# TEST REPORT

#### FCC ID: 2AZ42-T3 Product: True Wireless stereo Earphone Model No.: T3

Additional Model No.: T15, TS01, T6, TS31, T11, T16, T17, VK-1137, VK-1138

Trade Mark: N/A Report No.: TCT210517E041 Issued Date: May 28, 2021

Issued for:

Dongguan X-power Intelligent Technology Co., Ltd 601, Building 5, No.2 Jintian Road, HuangDong, Dongguan, GuangDong, China.

Issued By:

Shenzhen Tongce Testing Lab

TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

FAX: +86-755-27673332

**Note:** This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

## TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

| 1. | Test Certification                       |            |            |            |    |
|----|------------------------------------------|------------|------------|------------|----|
| 2. | Test Result Summary                      |            | <u>(6)</u> |            | 4  |
| 3. | EUT Description                          |            |            |            | 5  |
| 4. | General Information                      |            |            |            | 6  |
|    | 4.1. Test environment and mode           |            |            |            |    |
|    | 4.2. Description of Support Units        |            |            |            | 6  |
| 5. | Facilities and Accreditations            |            |            |            |    |
|    | 5.1. Facilities                          |            |            |            | 7  |
|    | 5.2. Location                            |            |            |            | 7  |
|    | 5.3. Measurement Uncertainty             | <u>(0)</u> |            | <u>(S)</u> | 7  |
| 6. | Test Results and Measurement Data .      |            |            |            | 8  |
|    | 6.1. Antenna requirement                 |            |            |            | 8  |
|    | 6.2. Conducted Emission                  |            |            |            | 9  |
|    | 6.3. Conducted Output Power              |            |            |            |    |
|    | 6.4. Emission Bandwidth                  |            |            |            | 14 |
|    | 6.5. Power Spectral Density              | $\sim$     |            | $\sim$     | 15 |
|    | 6.6. Conducted Band Edge and Spurious En |            |            |            |    |
|    | 6.7. Radiated Spurious Emission Measurem | ent        |            |            |    |
| Α  | ppendix A: Test Result of Conducted T    | est        |            |            |    |
| Α  | ppendix B: Photographs of Test Setup     |            |            |            |    |
| Α  | ppendix C: Photographs of EUT            |            |            |            |    |
|    |                                          |            |            |            |    |
|    |                                          |            |            |            |    |
|    |                                          |            |            |            |    |
|    |                                          |            |            |            |    |

## TCT通测检测 TESTING CENTRE TECHNOLOGY

#### Report No.: TCT210517E041

## 1. Test Certification

| Product:                 | True Wireless ste                                     | reo Earphone     |             |           |         |    |
|--------------------------|-------------------------------------------------------|------------------|-------------|-----------|---------|----|
| Model No.:               | Т3                                                    |                  |             |           |         | C  |
| Additional<br>Model No.: | T15, TS01, T6, T                                      | S31, T11, T16,   | T17, VK-11  | 37, VK-11 | 38      | C  |
| Trade Mark:              | N/A                                                   |                  |             |           |         |    |
| Applicant:               | Dongguan X-pow                                        | er Intelligent T | echnology C | o., Ltd   | S       |    |
| Address:                 | 601, Building 5, N<br>GuangDong, Chir                 |                  | ad, HuangD  | ong, Dong | gguan,, | (Å |
| Manufacturer:            | Dongguan X-pow                                        | er Intelligent T | echnology C | Co., Ltd  |         |    |
| Address:                 | 601, Building 5, N<br>GuangDong, Chir                 |                  | ad, HuangD  | ong, Dong | gguan,, |    |
| Date of Test:            | May 18, 2021 – N                                      | lay 27, 2021     |             |           |         |    |
| Applicable<br>Standards: | FCC CFR Title 47<br>FCC KDB 558074<br>ANSI C63.10:201 | 4 D01 15.247 I   |             |           | 2       |    |

The above equipment has been tested by Shenzhen Tongce Testing Lab and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

| Tested By:   | Brews Xu   | Date:                           | May 27, 2021 |
|--------------|------------|---------------------------------|--------------|
| (C           | Brews Xu   | (                               |              |
| Reviewed By: | Beny zhao  | Date:                           | May 28, 2021 |
| <u>(</u> )   | Beryl Zhao | $\langle \mathcal{O} \rangle$ – | (S)          |
| Approved By: | Tomsin     | Date:                           | May 28, 2021 |
|              | Tomsin     | 6                               | (G)          |

Page 3 of 42



## 2. Test Result Summary

| Requirement                         | CFR 47 Section      | Result |
|-------------------------------------|---------------------|--------|
| Antenna requirement                 | §15.203/§15.247 (c) | PASS   |
| AC Power Line Conducted<br>Emission | §15.207             | PASS   |
| Conducted Peak Output<br>Power      | §15.247 (b)(3)      | PASS   |
| 6dB Emission Bandwidth              | §15.247 (a)(2)      | PASS   |
| Power Spectral Density              | §15.247 (e)         | PASS   |
| Band Edge                           | §15.247(d)          | PASS   |
| Spurious Emission                   | §15.205/§15.209     | PASS   |

#### Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

5. After pre-testing of two samples with different memory chip, we found that the one with ISOCOM memory chip is the worst case, so the results are recorded in this report.

Page 4 of 42



## 3. EUT Description

| Product:              | True Wireless stereo Earphone                                                                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model No.:            | Т3                                                                                                                                                          |
| Additional Model No.: | T15, TS01, T6, TS31, T11, T16, T17, VK-1137, VK-1138                                                                                                        |
| Trade Mark:           | N/A                                                                                                                                                         |
| Bluetooth Version:    | V5.1 (This report is for BLE)                                                                                                                               |
| Operation Frequency:  | 2402MHz~2480MHz                                                                                                                                             |
| Channel Separation:   | 2MHz                                                                                                                                                        |
| Data Rate:            | 1MHz PHY                                                                                                                                                    |
| Number of Channel:    | 40                                                                                                                                                          |
| Modulation Type:      | GFSK                                                                                                                                                        |
| Antenna Type:         | Ceramic Antenna                                                                                                                                             |
| Antenna Gain:         | 0.5dBi                                                                                                                                                      |
| Power Supply:         | Rechargeable Li-ion Battery DC 3.7V                                                                                                                         |
| Remark:               | All models above are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. |

**Note:** The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

#### Operation Frequency each of channel

| Channel  | Frequency                                    | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |  |  |  |
|----------|----------------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|--|--|--|
| 0        | 2402MHz                                      | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |  |  |  |  |
| 1        | 2404MHz                                      | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |  |  |  |  |
| <u> </u> |                                              | ·)      | 🔨         | 9)      |           |         |           |  |  |  |  |
| 8        | 2418MHz                                      | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |  |  |  |  |
| 9        | 2420MHz                                      | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |  |  |  |  |
| Remark:  | Remark: Channel 0, 19 & 39 have been tested. |         |           |         |           |         |           |  |  |  |  |



## 4. General Information

## 4.1. Test environment and mode

| Operating Environment: |                    |                   |  |  |  |  |  |  |
|------------------------|--------------------|-------------------|--|--|--|--|--|--|
| Condition              | Conducted Emission | Radiated Emission |  |  |  |  |  |  |
| Temperature:           | 25.0 °C            | 25.0 °C           |  |  |  |  |  |  |
| Humidity:              | 55 % RH            | 55 % RH           |  |  |  |  |  |  |
| Atmospheric Pressure:  | 1010 mbar          | 1010 mbar         |  |  |  |  |  |  |

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from to 4m in both horizontal and vertical polarizations. The emissions worst-case( Z axis) are shown in Test Results of the following pages.

