

TEST REPORT

Report Number: 104685526MPK-007 Project Number: G104685526 January 06, 2022

> Testing performed on the AgeLOC LumiSpa iO **Model Number: LS2R**

> > FCC ID: 2AZ3A-LS2R IC: 26225-LS2R

> > > to

FCC Part 15 Subpart C (15.225) ISED RSS-210 Issue 10

for

NSE Products, Inc.

Test Performed by:

Intertek 1365 Adams Court Menlo Park, CA 94025 USA **Test Authorized by:**

NSE Products, Inc. 75 W Center St Provo, UT 84601 USA

Prepared by:

Gabriel Carreon

Date: January 06, 2022

Reviewed by:

Date: January 06, 2022

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

	Report No. 104685526MPK-007				
Equipment Under Test: AgeLOC LumiSpa iO					
Model Number:	LS2R				
Applicant:	NSE Products, Inc.				
Contact:	Spencer Jarvis				
Address:	NSE Products, Inc. 75 W Center St Provo, UT 84601				
Country:	USA				
Tel. Number:	(801) 345-2392				
Email:	sjarvis@nuskin.com				
Applicable Regulation: FCC Part 15 Subpart C (15.225) ISED RSS-210 Issue 10					
Date of Test:	December 27, 2021 – December 29, 2021				

We	attest to	the	accuracy	of this	report:
vve	ullest lo	une	uccurucv	טו נוווס	I EDUIL

Gabriel Carreon

EMC Project Engineer

Krishna K Vemuri EMC Manager

Page 2 of 23

TABLE OF CONTENTS

1.0	Sumr	nary of Tests	4
2.0	Gene	ral Description	5
	2.1	Product Description	
	2.2	Related Submittal(s) Grants	
	2.3	Test Methodology	
	2.4	Test Facility	
	2.5	Measurement Uncertainty	
3.0	Syste	m Test Configuration	7
	3.1	Support Equipment	7
	3.2	Block Diagram of Test Setup	7
	3.3	Justification	9
	3.4	Software Exercise Program	9
	3.5	Mode of Operation during test	9
	3.6	Modifications required for Compliance	9
	3.7	Additions, deviations and exclusions from standards	9
4.0	Meas	surement Results	10
	4.1	Field Strength of Fundamental and Radiated Emissions Outside the band	10
	4.2	Frequency Tolerance	17
	4.3	Occupied Bandwidth	19
	4.4	AC Line Conducted Emission	21
5.0	List o	f test equipment	22
6.0	Docu	ment History	23

1.0 Summary of Tests

TEST	REFERENCE FCC 15.225	REFERENCE RSS-210	RESULTS
Field Strength of Fundamental	15.225(a)	B.6	Complies
Radiated Emissions Outside the band	15.225(b), 15.225(c), 15.225(d), 15.209	B.6	Complies
Frequency Tolerance of the Carrier	15.225(e)	B.6	Complies
Line Conducted Emissions	15.207	RSS-GEN	Not applicable. Radio does not function while charging.
Occupied Bandwidth	15.215	RSS-GEN	Complies
Antenna requirement	15.203	RSS-GEN	Complies ¹

¹ The EUT utilizes an internal Antenna.

EUT receive date: November 22, 2021

EUT receive condition: The pre-production version of the EUT was received in good condition with

no apparent damage. As declared by the Applicant, it is identical to the

production units.

Test start date: December 27, 2021 **Test completion date:** December 29, 2021

File: 104685526MPK-007 Page 4 of 23

2.0 General Description

2.1 Product Description

NSE Products, Inc. supplied the following description of the EUT:

NSE Products, Inc. AgeLOC LumiSpa iO is a facial cleaning device.

This test report covers only the RFID radio.

