RF Exposure Evaluation Report

1 RF EXPOSURE

Product Name: Motion Sensor

Model No.: ZSE18 800LR

FCC ID: 2AZ2V-ZSE18800

2. RF Exposure Evaluation

FCC KDB447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device, RF Exposure, Equipment Authorization Procedures.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices.

2.1 LIMITS

According to FCC Part1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in part1.1307(b)

Table 1 to § 1.1310(e)(1)—Limits for Maximum Permissible Exposure (MPE)								
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)				
(i) Limits for Occupational/Controlled Exposure								
0.3-3.0	614	1.63	*(100)	<u>≤</u> 6				
3.0-30	1842/f	4.89/f	*(900/f ²)	<6				
30-300	61.4	0.163	1.0	<6				
300-1,500			f/300	<6				
1,500- 100,000			5	<6				
(ii) Limits for General Population/Uncontrolled Exposure								

(ii) Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	*(100)	<30			
1.34-30	824/f	2.19/f	*(180/f ²)	<30			
30-300	27.5	0.073	0.2	<30			
300-1,500			f/1500	<30			
1,500- 100,000			1.0	<30			

F= Frequency in MHz Friis Formula

Friis transmission formula: Pd = (Pout*G)/(4* Pi * R 2) Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd id the limit of MPE . If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

Remark:

Pd = (Pout*G)/(4* Pi * R²)

dbm=dbuv/m-95.2, so the power is 87.16-95.2=-8.04dBm

2.2 EUT RF EXPOSURE EVALUATION

For operation Frequency: 908.40--916.00MHz, ant gain is -4.12dBi Max operation Frequency: 912.0--920.0MHz, ant gain is -3.70dBi Max

Antenna Gain: The maximum Gain measured in fully anechoic chamber is 1.0 in linear scale.

The Max Conducted Peak Output Power data refer to report report No.: POCE231116018RL001 & POCE231116018RL002

worst mode and channel:

Test channel	Emission Level (dBuV/m)	Emission Level(dBm)	Tune-up Power (dbm)	Maximum tune-up Power (dbm)	Maximum tune-up Power (mW)	Calculated value (mW/cm2)	Limit (mW/cm2)
908.4MHz	87.16	-8.04	-8±1	-7.0	0.1995	0.000015	0.6056
912.0MHz	1	6.78	7±1	8.0	6.31	0.000535	0.608

Conclusion: the calculated value less than the limit, so there is no sar requirement.

NOTE:1. EUT module is more than 20cm away from the human body.