

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website:

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No.:	CQASZ20211102030E-01
Applicant:	Shenzhen Inkbird Technology Co., Ltd.
Address of Applicant:	Floor 4th East, Building 713, Pengji Industrial Zone, LianTang, Luohu District, Shenzhen, PRC.
Equipment Under Test (E	UT):
Product:	Bluetooth Smart Food Thermometer
Model No.:	IBT-24S
Test Model No.:	IBT-24S
Brand Name:	INKBIRD
FCC ID:	2AYZDIBT-24S
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2021-11-23
Date of Test:	2021-11-23 to 2021-12-24
Date of Issue:	2022-01-14
Test Result:	PASS*

*In the configuration tested, the EUT complied with the standards specified above

lewis zhou Tested By: (Lewis Zhou) Rook Huanz Reviewed By: (Rock Huang) ws PPROVER Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20211102030E-01	Rev.01	Initial report	2022-01-14

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	
4.4 TEST ENVIRONMENT	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY.	
4.9 DEVIATION FROM STANDARDS	10
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER.	
4.11 EQUIPMENT LIST	11
5 TEST RESULTS AND MEASUREMENT DATA	12
5.1 ANTENNA REQUIREMENT.	12
5.2 CONDUCTED EMISSIONS	13
5.3 CONDUCTED PEAK OUTPUT POWER	17
Test Result	17
Test Graphs	
5.4 6dB Occupy Bandwidth	
Test Result	
Test Graphs	
5.5 POWER SPECTRAL DENSITY	
Test Result	
Test Graphs	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS Test Result	
Test Graphs	
5.7 Spurious RF Conducted Emissions	
Test Result	
Test Graphs	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions.	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP.	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	42

4 General Information

4.1 Client Information

Applicant:	Shenzhen Inkbird Technology Co., Ltd.
Address of Applicant:	Floor 4th East, Building 713, Pengji Industrial Zone, LianTang, Luohu District, Shenzhen, PRC.
Manufacturer:	Shenzhen Inkbird Technology Co., Ltd.
Address of Manufacturer:	Floor 4th East, Building 713, Pengji Industrial Zone, LianTang, Luohu District, Shenzhen, PRC.
Factory:	Shenzhen Inkbird Technology Co., Ltd.
Address of Factory:	Floor 4th East, Building 713, Pengji Industrial Zone, LianTang, Luohu District, Shenzhen, PRC.

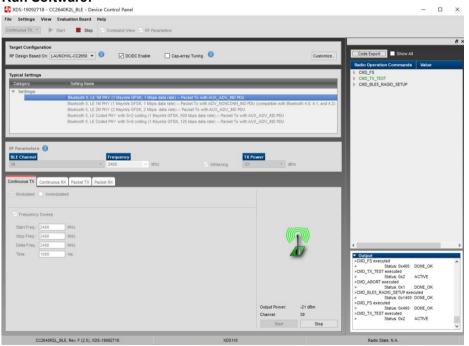
4.2 General Description of EUT

Product Name:	Bluetooth Smart Food Thermometer
Model No.:	IBT-24S
Test Model No.:	IBT-24S
Trade Mark:	INKBIRD
Software Version:	V0.1.7
Hardware Version:	V1.7
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	V4.2
Modulation Type:	GFSK
Transfer Rate:	1Mbps
Number of Channel:	40
Product Type:	□ Mobile
Test Software of EUT:	XDS-19092718-CC2640R2L_BLE-Device Control Panel
Antenna Type:	PCB Antenna
Antenna Gain:	1dBi
EUT Power Supply:	Li-ion battery: DC 3.7V 1000mAh, Charge by DC 5V for adapter

Operation I	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:


Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:					
Mode:	\boxtimes Special software is used.				
		Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*			
EUT Power level:	Class2 (Power level is built-in set par selected)	ameters and cannot be changed and			
Use test software to set the I	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep				
transmitting of the EUT.					
Mode	Mode Channel Frequency(MHz)				
	CH0 2402				
GFSK CH19 2440					
	CH39 2480				

Run Software:

4.4 Test Environment

Operating Environment	Operating Environment:			
Radiated Emissions:				
Temperature:	25.3 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	1009 mbar			
Radio conducted item te	est (RF Conducted test room):			
Temperature:	25.4 °C			
Humidity:	53 % RH			
Atmospheric Pressure:	1009 mbar			
Test mode:				
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.			
	Note: In the process of transmitting of EUT, the duty cycle $>$ 98%.			

