

FCC TEST REPORT FCC ID: 2AZ43-ET23

Product	:	Portable Bluetooth speaker				
Model Name	:	ET23				
Brand	:	N/A				
Report No.	:	PTC21110401602E-FC02				
	Prepared for					
		MOSWS INTERNATIONAL LIMITED				
FLAT/RM 07 BL	.K E	3 5/F KING YIP FACTORY BUILDING 59 KING YIP STREET KWUN TONG				
Prepared by						
Precise Testing & Certification Co., Ltd.						
Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China						

1 TEST RESULT CERTIFICATION

Applicant's name	:	MOSWS INTERNATIONAL LIMITED
Address	:	FLAT/RM 07 BLK B 5/F KING YIP FACTORY BUILDING 59 KING YIP STREET KWUN TONG
Manufacture's name	:	MOSWS INTERNATIONAL LIMITED
Address	:	FLAT/RM 07 BLK B 5/F KING YIP FACTORY BUILDING 59 KING YIP STREET KWUN TONG
Product name	:	Portable Bluetooth speaker
Model name	:	ET23
Standards	:	FCC CFR47 Part 15 Section 15.247
Test procedure	:	ANSI C63.10:2013
Test Date	:	Dec. 23, 2021 to May 21, 2022
Date of Issue	:	May 21, 2022
Test Result	:	Pass

This device described above has been tested by PTC, and the test results show that the

equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only

to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Simon th

Simon Pu / Engineer

Ronnie Liu / Manager

Technical Manager:

Contents

Page

1 TEST RESULT CERTIFICATION	
2 TEST SUMMARY	5
2.1 TEST SITE	6
3 GENERAL INFORMATION	7
3.1 GENERAL DESCRIPTION OF E.U.T.	7
3.2 Channel List	
4 EQUIPMENT DURING TEST	9
4.1 EQUIPMENTS LIST	9
4.2 MEASUREMENT UNCERTAINTY	
4.3 DESCRIPTION OF SUPPORT UNITS	
5 CONDUCTED EMISSION	
5.1 E.U.T. OPERATION	13
5.2 EUT SETUP	
5.3 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
5.4 Measurement Procedure	14
5.5 CONDUCTED EMISSION LIMIT	14
5.6 MEASUREMENT DESCRIPTION	14
5.7 CONDUCTED EMISSION TEST RESULT	
6 RADIATED SPURIOUS EMISSIONS	17
6.1 EUT OPERATION	17
6.2 TEST SETUP	
6.3 SPECTRUM ANALYZER SETUP	
6.4 TEST PROCEDURE	20
6.5 SUMMARY OF TEST RESULTS	22
7 CONDUCT BAND EDGE AND SPURIOUS EMISSIONS MEASUREMENT	29
7.1 Test Procedure	29
7.2 TEST RESULT	
8 6DB BANDWIDTH MEASUREMENT	
8.1 Test Procedure	34

8.2 TEST RESULT	34
9 MAXIMUM PEAK OUTPUT POWER	
9.1 Test Procedure	37
9.2 TEST RESULT	37
10 POWER SPECTRAL DENSITY	40
10.1 Test Procedure	40
10.2 TEST RESULT	40
11 ANTENNA APPLICATION	43
11.1 ANTENNA REQUIREMENT	43
11.2 RESULT	
12 TEST SETUP	44
APPENDIX II EXTERNAL PHOTOGRAPH	46
APPENDIX III INTERNAL PHOTOGRAPH	50

2 Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	PASS
Radiated Spurious Emissions	15.205(a) 15.209 15.247(d)	PASS
Conducted Spurious Emission	15.247(d)	PASS
Band edge	15.247(d) 15.205(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3)	PASS
Power Spectral Density	15.247(e)	PASS
Antenna Requirement	15.203	PASS

Remark:N/A

2.1 Test Site

Precise Testing & Certification Co., Ltd. Address: Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China FCC Registration Number: 790290 A2LA Certificate No.: 4408.01 IC Registration Number: 12191A

3 General Information

3.1 General Description of E.U.T.

F				
Product Name	:	Portable Bluetooth speaker		
Model Name	:	ET23		
Additional model	:	N/A		
Specification	•	BT 5.0 BDR+EDR; BLE		
Operation Frequency	:	2402-2480MHz for BT		
Number of Channel	:	79 channels For BR+EDR; 40 channels For BLE		
Type of Modulation	:	FSK, Π/4-DQPSK,8DPSK For BR+EDR; GFSK For BLE;		
Antenna installation	:	CB antenna		
Antenna Gain	:	0 dBi		
Power supply	-	3.7V 2500mAH with lithium battery		
Hardware Version	:	DCX-516V5.0		
Software Version	:	AC692x_SDK_V2.6.3		

3.2 Channel List

The EUT has been tested under its typical operating condition. Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting. Only the worst case data were reported.

The EUT has been associated with peripherals pursuant to ANSI C63.10-2013 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 KHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

The details of test channels and bandwidth were for RF conductive measurement.

Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Note:

 Test of channel was included the lowest 2402MHz, middle 2440MHz and highest frequency 2480MHz in highest data rate and to perform the test, then record on this report.

4 Equipment During Test

4.1 Equipments List

RF Conducted Test

Name of Equipment	Manufactu rer	Model	Serial No.	Characteristics	Calibration Due	Calibration period
MXG Signal	Agilent	N9020A	SER	10Hz-30GHz	Aug. 21, 2022	1 Year
Analyzer	/ ignorit	110020/1	MY5111038			
Coaxial Cable	CDS	79254	46107086	10Hz-30GHz	Aug. 21, 2022	1 Year
Power Meter	Anritsu	ML2495A	0949003	300MHz-40GHz	Aug. 21, 2022	1 Year
Power Sensor	Anritsu	MA2411B	0917017	300MHz-40GHz	Aug. 21, 2022	1 Year

Remark: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Radiated Emissio	ns					
Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due	Calibration period
EMI Test Receiver	Rohde&Schw arz	ESCI	101417	9KHz-3GHz	Aug. 21, 2022	1 Year
Loop Antenna	Schwarzbeck	FMZB 1519	012	9 KHz -30MHz	Aug. 21, 2022	1 Year
Bilog Antenna	SCHWARZBE CK	VULB9160	9160-3355	25MHz-2GHz	Aug. 21, 2022	1 Year
Preamplifier (low frequency)	SCHWARZBE CK	BBV 9475	9745-0013	1MHz-1GHz	Aug. 21, 2022	1 Year
Cable	Schwarzbeck	PLF-100	549489	9KHz-3GHz	Aug. 21, 2022	1 Year
Spectrum Analyzer	Agilent	E4407B	MY45109572	9KHz-40GHz	Aug. 21, 2022	1 Year
Horn Antenna	SCHWARZBE CK	9120D	9120D-1246	1GHz-18GHz	Aug. 21, 2022	1 Year
Power Amplifier	LUNAR EM	LNA1G18- 40	J101000008 1	1GHz-26.5GHz	Aug. 21, 2022	1 Year
Horn Antenna	SCHWARZBE CK	BBHA 9170	9170-181	14GHz-40GHz	Aug. 21, 2022	1 Year

