.131	49.53	7.10	36.53	44.	60	48.56	54.	00	-5.44	AV	Vertical
4960.326	63.39	5.21	35.52	44.	21	59.91	74.	00	-14.09	Pk	Horizontal
4960.326	44.91	5.21	35.52	44.	21	41.43	54.	00	-12.57	AV	Horizontal
7440.199	64.01	7.10	36.53	44.	60	63.04	74.	00	-10.96	Pk	Horizontal
7440.199	45.91	7.10	36.53	44.	60	44.94	54.	00	-9.06	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

ι	JT:	Rally X			Mod	Model No.:		RX01			
е	mperature:	20 ℃			Rela	tive Humidit	y:	48%			
Ге	st Mode:	Mode2/	Mode4		Test	By:		Allen	Liu		
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
1Mbps(GFSK)											
	2310.00	63.35	2.97	27.80	43.80	50.32	7	4	-23.68	Pk	Horizontal
	2310.00	42.54	2.97	27.80	43.80	29.51	5	4	-24.49	AV	Horizontal
	2310.00	62.22	2.97	27.80	43.80	49.19	7	4	-24.81	Pk	Vertical
	2310.00	41.70	2.97	27.80	43.80	28.67	5	4	-25.33	AV	Vertical
	2390.00	63.98	3.14	27.21	43.80	50.53	7	4	-23.47	Pk	Vertical
	2390.00	42.97	3.14	27.21	43.80	29.52	5	4	-24.48	AV	Vertical
	2390.00	64.23	3.14	27.21	43.80	50.78	7	4	-23.22	Pk	Horizontal
	2390.00	42.97	3.14	27.21	43.80	29.52	5	4	-24.48	AV	Horizontal
	2483.50	62.76	3.58	27.70	44.00	50.04	7	4	-23.96	Pk	Vertical
	2483.50	44.11	3.58	27.70	44.00	31.39	5	4	-22.61	AV	Vertical
	2483.50	64.30	3.58	27.70	44.00	51.58	7	4	-22.42	Pk	Horizontal
	2483.50	43.60	3.58	27.70	44.00	30.88	5	4	-23.12	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

EUT:	Rally	Х		Мо	Model No.:			RX01				
Temperature:				Relative Hu			48%	3%				
Fest Mode:	Mode	2/ Mode	4	Tes	st By:		Allen	Liu				
Frequency	Reading Level	Cable Loss	Antenna Factor	Pream Factor		Lir	nits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	uV/m)	(dB)	Туре			
3260	64.02	4.04	29.57	44.70	4.70 52.93		74	-21.07	Pk	Vertical		
3260	57.49	4.04	29.57	44.70	46.40	5	54	-7.60	AV	Vertical		
3260	65.63	4.04	29.57	44.70	54.54	7	74	-19.46	Pk	Horizontal		
3260	59.13	4.04	29.57	44.70	48.04	5	54	-5.96	AV	Horizontal		
3332	65.42	4.26	29.87	44.40	55.15	7	74	-18.85	Pk	Vertical		
3332	56.69	4.26	29.87	44.40	46.42	5	54	-7.58	AV	Vertical		
3332	66.42	4.26	29.87	44.40	56.15	7	74	-17.85	Pk	Horizontal		
3332	52.26	4.26	29.87	44.40	41.99	5	54	-12.01	AV	Horizontal		
17797	45.06	10.99	43.95	43.50	56.50	7	74	-17.50	Pk	Vertical		
17797	36.16	10.99	43.95	43.50	47.60	5	54	-6.40	AV	Vertical		
17788	46.00	11.81	43.69	44.60	56.90	7	74	-17.10	Pk	Horizontal		