## 4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No. | FCC ID | Trade Name |
|-----------|-----------|------------|--------|------------|
| 1         | /         | <u>ی</u> ا | 5) /   |            |

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

## 5. Facilities and Accreditations

#### 5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab

Designation Number: CN1205

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

CAB identifier: CN0031

The 3m Semi-anechoic chamber of SHENZHEN TONGCE TESTING LAB has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

### 5.2. Location

Shenzhen Tongce Testing Lab

Address: TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: 86-755-27673339

#### 5.3. Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                          | MU      |
|-----|-------------------------------|---------|
| 1   | Conducted Emission            | ±2.56dB |
| 2   | RF power, conducted           | ±0.12dB |
| 3   | Spurious emissions, conducted | ±0.11dB |
| 4   | All emissions, radiated(<1G)  | ±3.92dB |
| 5   | All emissions, radiated(>1G)  | ±4.28dB |
| 6   | Temperature                   | ±0.1°C  |
| 7   | Humidity                      | ±1.0%   |



# FCC Part15 C Section 15.203 /247(c) **Standard requirement:** 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(c) (1)(i) requirement: (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. **E.U.T** Antenna: The Bluetooth antenna is ceramic antenna which permanently attached, and the best case gain of the antenna is 0.5dBi. Antenna

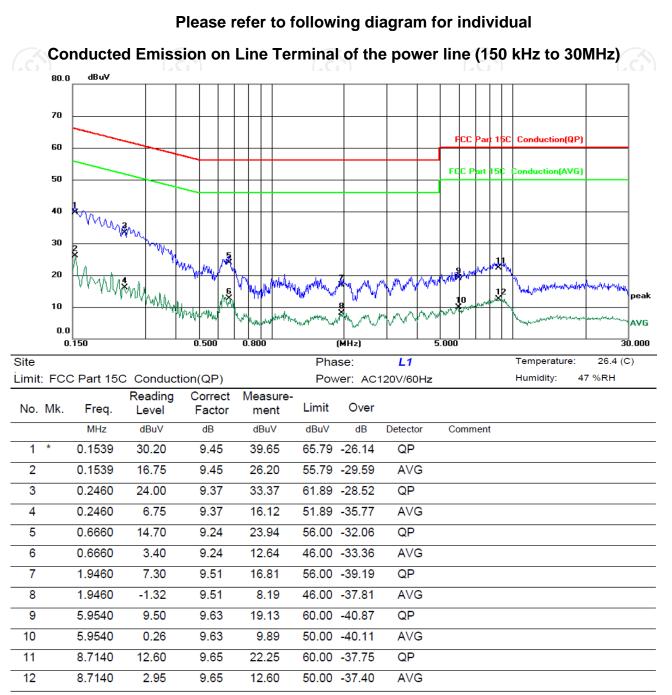
Page 8 of 42



#### 6.2. Conducted Emission

#### 6.2.1. Test Specification

| Test Requirement:               | FCC Part15 C Section                                                                                                                                                                                                                                                                                                  | 15.207                                                                                                                                                                                                  |                                                                                                                                                                                            |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:                    | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                            |
| Frequency Range:                | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                     | (C <sup>1</sup> )                                                                                                                                                                                       | $\left( \begin{array}{c} c \end{array} \right)$                                                                                                                                            |
| Receiver setup:                 | RBW=9 kHz, VBW=30                                                                                                                                                                                                                                                                                                     | kHz, Sweep time                                                                                                                                                                                         | =auto                                                                                                                                                                                      |
|                                 | Frequency range                                                                                                                                                                                                                                                                                                       | Limit (                                                                                                                                                                                                 | dBuV)                                                                                                                                                                                      |
|                                 | (MHz)                                                                                                                                                                                                                                                                                                                 | Quasi-peak                                                                                                                                                                                              | Áverage                                                                                                                                                                                    |
| Limits:                         | 0.15-0.5                                                                                                                                                                                                                                                                                                              | 66 to 56*                                                                                                                                                                                               | 56 to 46*                                                                                                                                                                                  |
|                                 | 0.5-5                                                                                                                                                                                                                                                                                                                 | 56                                                                                                                                                                                                      | 46                                                                                                                                                                                         |
|                                 | 5-30                                                                                                                                                                                                                                                                                                                  | 60                                                                                                                                                                                                      | 50                                                                                                                                                                                         |
|                                 | Refere                                                                                                                                                                                                                                                                                                                | nce Plane                                                                                                                                                                                               |                                                                                                                                                                                            |
| Test Setup:                     | E.U.T       Adap         Test table/Insulation plan         Remark:         E.U.T: Equipment Under Test         LISN: Line Impedence Stabilization         Test table height=0.8m                                                                                                                                     | ne                                                                                                                                                                                                      |                                                                                                                                                                                            |
| Test Mode:                      | Charging + Transmittir                                                                                                                                                                                                                                                                                                | ng Mode                                                                                                                                                                                                 |                                                                                                                                                                                            |
|                                 |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                                                                                                                            |
| Test Procedure:                 | <ol> <li>The E.U.T is connerimpedance stabilizing provides a 500hm/5 measuring equipme</li> <li>The peripheral device power through a Licoupling impedance refer to the block photographs).</li> <li>Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63 10: 2013</li> </ol> | ation network<br>50uH coupling im<br>nt.<br>ces are also conne<br>SN that provides<br>with 50ohm term<br>diagram of the<br>line are checkence. In order to fir<br>e positions of equ<br>s must be chang | (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>a 500hm/50uh<br>nination. (Please<br>test setup and<br>d for maximum<br>nd the maximum<br>ipment and all o<br>ed according to  |
| Test Procedure:<br>Test Result: | <ul> <li>impedance stabiliz<br/>provides a 50ohm/s<br/>measuring equipme</li> <li>2. The peripheral device<br/>power through a LI<br/>coupling impedance<br/>refer to the block<br/>photographs).</li> <li>3. Both sides of A.C.<br/>conducted interferent<br/>emission, the relative</li> </ul>                      | ation network<br>50uH coupling im<br>nt.<br>ces are also conne<br>SN that provides<br>with 50ohm term<br>diagram of the<br>line are checkence. In order to fir<br>e positions of equ<br>s must be chang | (L.I.S.N.). This<br>pedance for the<br>ected to the main<br>a 500hm/50ul-<br>nination. (Please<br>test setup and<br>d for maximum<br>nd the maximum<br>ipment and all c<br>ed according to |


#### 6.2.2. Test Instruments

| Conducted Emission Shielding Room Test Site (843) |                                            |                               |                                                          |                 |  |  |  |  |  |  |
|---------------------------------------------------|--------------------------------------------|-------------------------------|----------------------------------------------------------|-----------------|--|--|--|--|--|--|
| Equipment                                         | Manufacturer                               | Ianufacturer Model Serial N   |                                                          | Calibration Due |  |  |  |  |  |  |
| Test Receiver                                     | R&S                                        | ESCI3                         | 100898                                                   | Jul. 27, 2021   |  |  |  |  |  |  |
| LISN-2                                            | Schwarzbeck                                | NSLK 8126                     | 8126453                                                  | Sep. 11, 2021   |  |  |  |  |  |  |
| Line-5                                            | Line-5 TCT<br>EMI Test Software Technology |                               | <b>N/A</b>                                               | Sep. 02, 2021   |  |  |  |  |  |  |
| EMI Test Software                                 |                                            |                               | N/A                                                      | N/A             |  |  |  |  |  |  |
| $\mathcal{O}$                                     | 6)                                         | $\langle \mathcal{G} \rangle$ | $\left( \begin{array}{c} \mathbf{C} \end{array} \right)$ |                 |  |  |  |  |  |  |

Page 10 of 42

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

#### 6.2.3. Test data



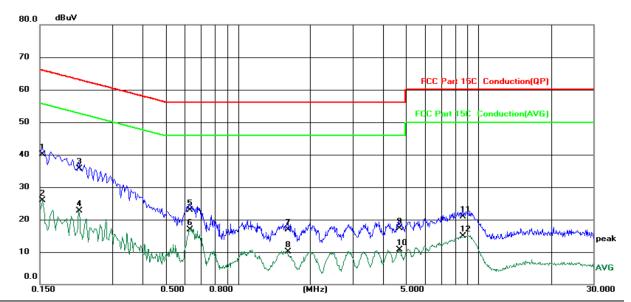
#### Note:

Freq. = Emission frequency in MHz

Reading level  $(dB\mu V) =$  Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement  $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$ 


Limit ( $dB\mu V$ ) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$ 

Q.P. =Quasi-Peak

AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz



#### Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

| Site  |       |            |                  |                   |                  | Pha   | ise:     | Ν         |         | Temperature: | 26.4 (C) |
|-------|-------|------------|------------------|-------------------|------------------|-------|----------|-----------|---------|--------------|----------|
| Limit | : FCO | C Part 150 | C Conduct        | ion(QP)           |                  | Pov   | ver: AC1 | 120V/60Hz |         | Humidity:    | 47 %RH   |
| No.   | Mk.   | Freq.      | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over     |           |         |              |          |
|       |       | MHz        | dBuV             | dB                | dBuV             | dBuV  | dB       | Detector  | Comment |              |          |
| 1     | *     | 0.1539     | 30.70            | 9.46              | 40.16            | 65.79 | -25.63   | QP        |         |              |          |
| 2     |       | 0.1539     | 16.52            | 9.46              | 25.98            | 55.79 | -29.81   | AVG       |         |              |          |
| 3     |       | 0.2180     | 26.40            | 9.33              | 35.73            | 62.89 | -27.16   | QP        |         |              |          |
| 4     |       | 0.2180     | 13.43            | 9.33              | 22.76            | 52.89 | -30.13   | AVG       |         |              |          |
| 5     |       | 0.6300     | 13.60            | 9.26              | 22.86            | 56.00 | -33.14   | QP        |         |              |          |
| 6     |       | 0.6300     | 7.67             | 9.26              | 16.93            | 46.00 | -29.07   | AVG       |         |              |          |
| 7     |       | 1.6060     | 7.50             | 9.42              | 16.92            | 56.00 | -39.08   | QP        |         |              |          |
| 8     |       | 1.6060     | 0.78             | 9.42              | 10.20            | 46.00 | -35.80   | AVG       |         |              |          |
| 9     |       | 4.6900     | 7.80             | 9.53              | 17.33            | 56.00 | -38.67   | QP        |         |              |          |
| 10    |       | 4.6900     | 1.15             | 9.53              | 10.68            | 46.00 | -35.32   | AVG       |         |              |          |
| 11    |       | 8.5739     | 11.30            | 9.66              | 20.96            | 60.00 | -39.04   | QP        |         |              |          |
| 12    |       | 8.5739     | 5.32             | 9.66              | 14.98            | 50.00 | -35.02   | AVG       |         |              |          |

#### Note1:

Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)Limit  $(dB\mu V)$  = Limit stated in standard Margin (dB) = Measurement  $(dB\mu V)$  – Limits  $(dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

\* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.