Amplifier	SCHWARZBE CK	BBV 9721	9721-205	18GHz-40GHz	Aug. 21, 2022	1 Year
Cable	H+S	CBL-26	N/A	1GHz-26.5GHz	Aug. 21, 2022	1 Year
RF Cable	R&S	R204	R21X	1GHz-40GHz	Aug. 21, 2022	1 Year

Conducted Emissions

Name of Equipment	Manufacturer	Model	Serial No.	Characteristics	Calibration Due	Calibration period
EMI Test Receiver	Rohde& Schwarz	ESCI	101417	9KHz-3GHz	Aug. 19, 2022	1 Year
Artificial Mains Network	Rohde& Schwarz	ENV216	102453	9KHz-300MHz	Aug. 19, 2022	1 Year
Artificial Mains Network	Rohde& Schwarz	ENV216	101342	9KHz-300MHz	Aug. 19, 2022	1 Year

4.2 Measurement Uncertainty

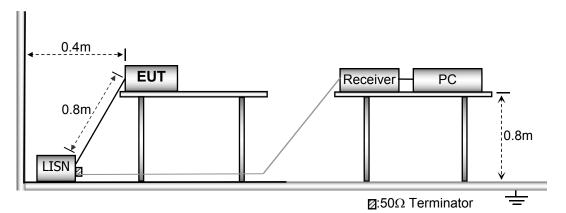
Parameter	Uncertainty					
RF output power, conducted	±1.0dB					
Power Spectral Density, conducted	±2.2dB					
Radio Frequency	± 1 x 10 ⁻⁶					
Bandwidth	± 1.5 x 10 ⁻⁶					
Time	±2%					
Duty Cycle	±2%					
Temperature	±1°C					
Humidity	±5%					
DC and low frequency voltages	±3%					
Conducted Emissions (150kHz~30MHz)	±3.64dB					
Radiated Emission(9KHz~30MHz)	±4.50dB					
Radiated Emission(30MHz~1GHz)	±5.03dB					
Radiated Emission(1GHz~25GHz) ±4.74dB						
Remark: The coverage Factor (k=2), and measurement Uncertainty for a level of Confidence of 95%						

4.3 Description of Support Units

Equipment	Information	Model No
Adapter	AC 120V 60Hz	N/A

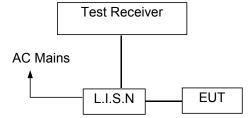
5 Conducted Emission

Test Requirement	:	FCC CFR 47 Part 15 Section 15.207
Test Method	:	ANSI C63.10: 2013
Test Result	:	PASS
Frequency Range	:	150kHz to 30MHz
Class/Severity	:	Class B


5.1 E.U.T. Operation

Operating Environment :

Temperature	:	25.5 °C
Humidity	:	51 % RH
Atmospheric Pressure	:	101.2kPa


5.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

5.3 Test SET-UP (Block Diagram of Configuration)

5.4 Measurement Procedure

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured was complete.

5.5 Conducted Emission Limit

Conducted Emission

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note:

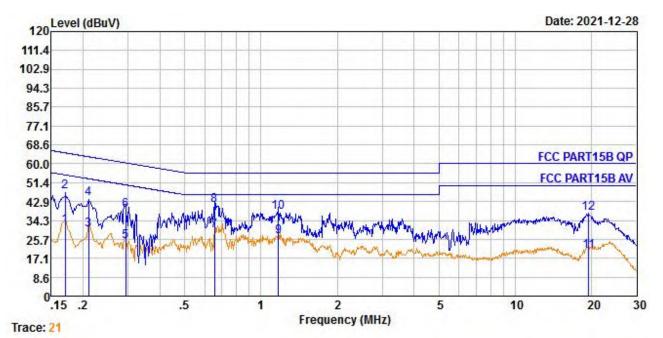
1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

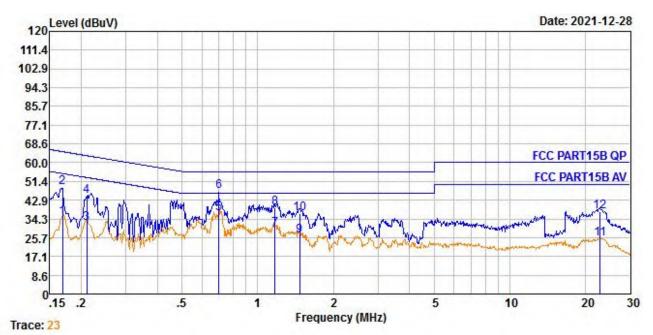
5.6 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.7 Conducted Emission Test Result


Pass.

120V/240V All the modulation modes were tested the data of the worst mode (AC 120V/60Hz, GFSK TX 2402MHz) are recorded in the following pages and the others modulation methods do not exceed the limits.


Line-AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Le∨el dBu∨	Limit dBuV	O∨er Limit dB	Remark
1.	0.170	0.24	9.60	22.21	32.05	54.94	-22.89	Average
2.	0.170	0.24	9.60	37.41	47.25	64.94	-17.69	QP
3.	0.211	0.29	9.61	20.43	30.33	53.18	-22.85	Average
4.	0.211	0.29	9.61	34.45	44.35	63.18	-18.83	QP -
5.	0.294	0.37	9.62	14.71	24.70	50.41	-25.71	Average
6.	0.294	0.37	9.62	28.77	38.76	60.41	-21.65	QP
7.	0.658	0.44	9.64	19.73	29.81	46.00	-16.19	Average
8.	0.658	0.44	9.64	31.27	41.35	56.00	-14.65	QP -
9.	1.172	0.46	9.64	16.86	26.96	46.00	-19.04	Average
10.	1.172	0.46	9.64	28.19	38.29	56.00	-17.71	QP -
11.	19.428	0.41	9.89	10.11	20.41	50.00	-29.59	Average
12.	19.428	0.41	9.89	27.21	37.51	60.00	-22.49	QP