Information about the RFID radio is presented below:

Applicant name & address	NSE Products, Inc. 75 W Center St Provo, UT 84601 USA
Contact info / Email	Spencer Jarvis / sjarvis@nuskin.com
Model	LS2F
FCC Identifier	2AZ3A-LS2R
IC Identifier	26225-LS2R
Operating Frequency	13.56 MHz
Number of Channels	1
Type of Modulation	ASK Modulation
Antenna Type	Internal Antenna

2.2 Related Submittal(s) Grants

None

2.3 Test Methodology

Radiated tests were performed at an antenna to EUT distance of 10 meters, unless stated otherwise in this test report. All other measurements were made in accordance with the procedures in part 2 of CFR 47 7, ANSI C63.10: 2013, RSS-210 Issue 10 & RSS-GEN Issue 5.

2.4 Test Facility

The radiated emission test site and conducted measurement facility used to collect the data is 10m semi-anechoic chamber located in Menlo Park, California. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada (Site # 2042L-1).

2.5 Measurement Uncertainty

Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

Estimated Measurement Uncertainty

Measurement	Expanded Uncertainty (k=2)				
	0.15 MHz – 1 GHz	1 GHz – 2.5 GHz	> 2.5 GHz		
RF Power and Power Density – antenna conducted	-	0.7 dB	-		
Unwanted emissions - antenna conducted	1.1 dB	1.3 dB	1.9 dB		
Bandwidth – antenna conducted	-	30 Hz	-		

Measurement	Expanded Uncertainty (k=2)				
	0.15 MHz – 30MHz				
Radiated emissions	-	4.7	5.1 dB		
AC mains conducted emissions	2.1 dB	-	-		

3.0 System Test Configuration

3.1 Support Equipment

Equipment Under Test						
Type Model # Quantity S/N						
Facial Cleaning Device	LS2R	1	031			

3.2 Block Diagram of Test Setup

The diagram shown below details the interconnection of the EUT and support equipment. For specific layout, refer to the test configuration photograph in the relevant section of this report.

EUT AgeLOC LumiSpa iO

S = Shielded	F = With Ferrite
U = Unshielded	m = Length in Meters

EUT Photo

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table. The EUT was configured to continuously transmit. he highest clock frequency used is 2.4GHz, so radiated emissions were performed up to 18GHz for FCC.

3.4 Software Exercise Program

None

3.5 Mode of Operation during test

The LS2F was set up to continuously transmitting at 13.56MHz.

3.6 Modifications required for Compliance

No modifications were made by the manufacturer to bring the EUT into compliance.

3.7 Additions, deviations and exclusions from standards

No additions, deviations or exclusion have been made from standard.

4.0 Measurement Results

4.1 Field Strength of Fundamental and Radiated Emissions Outside the band

4.1.1 Requirements

FCC Rules 15.225

- a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter (84 dBuV) at 30 meters.
- b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in §15.209.

§15.209 Radiated emission limits; general requirements.

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

4.1.2 Procedure

Radiated Measurements Below 30 MHz

During the test the EUT is rotated and the measuring antenna angles are varied during the search for maximum signal level.

Radiated emissions are taken at ten meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Measurements for below 30 MHz were made at 10 meters. Data results below are corrected for distance back to 30 meters.

Radiated Measurements Above 30 MHz

During the test the EUT is rotated and the measuring antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at ten meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Measurements for above 30 MHz were made at 10 meters.

Radiated emission measurements were performed from 9kHz to 1 GHz. Analyzer resolution is:

200Hz or greater for 9kHz to 150kHz 9 kHz or greater for 150kHz to 30 MHz 120 kHz or greater for 30MHz to 1000 MHz For those frequencies quasi-peak detector applies

Data includes of the worst-case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation is as follows:

FS = RA + AF + CF - AG - DCF

Where FS = Field Strength in dB (μ V/m)

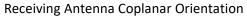
RA = Receiver Amplitude (including preamplifier) in dB (μ V)