## 6.3. Conducted Output Power

#### 6.3.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Limit:            | 30dBm                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Test Mode:        | Spectrum Analyzer         Eur           Refer to item 4.1         .1                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Test Procedure:   | <ul> <li>Set spectrum analyzer as following:</li> <li>a) Set the RBW ≥ DTS bandwidth.</li> <li>b) Set VBW ≥ 3 × RBW.</li> <li>c) Set span ≥ 3 x RBW</li> <li>d) Sweep time = auto couple.</li> <li>e) Detector = peak.</li> <li>f) Trace mode = max hold.</li> <li>g) Allow trace to fully stabilize.</li> <li>h) Use peak marker function to determine the peak amplitude level.</li> </ul> |  |  |  |  |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |

#### 6.3.2. Test Instruments

| Name                                                | Manufacturer | Model No. | Serial Number | <b>Calibration Due</b> |
|-----------------------------------------------------|--------------|-----------|---------------|------------------------|
| Spectrum<br>Analyzer                                | Agilent      | N9020A    | MY49100619    | Sep. 11, 2021          |
| 4 Ch.<br>Simultaneous<br>Sampling 14 Bits<br>2 MS/s | Agilent      | U2531A    | N/A           | Sep. 02, 2021          |
| Combiner Box                                        | Ascentest    | AT890-RFB | N/A           | Sep. 02, 2021          |
|                                                     |              |           |               |                        |



## 6.4. Emission Bandwidth

#### 6.4.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(2)                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                              |
| Limit:            | >500kHz                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                              |
| Test Mode:        | Refer to item 4.1                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Procedure:   | <ol> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Make the measurement with the spectrum analyzer's<br/>resolution bandwidth (RBW) = 100 kHz. Set the<br/>Video bandwidth (VBW) = 300 kHz. In order to make<br/>an accurate measurement. The 6dB bandwidth must<br/>be greater than 500 kHz.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                               |

#### 6.4.2. Test Instruments

| Name                                                | Manufacturer | Model No. | Serial Number     | Calibration Due |  |
|-----------------------------------------------------|--------------|-----------|-------------------|-----------------|--|
| Spectrum<br>Analyzer                                | Agilent      | N9020A    | N9020A MY49100619 |                 |  |
| 4 Ch.<br>Simultaneous<br>Sampling 14 Bits<br>2 MS/s | Agilent      | U2531A    | N/A               | Sep. 02, 2021   |  |
| Combiner Box                                        | Ascentest    | AT890-RFB | N/A               | Sep. 02, 2021   |  |







Page 14 of 42

## 6.5. Power Spectral Density

#### 6.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Limit:            | The peak power spectral density shall not be greater<br>than 8dBm in any 3kHz band at any time interval of<br>continuous transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| Test Mode:        | Refer to item 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Make the measurement with the spectrum analyzer's<br/>resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100<br/>kHz. Video bandwidth VBW ≥ 3 x RBW. In order to<br/>make an accurate measurement, set the span to 1.5<br/>times DTS Channel Bandwidth. (6dB BW)</li> <li>Detector = peak, Sweep time = auto couple, Trace<br/>mode = max hold, Allow trace to fully stabilize. Use<br/>the peak marker function to determine the maximum<br/>power level.</li> <li>Measure and record the results in the test report.</li> </ol> |  |  |  |  |  |  |  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |

#### 6.5.2. Test Instruments

| Manufacturer | Model No.          | Serial Number                    | Calibration Due                         |
|--------------|--------------------|----------------------------------|-----------------------------------------|
| Agilent      | N9020A             | Sep. 11, 2021                    |                                         |
| Agilent      | U2531A             | N/A                              | Sep. 02, 2021                           |
| Ascentest    | AT890-RFB          | N/A                              | Sep. 02, 2021                           |
|              | Agilent<br>Agilent | Agilent N9020A<br>Agilent U2531A | AgilentN9020AMY49100619AgilentU2531AN/A |

## 6.6. Conducted Band Edge and Spurious Emission Measurement

#### 6.6.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | KDB 558074 D01 v05r02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Limit:            | In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Setup:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Test Mode:        | Refer to item 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Test Procedure:   | <ol> <li>The RF output of EUT was connected to the spectrum<br/>analyzer by RF cable and attenuator. The path loss<br/>was compensated to the results for each<br/>measurement.</li> <li>Set to the maximum power setting and enable the<br/>EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW=300 kHz, Peak Detector.<br/>Unwanted Emissions measured in any 100 kHz<br/>bandwidth outside of the authorized frequency band<br/>shall be attenuated by at least 20 dB relative to the<br/>maximum in-band peak PSD level in 100 kHz when<br/>maximum peak conducted output power procedure is<br/>used. If the transmitter complies with the conducted<br/>power limits based on the use of RMS averaging over<br/>a time interval, the attenuation required under this<br/>paragraph shall be 30 dB instead of 20 dB per<br/>15.247(d).</li> </ol> |
|                   | <ul><li>4. Measure and record the results in the test report.</li><li>5. The RF fundamental frequency should be excluded<br/>against the limit line in the operating frequency band.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

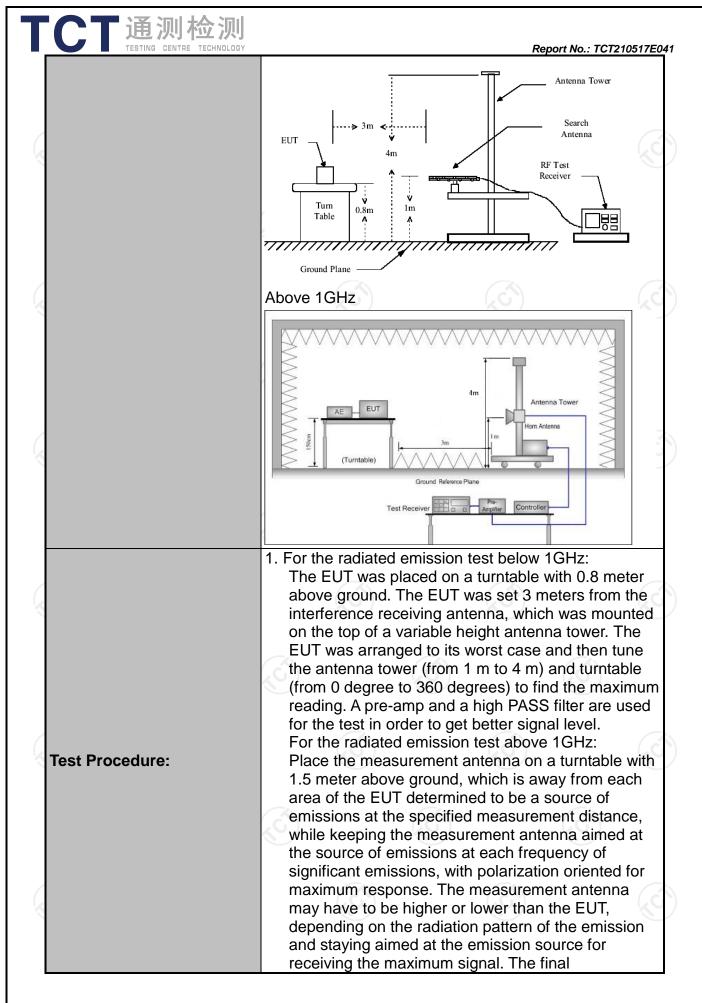


#### 6.6.2. Test Instruments

| Name                                                | pectrum Agilent N9020A |           | Model No. Serial Number |               |
|-----------------------------------------------------|------------------------|-----------|-------------------------|---------------|
| Spectrum<br>Analyzer                                |                        |           | MY49100619              | Sep. 11, 2021 |
| 4 Ch.<br>Simultaneous<br>Sampling 14 Bits<br>2 MS/s | Agilent                | U2531A    | N/A                     | Sep. 02, 2021 |
| Combiner Box                                        | Ascentest              | AT890-RFB | N/A                     | Sep. 02, 2021 |