17788	36.26	11.81	43.69	44.60	47.16	5	54	-6.84	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Rally X	Model No.:	RX01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Rally X	Model No.:	RX01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Rally X	Model No.:	RX01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- \hat{g}) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Rally X	Model No.:	RX01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Rally X	Model No.:	RX01
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

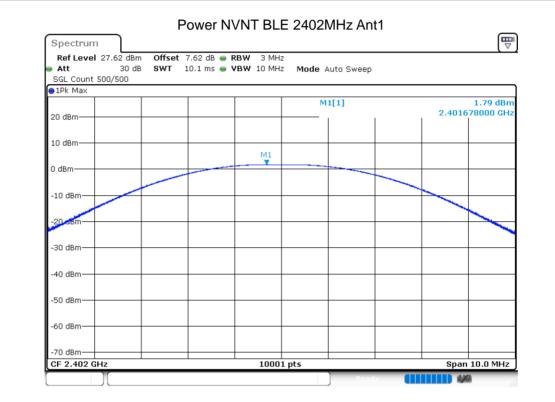
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached Chip antenna (Gain: 5.19 dBi). It comply with the standard requirement.

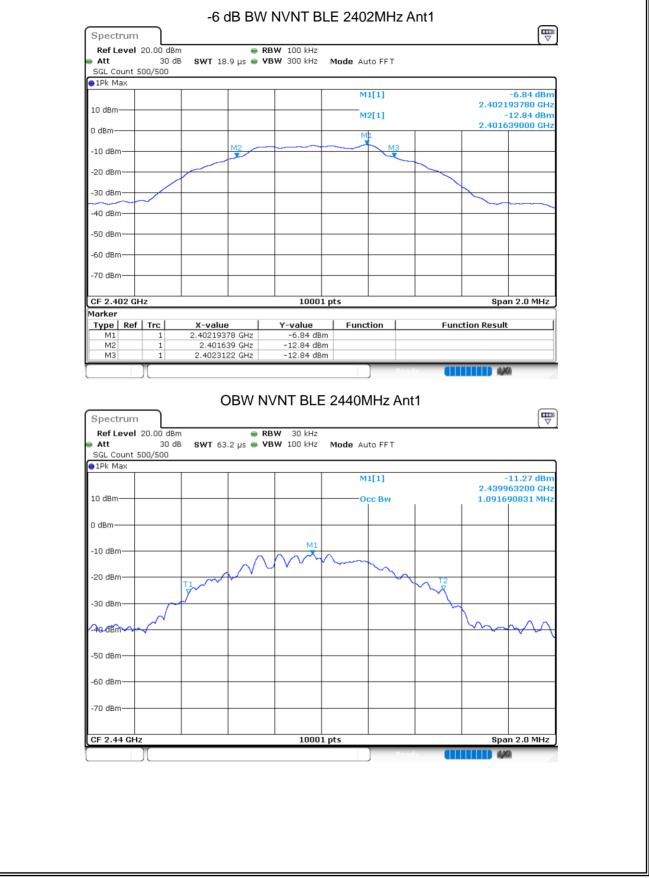


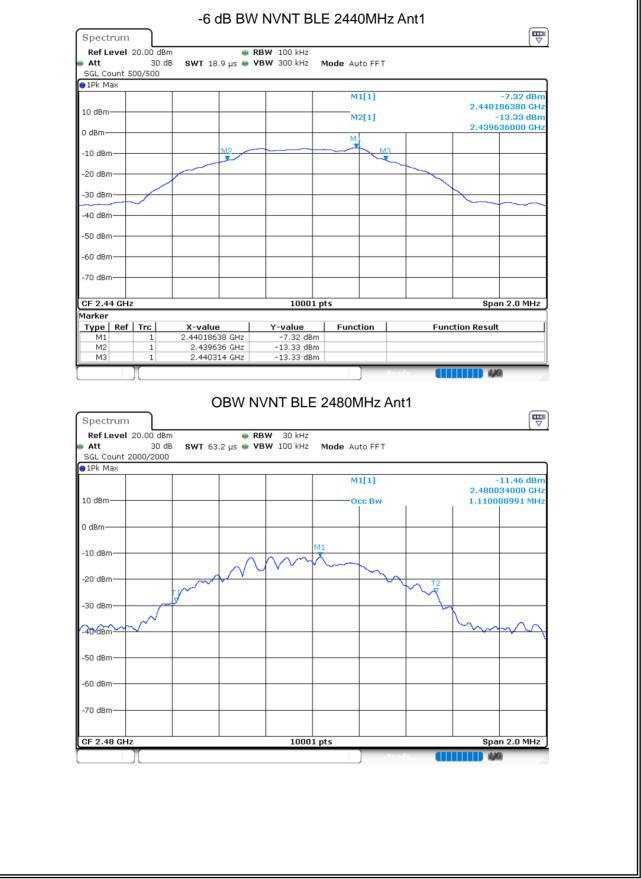
8 TEST RESULTS

1M:

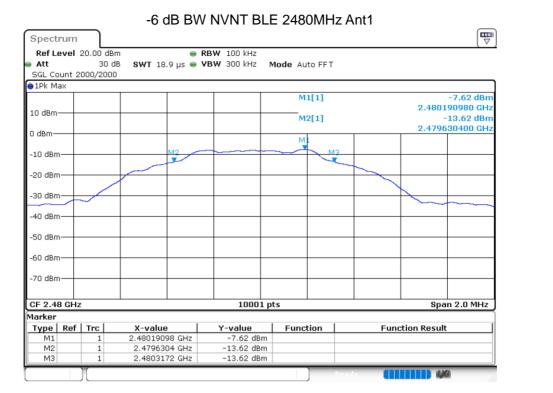
8.1.1 MAXIMUM CONDUCTED OUTPUT POWER

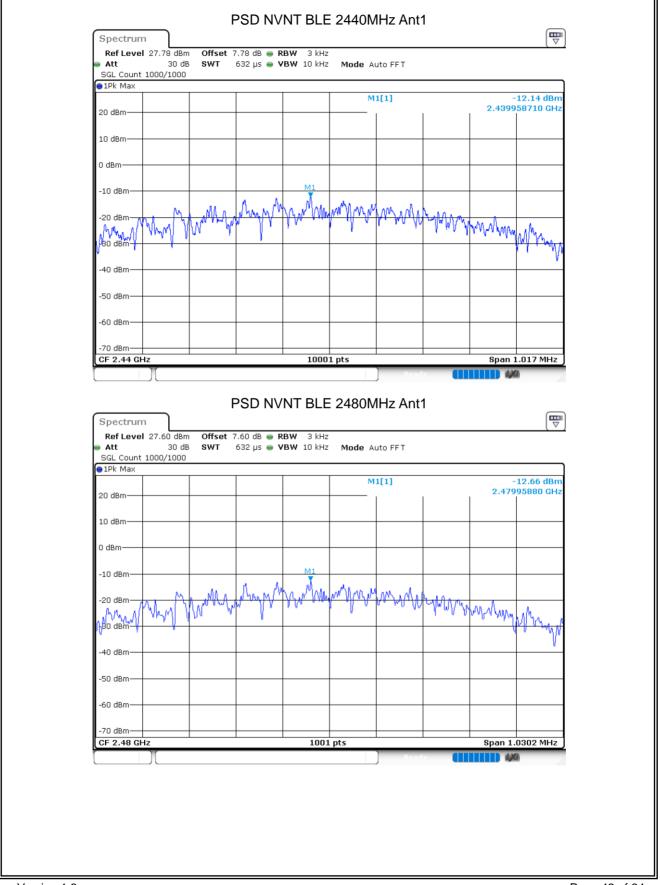
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	1.792	30	Pass
Condition NVNT NVNT	BLE	2440	Ant 1	1.521	30	Pass
NVNT	BLE	2480	Ant 1	1.129	30	Pass




8.1.2 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB Bandwidth	Verdict
				(MHz)	(MHz)	(MHz)	
NVNT	BLE	2402	Ant 1	1.0697	0.6732	0.5	Pass
NVNT	BLE	2440	Ant 1	1.0917	0.678	0.5	Pass
NVNT	BLE	2480	Ant 1	1.1101	0.6868	0.5	Pass
	Att SGL Count	el 20.00 dBm	• RBW 63.2 µs • VBW			₹	
	●1Pk Max				41[1]	-10.60 dBm	
	10 dBm—				Dcc Bw	2.402035600 GHz 1.069693031 MHz	
	0 dBm						
	-10 dBm—						
	-20 dBm—	11 mm			T2 T2		
	/40∕₫₿⋒⊷					hand	
	-50 dBm—						
	-60 dBm—						
	-70 dBm—						
	CF 2.402	GHz		10001 pts		Span 2.0 MHz	





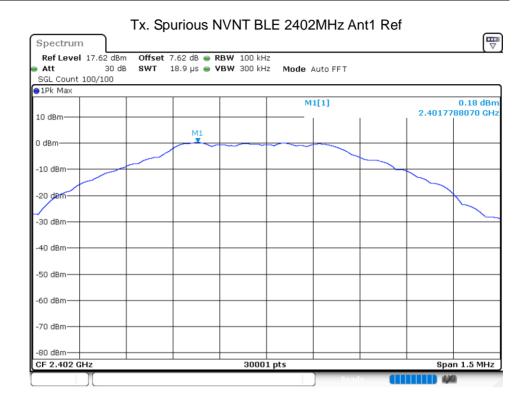
8.1.3 MAXIMUM POWER SPECTRAL DENSITY LEVEL Condition Mode Frequency (MHz) Antenna Max PSD (dBm/3kHz) | Limit (dBm/3kHz) Verdict NVNT BLE 2402 -11.843 Pass Ant 1 8 NVNT BLE 2440 -12.14 8 Pass Ant 1 **NVNT** BLE 2480 Ant 1 -12.655 8 Pass PSD NVNT BLE 2402MHz Ant1 ₽ Spectrum Ref Level 27.62 dBm Offset 7.62 dB 🖷 RBW 3 kHz 30 dB SWT 632.3 µs 👄 VBW 10 kHz Mode Auto FFT Att SGL Count 3000/3000 ⊖1Pk Max M1[1] -11.84 dBm 2.401959510 GHz 20 dBm· 10 dBm· 0 dBm -10 dBm A. 1 mm march MW monting -20 dBm-BO dBm -40 dBm -50 dBm -60 dBm -70 dBm· Span 1.0098 MHz 10001 pts CF 2.402 GHz 14

8.1.4 BAND EDGE

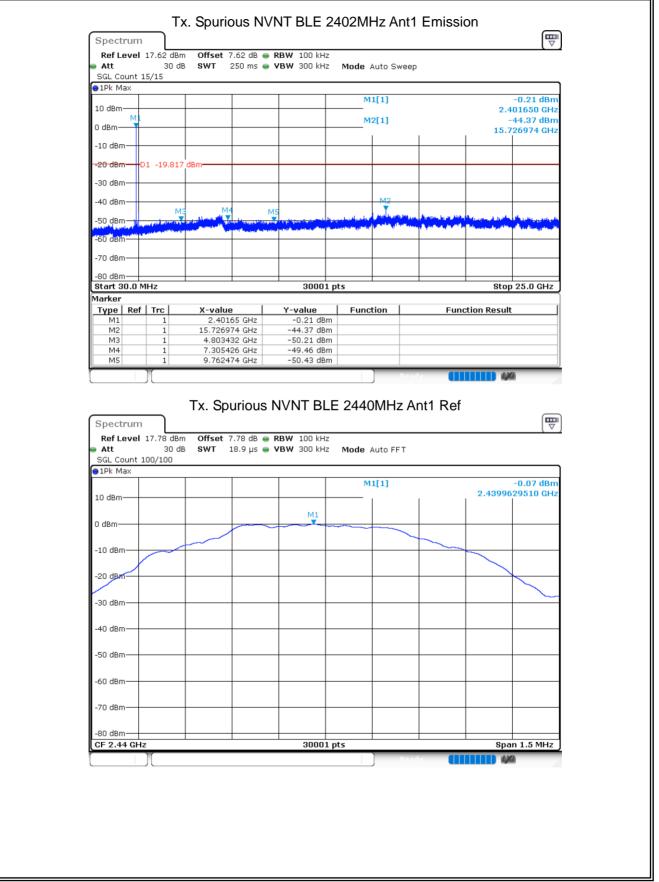
	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
	BLE	2402	Ant 1	-48.82	-20	Pass
NVNT	BLE	2480	Ant 1	-43.36	-20	Pass
	Spect		lge NVNT E	BLE 2402MHz Ant1	Ref	
	Ref Le Att		dB 👄 RBW 100 µs 👄 VBW 300	kHz kHz Mode Auto FFT		
	SGL Co	ount 100/100 ax				