Neutral-AC 120V/60Hz

No.	Freq MHz	Cable Loss dB	AMN Factor dB	Receiver Reading dBuV	Emission Le∨el dBu∨	Limit dBuV	Over Limit dB	Remark
1.	0.169	0.24	9.59	25.02	34.85	55.03	-20.18	Average
2.	0.169	0.24	9.59	39.00	48.83	65.03	-16.20	QP
3.	0.211	0.29	9.59	22.59	32.47	53.18	-20.71	Average
4.	0.211	0.29	9.59	35.06	44.94	63.18	-18.24	QP
4. 5.	0.701	0.44	9.61	26.48	36.53	46.00	-9.47	Average
6.	0.701	0.44	9.61	36.75	46.80	56.00	-9.20	QP
7.	1.172	0.46	9.61	19.63	29.70	46.00	-16.30	Average
8.	1.172	0.46	9.61	29.26	39.33	56.00	-16.67	QP
9.	1.464	0.47	9.61	16.38	26.46	46.00	-19.54	Average
10.	1.464	0.47	9.61	26.68	36.76	56.00	-19.24	QP
11.	22.775	0.48	9.77	14.87	25.12	50.00	-24.88	Average
12.	22.775	0.48	9.77	27.18	37.43	60.00	-22.57	QP

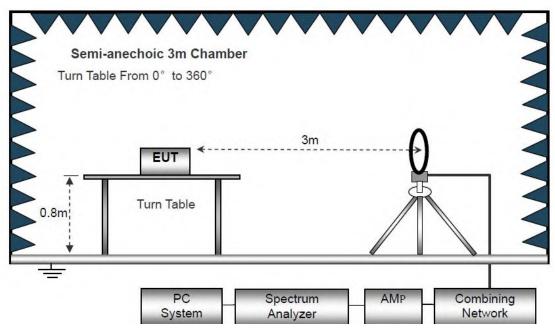
6 Radiated Spurious Emissions

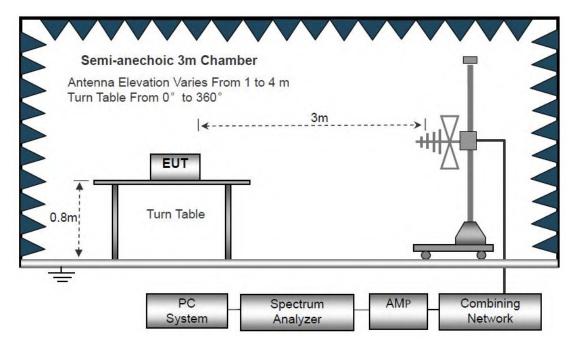
Test Requirement	:	FCC CFR47 Part 15 Section 15.209 & 15.247
Test Method	:	ANSI C63.10:2013
Test Result	:	PASS
Measurement Distance	:	3m
Limit	:	See the follow table

	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

6.1 EUT Operation

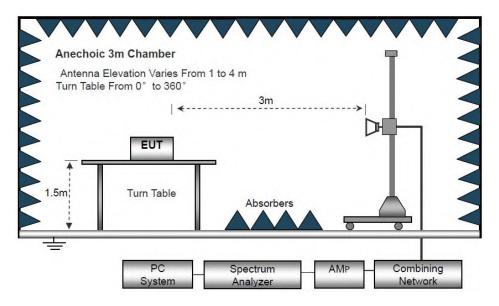
Operating Environment :


Temperature	:	23.5 °C
Humidity	:	51.1 % RH
Atmospheric Pressure	:	101.2kPa


6.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site

The test setup for emission measurement below 30MHz



The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz

6.3 Spectrum Analyzer Setup

	Frequency	Detector	RBW	VBW	Remark
	Below 30MHz		10kHz	10kHz	
Receiver Setup	30MHz ~ 1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MHz	Peak Value
		RMS	1MHz	3MHz	Average Value

6.4 Test Procedure

- 1. The testing follows the guidelines in Spurious Radiated Emissions of ANSI C63.10-2013.
- 2. Below 1000MHz, The EUT was placed on a turn table which is 0.8m above ground plane. And above 1000MHz, The EUT was placed on a styrofoam table which is 1.5m above ground plane.
- 3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (From 1m to 4m) and turntable (from 0 degree to 360 degree) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Final measurement (Above 1GHz): The frequency range will be divided into different sub ranges depending of the frequency range of the used horn antenna. The EMI Receiver set to peak and average mode and a resolution bandwidth of 1MHz. The measurement will be performed in horizontal and vertical polarization of the measuring antenna and while rotating the EUT in its vertical axis in the range of 0 degree to 360 degree in order to have the antenna inside the cone of radiation.
- 7. Test Procedure of measurement (For Above 1GHz):
- 1) Monitor the frequency range at horizontal polarization and move the antenna over all sides of the EUT(if necessary move the EUT to another orthogonal axis).
- 2) Change the antenna polarization and repeat 1) with vertical polarization.
- 3) Make a hardcopy of the spectrum.
- 4) Measure the frequency of the detected emissions with a lower span and resolution bandwidth to increase the accuracy and note the frequency value.
- 5) Change the analyser mode to Clear/ Write and found the cone of emission.
- 6) Rotate and move the EUT, so that the measuring distance can be enlarged to 3m and the antenna will be still inside the cone of emission.
- 7) Measure the level of the detected frequency with the correct resolution bandwidth, with the antenna polarization and azimuth and the peak and average detector, which causes the maximum emission.
- 8) Repeat steps 1) to 7) for the next antenna spot if the EUT is larger than the antenna beamwidth.
- 8. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

For Average Measurement:

VBW=10Hz, when duty cycle is no less than 98 percent.

VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(µs)	1/T(KHz)	Average Correction Factor	VBW Setting
2402-2480	100	-	-	0	10Hz

6.5 Summary of Test Results

Test Frequency: 9KHz-30MHz

Freq.	Ant.Pol.	Emission Level	Limit 3m	Over
(MHz)	H/V	(dBuV/m)	(dBuV/m)	(dB)
				>20

Note:

The amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

Test Frequency: 30MHz ~ 1GHz

Pass.

Please refer to the following test plots for the worst test mode (GFSK (CH00: 2402MHz)).

5.

6.

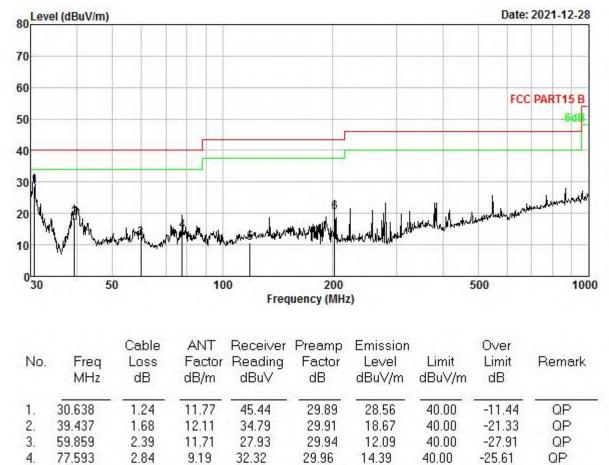
119.018

202.810

3.58

4.48

-32.86


-23.25

43.50

43.50

QP

QP

Antenna Polarization: Horizontal GFSK(CH00: 2402MHz)