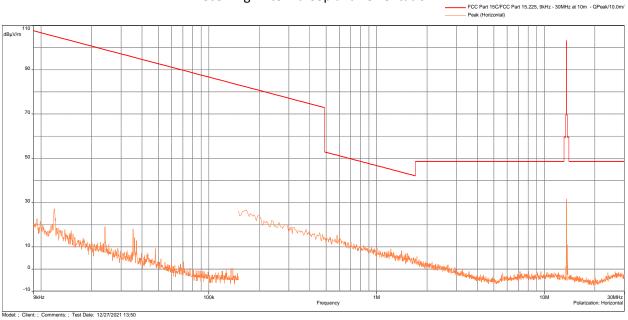
CF = Cable Attenuation Factor in dB

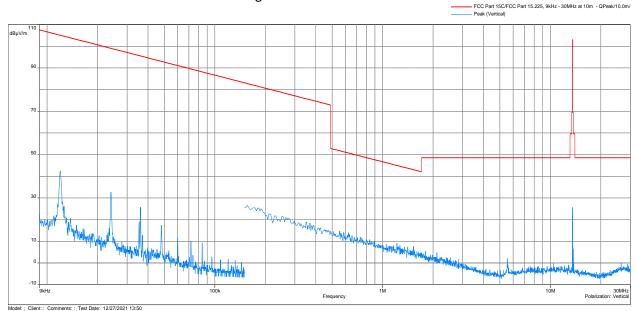
AF = Antenna Factor in dB (1/m)

AG = Amplifier Gain in dB

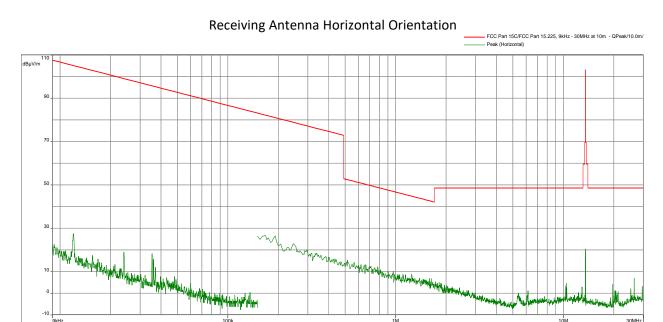
DCF = Distance Correction Factor

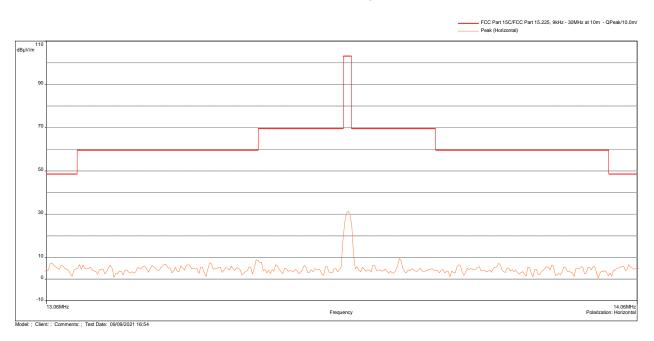

Note: FS was measured with loop antenna below 30MHz


File: 104685526MPK-007 Page 11 of 23


4.1.3 Test Result 15.225 (a) (b) (c) (d) and 15.209

Radiated Spurious Emissions from 9 kHz to 30MHz, EUT Upright (X-Axis)