	10 dBm			M1[1]	2.402	0.48 dBm 218380 GHz
	0 dBm-					
	-10 dBn	n				
	-20 dBn					
			~~~~			
	-30 dBn		~			
	-40 dBn		,		mm	m
	-50 dBn	n				
	-60 dBn	n				
	-70 dBn	n				
	-80 dBn	n				
	CF 2.4	02 GHz	10	DO1 pts	Spa	in 8.0 MHz ) Ø
	CF 2.4	02 GHz	10	001 pts Ready		
	CF 2.4	02 GHz	10	001 pts Peady		
	CF 2.4	02 GHz	10	DO1 pts Peady		
	CF 2.4	02 GHz	10	DO1 pts Ready		
	CF 2.4	02 GHz	1	001 pts		
	CF 2.4	02 GHz		001 pts		
	CF 2.4	02 GHz		D01 pts		
	CF 2.4	02 GHz	1	D01 pts		
	CF 2.4	02 GHz		D01 pts		
	CF 2.4	02 GHz		D01 pts		
	CF 2.4	02 GHz		D01 pts		
	CF 2.4	02 GHz		D01 pts		
	CF 2.4	02 GHz		D01 pts		



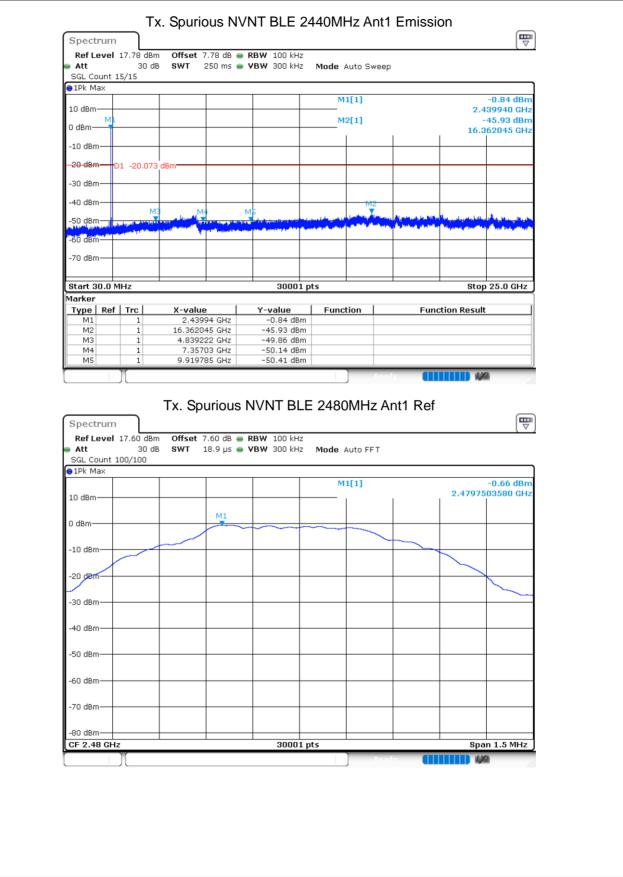
10 dBm	●1Pk Max					M	1[1]			0.16 dBm
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -30 dBm -40 dBm -70	10 dBm									205000 GHz
-30 dBm       -19.519 dBm       -19.519 dBm       -19.519 dBm       -19.519 dBm         -30 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm         -50 dBm       -50 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm         -70 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm         -70 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm         -70 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm       -40 dBm         -70 dBm       -2.40026 GHz       0.16 dBm       Function Function Result       -40 dBm       -40 dBm <td< th=""><th>0 dBm</th><th></th><th></th><th></th><th></th><th></th><th>2[1]</th><th>1</th><th></th><th></th></td<>	0 dBm						2[1]	1		
-30 dBm -40 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -10 dBm -11 2.4 GHz -2.376 GHz -2.376 GHz -51.54 dBm M4 -2.377 GHz -51.54 dBm M5 -2.376 GHz -51.54 dBm M5 -2.376 GHz -51.54 dBm M5 -2.376 GHz -2.376 GHz -2.376 GHz -3.56 dBm M5 -2.376 GHz -2.376 GHz -3.56 dBm M5 -2.376 GHz -3.56 dBm M5 -2.376 GHz -3.56 dBm -2.376 GHz -3.56 dBm -2.376 GHz -3.56 dBm -2.376 GHz -3.56 dBm -2.376 GHz -3.56 dBm -2.376 GHz -3.57 GHz -3.57 GHz -3.57 GHz -3.57 GHz -3.52 dBm -3.57 GHz -3.57 GHZ	-10 dBm—									
+0 d8m       M4       M3         +0 d8m       M4       M3         +00 d8m       M4       M3         -70 d8m       Image: Constraint of the second	-20 dBm-	D1 -19.519	dBm							
-50 dbm       M3       M4       M3       M3       M4       M3	-30 dBm—									+
-00 dBm	-40 dBm—							M4		MP
-00 dBm	-50 dBm—		New york	. uthore	K. Mad Mar.			X.	M3 AN	haller a
-00 dBm	-60 dBm-	and have a surfi	rtutor Webster	Ware was	me conceler and	when why why	uthannah	ither washinger	κurv.	