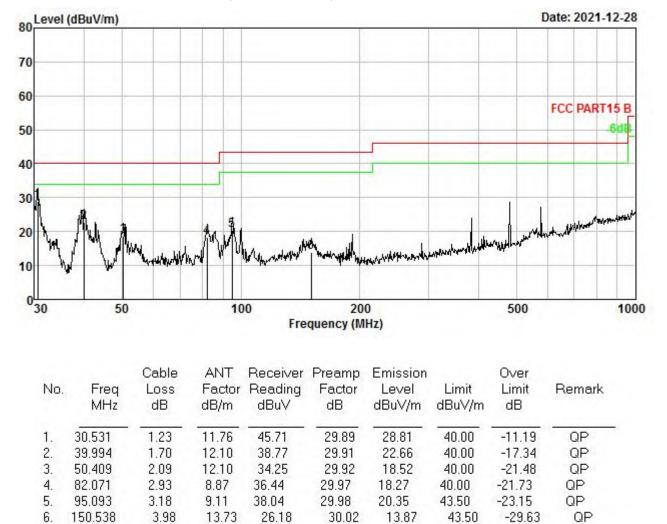
Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

25.17

34.73

30.00

30.05


10.64

20.25

11.89

11.09

Antenna Polarization: Vertical GFSK(CH00: 2402MHz)

Remark: Emission Level=Reading+Cable Loss+ANT Factor-AMP Factor

Test Frequency 1GHz-25GHz:

			GFSK Lov	v Channel (2	402MHz)			
			Dete	ctor: Peak V	alue			
Frequency	Reading Level	Ant. Factor	Cable Loss	Pre-Amp. Gain (dB)	Emission Level	Limit	Margin	Polarity
(MHz)	(dBuV)	(dB/m)	(dB)		(dBuV/m)	(dBuV/m)	(dB)	(H/V)
4804	48.56	34.04	6.58	34.09	55.09	74	-18.91	V
7206	44.91	37.11	7.73	34.5	55.25	74	-18.75	V
9608	42.52	39.31	9.23	34.79	56.27	74	-17.73	V
4804	47.46	34.04	6.58	34.09	53.99	74	-20.01	Н
7206	44.05	37.11	7.73	34.5	54.39	74	-19.61	Н
9608	41.11	39.31	9.23	34.79	54.86	74	-19.14	Н
			Detect	or: Average	Value			
4804	33.26	34.04	6.58	34.09	39.79	54	-14.21	V
7206	32.49	37.11	7.73	34.5	42.83	54	-11.17	V
9608	28.05	39.31	9.23	34.79	41.8	54	-12.2	V
4804	34.16	34.04	6.58	34.09	40.69	54	-13.31	Н
7206	30.98	37.11	7.73	34.5	41.32	54	-12.68	Н
9608	29.04	39.31	9.23	34.79	42.79	54	-11.21	Н
			GFSK Mido	lle Channel ((2440MHz)			
			Dete	ctor: Peak V	alue			
Frequency	Reading	Ant.	Cable	Pre-Amp.	Emission	Limit	Margin	Polarity
	Level	Factor	Loss	Gain (dB)	Level			
(MHz)	(dBuV)	(dB/m)	(dB)		(dBuV/m)	(dBuV/m)	(dB)	(H/V)
4880	49.01	34.38	6.69	34.09	55.99	74	-18.01	V
7320	44.15	37.22	7.78	34.53	54.62	74	-19.38	V
9760	40.87	39.46	9.35	34.8	54.88	74	-19.12	V
4880	47.53	34.38	6.69	34.09	54.51	74	-19.49	н
7320	43.05	37.22	7.78	34.53	53.52	74	-20.48	н
9760	42.96	39.46	9.35	34.8	56.97	74	-17.03	н
			Detec	tor: Average	/alue			
4880	33.16	34.38	6.69	34.09	40.14	54	-13.86	V
7320	32.07	37.22	7.78	34.53	42.54	54	-11.46	V
9760	28.31	39.46	9.35	34.8	42.32	54	-11.68	V

4880	34.15	34.38	6.69	34.09	41.13	54	-12.87	н
7320	29.24	37.22	7.78	34.53	39.71	54	-14.29	Н
9760	28.01	39.46	9.35	34.8	42.02	54	-11.98	н
		•	GFSK Hig	gh Channel (2480MHz)		•	
			Det	ector: Peak Va	alue			
Frequency	Reading	Ant. Factor	Cable	Pre-Amp.	Emission	Limit	Margin	Polarity
	Level		Loss	Gain (dB)	Level			
(MHz)	(dBuV)	(dB/m)	(dB)		(dBuV/m)	(dBuV/m)	(dB)	(H/V)
4960	46.31	34.72	6.79	34.09	53.73	74	-20.27	V
7440	44.25	37.34	7.82	34.57	54.84	74	-19.16	V
9920	41.89	39.62	9.46	34.81	56.16	74	-17.84	V
4960	46.67	34.72	6.79	34.09	54.09	74	-19.91	н
7440	44.58	37.34	7.82	34.57	55.17	74	-18.83	н
9920	41.29	39.62	9.46	34.81	55.56	74	-18.44	Н
			Deteo	ctor: Average `	Value			-
4960	33.05	34.72	6.79	34.09	40.47	54	-13.53	V
7440	32.13	37.34	7.82	34.57	42.72	54	-11.28	V
9920	26.92	39.62	9.46	34.81	41.19	54	-12.81	V
4960	33.25	34.72	6.79	34.09	40.67	54	-13.33	н
7440	30.74	37.34	7.82	34.57	41.33	54	-12.67	Н
9920	27.24	39.62	9.46	34.81	41.51	54	-12.49	Н

Note: 1. The testing has been conformed to 10*2480MHz=24800MHz.

2. All other emissions more than 30dB below the limit.

3. Factor = Antenna Factor + Cable Loss – Pre-amplifier. Emission Level = Reading + Factor Margin=Emission Level-Limit

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

		Tes	t Mode: B	LE Low Ch	annel 2402N	ЛНz			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2390	42.99	29.15	3.41	34.01	41.54	74	-32.46	Н	Peak
2400	60.59	29.16	3.43	34.01	59.17	74	-14.83	Н	Peak
2390	43.08	29.15	3.41	34.01	41.63	74	-32.37	V	Peak
2400	61.13	29.16	3.43	34.01	59.71	74	-14.29	V	Peak
2390	39.93	29.15	3.41	34.01	38.48	54	-15.52	Н	AV
2400	42.86	29.16	3.43	34.01	41.44	54	-12.56	Н	AV
2390	39.15	29.15	3.41	34.01	37.7	54	-16.3	V	AV
2400	43.28	29.16	3.43	34.01	41.86	54	-12.14	V	AV

