

FCC TEST REPORT FCC ID: 2AZ2V-ZSE42

Product	: Water Leak XS Sensor					
Model Name	:	ZSE42				
Brand	:	ZOOZ				
Report No. : PTC23061400606E-FC03						
Prepared for						
Lorenz High Definition LLC						
230 Rt 206 STE 401, Flanders, NJ 07836, United States						

Prepared by

Precise Testing & Certification Co., Ltd.

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China.

TEST RESULT CERTIFICATION

Applicant's name : Lorenz High Definition LLC

Address : 230 Rt 206 STE 401, Flanders, NJ 07836, United States

Manufacture's name : Lorenz High Definition LLC

Address : 230 Rt 206 STE 401, Flanders, NJ 07836, United States

Product name : Water Leak XS Sensor

Model name : ZSE42

Test procedure : FCC CFR47 Part 1.1307(b)(1)

Test Date : Jul. 14, 2023 to Jul. 21, 2023

Date of Issue : Aug. 30, 2023

Test Result : PASS

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Simon Pu / Engineer

Simon

Technical Manager:

Ronnie Liu / Manager

Contents

	Page
2 TEST SUMMARY	4
3 GENERAL INFORMATION	5
3.1 GENERAL DESCRIPTION OF E.U.T.	5
4 RF EXPOSURE	6
4.1 REQUIREMENTS	6
4.2 THE PROCEDURES / LIMIT	
4.3 MPE CALCULATION METHOD	7
4.4 RF OUTPUT POWER	7
4.5 Test Result	8

2 Test Summary

Test Items	Test Requirement	Result		
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	15.247 (i)	PASS		
Remark:				
N/A: Not Applicable				

3 General Information

3.1 General Description of E.U.T.

Product Name	-	Water Leak XS Sensor				
Model Name	:	ZSE42				
Additional model	:	N/A				
Operation Frequency	:	908.40MHz 908.42MHz 916.00MHz 912 MHz 920 MHz				
Type of Modulation		2FSK for 908.40MHz 2FSK for 908.42MHz 2GFSK for 916.00MHz DSSS OQPSK LR for 912 MHz and 920 MHz				
Antenna installation	:	PCB Antenna				
Antenna Gain	:	-15.59 dBi				
Power supply Battery: CR2450 Voltage: 3.0V						
Hardware Version	•	1.0				
Software Version	:	1.0				

4 RF Exposure

Test Requirement : FCC Part 1.1307(b)(1)

Evaluation Method : KDB 447498 D01 General RF Exposure Guidance v06

4.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

4.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500	01.4	0.100	F/300	6
300-1300			F/300	0
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range	Electric Field	Magnetic Field	Power Density (S)	Averaging Time
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
	27.0	0.070	-	
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

4.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2} \theta \varphi$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

4.4 RF Output power

Freq.	Field strength(max)(dBuV/m)	EIRP (max)		
(MHz)		(dBm)		
(IVII 12)				
908.40	89.96	-5.24		
908.42	90.02	-5.18		
916.00	89.61	-5.59		

Note: EIRP=E-104.8+20logD,

Where

E is the electric field strength in dBµV/m.

EIRP is the equivalent isotropically radiated power in dBm.

d is the specified measurement distance in m.

where D=3, EIRP=E-95.2.

4.5 Test Result

Mode	Antenna Gain (numeric)	Max. Peak Output Power (dBm)		Max Tune Up Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)	Result
912MHz	0.03	0.480	0.50±1	1.412538	0.000008	0.608000	Pass
920MH	0.03	0.504	1.0±1	1.584893	0.000009	0.613333	Pass
908.40MH	0.03	-5.24	-5.00±1	0.398107	0.000002	0.605600	Pass
908.42MH	0.03	-5.18	-5.00±1	0.398107	0.000002	0.605613	Pass
916.00MH	0.03	-5.59	-5.50±1	0.354813	0.000002	0.610667	Pass

Simultaneous SAR Evaluation:

The device can't support simultaneous transmitter.

******THE END REPORT*****