Steat 2.306 GHz         Stop 2.406 GHz           Marker         Yupe         Ref         Trc         X-value         Y-value         Function         Function Result           M2         1         2.406 GHz         0.16 dBm         Function         Function Result           M2         1         2.446 Hz         -43.66 dBm         Function         Function Result           M3         1         2.39 GHz         -51.54 dBm         Function         Function Result           M4         1         2.378 GHz         -48.35 dBm         Function         Function Result           M4         1         2.378 GHz         -48.35 dBm         Function Result         Function Result           Spectrum         Band Edge NVNT BLE 2480MHz Ant1 Ref         Function Result         Function Result         Function Result           Stoc Count 100/100         Function Result         Function Result         Function Result         Function Result           0 dBm         0 dBm         948         900 kHz         Mode Auto FFT         Soc Count 100/100           10 dBm         948         949         949         949         940         940           -0 dBm         940 dBm         940         940         940	-70 dBm—									
Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.40205 GHz         0.16 dBm										
Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.4 GH2         -4.3.66 dBm         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -		6 GHz			1001	pts			Stop	2.406 GHz
M2         1         2.4 GHz         -43.66 dBm           M3         1         2.39 GHz         -51.54 dBm           M4         1         2.376 GHz         -51.54 dBm           M4         1         2.376 GHz         -48.35 dBm           Band Edge NVNT BLE 2480MHz Ant1 Ref           Spectrum           Ref Level 17.60 dBm         Offset 7.60 dB         RBW 100 kHz           Mode Auto FFT           SGL Count 100/100           P1rk Max           10 dBm         0         M1[1]         -0.52 dBm           -10 dBm         0         M1         0         -0.52 dBm           -20 dBm         0         0         M1         0         -0.52 dBm           -30 dBm         0         0         0         -0.52 dBm         -0.52 dBm           -10 dBm         0         0         0         -0.52 dBm         -0.52 dBm           -30 dBm         0         0         0         0         -0.52 dBm           -70 dBm         0         0         0         0         0         0           -60 dBm         0         0         0         0         0         0	Type Re						ion	Fun	ction Result	<u>t</u>
M4         1         2.378 GHz         -48.35 dBm           Band Edge NVNT BLE 2480MHz Ant1 Ref           Spectrum         Image: Colspan="2">Image: Colspan="2" Image: Colspa		1	2	2.4 GHz	-43.66 dBr	n				
Spectrum         Image: Construct of the sector of the										
10 dBm     M1       0 dBm     M1       -10 dBm     -10 dBm       -20 dBm     -10 dBm       -30 dBm     -10 dBm       -50 dBm     -10 dBm       -70 dBm     -10 dBm       -80 dBm     -10 dBm	M3 M4 Spectrur Ref Level Att SGL Count	1 1 17.60 dBm 30 dB	Band		VNT BLI			nt1 Ref		
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm	M3 M4 Spectrur Ref Level Att SGL Count	1 1 17.60 dBm 30 dB	Band		VNT BLI	Mode Au	uto FFT	nt1 Ref		-0.52 dBm
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm -80 dBm	M3 M4 Spectrur Ref Level Att SGL Count ● 1Pk Max	1 1 17.60 dBm 30 dB	Band		VNT BLI	Mode Au	uto FFT	nt1 Ref	2.480	-0.52 dBm
-30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max	1 1 17.60 dBm 30 dB	Band		VNT BLI	Mode Au	uto FFT	nt1 Ref	2.480	-0.52 dBm
-30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	M3 M4 Spectrur Ref Level Att SGL Count • 1Pk Max 10 dBm	1 1 17.60 dBm 30 dB	Band		VNT BLI	Mode Au	uto FFT	nt1 Ref	2.480	-0.52 dBm
-30 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	M3 M4 Spectrur Ref Level Att SGL Count 9 1Pk Max 10 dBm 0 dBm -10 dBm	1 1 17.60 dBm 30 dB	Band		VNT BLI	Mode Au	uto FFT	nt1 Ref	2.480	-0.52 dBm
-50 dBm	M3 M4 Spectrur Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -10 dBm -20 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT	nt1 Ref	2.480	-0.52 dBm
-50 dBm -60 dBm -70 dBm -80 dBm	M3 M4 Spectrur Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -10 dBm -20 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT	nt1 Ref	2.480	-0.52 dBm
-60 dBm	M3 M4 Spectrur Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT		2.480	-0.52 dBm
-70 dBm	M3           M4           Spectrur           Ref Level           Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT			-0.52 dBm
-80 dBm	M3           M4           Spectrur           Ref Level           Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT			-0.52 dBm
	M3           M4           Spectrur           Ref Level           Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT			-0.52 dBm
	M3           M4           Spectrur           Ref Level           Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT			-0.52 dBm
Ready	M3           M4           Spectrur           Ref Level           Att           SGL Count           ● 1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm	1 1 17.60 dBm 30 dB	Band	Edge N 60 dB • Rf 8.9 µs • VI	VNT BLI	Mode Au	uto FFT			-0.52 dBm




Spectrum								
Ref Level	17.60 dB	m Offset 7.60 dB	😑 RBW 100 kHz	2				
Att	30 c	iв <b>SWT</b> 227.5 µs	😑 <b>VBW</b> 300 kHz	Mode A	uto FFT			
SGL Count	1000/100	0						
)1Pk Max								
				M1	[1]			0.13 dBm
.0 dBm								15000 GHz
M1				M2	[1]			-43.98 dBm
) d <mark>8</mark> m						1	2.483	50000 GHz
10 0011								
20 dBm	01 -20.5	18 dBm						
A I								
30 dBm						+		
1								
40 dBq <mark>ta</mark>						-		
50 dBm	Ma.	MO .						
