

RF TEST REPORT

Foi

Lorenz High Definition LLC

Product Name: Motion Sensor Test Model(s).: ZSE18 800LR

Report Reference No. : POCE231116018RL002

FCC ID : 2AZ2V-ZSE18800

Applicant's Name : Lorenz High Definition LLC

Address : 230 Rt 206 STE 401, Flanders, New Jersey United States 07836

Testing Laboratory: Shenzhen POCE Technology Co., Ltd.

Address : 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology

Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247 & ANSI C63.10-2013

Date of Receipt : November 16, 2023

Date of Test : November 16, 2023 to December 15, 2023

Data of Issue : December 15, 2023

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE231116018RL002	December 15, 2023
	CE		
	200	200	DU

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Keren Huang	Stone In.	Tomchen
Keren Huang / Test Engineer	Stone Yin / Project Engineer	Tom Chen / Manager

1 TEST SUMMARY			CONTENTS	
1.1 TEST STANDARDS 1.2 SUMMARY OF TEST RESULT 2.3 GENERAL INFORMATION 2.1 CLIENT INFORMATION 2.2 DESCRIPTION OF TEST MODES. 2.4 DESCRIPTION OF TEST MODES. 2.5 EQUIPMENT SUSED DURING THE TEST. 2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY 2.7 AUTHORIZATIONS. 2.8 ANNOUNCEMENT 3.1 ANTENNA REQUIREMENT 3.1 ANTENNA REQUIREMENT 3.1 ANTENNA REQUIREMENT 4.1 CONDUCTED EMISSION AT AC POWER LINE 4.1.1 E.U.T. Operation: 4.1.2 TEST SETUP DIAGRAM: 4.2 TEST SETUP DIAGRAM: 4.3 TEST DIAGRAM: 4.4 MAXIMUM CONDUCTED DUTPUT POWER 4.1 LUT Operation: 4.2 TEST SETUP PHOTOS 4.3 TEST DIAGRAM: 4.4 POWER SPECTRUAL DENSITY 4.5 TEST SETUP DIAGRAM: 4.6 BAND EDGE EMISSION AT INC. 4.7 TEST SETUP PHOTOS 2.7 TEST SETUP PHOTOS			po po	_
1.2 SUMMARY OF TEST RESULT 2 GENERAL INFORMATION 2.1 CLIENT INFORMATION 2.2 DESCRIPTION OF DEVICE (EUT)	1	TEST		
2 GENERAL INFORMATION				
2.2 DESCRIPTION OF DEVICE (EUT). 2.3 DESCRIPTION OF TEST MODES. 2.4 DESCRIPTION OF SUPPORT UNITS. 2.5 EQUIPMENTS USED DURING THE TEST. 2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY. 2.7 AUTHORIZATIONS. 2.8 ANNOUNCEMENT. 3 EVALUATION RESULTS (EVALUATION). 3.1 ANTENNA REQUIREMENT. 3.1.1 CONCUSION. 4 RADIO SPECTRUM MATTER TEST RESULTS (RF). 4.1 CONDUCTED EMISSION AT AC POWER LINE. 4.1.1 E.U.T. Operation. 4.1.2 Test Setup Diagram. 4.1.3 Test Data. 4.2 OCCUPIED BANDWIDTH. 4.1.4 E.U.T. Operation. 4.2.1 E.U.T. Operation. 4.2.2 Test Setup Diagram. 4.3 MAXIMUM CONDUCTED OUTPUT POWER. 4.3 MAXIMUM CONDUCTED OUTPUT POWER. 4.3.1 E.U.T. Operation. 4.3.2 Test Setup Diagram. 4.3.3 Test Data. 4.4.4 POWER SPECTRAL DENSITY 4.4.5 Test Setup Diagram. 4.5.5 Test Data. 4.6 BAND SPECTRAL DENSITY 4.7 Test Setup Diagram. 4.7 Test Data. 4.8 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS. 4.9 Test Data. 4.10 Fest Deats. 4.11 E.U.T. Operation. 4.12 Test Setup Diagram. 4.13 Test Data. 4.14 Test Data. 4.15 Test Data. 4.16 E.U.T. Operation. 4.17 Test Data. 4.19 Test Data. 4.20 Test Setup Diagram. 4.31 Test Data. 4.41 E.U.T. Operation. 4.42 Test Setup Diagram. 4.43 Test Data. 4.44 Test Setup Diagram. 4.55 Test Setup Diagram. 4.66 Test Setup Diagram. 4.77 Test Data. 4.8 Test Data. 4.9 Test Setup Diagram. 4.19 Test Data. 4.19 Test Data. 4.19 Test Data. 4.20 Test Setup Diagram. 4.21 Test Setup Diagram. 4.22 Test Setup Diagram. 4.33 Test Data. 4.44 Test Setup Diagram. 4.55 Test Setup Diagram. 4.66 Test Setup Diagram. 4.77 Test Data. 4.8 Test Data. 4.9 Test Setup Diagram. 4.19 Test Data. 4.19 Test Data. 4.19 Test Setup Diagram. 4.21 Test Setup Diagram. 4.22 Test Setup Diagram. 4.33 Test Data. 4.44 Test Setup Diagram. 4.55 Test Setup Diagram. 4.66 Test Setup Diagram. 4.77 Test Setup Diagram. 4.88 Test Data. 4.9 Test Setup Diagram. 4.9 Test Setup Diagram. 4.9 Test Setup Diagram. 4.19 Test Data. 4.19 Test Setup Diagram. 4.21 Test Setup Diagram. 4.22 Test Setup Diagram. 4.33 Test Data. 4.44 Te	2	GENE		
2.2 DESCRIPTION OF DEVICE (EUT). 2.3 DESCRIPTION OF TEST MODES. 2.4 DESCRIPTION OF SUPPORT UNITS. 2.5 EQUIPMENTS USED DURING THE TEST. 2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY. 2.7 AUTHORIZATIONS. 2.8 ANNOUNCEMENT. 3 EVALUATION RESULTS (EVALUATION). 3.1 ANTENNA REQUIREMENT. 3.1.1 CONCUSION. 4 RADIO SPECTRUM MATTER TEST RESULTS (RF). 4.1 CONDUCTED EMISSION AT AC POWER LINE. 4.1.1 E.U.T. Operation. 4.1.2 Test Setup Diagram. 4.1.3 Test Data. 4.2 OCCUPIED BANDWIDTH. 4.1.4 E.U.T. Operation. 4.2.1 E.U.T. Operation. 4.2.2 Test Setup Diagram. 4.3 MAXIMUM CONDUCTED OUTPUT POWER. 4.3 MAXIMUM CONDUCTED OUTPUT POWER. 4.3.1 E.U.T. Operation. 4.3.2 Test Setup Diagram. 4.3.3 Test Data. 4.4.4 POWER SPECTRAL DENSITY 4.4.5 Test Setup Diagram. 4.5.5 Test Data. 4.6 BAND SPECTRAL DENSITY 4.7 Test Setup Diagram. 4.7 Test Data. 4.8 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS. 4.9 Test Data. 4.10 Fest Deats. 4.11 E.U.T. Operation. 4.12 Test Setup Diagram. 4.13 Test Data. 4.14 Test Data. 4.15 Test Data. 4.16 E.U.T. Operation. 4.17 Test Data. 4.19 Test Data. 4.20 Test Setup Diagram. 4.31 Test Data. 4.41 E.U.T. Operation. 4.42 Test Setup Diagram. 4.43 Test Data. 4.44 Test Setup Diagram. 4.55 Test Setup Diagram. 4.66 Test Setup Diagram. 4.77 Test Data. 4.8 Test Data. 4.9 Test Setup Diagram. 4.19 Test Data. 4.19 Test Data. 4.19 Test Data. 4.20 Test Setup Diagram. 4.21 Test Setup Diagram. 4.22 Test Setup Diagram. 4.33 Test Data. 4.44 Test Setup Diagram. 4.55 Test Setup Diagram. 4.66 Test Setup Diagram. 4.77 Test Data. 4.8 Test Data. 4.9 Test Setup Diagram. 4.19 Test Data. 4.19 Test Data. 4.19 Test Setup Diagram. 4.21 Test Setup Diagram. 4.22 Test Setup Diagram. 4.33 Test Data. 4.44 Test Setup Diagram. 4.55 Test Setup Diagram. 4.66 Test Setup Diagram. 4.77 Test Setup Diagram. 4.88 Test Data. 4.9 Test Setup Diagram. 4.9 Test Setup Diagram. 4.9 Test Setup Diagram. 4.19 Test Data. 4.19 Test Setup Diagram. 4.21 Test Setup Diagram. 4.22 Test Setup Diagram. 4.33 Test Data. 4.44 Te		2.1	CLIENT INFORMATION	. 6
2.4 DESCRIPTION OF SUPPORT UNITS 2.5 EQUIPMENTS USED DURING THE TEST				
2.5 EQUIPMENTS USED DURING THE TEST 2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY 2.7 AUTHORIZATIONS 2.8 ANNOUNCEMENT 3 SEVALUATION RESULTS (EVALUATION). 3.1 ANTENNA REQUIREMENT 3.1.1 CONClUSION: 3.1.1 CONCLUSION: 3.1.1 CONCLUSION: 4.1.2 CONDUCTED EMISSION AT AC POWER LINE 4.1.1 E.U.T. Operation: 4.1.2 Test Setup Diagram: 4.1.3 Test Data: 4.2.1 E.U.T. Operation: 4.2.2 Test Setup Diagram: 4.2.3 Test Data: 4.2.3 Test Data: 4.3 MAXIMUM CONDUCTED OUTPUT POWER 4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram: 4.3.3 Test Data: 5.3 Test Data: 6.4 POWER SPECTRAL DENSITY 6.4 E.U.T. Operation: 6.5 Test Setup Diagram: 6.6 BANDE DEGENSITY 6.7 SET				
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY 2.7 AUTHORIZATIONS 2.8 ANNOUNCEMENT 3.1 EVALUATION RESULTS (EVALUATION). 3.1 ANTENNA REQUIREMENT 3.1.1 CONCLUSION: 4 RADIO SPECTRUM MATTER TEST RESULTS (RF). 4.1 CONDUCTED EMISSION AT AC POWER LINE 4.1.1 E.U.T. Operation: 4.1.2 Test Setup Diagram: 4.1.3 Test Data: 4.2.0 CCUPIED BANDWIDTH 4.2.1 E.U.T. Operation: 4.2.2 Test Setup Diagram: 4.3 MAXIMUM CONDUCTED OUTPUT POWER 4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram: 4.3.3 Test Data: 4.3 MAXIMUM CONDUCTED OUTPUT POWER 4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram: 4.3.3 Test Data: 4.4 POWER SPECTRAL DENSITY 4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram: 4.4.3 Test Data: 4.4.3 Test Data: 4.4.4 POWER SPECTRAL DENSITY 4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram: 4.4.3 Test Data: 4.4.3 Test Data: 4.4.4 POWER SPECTRAL DENSITY 4.4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 4.6.1 E.U.T. Operation: 4.6.2 Test Setup Diagram: 4.6.3 Test Data: 4.6.3 Test Data: 4.6.4 BAND EGGE EMISSIONS (RADIATED) 4.6.1 E.U.T. Operation: 4.6.2 Test Setup Diagram: 4.6.3 Test Data: 4.7.3 Test Data: 4.7.3 Test Data: 4.7.4 Test Setup Diagram: 5.7.5 TEST SETUP PHOTOS 5.22				