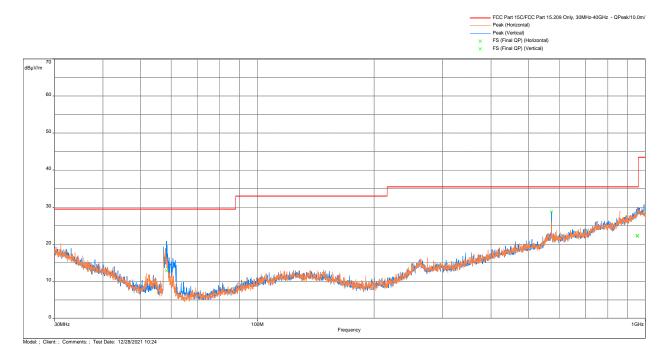

Receiving Antenna Coaxial Orientation


File: 104685526MPK-007 Page 12 of 23

Model: ; Client: ; Comments: ; Test Date: 12/27/2021 15:36

Test Result 15.225 (a)(b)(c) Radiated Spurious Emissions Mask

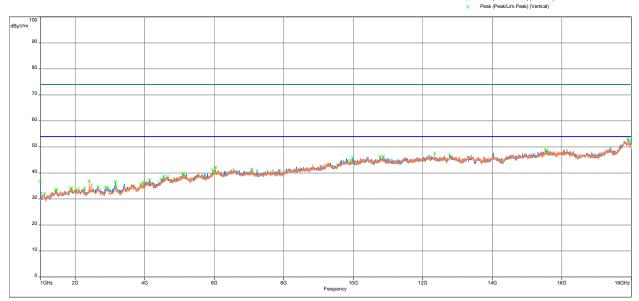
Frequency	Peak FS	Limit@10m	Margin	Angle (°)	Polarity	Correction
(MHz)	dB(uV/m)	dB(uV/m)	dB	Aligie ()		dB
13.56	31.73	103.1	-71.37	5.75	Coplanar	-17.82


Note: Correction = AF+CF-AG

Note: DCF: Distance Correction Factor to normalize from 3m to 10m

File: 104685526MPK-007 Page 13 of 23

Radiated Spurious Emissions from 30 to 1000 MHz

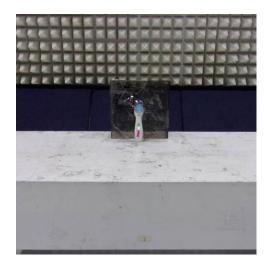

Freq (MHz)	Peak FS @10m dB(uV/m)	Limit @10m dB(uV/m)	Margin (dB)	Height (m)	Azimuth (Deg)	Polarity	Correction (dB)
572.7264974	28.76	35.5	-6.74	1.91	270	Vertical	-3.58
952.6474097	22.35	35.5	-13.15	3.6	263.5	Horizontal	3.59
953.1379677	22.25	35.5	-13.25	2.48	30.5	Vertical	3.63
58.41214149	12.88	29.5	-16.62	2.72	343	Vertical	-20.84

Note: Correction = AF + CF -AG

Radiated Spurious Emissions from 1 to 18 GHz, Peak Scan vs Avg and Peak Limits

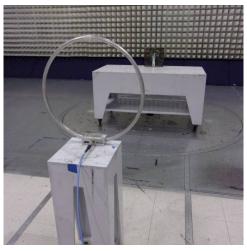
Freq (MHz)	Peak dB(uV/m)	Avg Limit dB(uV/m)	Margin (dB)	Height (m)	Azimuth (Deg)	Polarity	Correction (dB)
17901.97	53.23	54	-0.77	3.01	45.25	Vertical	9.14
17942.77	52.5	54	-1.5	2.99	332.25	Horizontal	8.83

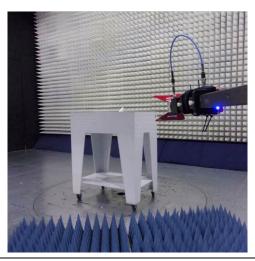
Note: Correction = AF + CF -AG


Result Complies

Note: The EUT was tested in horizontal and vertical orientations, worst case emissions were reported.

4.1.4 Test Configuration Photographs


The following photographs show the testing configurations used.



EMC Report for NSE Products, Inc. on the LS2R

File: 104685526MPK-007

4.2 Frequency Tolerance

4.2.1 Requirement FCC 15.225 (e)

The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

4.2.2 Procedure

The EUT was placed in the temperature chamber. The frequency counter was connected to the transmitter output. For each temperature, the carrier frequency was recorded with the battery fully charged.

EMC Report for NSE Products, Inc. on the LS2R

File: 104685526MPK-007 Page 17 of 23

4.2.3 Test Results 15.225 (e)

Nominal Frequency: 13559891.83 Hz

Voltage (DC)	Temperature (C)	Measured Frequency (Hz)	Deviation from Reference (Hz)	Deviation (%)
Fully charged Battery	50	13559834.13	57.7	0.00043
Fully charged Battery	40	13559851.36	40.47	0.00030
Fully charged Battery	30	13559877.80	14.03	0.00010
Fully charged Battery	20	13559891.83	0	0.00000
Fully charged Battery	10	13559871.39	20.44	0.00015
Fully charged Battery	0	13559898.64	6.81	0.00005
Fully charged Battery	-10	13559912.66	20.83	0.00015
Fully charged Battery	-20	13559923.81	31.98	0.00024