	- and willing	Hapland and more from	males thank wanted	menonerships here	a summer and	anne Laner	monthuman	Mylandermark
50 dBm —				*				0
70 dBm								
80 dBm —								
start 2.476	GHz		1001	pts			Stop	2.576 GHz
larker								
Type   Ref	Trc	X-value	Y-value	Funct	ion 📃	Fund	tion Result	:
M1	1	2.48015 GHz						
M2	1	2.4835 GHz						
M3	1	2.5 GHz 2.4837 GHz						
M4								




## 8.1.5 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.55	-20	Pass
NVNT	BLE	2440	Ant 1	-45.86	-20	Pass
NVNT	BLE	2480	Ant 1	-44.12	-20	Pass



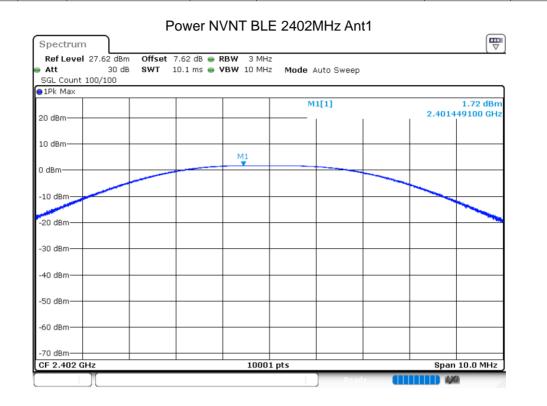




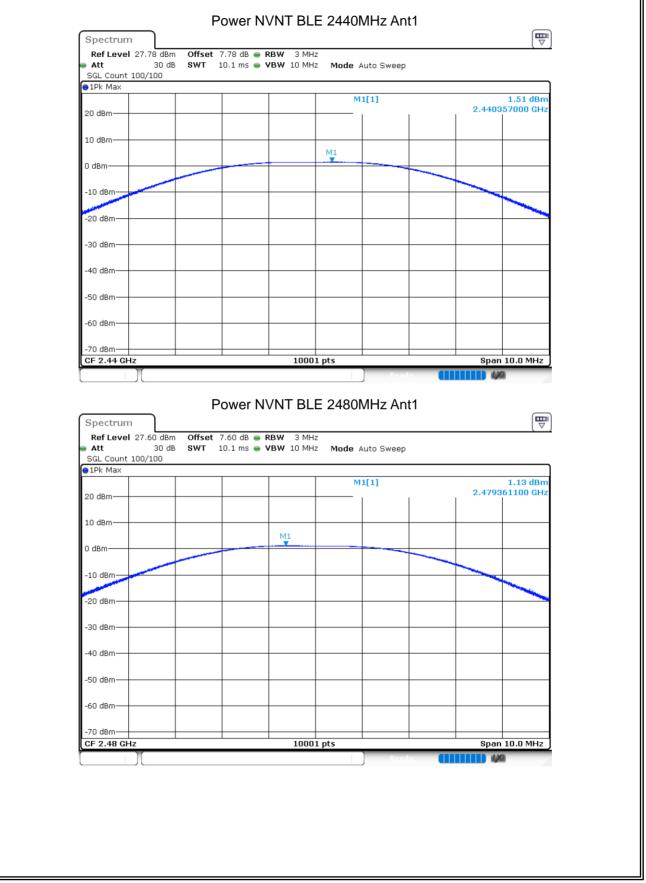







spect	rum									₩
Ref L	evel	17.60 d	Bm Offset 7	.60 dB	RBW 100 kHz					
Att		30	dB SWT 2	250 ms	VBW 300 kHz	Mode Auto S	weep			
SGL Co	ount 1	.0/10								
1Pk M	ax									
						M1[1]				-0.15 dBm
LO dBm	-+								2.4	479890 GHz
dDee	M					M2[1]				-44.78 dBm
dBm—									17.6	592946 GHz
10 dBm	ע									
20 dBrr	→ <b>D</b>	1 -20.6	57 dBm							
30 dBrr										
so ubn	· – –									
							I			
40 dBm	ע							42		
			MBM4		M_5			12 1		L .
		nter a feel part of	MB M4	anger Jicchike en	M5				the second s	and the state of t
50 dBm	un el er	an fan Infan (mar fan Menne fan Infan (mar fan f	MB M4		M 5				the design of the second s	
50 dBm	un el er		MB M4	a 1998 - Startes 1998 - Startes	MS name of the second state of the	and the second			that a los of a straight state of the	
50 dBm 50 dBm		ta fey fa fa ú fea fea	MB M4	a di kana ji fi yanga ka				12	The damk and the state of the back	
50 dBm 50 dBm 70 dBm	) 		MB M4	n it for the second sec						
50 dBm 50 dBm 70 dBm 30 dBm				a film for an a						
50 dBm 50 dBm 70 dBm <u>80 dBm</u> itart 3		1Hz	M3 M4		M5	ts			Stop	25.0 GHz
50 dBm 50 dBm 70 dBm <u>80 dBm</u> ttart 3 arker	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				30001 p			42		
50 dBm 50 dBm 70 dBm 50 dBm 50 dBm Type	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trc	X-value		30001 p	ts		Func	Stop	
50 dBm 1994 au 50 dBm 70 dBm 30 dBm <b>30 dBm</b> <b>1 arker</b> <b>Type</b> M1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trc 1	X-value 2.4798	39 GHz	30001 p			42 Func		