2.7 AUTHORIZATIONS			STATEMENT OF THE MEASUREMENT UNCERTAINTY	o
3 EVALUATION RESULTS (EVALUATION)		2.7	AUTHORIZATIONS	9
3.1 ANTENNA REQUIREMENT		2.8	ANNOUNCEMENT	9
3.1.1 Conclusion: 10 4 RADIO SPECTRUM MATTER TEST RESULTS (RF). 11 4.1 CONDUCTED EMISSION AT AC POWER LINE 11 4.1.1 E.U.T. Operation: 11 4.1.2 Test Setup Diagram: 11 4.1.3 Test Data: 12 4.2 Occupied Bandwidth 14 4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 14 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 16 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.4.3 Test Data: 17 4.4.4 Test Setup Diagram: 17 4.4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 17 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 18 4.6.1 E.U.T. Operation: 18 4.6.2 Test Setup Diagram: 16 4.6.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 19 4.6.3 Test Data: 19 4.6.4 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ) 22 4.7.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 19 4.6.3 Test Data: 19 4.6.4 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ) 22 4.7.3 Test Data: 19 4.8.3 Test Data: 19 4.8.3 Test Setup Diagram: 19 4.8.3 Test Data: 19 4.9 Test Setup Diagram: 19 4.9 Test Se	3	EVAL		
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)		3.1	ANTENNA REQUIREMENT	10
4.1 CONDUCTED EMISSION AT AC POWER LINE 11 4.1.1 E.U.T. Operation: 11 4.1.2 Test Setup Diagram: 12 4.1.3 Test Data: 12 4.2 OCCUPIED BANDWIDTH 14 4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 Test Setup Diagram: 16 4.3.1 E.U.T. Operation: 16 4.3.2 Test Setup Diagram: 16 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 19 4.6.1 E.U.			3.1.1 Conclusion:	10
4.1.1 E.U.T. Operation: 11 4.1.2 Test Setup Diagram: 11 4.1.3 Test Data: 12 4.2 Occupied Bandwindth 14 4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 16 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 15 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 16 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 15 4.6.3 Test Data: 20 4.7.1 E.U.T. Operation: 22 4.7.2 Test Setup Diagram: 25 4.8.1 E.U.T. Operation: 25 4.8.2 Test Setup D	4	RADI	O SPECTRUM MATTER TEST RESULTS (RF)	.11
4.1.2 Test Setup Diagram: 11 4.1.3 Test Data: 12 4.2 Occupied Bandwidth 14 4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 15 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 15 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 16 4.5.1 E.U.T. Operation: 16 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 16 4.6 BAND EDGE EMISSIONS (RADIATED) 18 4.6.1 E.U.T. Operation: 15 4.6.2 Test Setup Diagram: 15 4.6.3 Test Data: 20 4.7.2 Test Setup Diagram: 15 4.6.3 Test Data: 22 4.7.1 E.U.T. Operation: 25 4.7.2 Test Setup Diagram: 26 4.7.3 Test Data:		4.1	CONDUCTED EMISSION AT AC POWER LINE	.11
4.13 Test Data: 12 4.2 OCCUPIED BANDWDTH 14 4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 15 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 16 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 16 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 16 4.6 BAND EDGE EMISSIONS (RADIATED) 18 4.6.1 E.U.T. Operation: 15 4.6.2 Test Setup Diagram: 16 4.6.3 Test Data: 20 4.7.1 E.U.T. Operation: 22 4.7.2 Test Setup Diagram: 23 4.6.3 Test Data: 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 24 4.7.3 Test Data:				
4.2 OCCUPIED BANDWIDTH 14 4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 15 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 16 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 16 4.6 BAND EDGE EMISSIONS (RADIATED) 15 4.6.1 E.U.T. Operation: 15 4.6.2 Test Setup Diagram: 16 4.6.3 Test Data: 20 4.7.1 E.U.T. Operation: 22 4.7.2 Test Setup Diagram: 25 4.7.3 Test Data: 22 4.7.1 E.U.T. Operation: 22 4.7.2 Test Setup Diagram: 22 4.7.3 Test Data: 22 4.8.1 E.U.T. Operation: 25 4.8.2 Test Setup Di				
4.2.1 E.U.T. Operation: 14 4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 15 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 15 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.2 Test Data: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 25		יעו		
4.2.2 Test Setup Diagram: 14 4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 15 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 16 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 15 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 25 4.7.3 Test Data: 25 4.8.1 E.U.T. Operation: 25 4.8.2 Test Setup Diagram: 26 4.8.1 E.U.T. Operation: 25 4.8.2 Test Setup Diagram: 26		4.2		
4.2.3 Test Data: 14 4.3 MAXIMUM CONDUCTED OUTPUT POWER 15 4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 15 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 18 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7.1 E.U.T. Operation: 22 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 25				
4.3.1 E.U.T. Operation: 15 4.3.2 Test Setup Diagram: 15 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.8.1 E.U.T. Operation: 25 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 25			, c	
4.3.2 Test Data: 15 4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 25 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TE		4.3	MAXIMUM CONDUCTED OUTPUT POWER	15
4.3.3 Test Data: 16 4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 15 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 25			4.3.1 E.U.T. Operation:	15
4.4 POWER SPECTRAL DENSITY 17 4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 16 4.5.3 Test Data: 16 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 25				
4.4.1 E.U.T. Operation: 17 4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29		11		
4.4.2 Test Setup Diagram: 17 4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29		7.7		
4.4.3 Test Data: 17 4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS 18 4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.5.1 E.U.T. Operation: 18 4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.5.2 Test Setup Diagram: 18 4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29		4.5	EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	18
4.5.3 Test Data: 18 4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 28			·	
4.6 BAND EDGE EMISSIONS (RADIATED) 19 4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.6.1 E.U.T. Operation: 19 4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29		4.6		
4.6.2 Test Setup Diagram: 19 4.6.3 Test Data: 20 4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz) 22 4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.7.1 E.U.T. Operation: 23 4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.7.2 Test Setup Diagram: 23 4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29		4.7		
4.7.3 Test Data: 23 4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29			4.7.1 E.U.T. Operation:	23
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz) 25 4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29				
4.8.1 E.U.T. Operation: 26 4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29		4.8		
4.8.2 Test Setup Diagram: 26 4.8.3 Test Data: 27 5 TEST SETUP PHOTOS 29			,	
5 TEST SETUP PHOTOS			4.8.2 Test Setup Diagram:	26
	5	TEST	SETUP PHOTOS	29

6 PH	OTOS OF THE EUT		31
APPENDI	X		37
		00	
1.			
2.	99% OCCUPIED BANDWIDTH		38
3.	PEAK OUTPUT POWER		39
4.	POWER SPECTRAL DENSITY		40
5.	BANDEDGE		41
6.	Spurious Emission		43

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

V1.0

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Method	Requirement	Result
Antenna requirement	1	47 CFR 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

Note: 1.N/A -this device(EUT) is not applicable to this testing item

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 5 of 44

^{2.} RF-conducted test results including cable loss.