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


## 6.7. Radiated Spurious Emission Measurement

#### 6.7.1. Test Specification

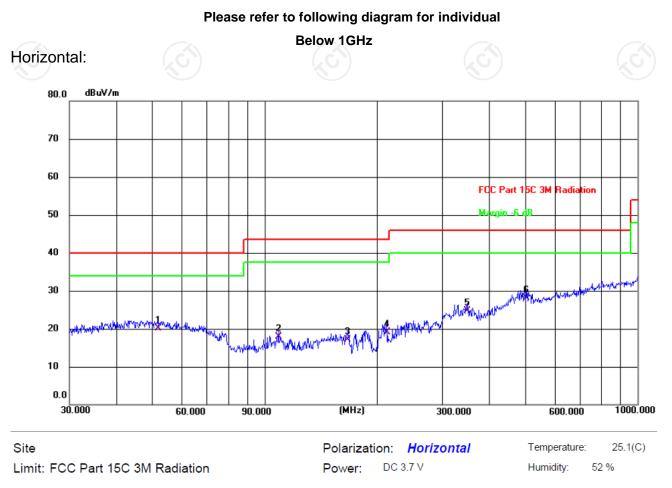
TCT 通测检测 TESTING CENTRE TECHNOLOGY

| Test Requirement:     | FCC Part15 C Section 15.209 |                            |                                      |                        |                                                 |  |  |
|-----------------------|-----------------------------|----------------------------|--------------------------------------|------------------------|-------------------------------------------------|--|--|
| Test Method:          | ANSI C63.10: 2013           |                            |                                      |                        |                                                 |  |  |
| Frequency Range:      | 9 kHz to 25 GHz             |                            |                                      |                        |                                                 |  |  |
| Measurement Distance: | 3 m                         |                            |                                      |                        |                                                 |  |  |
| Antenna Polarization: | Horizontal & Vertical       |                            |                                      |                        |                                                 |  |  |
| Operation mode:       | Refer to item               | n 4.1                      | (                                    | <b>((</b> )            |                                                 |  |  |
|                       | Frequency<br>9kHz- 150kHz   | Detector<br>Quasi-peal     | RBW                                  | VBW<br>1kHz            | Remark<br>Quasi-peak Value                      |  |  |
| Receiver Setup:       | 150kHz-<br>30MHz            | Quasi-peal                 | 9kHz                                 | 30kHz                  | Quasi-peak Value                                |  |  |
|                       | 30MHz-1GHz<br>Above 1GHz    | Quasi-peal<br>Peak<br>Peak | < 120KHz<br>1MHz<br>1MHz             | 300KHz<br>3MHz<br>10Hz | Quasi-peak Value<br>Peak Value<br>Average Value |  |  |
|                       |                             | Feak                       |                                      |                        | 6                                               |  |  |
|                       | Frequen                     | -                          | Field Stro<br>(microvolts            | /meter)                | Measurement<br>Distance (meters)                |  |  |
|                       | 0.009-0.4                   |                            | 2400/F(l<br>24000/F(                 |                        | 300                                             |  |  |
|                       | 1.705-3                     |                            | 30                                   | (1112)                 | 30                                              |  |  |
|                       | 30-88                       |                            | 100                                  |                        | 3                                               |  |  |
|                       | 88-216                      |                            | 150                                  |                        | 3                                               |  |  |
| Limit:                | 216-960                     |                            | 200                                  |                        | 3                                               |  |  |
|                       | Above 9                     | 60                         | 500                                  | 3                      |                                                 |  |  |
|                       |                             | J)                         |                                      |                        |                                                 |  |  |
|                       | Frequency                   |                            | Field Strength<br>(microvolts/meter) |                        | ment<br>ce Detector<br>rs)                      |  |  |
|                       | Above 1GHz                  | , (                        | 500                                  | 3                      | Average                                         |  |  |
|                       | Above IGH2                  | 2                          | 5000                                 | 3                      | Peak                                            |  |  |
|                       | For radiated                | emission                   | s below 30                           | OMHz                   |                                                 |  |  |
|                       | Distance = 3m Computer      |                            |                                      |                        |                                                 |  |  |
|                       | Pre -Amplifier              |                            |                                      |                        |                                                 |  |  |
| Test setup:           |                             |                            |                                      |                        |                                                 |  |  |
|                       |                             |                            |                                      |                        |                                                 |  |  |
|                       | 30MHz to 1GHz               |                            |                                      |                        |                                                 |  |  |

Page 18 of 42



|               | Report No.: TCT210517E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | <ul> <li>measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.</li> <li>Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level</li> <li>For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.</li> <li>Use the following spectrum analyzer settings: <ul> <li>(1) Span shall wide enough to fully capture the emission being measured;</li> <li>(2) Set RBW=120 kHz for f &lt; 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;</li> <li>(3) Set RBW = 1 MHz, VBW= 3MHz for f &gt; 1 GHz for peak measurement.</li> <li>For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.</li> </ul> </li> </ul> |
| Test mode:    | Refer to section 4.1 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test results: | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |


#### 6.7.2. Test Instruments

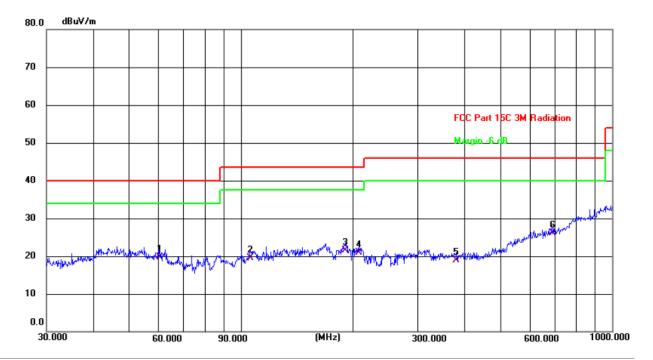
|                      | Radiated Em                              | ission Test Site | e (966)          |                                                                  |  |
|----------------------|------------------------------------------|------------------|------------------|------------------------------------------------------------------|--|
| Name of<br>Equipment | Manufacturer                             | Model            | Serial<br>Number | Calibration Due                                                  |  |
| Test Receiver        | ROHDE&SCHW<br>ARZ                        | ESIB7            | 100197           | Jul. 27, 2021                                                    |  |
| Spectrum Analyzer    | ROHDE&SCHW<br>ARZ                        | FSQ40            | 200061           | Sep. 11, 2021                                                    |  |
| Pre-amplifier        | EM Electronics<br>Corporation<br>CO.,LTD | EM30265          | 07032613         | Sep. 02, 2021<br>Sep. 02, 2021<br>Sep. 05, 2022<br>Sep. 04, 2022 |  |
| Pre-amplifier        | HP                                       | 8447D            | 2727A05017       |                                                                  |  |
| Loop antenna         | ZHINAN                                   | ZN30900A         | 12024            |                                                                  |  |
| Broadband Antenna    | Schwarzbeck                              | VULB9163         | 340              |                                                                  |  |
| Horn Antenna         | Schwarzbeck                              | BBHA 9120D       | 631              | Sep. 04, 2022                                                    |  |
| Horn Antenna         | A-INFO                                   | LB-180400-KF     | J211020657       | Sep. 04, 2022                                                    |  |
| Antenna Mast         | Keleto                                   | RE-AM            | N/A              |                                                                  |  |
| Line-4               | Line-4 TCT                               |                  | N/A              | Sep. 02, 2021                                                    |  |
| Line-8               | тст                                      | RE-01            | N/A              | Jul. 27, 2021                                                    |  |
| EMI Test Software    | Shurple<br>Technology                    | EZ-EMC           | N/A              | N/A                                                              |  |
| (C)                  |                                          |                  |                  |                                                                  |  |

Page 21 of 42

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

#### 6.7.3. Test Data




| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|
| 1   | 51.8430            | 6.60              | 13.53            | 20.13             | 40.00             | -19.87         | QP       | Р   |        |
| 2   | 109.0285           | 6.70              | 11.18            | 17.88             | 43.50             | -25.62         | QP       | Р   |        |
| 3   | 167.2366           | 3.96              | 13.19            | 17.15             | 43.50             | -26.35         | QP       | Ρ   |        |
| 4   | 212.2693           | 8.05              | 11.11            | 19.16             | 43.50             | -24.34         | QP       | Р   |        |
| 5   | 349.2500           | 9.44              | 15.27            | 24.71             | 46.00             | -21.29         | QP       | Р   |        |
| 6 * | 504.7062           | 8.98              | 19.14            | 28.12             | 46.00             | -17.88         | QP       | Р   |        |
| < < |                    |                   | ~                |                   |                   |                |          |     |        |