50 dBm 50 dBm 70 dBm 30 dBm tart 3 arker Fype M1 M2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<b>Trc</b> 1	X-value 2.4799 17.69294	39 GHz 46 GHz	30001 p 			Func		
50 dBm 50 dBm 70 dBm 50 dBm 70 dBm 50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Trc 1	X-value 2.4799 17.69294	39 GHz 46 GHz 21 GHz	30001 p			Func		



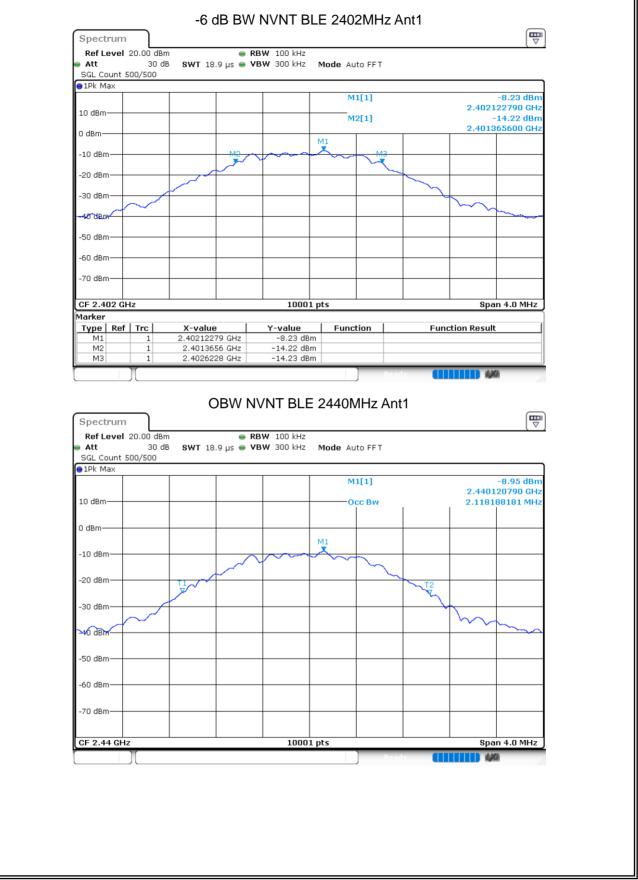

# 2M:

#### 8.1.6 MAXIMUM CONDUCTED OUTPUT POWER

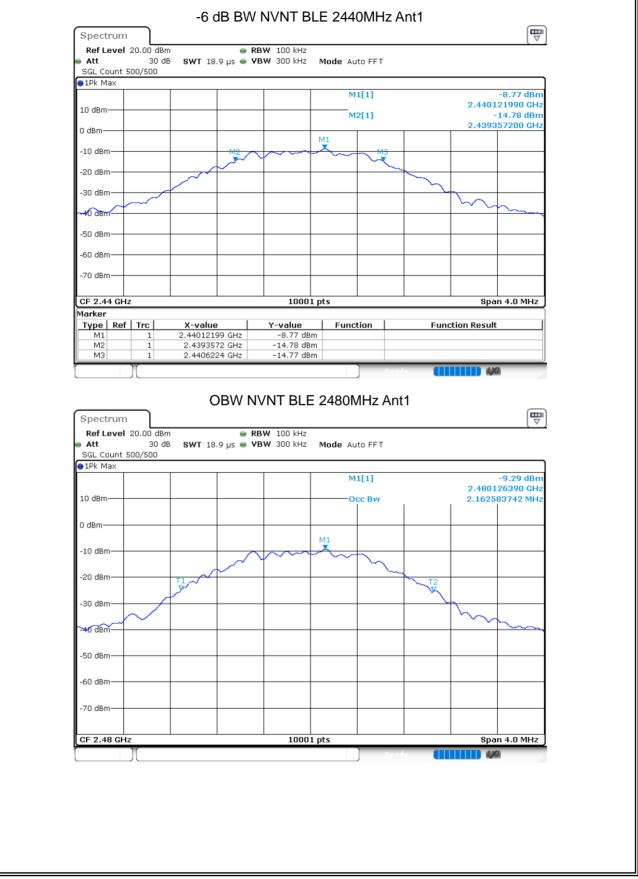
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
Condition NVNT NVNT NVNT	BLE	2402	Ant 1	1.722	30	Pass
NVNT	BLE	2440	Ant 1	1.51	30	Pass
NVNT	BLE	2480	Ant 1	1.13	30	Pass



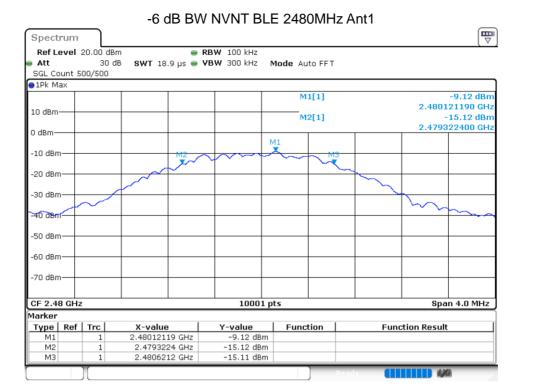








# 8.1.7 OCCUPIED CHANNEL BANDWIDTH

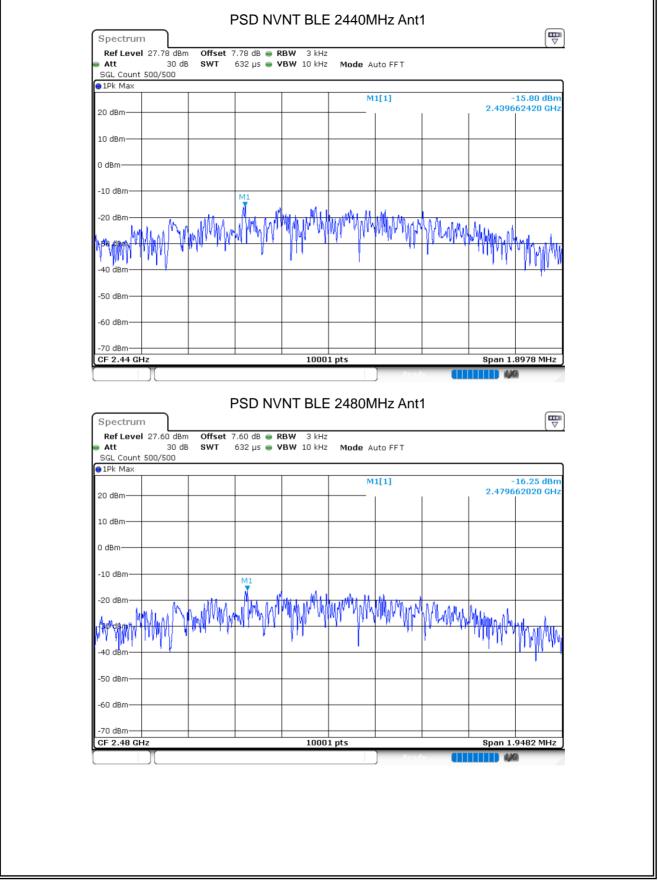
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE	2402	Ant 1	2.0742	1.2572	0.5	Pass
NVNT	BLE	2440	Ant 1	2.1182	1.2652	0.5	Pass
NVNT	BLE	2480	Ant 1	2.1626	1.2988	0.5	Pass
	🕳 Att	m el 20.00 dBm	e RBW	T BLE 2402			
	10 dBm				41[1] Dec Bw	-8.29 dBm 2.402123990 GHz 2.074192581 MHz	
	-10 dBm—			M1	~		
	-20 dBm—	TI			T2		
	~40 dBmr-					horas and the second se	
	-50 dBm—						
	-70 dBm—						
	CF 2.402	GHz		10001 pts	Ready	Span 4.0 MHz	









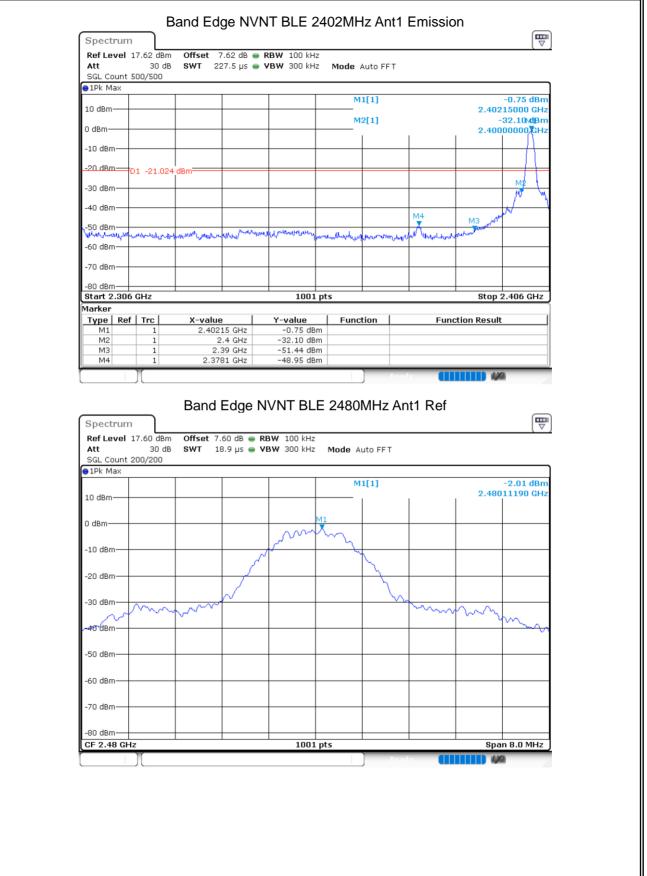








#### 8.1.8 MAXIMUM POWER SPECTRAL DENSITY LEVEL Condition Mode Frequency (MHz) Antenna Max PSD (dBm/3kHz) Limit (dBm/3kHz) Verdict NVNT BLE 2402 -15.586 Pass Ant 1 8 Ant 1 NVNT BLE 2440 -15.799 8 Pass **NVNT** BLE 2480 Ant 1 -16.246 8 Pass PSD NVNT BLE 2402MHz Ant1 Spectrum Ref Level 27.62 dBm Offset 7.62 dB 🖷 RBW 3 kHz 30 dB SWT 632.2 µs 🖷 VBW 10 kHz Mode Auto FFT Att SGL Count 500/500 ⊖1Pk Max -15.59 dBm M1[1] 2.401662850 GHz 20 dBm· 10 dBm· 0 dBm -10 dBm WIMP MAN -20 dBm MANAMANAN WP 40 dBr -50 dBm -60 dBm -70 dBm· Span 1.8858 MHz 10001 pts CF 2.402 GHz 1.16





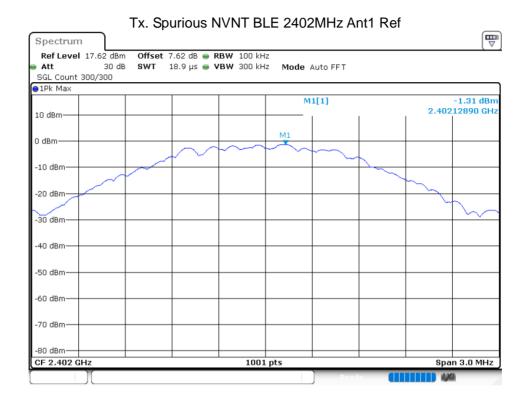



#### 8.1.9 BAND EDGE

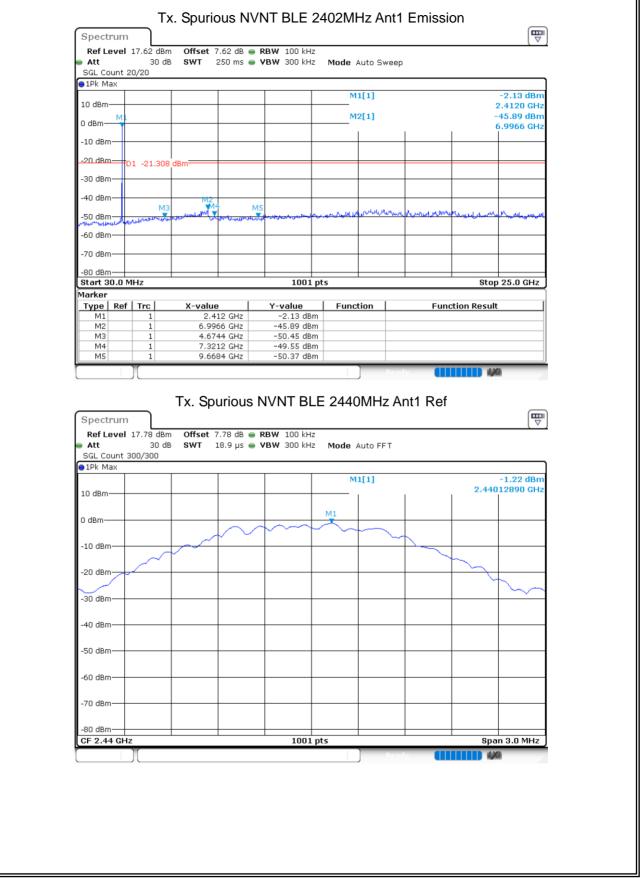
Condition Mode Frequency (MH2) Antenna Max Value (dBc) Limit (dBc) Verdict NVNT BLE 2402 Ant 1 -47.92 -20 Pass NVNT BLE 2480 Ant 1 -35.09 -20 Pass Band Edge NVNT BLE 2402MH2 Ant Ref Pertrum Ref Lega INF 18.09 µE = VBW 100 WE Ref Lega INF 18.00 µE = VBW 100 WE Ref Lega INF 18	Condition	Mode			Antenna			Limit (dB	c) Verdict