		Test	Mode:BLE	E High Cha	nnel 2480MI	Hz	_		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit (dBuV/m)	Over (dB)	Polarity H/V	Test Value
2483.5	60.53	29.28	3.53	34.03	59.31	74	-14.69	H	Peak
2500	50.16	29.3	3.56	34.03	48.99	74	-25.01	Н	Peak
2483.5	61.88	29.28	3.53	34.03	60.66	74	-13.34	V	Peak
2500	48.76	29.3	3.56	34.03	47.59	74	-26.41	V	Peak
2483.5	43.35	29.28	3.53	34.03	42.13	54	-11.87	Н	AV
2500	38.85	29.3	3.56	34.03	37.68	54	-16.32	Н	AV
2483.5	44.12	29.28	3.53	34.03	42.9	54	-11.1	V	AV
2500	38.91	29.3	3.56	34.03	37.74	54	-16.26	V	AV

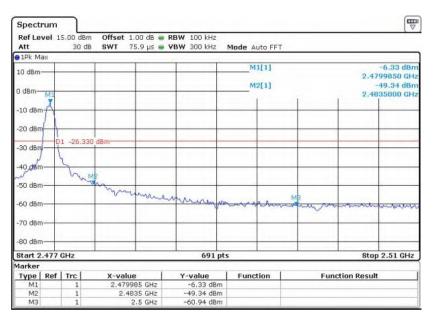
7 Conduct Band Edge And Spurious Emissions Measurement

Test Requirement	:	Section 15.247(d) In addition, radiated emissions which fall in the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

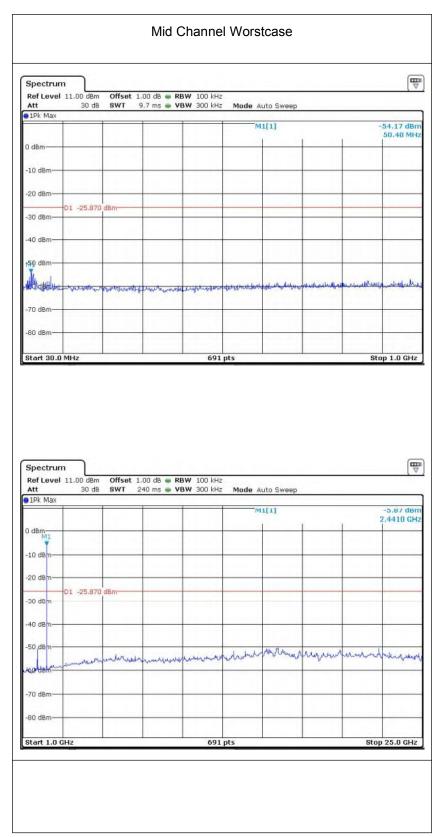
2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold



7.2 Test Result

Spectr										
Ref Lev Att	vel 15	30 dBr 30 di			RBW 100 kHz VBW 300 kHz	Mode Au	to Sweep	1		
• 1Pk Ma	9X									
10 dBm-	-					M1				-5.39 dBm 401910 GHz
0 dBm—	-	_	-		-	M2	[1]			-41.39 dBm 400000/GHz
-10 dBm	-		-	-	-	-		-		A
-20 dBm		-25.39	in differ				-			
-30 dBm		-20.39	O OBM-							
-40 dBm	+		-	-	-		_	-		Ma
-50 dBm	-		-		-				MS	- we
~60,d8#4	interest	-	-basen-brank	and the second states	angh-sambaga shadiga she	work and	مىلەملەمىرلىرى ⁴	alluduel	warm	-
-70 dBm	-		-					-		
-80 dBm		_								
CF 2.35	75 GI	Hz			691 pt	5			Spar	95.0 MHz
Marker	1	- 1								
	Ref		X-valu		Y-value	Functi	on	Fun	ction Resul	t
M1		1		191 GHz	-5.39 dBm					
M2 M3		1		2.4 GHz .39 GHz	-41.39 dBm -55.03 dBm					

Low Band Edge Plot on Channel 00



For Conduct spurious emissions

Spectrum	٦						
Ref Level 11. Att	00 dBm Offset 30 dB SWT	t 1.00 dB - RB 9.7 ms - VB		de Auto Sweep			10
1Pk Max				M1[1]			53.60 dBm
				init[1]			51.80 MHz
0 dBm							
-10 dBm		-					
-20 dBm		_					
01	-27.240 dBm	-					
-30 dBm							
-40 dBm						-	
180 dBm							
Hall Harris			aluprationation	and the particular and an	weith help no	the had some provided and the	an man
	war wer and a free frank	mappendicture	mal should be all	and them add a			
-70 dBm			2				
-80 dBm							-
Start 30.0 MH			691 pts		_		p 1.0 GHz
Spectrum	٦						E
Ref Level 11.	OD dBm Offset	t 1,00 d8 ● RB 240 ms ● V8	W 100 kHz	de Auto Sween			
Ref Level 11. Att	٦	t 1.00 d8 RB 240 ms VB	W 100 kHz	de Auto Sweep			
Spectrum Ref Level 11. Att 1Pk Max	OD dBm Offset		W 100 kHz	de Auto Sweep			-7.24 dBm
Ref Level 11. Att 1Pk Max	OD dBm Offset		W 100 kHz				-7.24 dBm
Ref Level 11. Att 1Pk Max	OD dBm Offset		W 100 kHz				-7.24 dBm 2,4070 GHz
Ref Level 11. Att 1Pk Max	OD dBm Offset		W 100 kHz				-7.24 dBm
Ref Level 11. Att 11/k Max 0 dBm M1 -10 dBm -20 dBm	OD dBm Offset		W 100 kHz				-7.24 dBm
Ref Level 11. Att 11/k Max 0 dBm M1 -10 dBm -20 dBm	00 dBm Offset 30 dB SWT		W 100 kHz				-7.24 dBm
Ref Level 11 Att 1Pk Max 0 dBm M1 -10 dBm -20 dBm	00 dBm Offset 30 dB SWT		W 100 kHz				-7.24 dBm
Ref Level 11. Att 11k Max 0 d8m -10 d8m -20 d8m -30 d8m	00 dBm Offset 30 dB SWT	240 ms • VB	W 100 kHz W 300 kHz Mo	M1[1]			-7.24 dBm 2.4070 GHz
Mi Difference -10 dBm	00 dBm Offset 30 dB SWT	240 ms • VB	W 100 kHz W 300 kHz Mo		myread		-7.24 dBm 2.4070 GHz
Ref Level 11. Att 91Pk Max 0 dBm -0 dBm -10 dBm -30 dBm -40 dBm	00 dBm Offset 30 dB SWT	240 ms • VB	W 100 kHz W 300 kHz Mo	M1[1]	Mynah		-7.24 dBm 2.4070 GHz