Page 22 of 42

Report No.: TCT210517E041

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

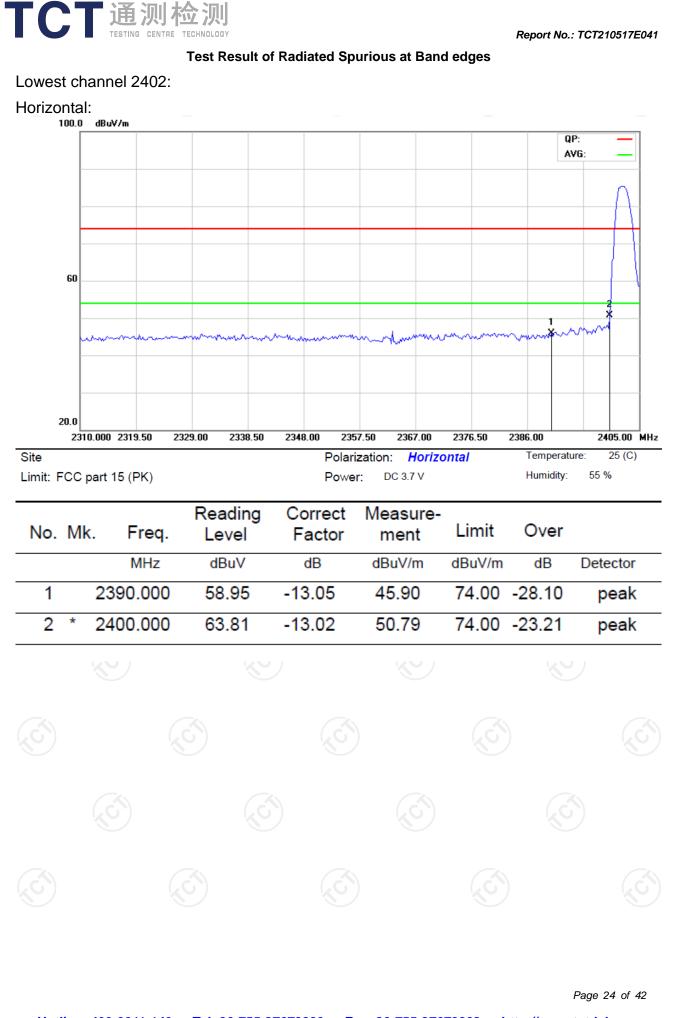
#### Vertical:

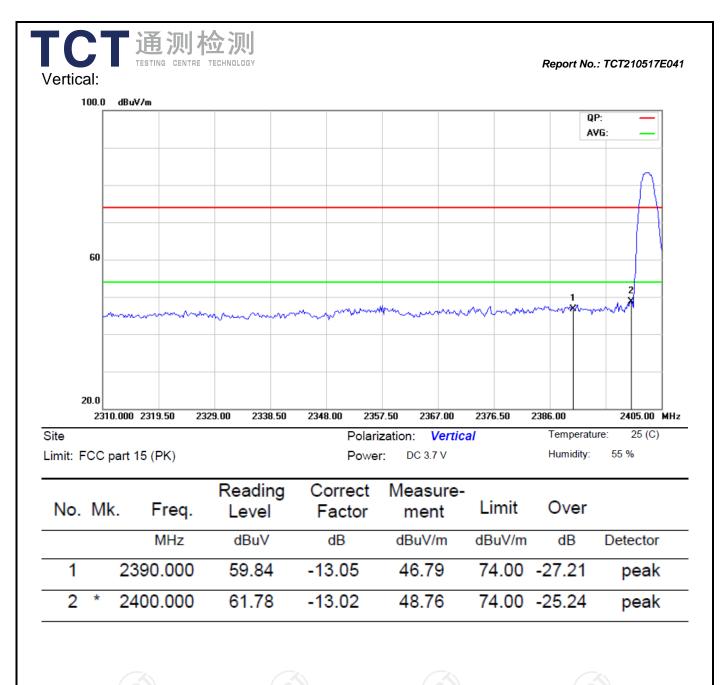


| Site   |                    |                   |                  |                   | Polar             | rization:      | Verti    | cal |        | Temperature | 25.1(C) |
|--------|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|--------|-------------|---------|
| Limit: | FCC Part 150       | C 3M Radi         | ation            |                   | Powe              | er: D(         | C 3.7 V  |     |        | Humidity:   | 52 %    |
| No.    | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F | Remark |             |         |
| 1      | 60.2801            | 7.19              | 12.49            | 19.68             | 40.00             | -20.32         | QP       | Ρ   |        |             |         |
| 2      | 106.0126           | 8.65              | 10.92            | 19.57             | 43.50             | -23.93         | QP       | Р   |        |             |         |
| 3      | 191.0738           | 10.27             | 11.22            | 21.49             | 43.50             | -22.01         | QP       | Р   |        |             |         |
| 4      | 207.8501           | 9.99              | 10.94            | 20.93             | 43.50             | -22.57         | QP       | Р   |        |             |         |
| 5      | 381.2485           | 2.84              | 16.09            | 18.93             | 46.00             | -27.07         | QP       | Ρ   |        |             |         |
| 6 *    | 689.5644           | 3.82              | 22.35            | 26.17             | 46.00             | -19.83         | QP       | Ρ   |        |             |         |

**Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

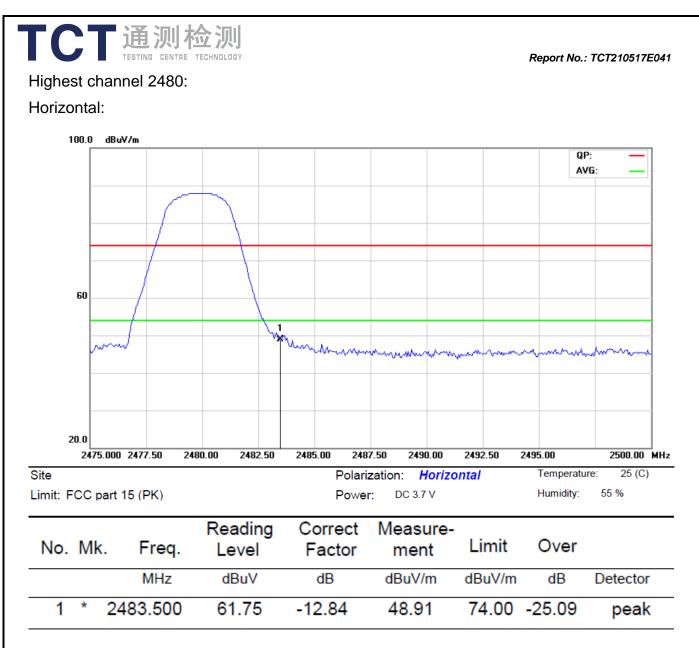

3. Freq. = Emission frequency in MHz


Measurement  $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dB $\mu$ V/m) = Limit stated in standard Margin (dB) = Measurement (dB $\mu$ V/m) – Limits (dB $\mu$ V/m)

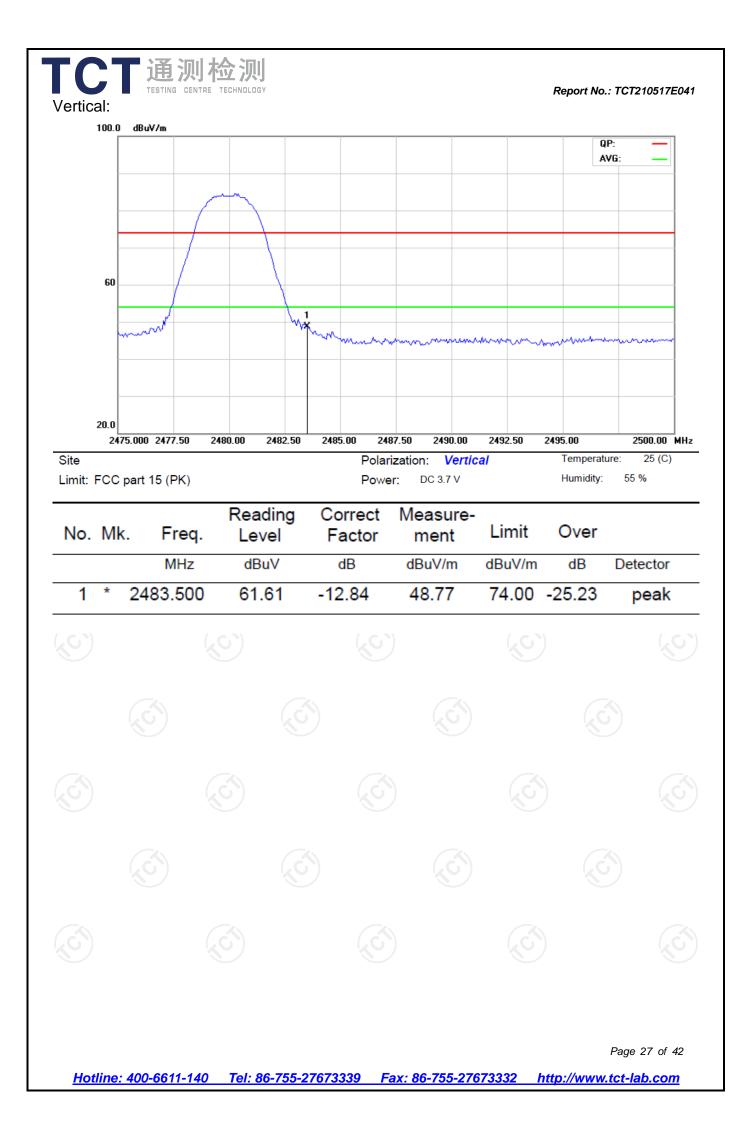
\* is meaning the worst frequency has been tested in the test frequency range