NVNT         BLE         2480         Ant 1         -35.09         -20         Pass           Band Edge NVNT BLE 2402MHz Ant1 Ref           Spectrum         Image: Colspan="2">Image: Colspan="2" Image: Colspa="2" Image: Colspa="2" Image: Colspan="2" Image: Colsp			2402	viriz)			47 92		
Band Edge NVNT BLE 2402MHz Ant1 Ref         Spectrum         Ref Level 17.62 dB @ RBW 100 kH2 At 30 dB \$WT 18.9 µS @ VBW 300 kH2 Mode Auto FFT         SGL Count 200/200         Image: Spectrum       M1[1]       -1.02 dBm         Image: Spectrum       M1[1]       -1.02 dBm         Image: Spectrum       M1[1]       2.40211190 GHz         Image: Spectrum       M1       Image: Spectrum         Image: Spectrum       Image: Spectrum       Spectrum       Spectrum         Image: Spectrum       Image: Spectrum       Image: Spectrum       Spectrum         Ima									
1Pk Max     10 dBm     1.02 dBm     2.40211190 GHz     0 dBm     10 dBm		Ref Le Att	evel 17.62 dBm offs 30 dB sw	set 7.62		Г BLE 24	02MHz Ant	1 Ref	
10 dBm       2.40211190 GHz         0 dBm       M1         -10 dBm       -10 dBm         -20 dBm       -10 dBm         -30 dBm       -10 dBm         -30 dBm       -10 dBm         -20 dBm       -10 dBm         -20 dBm       -10 dBm         -20 dBm       -10 dBm         -30 dBm       -10 dBm         -30 dBm       -10 dBm         -50 dBm       -10 dBm         -60 dBm       -10 dBm         -70 dBm       -10 dBm         -									
0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 d		10 dBm					M1[1]	2	
0 dBm       -10 dBm         -10 dBm       -20 dBm         -20 dBm       -30 dBm         -30 dBm       -30 dBm         -50 dBm       -30 dBm         -50 dBm       -30 dBm         -50 dBm       -30 dBm         -50 dBm       -30 dBm         -60 dBm       -30 dBm         -60 dBm       -30 dBm         -70 dBm       -70 dBm         -7						М1			
-20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -80 dBm -80 dBm -20 dB		0 dBm-				mm			
-30 dBm 40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80		-10 dBn	n				2		