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : Lorenz High Definition LLC

Address : 230 Rt 206 STE 401, Flanders, New Jersey United States 07836

Manufacturer : Lorenz High Definition LLC

Address : 230 Rt 206 STE 401, Flanders, New Jersey United States 07836

2.2 Description of Device (EUT)

Product Name:	Motion Sensor		
Sample number:	231116007-1		
Model/Type reference:	ZSE18 800LR		
Trade Mark:	ZOOZ		
Power Supply:	DC3.0V from battery / DC5.0V charging from USB port		
Operation Frequency:	912.0920.0MHz		
Number of Channels:	2		
Modulation Type:	DSSS/ OQPSK		
Antenna Type:	external antenna		
Antenna Gain:	-3.70dBi Max		
Hardware Version:	V2.0		
Software Version:	V1.0		

Operation Frequency each of channel					
Channel	Frequency	Channel	Frequency		
1	912.00 MHz	2	920.00 MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)	00
Lowest channel	912.00MHz	
Highest channel	920.00MHz	

2.3 Description of Test Modes

No	Title	Description				
TM1 912.0MHz		Keep the EUT connect to power and works in 912.0MHz continuously transmitting mode .				
TM2	Keen the FLIT connect to power and works in 920 0MHz					
Descri	ption					
⊠Spe	cial software is used.					
☐Through engineering command into the engineering mode.						
eng	engineering command: *#*#3646633#*#*					
Othe	Other method:					

2.4 Description of Support Units

Title	Manufacturer	Model No.	Remark
ADAPTER	PHOTON	ATXC-069AC65B	Provide by lab

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal. Due Date	
Shielding room	CY	8*4*3	20160102	2023/1/26	2025/1/25	
Pulse Limiter	Schwarzbeck	VTSD 9561	561-G071	2023/2/27	2024/2/26	
Cable	Schwarzbeck	1	1	2023/2/27	2024/2/26	
Test Receiver	Rohde & Schwarz	ESPI	1164.6607K03- 102109-MH	2023/6/13	2024/6/12	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2022/12/29	2023/12/28	
L.I.S.N	Schwarzbeck	NSLK 8126	NSLK 8126	2023/8/8	2024/8/7	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	1	1	
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	1	1	

Emissions in restric	Emissions in restricted frequency bands and RF						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Test Receiver	R&S	ESCI	102109	2023/6/13	2024/6/12		
Spectrum Analyzer	R&S	FSP30	1321.3008K40- 101729-jR	2023/6/14	2024/6/13		
966 Chamber	CY	9*6*6	20160101	2023/1/26	2025/1/25		
Bore-sighting Antenna rack	PBB	1308503	16033	1	1		
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021/7/5	2024/7/4		
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023/5-21	2025/5-20		
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023/5/13	2025/5/12		
Horn antenna	COM-POWER	AH-1840(40G)	10100008	2023/4/5	2025/4/4		
Power APM(LF)	Schwarzbeck	BBV9743	9743-151	2023/6/13	2024/6/12		
Power APM(HF)	Schwarzbeck	BBV9718	9718-282	2023/6/13	2024/6/12		
Cable(LF)#2	Schwarzbeck	/		2023/2/27	2024/2/26		
Cable(LF)#1	Schwarzbeck	1	1	2023/2/27	2024/2/26		
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023/2/28	2024/2/27		
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2023/2/27	2024/2/26		
Power divider	MIDEWEST	PWD-2533	SMA-79	2023/5/11	2026/5/10		
signal generator	Keysight	N5181A	MY48180415	2022/12/10	2023/12/9		
signal generator	Keysight	N5182A	MY50143455	2022/12/29	2023/12/28		
Spectrum Analyzer	Keysight	N9020A	MY53420323	2022/12/29	2023/12/28		
RF Sensor Unit	TACHOY	TR1029-2	000001	1	/		
RF Control Unit	TACHOY	TR1029-1	000001	1	/		
Position Controller	MF	MF-7802	100	1	/		
EMI Testsoftware	Farad	EZ -EMC	V1.1.42	1	/		
RF TestSoftware	TACHOY	RTS-01	V2.0.0.0	1	1		

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty	
Conducted Disturbance (0.15~30MHz)	±3.41dB	
Occupied Bandwidth	±3.63%	
RF conducted power	±0.733dB	
RF power density	±0.234%	40
Conducted Spurious emissions	±1.98dB	P
Radiated Emission (Above 1GHz)	±5.46dB	
Radiated Emission (Below 1GHz)	±5.79dB	
Note: (1) This upportainty represents an expand	ded the enterior to express and at approximately the OE	0/

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Authorizations

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 9 of 4-

3 Evaluation Results (Evaluation)

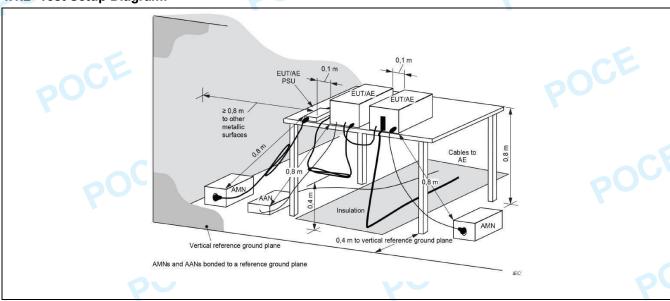
3.1 Antenna requirement

Test Requirement:

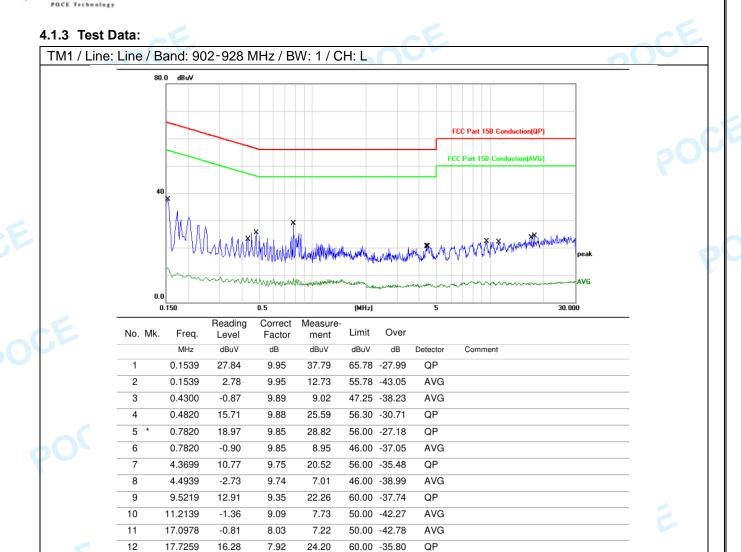
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except a section, for an intentional radiator th utility (AC) power line, the radio freq AC power line on any frequency or f MHz, shall not exceed the limits in the ph/50 ohms line impedance stabilized.	at is designed to be conne uency voltage that is cond- requencies, within the ban- ne following table, as meas	cted to the public ucted back onto t d 150 kHz to 30			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5 56 46					
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					


4.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	22.5 °C		Humidity:	50.4 %	Atmospheric Pressure:	102 kPa
Pre test mode: TM1,TM2						
Final test mode: TM1(worse case)					OCA	