Spectru	m							E
	11.00 dBm 30 dB		.00 dB 🖷 RE 9.7 ms 🖷 VI		Node Auto Sweep			
9 1Pk Max			-		M1[1]		-51	.17 dBr
0 dBm					-		891	.20 MH
-10 dBm—								
-20 dBm—	D1 07 000	dDay						
-30 dBm—	-D1 -27,000	dem						
-40 dBm—							MI	
-50 dBm-	and the set	an late			and the productive	unununu		Howhole
-70 dBm-	1. J	and contract	and a product of	No Contraction and				
-80 dBm-								
Start 30.0				691 pts				.0 GHz
				091 pc3				
Ref Level	11.00 dBm		.00 d8 🖷 RB	W 100 kHz				
Ref Level Att			.00 dB 🛥 RE 40 ms 🛥 VB	W 100 kHz	lode Auto Sweep			
Att 1Pk Max	11.00 dBm			W 100 kHz	lode Auto Sweep M1[1]	1		.00 dBr
Ref Level Att 1Pk Max 0 dBm M1	11.00 dBm			W 100 kHz				.00 dBr
Ref Level Att 1Pk Max 0 dBm M1	11.00 dBm			W 100 kHz				.00 dBr
Ref Level Att 1Pk Max 0 dBm 	11.00 dBm 30 dB	SWT 2		W 100 kHz				00 dBr 800 GH
Ref Level Att 1Pk Max 0 dBm 	11.00 dBm	SWT 2		W 100 kHz				00 dBr
Ref Level Att 1Pk Max 0 dBm M1 -10 dBm -20 dBm -30 dBm	11.00 dBm 30 dB	SWT 2		W 100 kHz				00 dBr
Ref Level Att 1Pk Max 0 dBm M1 -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	11.00 dBm 30 dB	SWT 2		W 100 kHz N W 300 kHz N	-M1[1]	hurman		.00 dBr
Att 11Pk Max 1Pk Max 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	11.00 dBm 30 dB	SWT 2		W 100 kHz N W 300 kHz N		hunghangangang	2.4	00 dBr
Ref Level Att 1 IPk Max 0 d8m -10 d8m -20 d8m -30 d8m -40 d8m -50 d8m -50 d8m -60 d8m -70 d8m	11.00 dBm 30 dB	SWT 2		W 100 kHz N W 300 kHz N		hunjunan	2.4	.00 dBr
Ref Level Att 1Pk Max 0 dBm -10 dBm -20 dBm	11.00 dBm 30 dB	SWT 2		W 100 kHz N W 300 kHz N		hunghangangang	2.4	.00 dBr

8 6dB Bandwidth Measurement

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit		Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

8.2 Test Result

Channel number	Channel frequency (MHz)	Measurement level	Required Limit
	()	(KHz)	(KHz)
00	2402	668.6	>500
19	2440	668.6	>500
39	2480	681.6	>500

Spect Ref Le		1.00 dBm			and success			("
Att 1Pk M	lax	25 dB	SWT 19 µs 🕯	VBW 300 kHz 1	Mode Auto FFT			
					D2[1]			0.02 de 668.60 kHa
0 dBm-		1 -5.330	d8m N		Occ Bw		1.1244	57308 MH
-10 dBr			1.330 dBm		T2	1		59620 GH
-20 dBr	m				R			
-30 dBr	m						_	
-40 dBr	m							
-50 dBr	m			_		-	-	
-60 dBr	m			_				
-70 dBr	m							_
-80 dBr	m							
CF 2.4	H02 GL	17		691 pts			Sna	n 3.0 MHz
larker								
M1		1	X-value 2.4015962 GHz	-11.30 dBm	Function	Func	tion Result	
T1 T2		1	2.40140087 GHz 2.40252533 GHz	-20.40 dBm -20.73 dBm	Occ Bw		1.1244	57308 MHz
D2	M1	1	668.6 kHz	0.02 dB				
		7_		Mid Cha	nnel			(m) V
Ref Le Att	evel 1	1.00 dBm 25 dB		• RBW 100 kHz	nnel Mode Auto FFT			
Ref Le Att	evel 1			• RBW 100 kHz				
Ref Le Att	evel 1			• RBW 100 kHz	Mode Auto FFT			-0.09 di 668.60 kH
Ref Le Att 1Pk M 0 dBm-	lax	25 dB	SWT 19 µs e	• RBW 100 kHz	Mode Auto FFT		1.1331	-0.09 di 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 0 dBm-	avel 1 lax D	25 dB	SWT 19 µs •	RBW 100 kHz VBW 300 kHz	Mode Auto FFT D2[1] Occ Bw		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 0 dBm- -10 dBm-	n D	25 dB	SWT 19 µs dBmM 1.790 dBmM	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 0 dBm- -10 dBm -20 dBr -30 dBr	n	25 dB	SWT 19 µs dBmM 1.790 dBmM	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 0 dBm- -10 dBm -20 dBr -30 dBr -40 dBr	n	25 dB	SWT 19 µs dBm M 1.790 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn 59620 GH
Ref Le Att 1Pk M 0 dBm 10 dBm 20 dBm 20 dBm 30 dBm 50 dBm 50 dBm	n n n	25 dB	SWT 19 µs dBm M 1.790 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 0 dBm- -10 dBm -20 dBr -20 dBr -30 dBr -50 dBr -50 dBr	n	25 dB	SWT 19 µs dBm M 1.790 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 1Pk M 0 dBm- -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	n D	25 dB	SWT 19 µs dBm M 1.790 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		1.1331	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att PR M 0 dBm 10 dBm 20 dBm 20 dBm 20 dBm 30 dBm 50 dBm	n	25 dB	SWT 19 µs dBm M 1.790 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT D2[1] Occ Bw M1[1] T2 T2 D2		-2.439	-0.09 df 668.60 kH 40376 MH 11.74 dBn 59620 GH
Ref Le Att 1Pk M 0 dBm -10 dBr -10 dBr -20 dBr -30 dBr -50 dBr -50 dBr -70 dBr -70 dBr -70 dBr -80 dBr	2 vel 1 lax	25 dB	SWT 19 µs dBm M 1.790 dBm	RBW 100 kHz VBW 300 kHz	Mode Auto FFT D2[1] Occ Bw M1[1] T2 T2 D2		-2.439	-0.09 df 668.60 kH 40376 MH 11.74 dBn
Ref Le Att 1Pk M 0 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m -50 d8m -60 d8m -70 d8m -80 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m -80 d8m -70 d8m -80 d8m -80 d8m -70 d8m	2 vel 1 lax	25 dB	SWT 19 µs 4	RBW 100 kHz VBW 300 kHz 11 691 pts	Mode Auto FFT D2[1] Occ Bw M1[1] T2 T2 D2		-2.439	-0.09 dt 668.60 kH 40376 MH 11.74 db 59620 GH
Ref Le Att 1Pk M 1Pk M 0 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m -50 d8m -60 d8m -60 d8m -70 d8m -80 d8m -70 d8m -70 d8m -80 d8m -70 d8m<	n n n n n n n n n n n n n n n n n n n	25 dB	SWT 19 µs 4	RBW 100 kHz VBW 300 kHz 11 13 14 15 10 10 10 10 10 11 11 11 11 11	Mode Auto FFT		1.1331 -2.439 	-0.09 dt 668.60 kH 40376 MH 11.74 db 59620 GH
Ref Le Att 1Pk M 1Pk M 0 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m -50 d8m -60 d8m -60 d8m -60 d8m -70 d8m -80 d8m CF 2.4 Marker M1	n n n n n n n n n n n n n n n n n n n	25 dB	SWT 19 µs 4	RBW 100 kHz YBW 300 kHz I YBW 300 kHz I I II III III 691 pts III III	Mode Auto FFT D2[1] Occ Bw M1[1] T2 Function Function		1.1331 -2.439 	-0.09 df 668.60 kH 40376 MH 59620 GH 59620 GH
Att 1Pk M dam- -10 dam- -20 dam- -20 dam- -20 dam- -20 dam- -30 dam- -50 dam- -70 dam-	n n n n n n n n n n n n n n n n n n n	25 dB	SWT 19 µs 4	RBW 100 kHz YBW 300 kHz I YBW 300 kHz I I 691 pts 691 pts I 11.74 dBm -21.35 dBm -21.35 dBm	Mode Auto FFT D2[1] Occ Bw M1[1] T2 Function Function		1.1331 -2.439 	-0.09 df 668.60 kH 40376 MH 59620 GH 59620 GH