Page 18 of 23

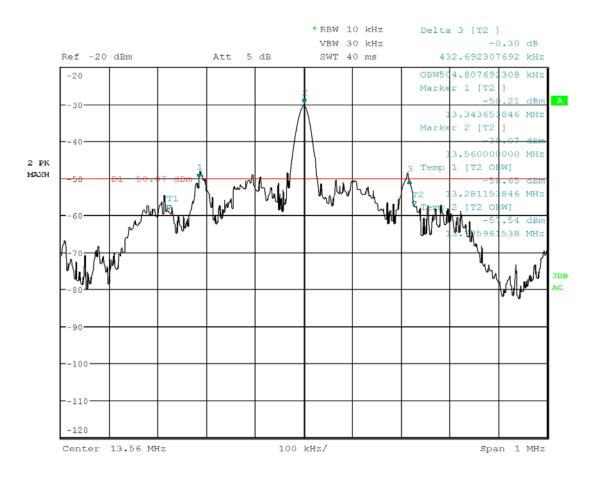
4.3 Occupied Bandwidth FCC 15.215

4.3.1 Requirements

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage.

4.3.2 Procedure

The EUT was setup to transmit in normal operating condition.


Measurements were made with the loop antenna in close proximity of the EUT. Following the procedures of ANSI 63.10: 2013, the 20dB bandwidth measurements were taken. The following plots show Occupied Bandwidth.

4.3.3 Test Results

Frequency	-20 dB Channel Bandwidth	99% Channel Bandwidth	
(MHz)	(Hz)	(kHz)	
13.56	432.692	504.808	

-20dB & 99% Channel Bandwidth Plot

Date: 28.DEC.2021 15:52:25

4.4 AC Line Conducted Emission FCC: 15.207; RSS-GEN;

4.4.1 Requirement

Frequency Band Class B Limit dB(it dB(μV)	Class A Limit dB(μV)		
MHz	Quasi-Peak	Average	Quasi-Peak	Average	
0.15-0.50	66 to 56 *	56 to 46 *	79	66	
0.50-5.00	56	46	73	60	
5.00-30.00	60	50	73	60	

Note: *Decreases linearly with the logarithm of the frequency. At the transition frequency the lower limit applies.

4.4.2 Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide a defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.10-2013.

4.4.3 Test Result

Results	Not applicable. RFID does not function during charging.

5.0 List of test equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	Model/Type	Asset #	Cal Int	Cal Due
EMI Receiver	Rohde and Schwarz	ESU40	ITS 00961	12	03/09/22
Spectrum Analyzer	Rohde and Schwarz	FSU	ITS 00913	12	05/24/22
Horn Antenna	ETS Lindgren	3117-PA	ITS 01365	12	07/07/22
Loop Antenna	EMCO	6512	ITS 001598	12	06/21/22
BI-Log Antenna	Teseq	CBL 6111D	ITS 01505	12	03/22/22
Pre-Amplifier	Sonoma Instrument	310N	ITS 01714	12	11/19/22
RF Cable	TRU Corporation	TRU CORE 300	ITS 01462	12	09/14/22
RF Cable	TRU Corporation	TRU CORE 300	ITS 01465	12	09/14/22
RF Cable	TRU Corporation	TRU CORE 300	ITS 01470	12	09/14/22
RF Cable	TRU Corporation	TRU CORE 300	ITS 01342	12	09/14/22
RF Cable	Mega Phase	EMC1-K1K1-236	ITS 01484	12	06/29/22
10m Semi-anechoic chamber	Panashield	10m Chamber	ITS 00984	36	07/29/23

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile		
BAT-EMC	Novio	3.20.0.14	ESU and ESR Intertek Emissions		
	Nexio	5.20.0.14	Template		

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewer Initials	Date	Change
1.0 / G104685526	GC	KV	January 06, 2022	Original document

END OF REPORT