4.1.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 11 of 44

10

11

12

11.0340

29.8260

29.8700

-1.61

16.12

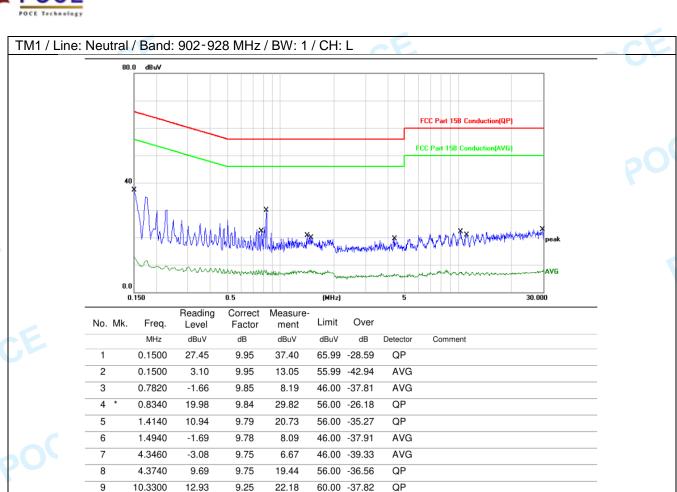
1.33

9.12

6.81

6.80

7.51


22.93

8.13

50.00 -42.49

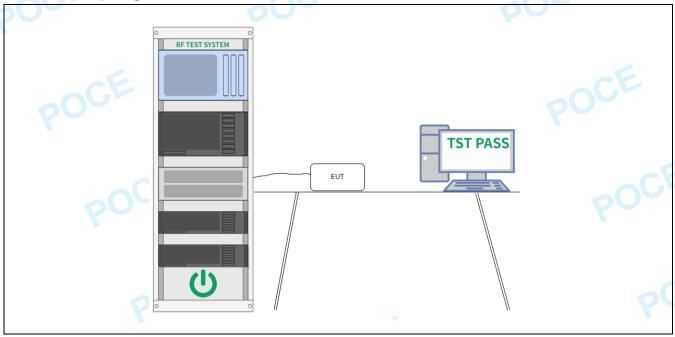
60.00 -37.07

50.00 -41.87

AVG

AVG

QP


4.2 Occupied Bandwidth

•	
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Envir	onment:		000		000	
Temperature:	22.4 °C		Humidity:	51.2 %	Atmospheric Pressure:	102 kPa
Pre test mode:	Pre test mode: TM1,		TM2			
Final test mode:		TM1,	TM2			

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

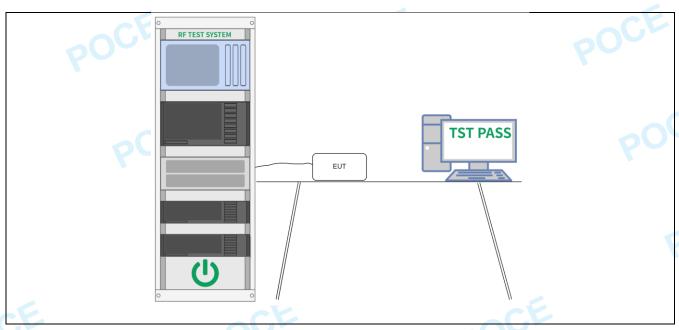
Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 14 of 44

4.3 Maximum Conducted Output Power

V1.0

4.3 Waximum Con	ducted Output Power
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain
POCE	Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)


4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.4 °C		Humidity:	51.2 %	Atmospheric Pressure:	102 kPa	200
Pre test mode:		TM1,	TM2				
Final test mode:		TM1,	TM2				

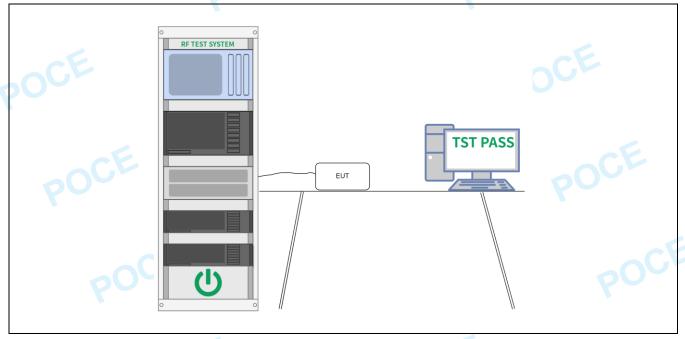
4.3.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 15 of 44

4.3.3 Test Data:

Please Refer to Appendix for Details.

4.4 Power Spectral Density


V1.0

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

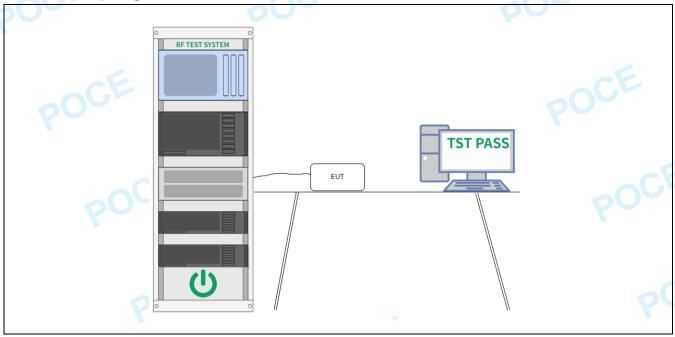
Operating Enviro	Operating Environment:					
Temperature:	22.4 °C		Humidity:	51.2 %	Atmospheric Pressure:	102 kPa
Pre test mode:	Pre test mode: TM1					
Final test mode: TM1		TM1,	TM2			

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 17 of 44


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

Operating Enviro	onment:	,	00		000	
Temperature:	22.4 °C		Humidity:	51.2 %	Atmospheric Pressure:	102 kPa
Pre test mode: TM			TM2			
			TM2			

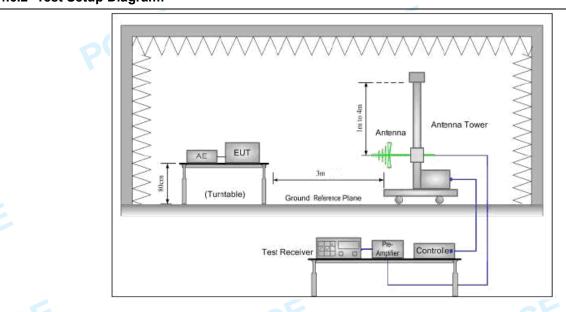
4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 18 of 44

4.6 Band edge emissions (Radiated)

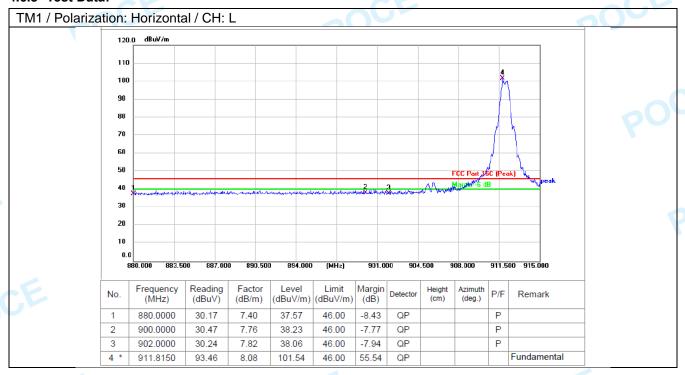

V1.0

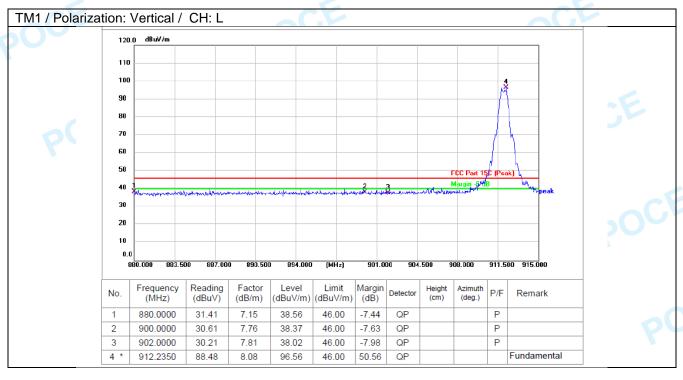
SSIONS (Nadiated)								
restricted bands, as defined	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`							
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705-30.0	30	30						
30-88		3						
88-216		3						
216-960	200 **	3						
Above 960	500	3						
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.23 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands								
		OCF						
ANSI C63.10-2013 section 6	5.10.5.2							
	Refer to 47 CFR 15.247(d), restricted bands, as defined emission limits specified in § Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960 ** Except as provided in pararadiators operating under thi 54-72 MHz, 76-88 MHz, 174 these frequency bands is pe and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-pe 110–490 kHz and above 100 are based on measurements ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Means a section 6 KDB 558074 D01 15.247 M	Refer to 47 CFR 15.247(d), In addition, radiated emissions who restricted bands, as defined in § 15.205(a), must also comply the emission limits specified in § 15.209(a)(see § 15.205(c)).` Frequency (MHz) Field strength (microvolts/meter) 0.009-0.490 2400/F(kHz) 0.490-1.705 24000/F(kHz) 1.705-30.0 30 30-88 100 ** 88-216 216-960 200 ** Above 960 ** Except as provided in paragraph (g), fundamental emissions radiators operating under this section shall not be located in the 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. Howe these frequency bands is permitted under other sections of this and 15.241. In the emission table above, the tighter limit applies at the ban The emission limits shown in the above table are based on me employing a CISPR quasi-peak detector except for the frequency						