Spect	rum									
Ref Le Att	vel 1	1.00 dBr 25 di			RBW 100 kHz VBW 300 kHz	Mode Auto	FFT			
9 1Pk M	эх									_
						D2[1	1			08 d
0 dBm-	-					-			681.6	
U UBIII-			-			Occ			1.137481910	
-10 d8m	0	1 -6.420	21	M1		M1[1	u -		2.47958760	
		- 22 -	12,420 dBm	1		T	1	1 1	2.47980760	Gri
-20 dBm	-		-				LT			_
-30 dBm	1				1					
-40 d8m	-	~								
-HU GBI										
-50 dBm	_							1		
-00 001								1		
-60 dBm	-	-			-					
-70 dBm			+ +		-			+ +		_
-80 dBm	1									
CF 2.44 Marker	3 GHZ				691 pt	5			Span 3.0	MHZ
Type	Def	Treal	X-value	1	Y-value	Functio	- 1	Frind	ion Result	
M1	Nei	1	2.4795876	GHz	-12.53 dBm	Functio		Funct	ion Result	_
T1		1	2.47939219		-21.94 dBm	Occ	Bw		1.13748191	MHz
T2		1	2.48052967		-22.08 dBm	1				
D2	M1	1	681.6	kHz	-0.08 dB					
										_

9 Maximum Peak Output Power

Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247 (b)(3), For systems using digital modulation in the 902- 928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

9.1 Test Procedure

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Measure the conducted output power and record the results in the test report.

9.2 Test Result

Channel number	Channel Frequency(MHz)	Peak Power Output(dBm)	Peak Power Limit(dBm)	Peak Power Limit(W)	Verdict
00	2402	-4.79	30	1	PASS
19	2440	-5.26	30	1	PASS
39	2480	-5.94	30	1	PASS

		Low	/ Channel			
Spectrum Ref Level 15.00 dBm		.00 dB 🖷 RBW 11		ich.		
Att 30 dB 1Pk Max	SWT	1 ms 🖷 VBW 31	MHZ Mode Auto Swe	eep		
10 dBm-			M1[1]		1000	-4.79 dBn
10 0000			1	1	2.401	65990 GH
0 dBm		Mi			-	
-10 dBm						
-20 dBm	and the second s			have		
20 JB-						
-30 dBm						
-40 dBm-						
-50 dBm					-	
-60 dBm					-	
-70 dBm						
-80 dBm						
		Mid	Channel		Spa	in 5.0 MHz
Spectrum Ref Level 15.00 dBm		.00 dB 🕳 RBW 11	Channel	sen.	Spa	
Spectrum Ref Level 15.00 dBm Att 30 dB	Offset 1. SWT		Channel	ер	Spa	
Spectrum Ref Level 15.00 dBm Att 30 dB 1Pk Max		.00 dB 🕳 RBW 11	Channel	ep		-5.26 dBn
Spectrum Ref Level 15.00 dBm Att 30 dB 1Pk Max 10 dBm		.00 dB 🕳 RBW 11	Channel	ep		-5.26 dBn
Spectrum Ref Level 15.00 dBm Att 30 dB 1Pk Max 10 dBm		.00 dB 🕳 RBW 11	Channel	ep		-5.26 dBn
Spectrum Ref Level 15.00 dBm Att 30 dB 1Pk Max 10 dBm 0 dBm		.00 dB 🕳 RBW 11	Channel	rep		-5.26 dBn
Spectrum Ref Level 15.00 dBm Att 30 dB 1Pk Max 10 dBm -10 dBm		.00 dB 🕳 RBW 11	Channel	eep		-5.26 dBn
Spectrum Ref Level 15.00 dBm Att 30 dB 1Pk Max 10 dBm 0 dBm		.00 dB 🕳 RBW 11	Channel	eep		-5.26 dBn
Spectrum Ref Level 15.00 dBm 110 dBm 0 dBm -10 dBm -20 dBm		.00 dB 🕳 RBW 11	Channel	eep		-5.26 dBn
Spectrum Ref Level 15.00 dBm 10 dBm 0 dBm -10 dBm		.00 dB 🕳 RBW 11	Channel	eep		-5.26 dBn
Spectrum Ref Level 15.00 dBm 10 dBm 0 dBm -10 dBm -20 dBm		.00 dB 🕳 RBW 11	Channel	2ep		-5.26 dBn
Spectrum Ref Level 15.00 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm		.00 dB 🕳 RBW 11	Channel			-5.26 dBn
Spectrum Ref Level 15.00 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm		.00 dB 🕳 RBW 11	Channel			-5.26 dBn
Ref Level 15.00 dBm Att 30 dB 1Pk Max 10 dBm 0 dBm		.00 dB 🕳 RBW 11	Channel			-5.26 dBn
Spectrum Ref Level 15.00 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm		.00 dB 🕳 RBW 11	Channel		2,440	-5.26 dBn