Page 23 of 42

Report No.: TCT210517E041






Page 25 of 42

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com







#### Above 1GHz

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |         |         | ADOVC  |       |    |    |    |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|---------|---------|--------|-------|----|----|----|--------|
| Frequency (MHz)         Ant. Pol.<br>H/V         reading<br>(dBµV)         reading<br>(dBuV)         Factor<br>(dB/m)         Peak<br>(dBµV/m)         AV<br>(dBµV/m)         Peak<br>(dBµV/m)         AV<br>(dBµV/m)         Margin<br>(dBµV/m)           4804         H         44.76          0.66         45.42          74         54         -8.58           7206         H         33.09          9.50         42.59          74         54         -11.41            H          0.66         45.52          74         54         -8.58           7206         V         44.86          0.66         45.52          74         54         -8.48           7206         V         32.24          9.50         41.74          74         54         -12.26 | Low chann | el: 2402 N | IHz     |         |        |       |    |    |    |        |
| 7206         H         33.09          9.50         42.59          74         54         -11.41            H             74         54         -11.41            H                 4804         V         44.86          0.66         45.52          74         54         -8.48           7206         V         32.24          9.50         41.74          74         54         -12.26                                                                                                                                                                                                                                                                                                                                                                         |           |            | reading | reading | Factor | Peak  | AV |    |    |        |
| H                                                                                                   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4804      | Н          | 44.76   |         | 0.66   | 45.42 |    | 74 | 54 | -8.58  |
| 4804         V         44.86          0.66         45.52          74         54        8.48           7206         V         32.24          9.50         41.74          74         54         -12.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7206      | Н          | 33.09   |         | 9.50   | 42.59 |    | 74 | 54 | -11.41 |
| 7206 V 32.24 9.50 41.74 74 54 -12.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | Н          |         |         |        |       |    |    |    |        |
| 7206 V 32.24 9.50 41.74 74 54 -12.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |            |         |         |        |       |    |    |    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4804      | V          | 44.86   |         | 0.66   | 45.52 | ×  | 74 | 54 | -8.48  |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7206      | V          | 32.24   |         | 9.50   | 41.74 |    | 74 | 54 | -12.26 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | V          |         |         |        |       |    |    |    |        |

#### Middle channel: 2440 MHz

通测检测 TESTING CENTRE TECHNOLOGY

| Frequency | Ant Pol | Peak              | AV                | Correction       | Emissio          | on Level | Peak limit | AV/ limit | Margin |
|-----------|---------|-------------------|-------------------|------------------|------------------|----------|------------|-----------|--------|
| (MHz)     | H/V     | reading<br>(dBµV) | reading<br>(dBµV) | Factor<br>(dB/m) | Peak<br>(dBµV/m) |          |            | (dBµV/m)  | (dB)   |
| 4880      | Н       | 45.74             |                   | 0.99             | 46.73            |          | 74         | 54        | -7.27  |
| 7320      | Н       | 34.81             |                   | 9.87             | 44.68            |          | 74         | 54        | -9.32  |
|           | Н       |                   |                   | ·                | (                |          |            |           |        |
| ļ         |         |                   | K.                |                  |                  |          |            |           |        |
| 4880      | V       | 43.18             |                   | 0.99             | 44.17            |          | 74         | 54        | -9.83  |
| 7320      | V       | 32.79             |                   | 9.87             | 42.66            |          | 74         | 54        | -11.34 |
| ~~ ···    | V       |                   |                   |                  |                  |          |            |           |        |
|           |         |                   |                   |                  |                  |          |            |           |        |

#### High channel: 2480 MHz

| Frequency | Ant Pol | Peak              | AV                | Correction       | Emissic          | on Level | Peak limit | AV/ limit | Margin |  |
|-----------|---------|-------------------|-------------------|------------------|------------------|----------|------------|-----------|--------|--|
| (MHz)     | H/V     | reading<br>(dBµV) | reading<br>(dBµV) | Factor<br>(dB/m) | Peak<br>(dBµV/m) |          |            | (dBµV/m)  | (dB)   |  |
| 4960      | Н       | 43.09             |                   | 1.33             | 44.42            | <u> </u> | 74         | 54        | -9.58  |  |
| 7440      | Н       | 34.15             |                   | 10.22            | 44.37            | <u> </u> | 74         | 54        | -9.63  |  |
|           | Н       |                   |                   |                  |                  |          |            |           |        |  |
|           |         |                   | r                 |                  |                  | [        |            |           |        |  |
| 4960      | V       | 44.54             |                   | 1.33             | 45.87            |          | 74         | 54        | -8.13  |  |
| 7440      | V       | 34.76             |                   | 10.22            | 44.98            |          | 74         | 54        | -9.02  |  |
| <b>_</b>  | V       |                   |                   | V                | /                |          |            |           |        |  |

#### Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB $\mu$ V/m)-Average limit (dB $\mu$ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

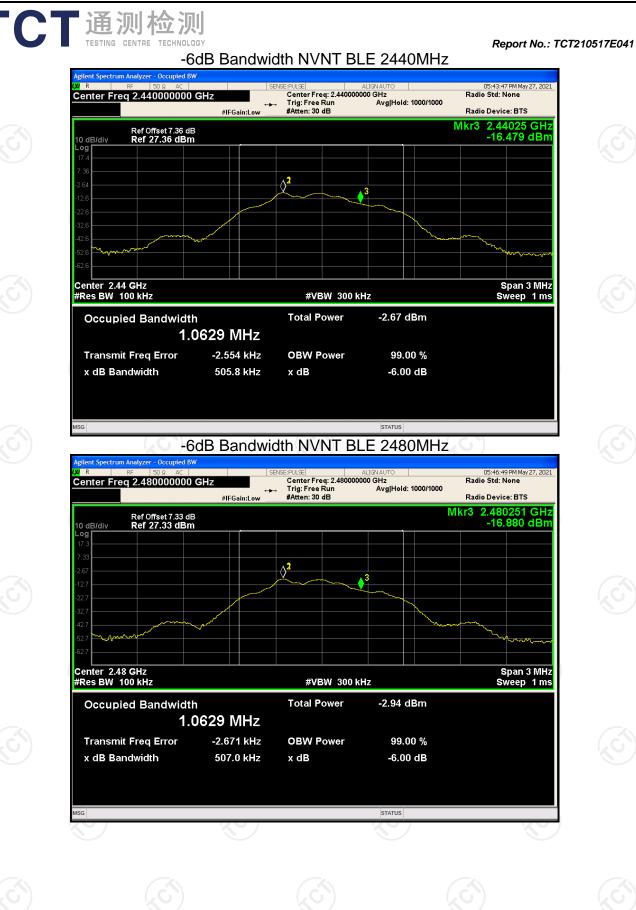
6. All the restriction bands are compliance with the limit of 15.209.

## **Appendix A: Test Result of Conducted Test**

### **Maximum Conducted Output Power**

| Condition | Mode | Frequency<br>(MHz) | Conducted<br>Power (dBm) | Duty<br>Factor<br>(dB) | Total<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|------|--------------------|--------------------------|------------------------|-------------------------|----------------|---------|
| NVNT      | BLE  | 2402               | -8.161                   | 0                      | -8.161                  | 30             | Pass    |
| NVNT      | BLE  | 2440               | -8.107                   | 0                      | -8.107                  | 30             | Pass    |
| NVNT      | BLE  | 2480               | -8.338                   | 0                      | -8.338                  | 30             | Pass    |