4.6.1 E.U.T. Operation:

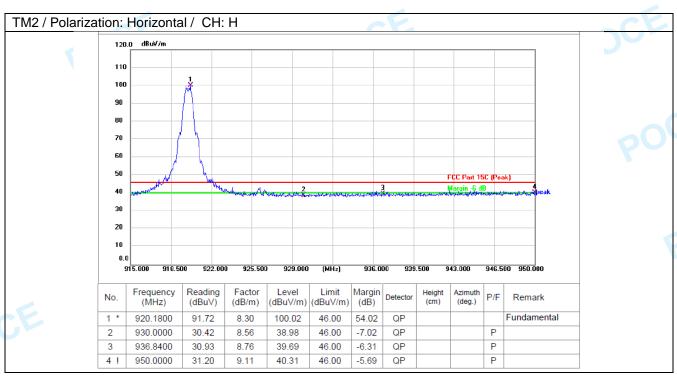
Operating Environment:						
Temperature:	22.4 °C		Humidity:	51.2 %	Atmospheric Pressure:	102 kPa
Pre test mode: TM1			TM2	PO		PO
Final test mode:		TM1,	TM2			

4.6.2 Test Setup Diagram:




H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 19 of 44

4.6.3 Test Data:


V1.0

V1.0

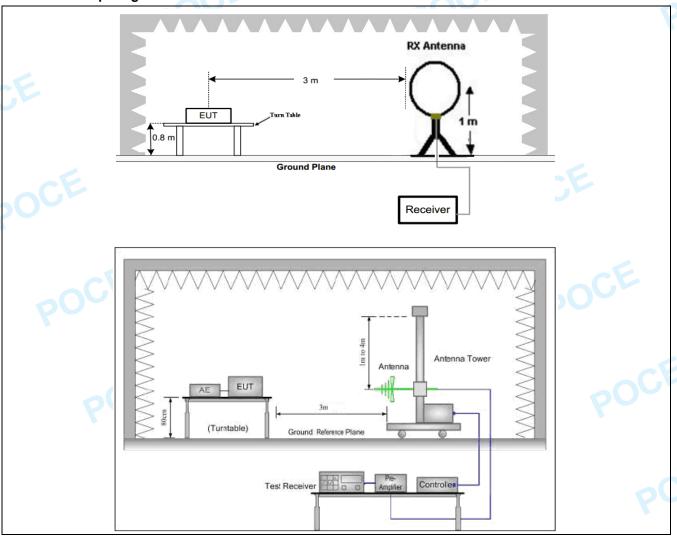
TM2 / Polarization: Vertical / CH: H dBuV/m 100 90 50 FCC Part 15C (Peak) 40 20 10 922.000 Frequency Reading Factor Margin Level Limit Height Azimuth No. Detector P/F Remark (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Fundamental 1 QP 920.1800 85.02 8.28 93.30 46.00 47.30 2 928.0000 30.32 8.49 38.81 46.00 -7.19 QP 3 930.0000 30.45 8.53 38.98 46.00 -7.02 QP Ρ 4 950.0000 30.47 9.06 39.53 46.00 -6.47 QP Р

Remark:

Margin = Measurement Level - Limit
Measurement Level=Test receiver reading + correction factor
Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

4.7 Emissions in frequency bands (below 1GHz)

V1.0


	requency bands (be						
Test Requirement:	Refer to 47 CFR 15.247	'(d), In addition, radiated em	issions which fall in the				
	restricted bands, as defi	ined in § 15.205(a), must als	so comply with the radiated				
	emission limits specified	in § 15.209(a)(see § 15.20	5(c)).`				
Test Limit:	Frequency (MHz)	Field strength	Measurement distance				
rest Limit.	Frequency (MHz)	5					
	0.000.0.400	(microvolts/meter)	(meters)				
	0.009-0.490	2400/F(kHz)	300				
00	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
		paragraph (g), fundamenta	Lemissions from intentional				
Y							
			cated in the frequency bands				
			IHz. However, operation within				
		is permitted under otner sec	tions of this part, e.g., §§ 15.231				
	and 15.241.						
		ove, the tighter limit applies					
		wn in the above table are ba					
!			the frequency bands 9–90 kHz,				
	110–490 kHz and above	e 1000 MHz. Radiated emiss	sion limits in these three bands				
	are based on measurem	nents employing an average	detector.				
Test Method:	ANSI C63.10-2013 sect	ion 6 6 4					
		7 Meas Guidance v05r02					
Procedure:	a. For below 1GHz, the	EUT was placed on the top	of a rotating table 0.8 meters				
	above the ground at a 3	or 10 meter semi-anechoic	chamber. The table was rotated				
	360 degrees to determine	ne the position of the highes	t radiation.				
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters						
			per. The table was rotated 360				
POCE		e position of the highest rad					
			nterference-receiving antenna,				
		the top of a variable-height					
			our meters above the ground to				
			Datla la admanda Landina di cantina di				
	polarizations of the ante	•	Both horizontal and vertical				
		enna are set to make the me	asurement.				
		enna are set to make the me emission, the EUT was arrar	asurement. nged to its worst case and then				
20 ^C	the antenna was tuned t	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4	asurement. nged to its worst case and then meters (for the test frequency of				
POC	the antenna was tuned t	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4	asurement. nged to its worst case and then				
POC	the antenna was tuned to below 30MHz, the anter	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4	asurement. nged to its worst case and then meters (for the test frequency of meter) and the rotatable table				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 r	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table ite maximum reading.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 r ees to 360 degrees to find th em was set to Peak Detect I	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table ite maximum reading.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximu	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode.	asurement. nged to its worst case and then meters (for the test frequency of meter) and the rotatable table ne maximum reading. Function and Specified				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level of	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified s 10dB lower than the limit				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level of specified, then testing contact the system of the system.	enna are set to make the me emission, the EUT was arranto heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified In a 10dB lower than the limit and the EUT would be				
POC!	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level conspecified, then testing correported. Otherwise the	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified Is 10dB lower than the limit ask values of the EUT would be 10dB margin would be re-				
POC!	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level of specified, then testing correported. Otherwise the tested one by one using	enna are set to make the me emission, the EUT was arranto heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have peak, quasi-peak or average.	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified In a 10dB lower than the limit and the EUT would be				
POC P	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet.	enna are set to make the me emission, the EUT was arranto heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average.	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified In the limit was values of the EUT would be a 10dB margin would be re- ge method as specified and then				
POC!	the antenna was tuned to below 30MHz, the anter was turned from 0 degree f. The test-receiver system Bandwidth with Maximung. If the emission level conspecified, then testing conferenced. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the local source of the state of the test of the state of th	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average.	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified In a 10dB lower than the limit is ak values of the EUT would be in 10dB margin would be rege method as specified and then mannel, the Highest channel.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level conspecified, then testing conferenced. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the low.	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average owest channel, the middle chements are performed in X, Y	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified Is 10dB lower than the limit is values of the EUT would be a 10dB margin would be re- ige method as specified and then mannel, the Highest channel. If Z axis positioning for				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level conspecified, then testing conferenced. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the low i. The radiation measured Transmitting mode, and	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average. owest channel, the middle chements are performed in X, found the X axis positioning	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table he maximum reading. Function and Specified s 10dB lower than the limit hak values of the EUT would be 10dB margin would be re- he method as specified and then hannel, the Highest channel. Y, Z axis positioning for y which it is the worst case.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level conspecified, then testing conspected. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the low i. The radiation measured Transmitting mode, and j. Repeat above procedures.	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average owest channel, the middle chements are performed in X, Y	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table he maximum reading. Function and Specified s 10dB lower than the limit hak values of the EUT would be 10dB margin would be re- he method as specified and then hannel, the Highest channel. Y, Z axis positioning for y which it is the worst case.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degrees. The test-receiver system Bandwidth with Maximut g. If the emission level conspecified, then testing conferenced. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the low i. The radiation measured Transmitting mode, and	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average. owest channel, the middle chements are performed in X, found the X axis positioning	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table he maximum reading. Function and Specified s 10dB lower than the limit hak values of the EUT would be 10dB margin would be re- he method as specified and then hannel, the Highest channel. Y, Z axis positioning for y which it is the worst case.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree. The test-receiver system Bandwidth with Maximut. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the low. The radiation measure Transmitting mode, and j. Repeat above procedure.	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have peak, quasi-peak or average west channel, the middle chements are performed in X, found the X axis positioning ures until all frequencies me	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified as 10dB lower than the limit tak values of the EUT would be 10dB margin would be re- tige method as specified and then the mannel, the Highest channel. Ay, Z axis positioning for the worst case. The worst case as a sured was complete.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree. The test-receiver system and width with Maximut. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet. Test the EUT in the lot. The radiation measure Transmitting mode, and j. Repeat above proceduremark: 1) For emission below 1	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 na was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect Im Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average them to the peak of the EUT in peak mode was ould be stopped and the peak emissions that did not have a peak, quasi-peak or average them to the peak of the EUT in peak or average them to the peak of the peak, quasi-peak or average them to the peak of the EUT in peak or average the peak, quasi-peak or average the peak of the EUT in peak or average the peak of the peak o	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified as 10dB lower than the limit tak values of the EUT would be 10dB margin would be re- tige method as specified and then the mannel, the Highest channel. Ay, Z axis positioning for the worst case. The worst case is the lowest				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree. The test-receiver system Bandwidth with Maximut. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lot. The radiation measure Transmitting mode, and j. Repeat above proceduremark: 1) For emission below 1 channel. Only the worst	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 may avant to heights 1 mees to 360 degrees to find the em was set to Peak Detect I m Hold Mode. In the EUT in peak mode way ould be stopped and the peak emissions that did not have a peak, quasi-peak or average the ements are performed in X, in found the X axis positioning the unit of the EUT in peak mode way and the peak emissions that did not have a peak, quasi-peak or average the ements are performed in X, in found the X axis positioning the unit of the EUT in peak median the EUT in peak median the middle characteristic and the EUT in peak or average the median that the middle characteristic are performed in X, in found the X axis positioning the EUT.	asurement. aged to its worst case and then meters (for the test frequency of meter) and the rotatable table the maximum reading. Function and Specified as 10dB lower than the limit tak values of the EUT would be 10dB margin would be re- tige method as specified and then the mannel, the Highest channel. Ay, Z axis positioning for the worst case. The worst case is the lowest out.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree. The test-receiver system Bandwidth with Maximut. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lot. The radiation measure Transmitting mode, and j. Repeat above proceduremark: 1) For emission below 1 channel. Only the worst 2) The field strength is contact.	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average weet channel, the middle chements are performed in X, of found the X axis positioning the until all frequencies me GHz, through pre-scan four case is recorded in the repostalculated by adding the Antice to the peak and the second of the calculated by adding the Antice to the peak are performed in the repostalculated by adding the Antice to the peak are peak and the peak are performed in the repostalculated by adding the Antice to the peak are peak and the peak are pe	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified Is 10dB lower than the limit ak values of the EUT would be 10dB margin would be re- ge method as specified and then mannel, the Highest channel. If Z axis positioning for g which it is the worst case. Is asured was complete. Ind the worst case is the lowest ort. Independent of the test of the sector. Indicate the sector of the test of the sector. Indicate the sector of the test of the sector. Indicate the sector of the test of the sector. Indicate the sector of the test of the sector. Indicate the sector of the test of the sector. Indicate the sector of the test of the sector. Indicate the sector of the sector of the sector. Indicate the sector of the sector of the sector of the sector. Indicate the sector of the sector o				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree. The test-receiver system Bandwidth with Maximut g. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the loi. The radiation measure Transmitting mode, and j. Repeat above procedures. The testion of	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average. The west channel, the middle channels are performed in X, Y found the X axis positioning ures until all frequencies me GHz, through pre-scan four case is recorded in the reposalculated by adding the Antiequation with a sample calculated.	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified Is 10dB lower than the limit ak values of the EUT would be 10dB margin would be re- ge method as specified and then mannel, the Highest channel. If Z axis positioning for g which it is the worst case. Is asured was complete. In the worst case is the lowest ort. In the Highest Factor & In the worst case is the lowest ort.				
POC	the antenna was tuned to below 30MHz, the anter was turned from 0 degree. The test-receiver system Bandwidth with Maximut g. If the emission level of specified, then testing correported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the loi. The radiation measure Transmitting mode, and j. Repeat above procedures. The testion of	enna are set to make the me emission, the EUT was arrar to heights from 1 meter to 4 nna was tuned to heights 1 rees to 360 degrees to find them was set to Peak Detect I m Hold Mode. of the EUT in peak mode wa ould be stopped and the peak emissions that did not have a peak, quasi-peak or average weet channel, the middle chements are performed in X, of found the X axis positioning the until all frequencies me GHz, through pre-scan four case is recorded in the repostalculated by adding the Antice to the peak and the second of the calculated by adding the Antice to the peak are performed in the repostalculated by adding the Antice to the peak are peak and the peak are performed in the repostalculated by adding the Antice to the peak are peak and the peak are pe	asurement. Inged to its worst case and then meters (for the test frequency of meter) and the rotatable table is maximum reading. Function and Specified Is 10dB lower than the limit ak values of the EUT would be 10dB margin would be re- ge method as specified and then mannel, the Highest channel. If Z axis positioning for g which it is the worst case. Is asured was complete. In the worst case is the lowest ort. In the Highest Factor & In the worst case is the lowest ort.				