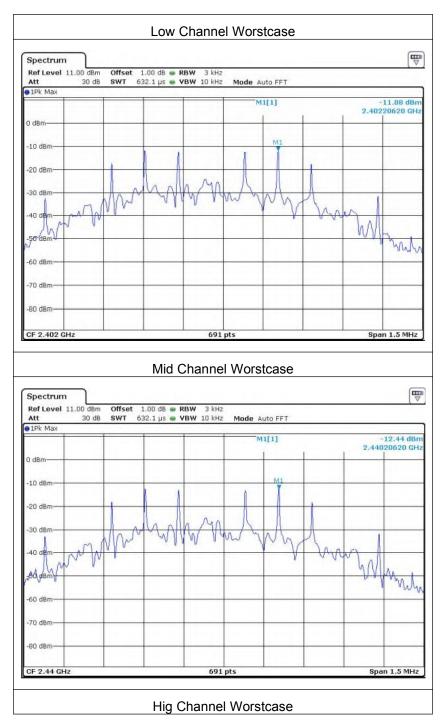
Att 30 de 1Pk Max	SWT		BW 3 MHz	Mode Auto Sv	(CCP	
LO dBm				M1[1]		-5.94 dBr 2.47967440 GH
dBm		-	M1			
10 dBm		-	-		_	
20 d8m						
30 dBm						
40 dBm						
50 d8m			_			
60 d8m	-		-			
70 dBm						
80 d8m						
CF 2.48 GHz	-		691	pts		Span 5.0 MHz

10 Power Spectral density

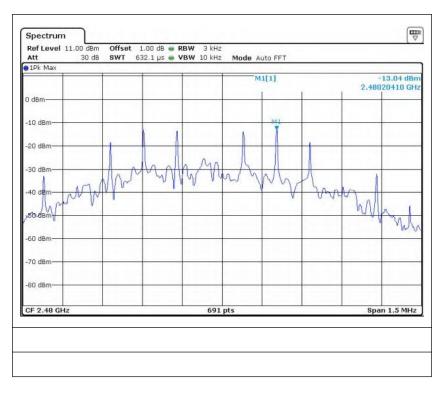
Test Requirement	:	FCC CFR47 Part 15 Section 15.247
Test Method	:	ANSI C63.10:2013
Test Limit	:	Regulation 15.247(f) The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.


2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.


10.2 Test Result

Channel number	Channel frequency (MHz)	Measurement level (dBm)	Required Limit	Pass/Fail
		PSD/3kHz	(dBm/3kHz)	
00	2402	-11.88	8	PASS
19	2440	-12.44	8	PASS
39	2480	-13.04	8	PASS

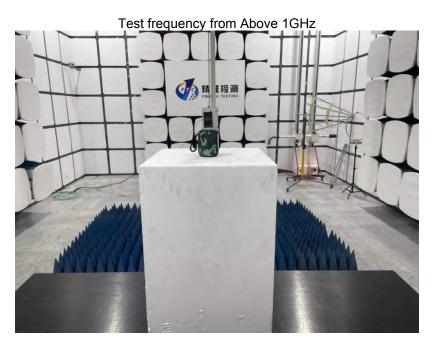
11 Antenna Application

11.1 Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 Result

The EUT'S antenna, permanent attached antenna, is internal PIFA antenna. The antenna's gain is 0dBi and meets the requirement.


12 Test Setup

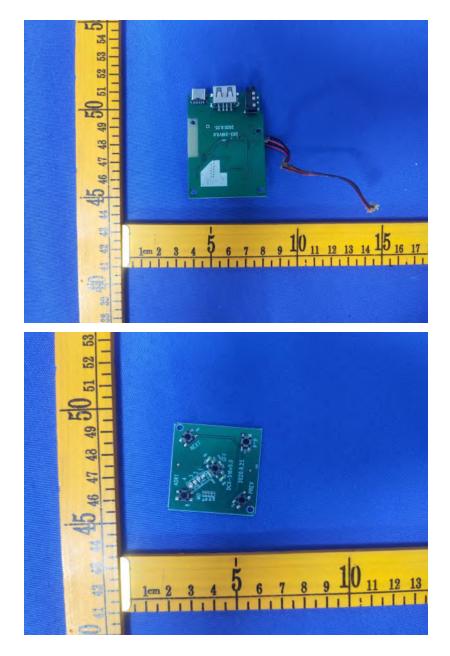
Conducted Emissions

APPENDIX II -- EXTERNAL PHOTOGRAPH

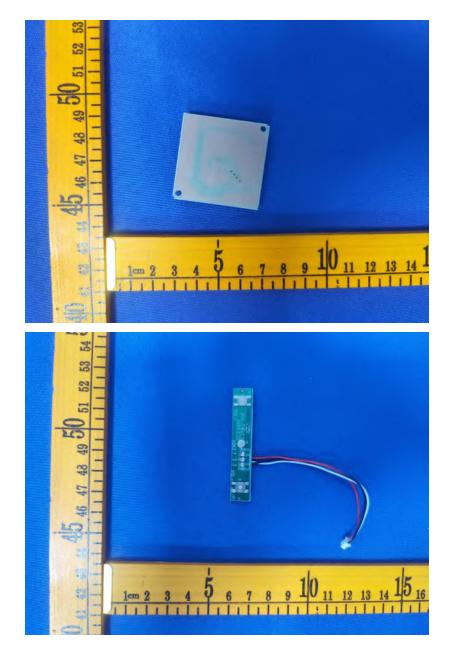
Page 46 of 55

Page 47 of 55

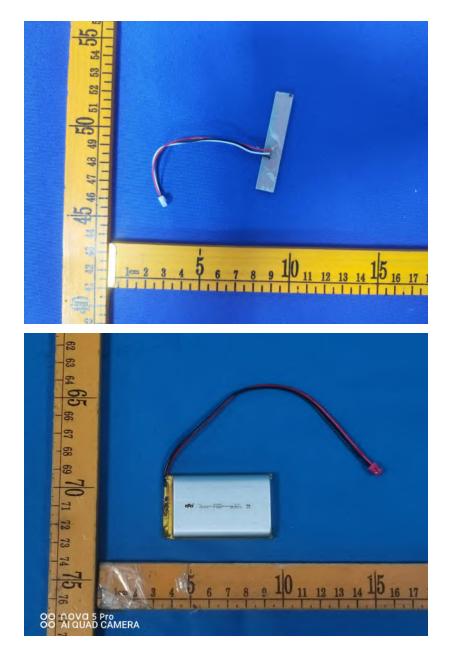
Page 49 of 55

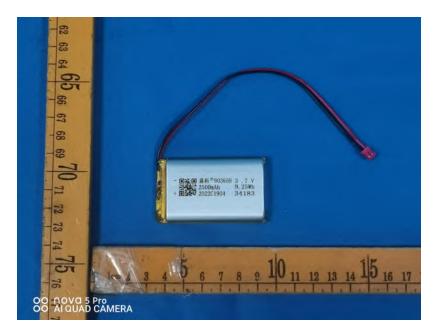


APPENDIX III -- INTERNAL PHOTOGRAPH



Page 50 of 55





*****THE END REPORT*****