## Power NVNT BLE 2402MHz ım Analyzer - Swept SA 04:43:36 PM May 2 TRACE 12 I F SENSE:PULSE Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.401 730 GHz -8.161 dBm Ref Offset 7.28 dB Ref 20.00 dBm 10 dB/div Log **♦**<sup>1</sup> Center 2.402000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS


| ef Offset 7.36 dB                                  | PNO: Fast<br>IFGain:Low<br>#Atten: 30 dB               | ALIGNAUTO<br>Avg Type: Log-Pwr<br>Avg Hold: 1000/1000 | 05:43:17 PM May 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWWW<br>DET P N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ef Offset 7.36 dB<br>ef 20.00 dBm                  |                                                        | Mkr1                                                  | 2.439 784 GHz<br>-8.107 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | 1                                                      |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       | and the second sec |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 000 GHz<br>MHz                                     | #VBW 6.0 MHz                                           | Sweep                                                 | Span 6.000 MHz<br>I.000 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ( <u>,</u> G`) F                                   | ower NVNT BLE                                          |                                                       | <b>`</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nalyzer - Swept SA<br>⊮ 50 Ω AC<br>2.480000000 GHz | SENSE:PULSE<br>PN0: Fast ↔ Trig: Free Run              | ALIGNAUTO<br>Avg Type: Log-Pwr<br>Avg Hold: 1000/1000 | 05:47:07 PM May 27, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE MWWWW<br>DET P.N.N.N.N.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of Offset 7.33 dB                                  | PNO: Fast ↔ Trig: Free Run<br>IFGain:Low #Atten: 30 dB |                                                       | 2.479 688 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ef 20.00 dBm                                       |                                                        |                                                       | -8.338 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    | <sup>1</sup>                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                    |                                                        |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 000 GHz                                            | 49/D34/ 6 0 MIL-                                       |                                                       | Span 6.000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 000 GHz<br>MHz                                     | #VBW 6.0 MHz                                           | Sweep -                                               | Span 6.000 MHz<br>.000 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 000 GHz<br>MHz                                     | #VBW 6.0 MHz                                           |                                                       | Span 6.000 MHz<br>1.000 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 000 GHz<br>MHz                                     | #VBW 6.0 MHz                                           |                                                       | Span 6.000 MHz<br>I.000 ms (1001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

#### Frequency Limit -6 dB Bandwidth -6 dB Bandwidth Mode Condition Verdict (MHz) (MHz) (MHz) 0.506 0.5 **NVNT** BLE 2402 Pass 0.5 NVNT 2440 0.506 Pass BLE 2480 0.507 **NVNT** BLE 0.5 Pass -6dB Bandwidth NVNT BLE 2402MHz

| Center Freq 2                 | 50 Ω AC<br>2.402000000 C          | GHz<br>#IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Center Freq: 2.402000<br>Trig: Free Run<br>#Atten: 30 dB | ALIGNAUTO<br>1000 GHz<br>Avg Hold: 1000/10 | Radio Std: |                          |
|-------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------|------------|--------------------------|
| 10 dB/div R                   | ef Offset 7.28 dB<br>ef 27.28 dBm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            | Mkr3 2.40  |                          |
| Log<br>17.3<br>7.28           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
| -2.72<br>-12.7<br>-22.7       |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ <sup>2</sup>                                          | 3                                          |            |                          |
| -32.7                         |                                   | mar and a second s |                                                          |                                            | www.       |                          |
| -52.7                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            | mon                      |
| Center 2.402 0<br>#Res BW 100 | GHz<br>kHz                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #VBW 3001                                                | KHz                                        | S          | Span 3 MHz<br>Sweep 1 ms |
| Occupied                      | Bandwidth                         | 621 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Power                                              | -2.74 dBm                                  |            |                          |
| Transmit Fi                   | req Error                         | -4.337 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OBW Power                                                | 99.00 %                                    |            |                          |
| x dB Bandv                    | vidth                             | 506.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x dB                                                     | -6.00 dB                                   |            |                          |
| MSG                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | STATUS                                     |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |
|                               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                            |            |                          |

#### -6dB Bandwidth

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

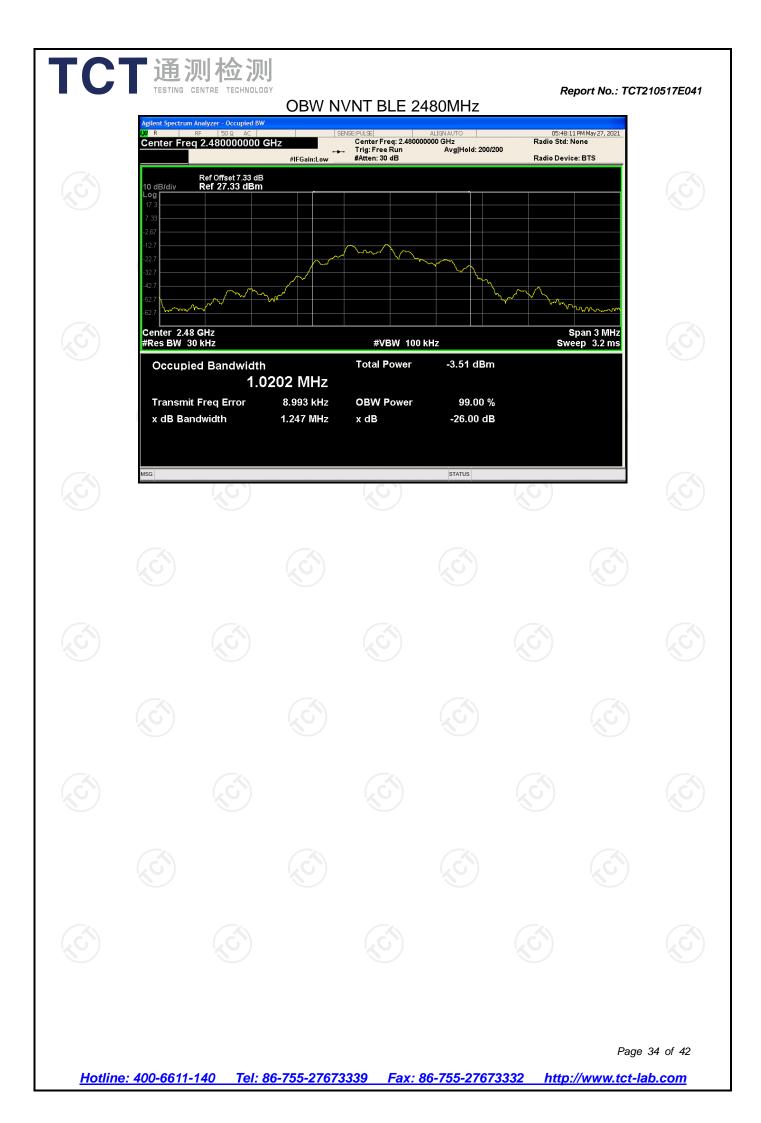


Page 32 of 42

# Occupied Channel Bandwidth

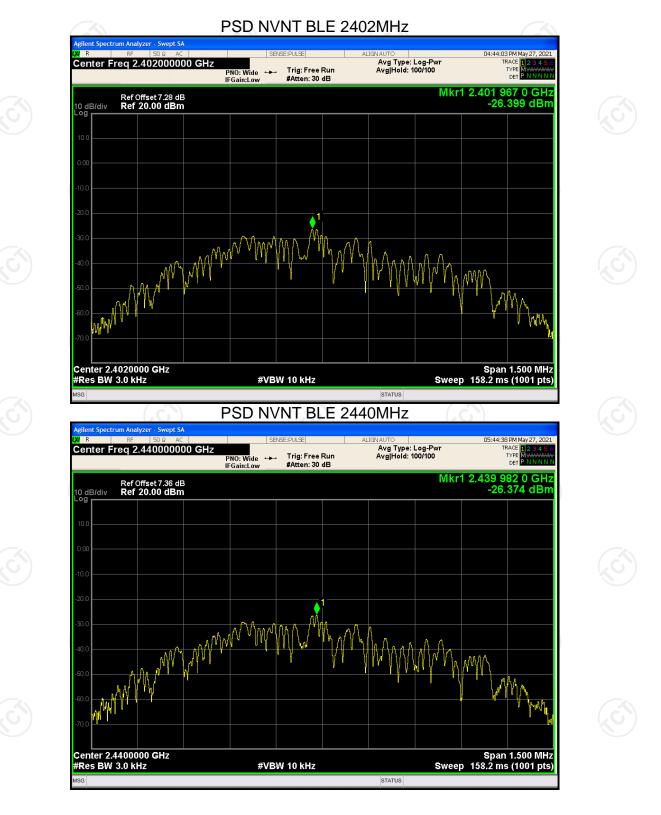
ISG

| Condition | Mode | Frequency (MHz) | 99% OBW (MHz) |
|-----------|------|-----------------|---------------|
| NVNT      | BLE  | 2402            | 1.020178347   |
| NVNT      | BLE  | 2440            | 1.022257643   |
| NVNT      | BLE  | 2480            | 1.020165448   |