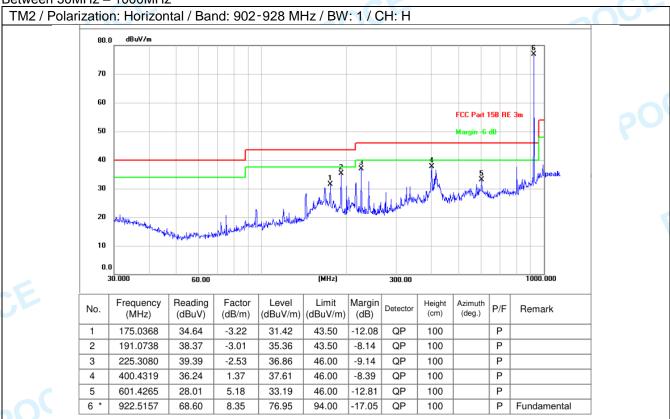
3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

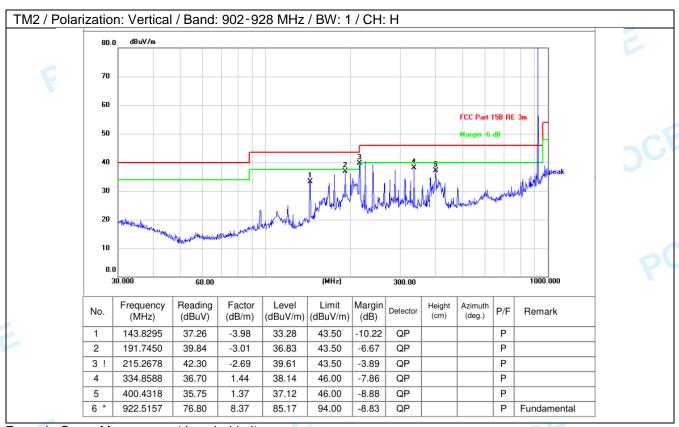
4.7.1 E.U.T. Operation:

Operating Enviro	Operating Environment:							DO.
Temperature:	22.4 °C		Humidity:	51.2 %		Atmospheric Pressure:	102 kPa	
Pre test mode: T			TM2					
Final test mode:		TM2(worse case)					

4.7.2 Test Setup Diagram:

4.7.3 Test Data:


Between 9KHz - 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

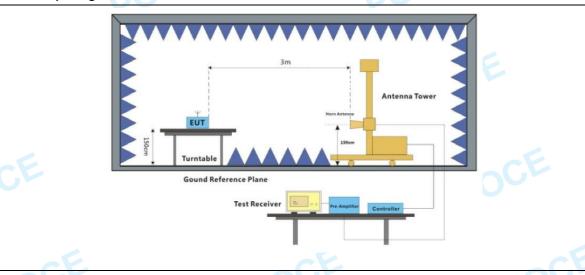
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 23 of 44

Between 30MHz - 1000MHz

Remark: Over= Measurement Level - Limit
Measurement Level=Test receiver reading + correction factor
Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