-30 dBm 40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80		00 40-			~				
40 dBm     -50 dBm       -50 dBm     -60 dBm       -60 dBm     -60 dBm       -70 dBm     -60 dBm       -80 dBm     -60 dBm       -80 dBm     -60 dBm       -80 dBm     -60 dBm		-20 UBI					7		
40 dBm     -50 dBm       -50 dBm     -60 dBm       -60 dBm     -60 dBm       -70 dBm     -60 dBm       -80 dBm     -60 dBm       -80 dBm     -60 dBm       -70 dBm     -70 dBm       -80 dBm     -70 dBm		-30 dBn	" man	$\sim$			- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ma ha	
-50 dBm -60 dBm -70 dBm -80 dBm (CF 2.402 GHz) (DF 2.402		_40 dBn							"Man
-60 dBm -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz		Ĩ							
-70 dBm -80 dBm (GF 2.402 GHz 1001 pts Span 8.0 MHz)		-50 dBn	ר						
-80 dBm		-60 dBn	n						
-80 dBm		-70 dBn	n						
CF 2.402 GHz 1001 pts Span 8.0 MHz									
						1001 nts			Snan 8.0 MHz
		01 2.4				1001 pt3	Pondu		



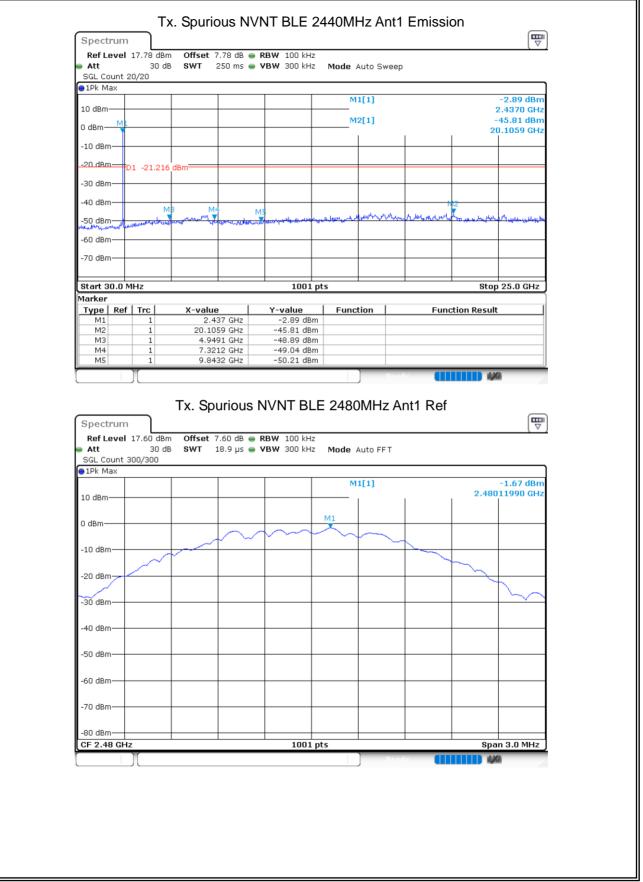




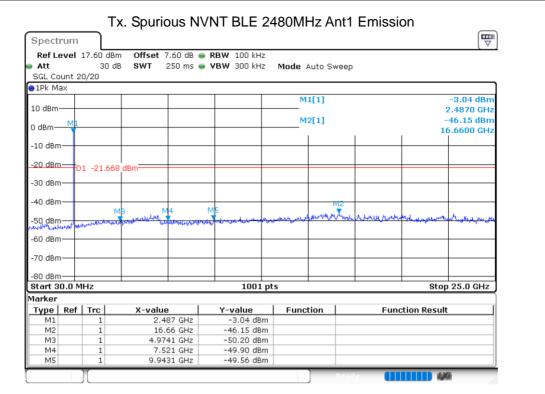

Spectrur	n							
Ref Level	17.60 dBn	n Offset 7.60 dB	🔵 RBW 100 kH:	z				( -
Att	30 di	3 <b>SWT</b> 227.5 µs	😑 VBW 300 kH:	Z Mode A	uto FFT			
SGL Count	: 100/100							
1Pk Max								
				M	l[1]			-2.15 dBm
10 dBm—								15000 GHz
) den				MB	2[1]			37.11 dBm
J dBm —						1	2.483	50000 GHz
-10 dBm—								
1 30								
20 dBm—	D1 -22.00							
	-22.00							
30 delma								
· · · · · · · · · · · · · · · · · · ·								
40 dBm								
50 dBm-	Wyon .							
00 00.0	- Whyth wate	Mpular market warden war	monthetenerament	marker Marker Kee	h had been the	more and a second and and a second and a s	hally havener	Mencharmon
60 dBm—		fundamenta das ser timos		, 100.00 Q.		1.00 4.000		fice of the second
70 dBm—								
80 dBm—								
Start 2.47	6 GHz		1001	nts			Ston	2.576 GHz
larker	U UIIL		1001				0100	
	ef   Trc	X-value	Y-value	Funct	ion	Fund	tion Result	- 1
M1	1	2.48015 GHz	-2.15 dB					
M2	1	2.4835 GHz	-37.11 dB	m				
MЗ	1	2.5 GHz	-56.63 dB					
M4	1	2.4835 GHz	-37.11 dB	m				




## 8.1.10 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.58	-20	Pass
NVNT	BLE	2440	Ant 1	-44.58	-20	Pass
NVNT	BLE	2480	Ant 1	-44.47	-20	Pass
















END OF REPORT