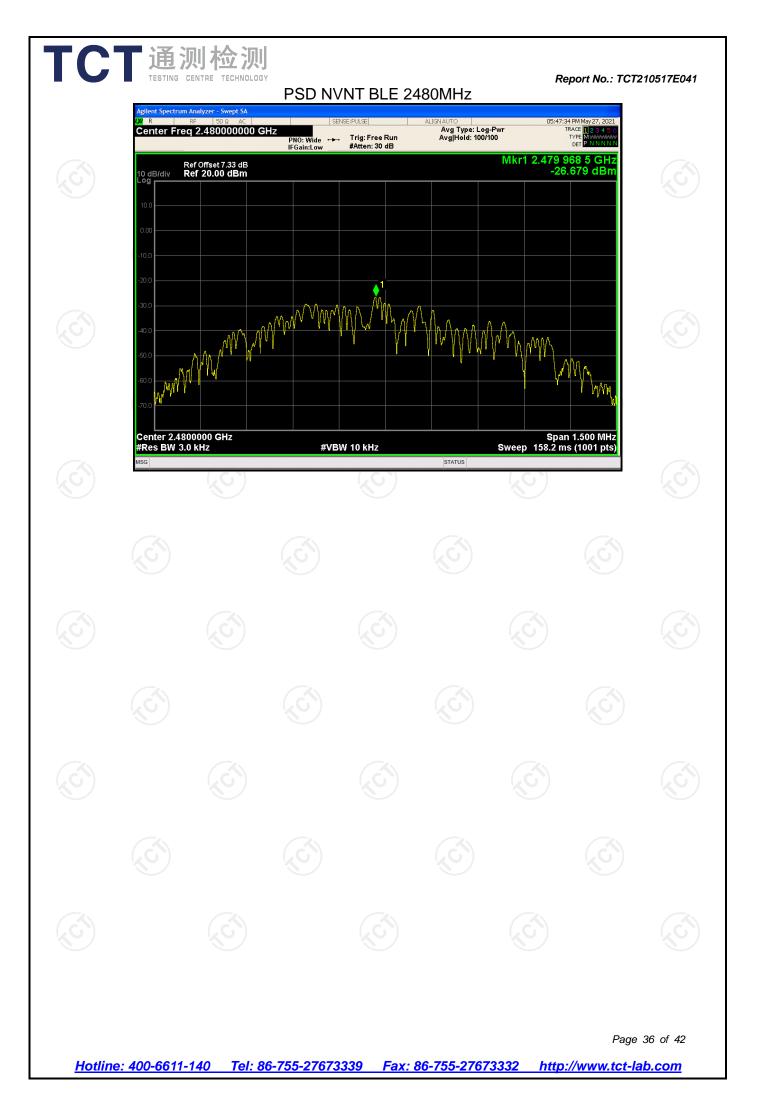



STATUS




Page 33 of 42




# 

|           |      |                 | •             | •                |         |
|-----------|------|-----------------|---------------|------------------|---------|
| Condition | Mode | Frequency (MHz) | Max PSD (dBm) | Limit (dBm/3KHz) | Verdict |
| NVNT      | BLE  | 2402            | -26.399       | 8                | Pass    |
| NVNT      | BLE  | 2440            | -26.374       | 8                | Pass    |
| NVNT      | BLE  | 2480            | -26.679       | 8                | Pass    |

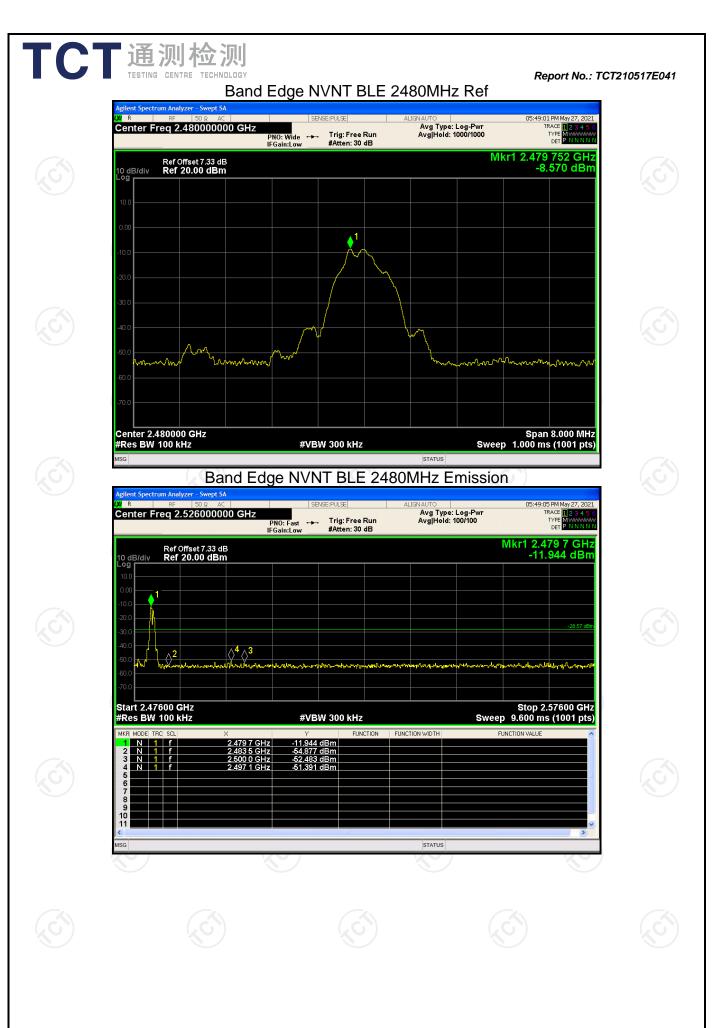


#### **Maximum Power Spectral Density Level**

Page 35 of 42



| Condition |     | Frequency (MHz) | Max Value (dBc) | · / | Verdict |
|-----------|-----|-----------------|-----------------|-----|---------|
| NVNT      | BLE | 2402            | -44.29          | -20 | Pass    |
| NVNT      | BLE | 2480            | -42.82          | -20 | Pass    |




#### Band Edge

MSG

Page 37 of 42

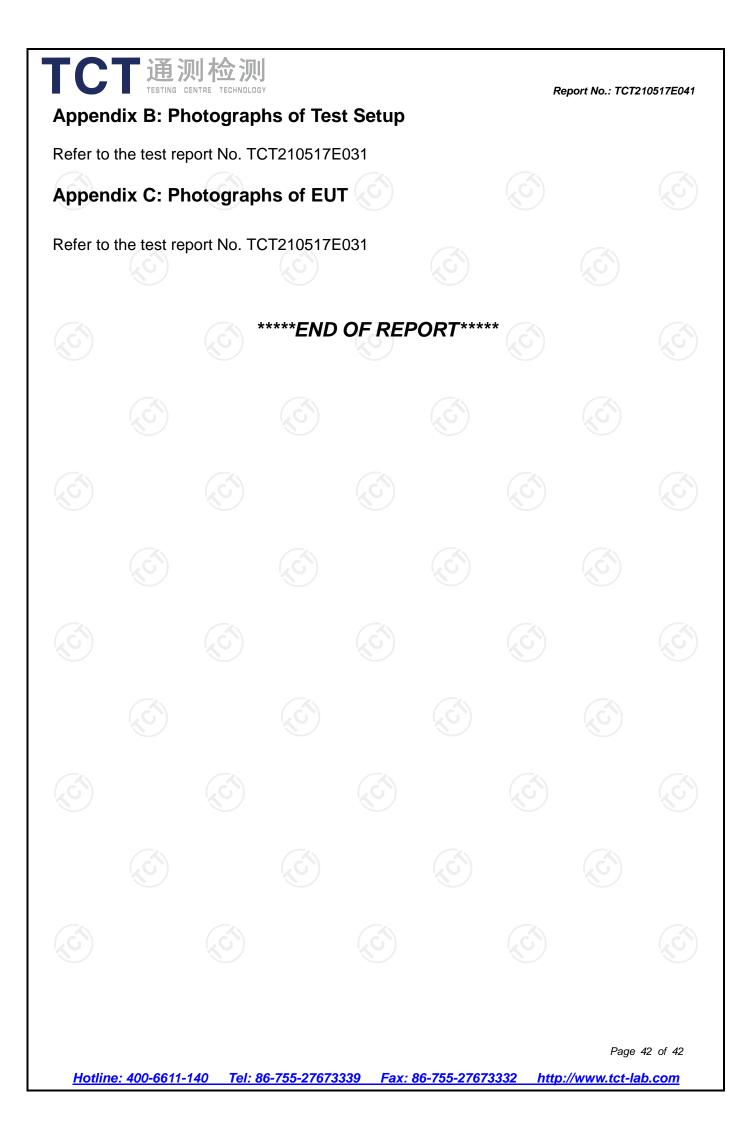
STATUS




Page 38 of 42




| [ | Condition | Mode | Frequency (MHz) | Max Value (dBc) | Limit (dBc) | Verdict |
|---|-----------|------|-----------------|-----------------|-------------|---------|
|   | NVNT      | BLE  | 2402            | -31.04          | -20         | Pass    |
|   | NVNT      | BLE  | 2440            | -31.86          | -20         | Pass    |
|   | NVNT      | BLE  | 2480            | -31.37          | -20         | Pass    |






#### Page 39 of 42