4.8 Emissions in frequency bands (above 1GHz)

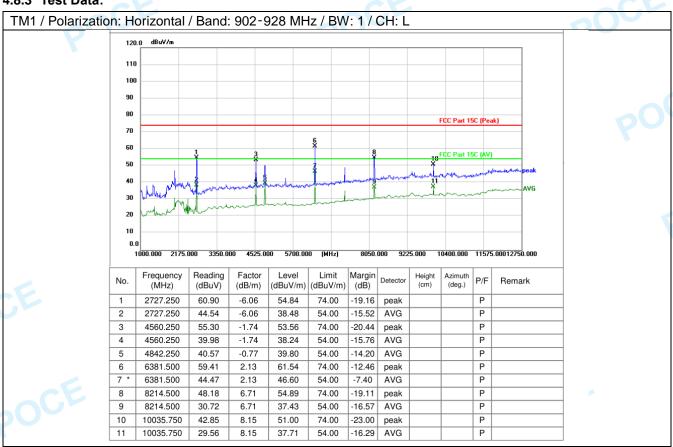
Test Requirement:	In addition, radiated emission	ons which fall in the restricted	d bands, as defined in §
		y with the radiated emission	
Test Limit:	Frequency (MHz)	Field strength	Measurement
rest Limit.	Frequency (Wiriz)	(microvolts/meter)	distance (meters)
	0.009-0.490	2400/F(kHz)	300
		` '	
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	radiators operating under the 54-72 MHz, 76-88 MHz, 17	ragraph (g), fundamental em nis section shall not be locate 4-216 MHz or 470-806 MHz. ermitted under other sections	ed in the frequency bands However, operation within
	and 15.241. In the emission table above The emission limits shown employing a CISPR quasi-r 110–490 kHz and above 10	, the tighter limit applies at the tighter limit applies at the tight above table are based beak detector except for the following an average detector application is employing an average detector.	ne band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 section	6.6.4	
	KDB 558074 D01 15.247 M		
Procedure:		T was placed on the top of a	rotating table 0.9 maters
	b. For above 1GHz, the EU above the ground at a 3 medegrees to determine the poor. The EUT was set 3 or 10 which was mounted on the d. The antenna height is varied determine the maximum varied polarizations of the antenna e. For each suspected emisting the antenna was turned from 0 degrees f. The test-receiver system Bandwidth with Maximum Fig. If the emission level of the specified, then testing could	was tuned to heights 1 mete to 360 degrees to find the ma was set to Peak Detect Fund	rotating table 1.5 meters The table was rotated 360 in. erence-receiving antenna, inna tower. heters above the ground to horizontal and vertical rement. to its worst case and then ers (for the test frequency of ir) and the rotatable table aximum reading. etion and Specified dB lower than the limit alues of the EUT would be
	reported in a data sheet. h. Test the EUT in the lower i. The radiation measureme Transmitting mode, and fou j. Repeat above procedures Remark: 1) For emission below 1GH channel. Only the worst cas 2) The field strength is calc Preamplifier. The basic equ	ak, quasi-peak or average met channel, the middle channents are performed in X, Y, Z and the X axis positioning which are performed in X, Y, Z and the X axis positioning which are all frequencies measures, through pre-scan found the is recorded in the report. Lated by adding the Antennal ation with a sample calculation Reading + Antenna Factor +	el, the Highest channel. axis positioning for ich it is the worst case. red was complete. e worst case is the lowest a Factor, Cable Factor & on is as follows:

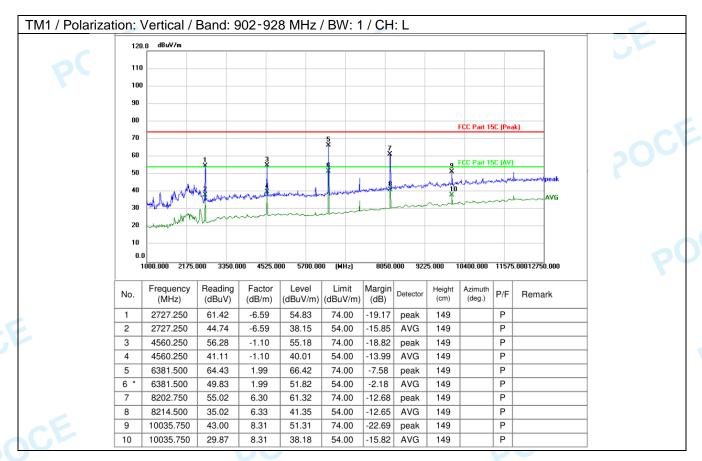

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

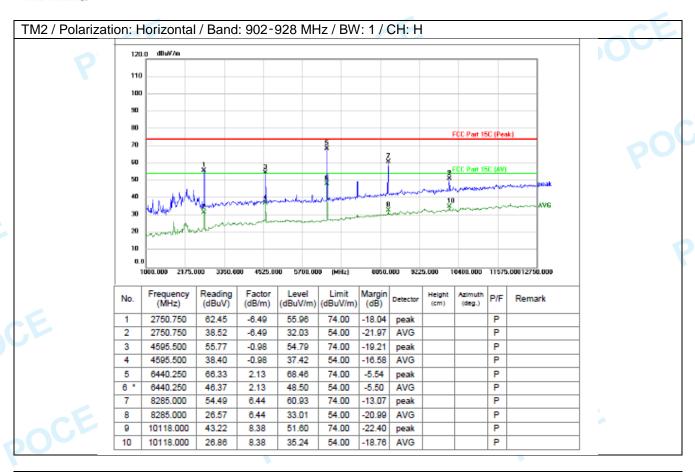
Report No.: POCE231116018RL002

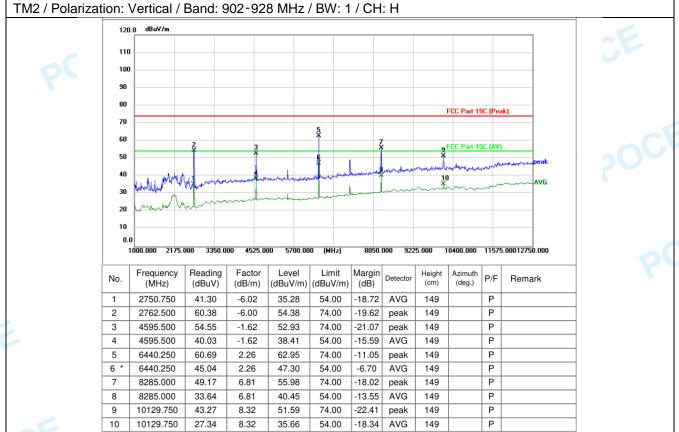
4.8.1 E.U.T. Operation:

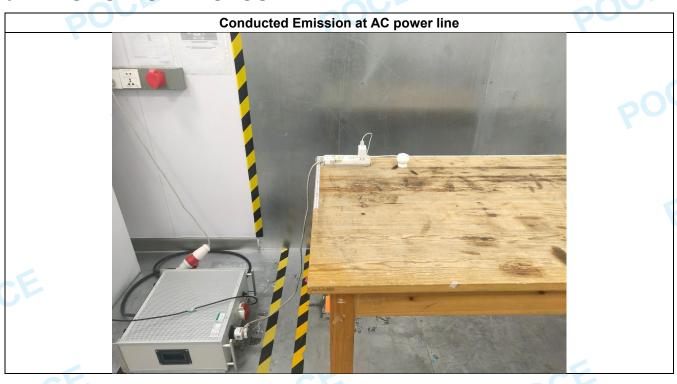
Operating Environment:							OO,	
Temperature:	22.4 °C		Humidity:	51.2 %	Atmo	spheric Pressure:	102 kPa	
Pre test mode:			TM2					
Final test mode:	•	TM1,	TM2					


4.8.2 Test Setup Diagram:

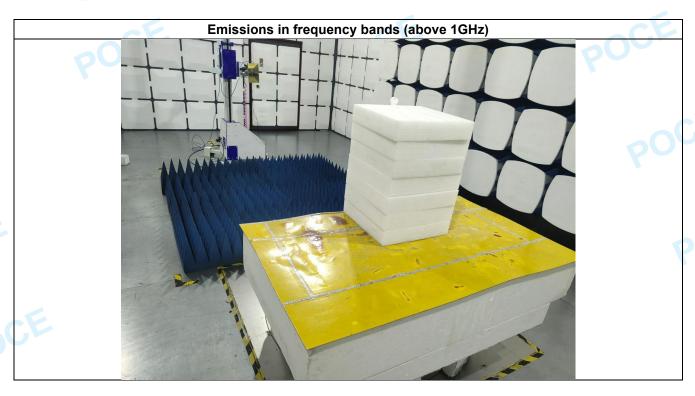


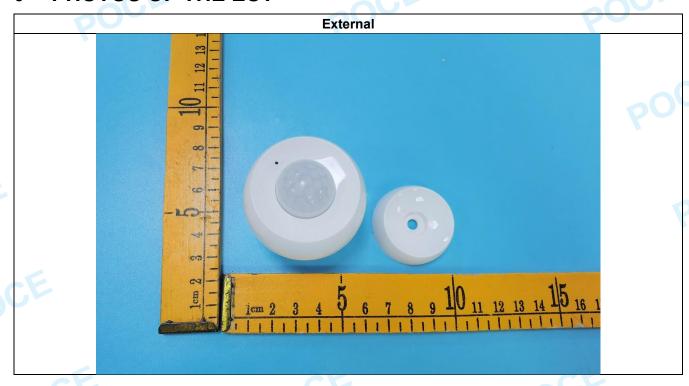

4.8.3 Test Data:


V1.0





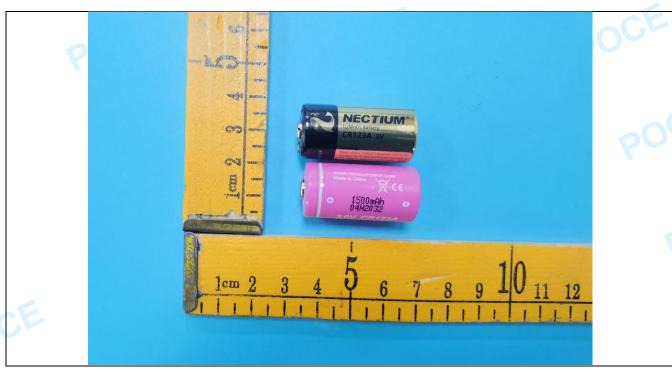

5 TEST SETUP PHOTOS

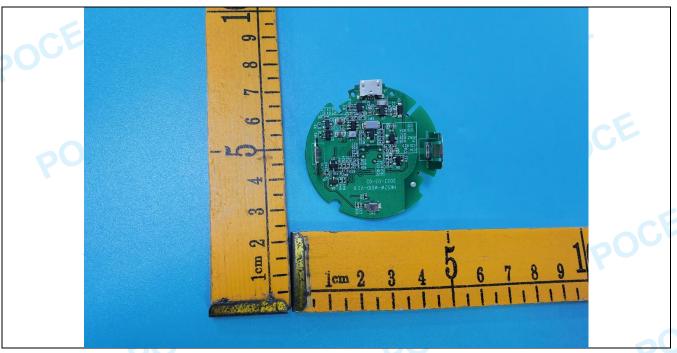


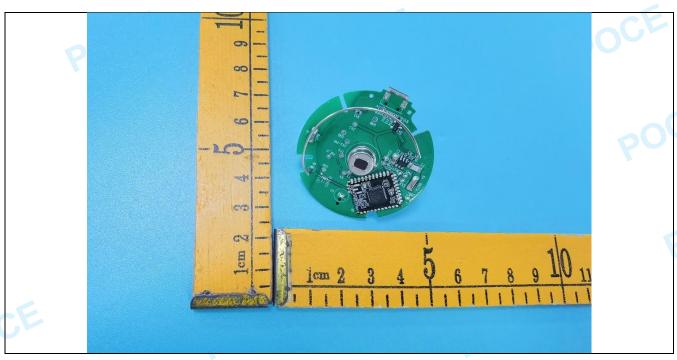
V1.0

6 PHOTOS OF THE EUT

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 31 of 44





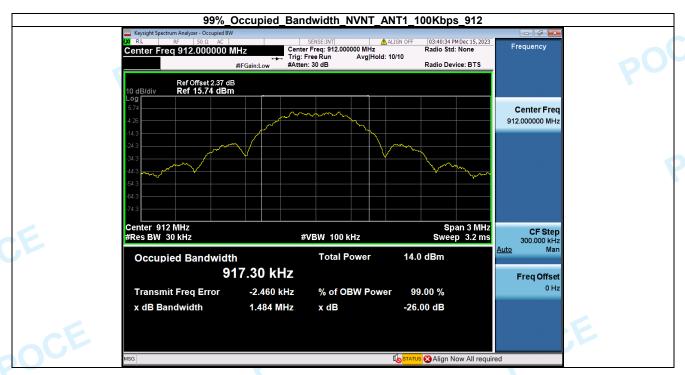


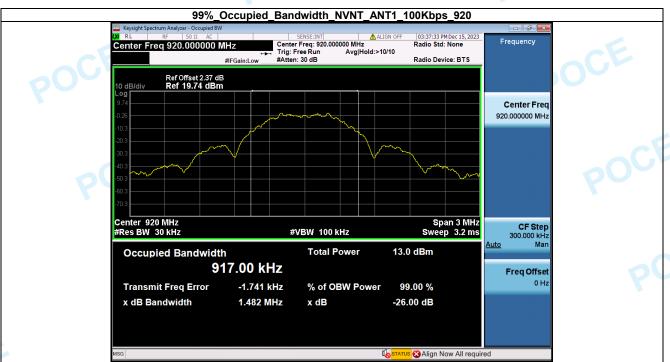


Appendix

1. -6dB Bandwidth

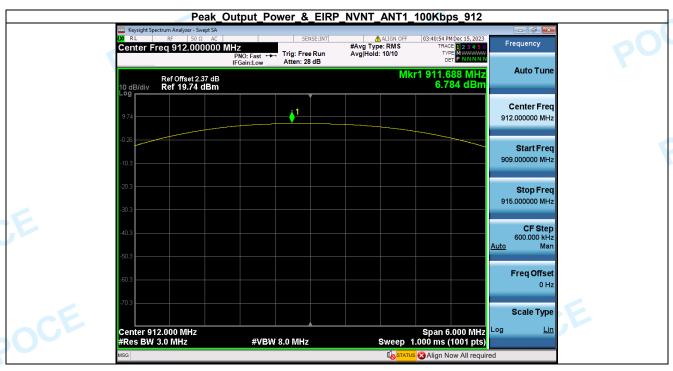
Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	100Kbps	912.00	612.79	500	Pass
NVNT	ANT1	100Kbps	920.00	618.97	500	Pass




H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 37 of 44

2. 99% Occupied Bandwidth

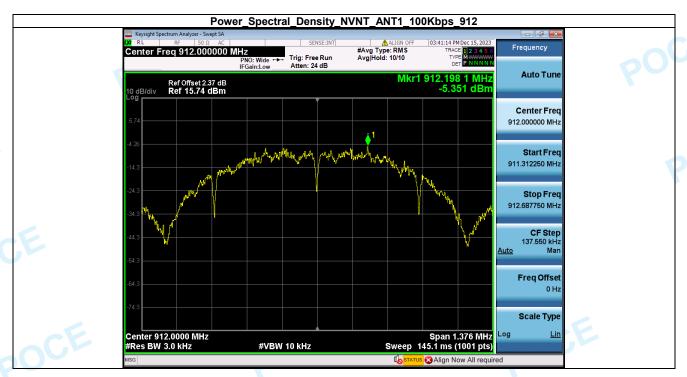
Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	100Kbps	912.00	0.917
NVNT	ANT1	100Kbps	920.00	0.917



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 38 of 44

3. Peak Output Power

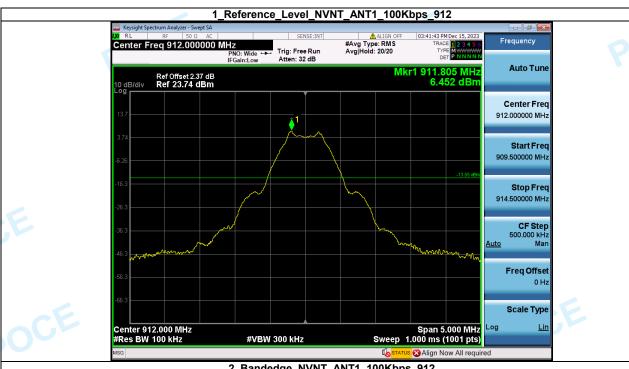
	Condition	Antenna	Rate	Frequency (MHz)	Conducted Power(dBm)	Limit(dBm)	Result
ſ	NVNT	ANT1	100Kbps	912.00	6.78	30.00	Pass
ſ	NVNT	ANT1	100Kbps	920.00	5.81	30.00	Pass


H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 39 of 44

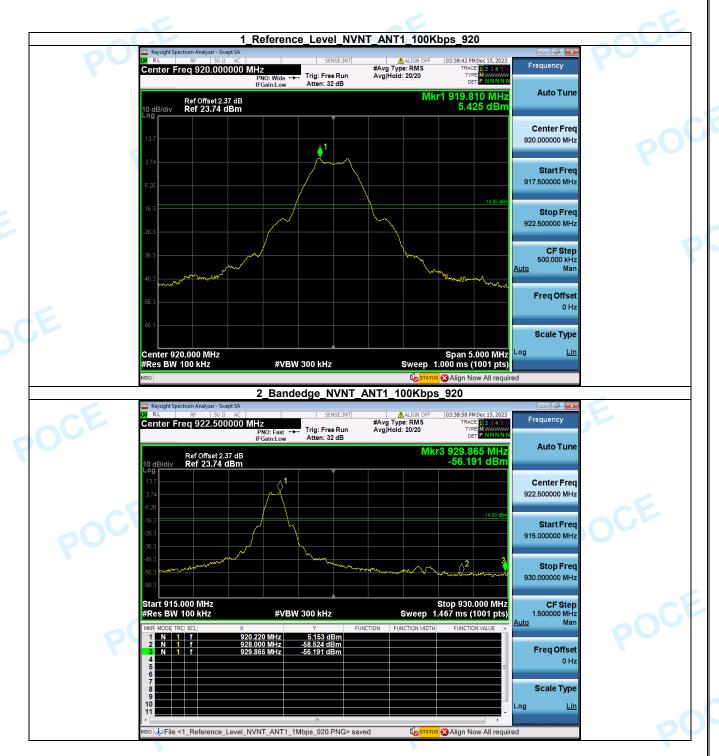
4. Power Spectral Density

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	100Kbps	912.00	-5.35	8	Pass
NVNT	ANT1	100Kbps	920.00	-6.88	8	Pass



H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 40 of 44


5. Bandedge

Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	100Kbps	912.00	901.08	-55.79	-13.55	Pass
NVNT	ANT1	100Kbps	920.00	929.87	-56.19	-14.57	Pass

Spurious Emission

6.	Spurious Emission						
	Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
	NVNT	ANT1	1Mbps	912.00	-32.16	-12.61	Pass
	NVNT	ANT1	1Mbps	920.00	-31.21	-13.46	Pass

1_Reference_Level_NVNT_ANT1_1Mbps_920

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 43 of 44