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1	/	/	1	1

2) Cable

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	/	1	/	/

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	5.12dB	(1)
2	Radiated Emission (Above 1GHz)	4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8°C	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	Frequency Error	5.5 Hz	(1)

Hereafter the best measurement capability for CQA laboratory is reported:

(1)This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.7 Test Location

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2021/9/10	2022/9/9
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

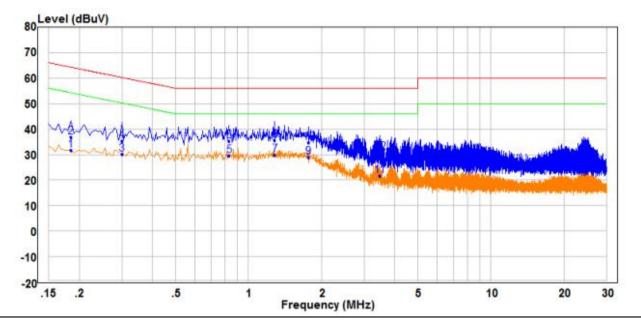
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB antenna. The best case gain of the antenna is 1dBi.

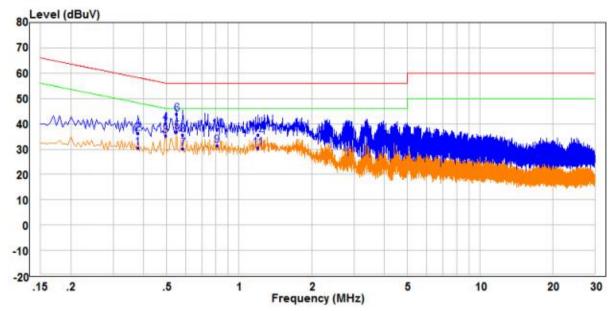
Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:		Limit (d	BuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test Procedure:	 The mains terminal disturt room. 	oance voltage test was	s conducted in a shielded				
	2) The EUT was connected to	AC power source thro	ough a LISN 1 (Line				
	Impedance Stabilization N	· ·	·				
	impedance. The power cal						
	connected to a second LIS		•				
	reference plane in the sam	•	•				
	measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not						
	exceeded.	SN provided the rating	of the LISN was not				
	3) The tabletop EUT was place	ed upon a non-metallio	c table 0.8m above the				
	ground reference plane. A	-	rangement, the EUT was				
	placed on the horizontal gr	•	aranaa alaaa Tha raar				
	 The test was performed wi of the EUT shall be 0.4 m 	•	•				
	vertical ground reference p	•					
	reference plane. The LISN		•				
	unit under test and bonded						
	mounted on top of the grou	•	•				
	between the closest points						
	the EUT and associated ed						
	5) In order to find the maximu						
	equipment and all of the in	terface cables must be	changed according to				
	ANSI C63.10: 2013 on con	ducted measurement.					



Test Setup:	Shielding Room Test Receiver EUT AE Juite Juite AC Mains Ground Reference Plane
Test Mode:	Charging mode
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

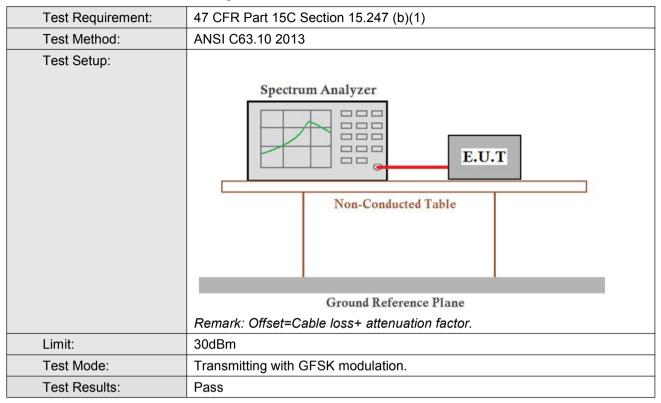
Live line:


		Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
	-	MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.185	22.08	9.49	31.57	54.26	-22.69	Average	Line
2		0.185	27.48	9.49	36.97	64.26	-27.29	QP	Line
3		0.300	20.68	9.49	30.17	50.24	-20.07	Average	Line
4		0.300	25.95	9.49	35.44	60.24	-24.80	QP	Line
5		0.830	19.75	9.71	29.46	46.00	-16.54	Average	Line
6		0.830	25.58	9.71	35.29	56.00	-20.71	QP	Line
7	PP	1.285	20.41	9.52	29.93	46.00	-16.07	Average	Line
8	QP	1.285	26.08	9.52	35.60	56.00	-20.40	QP	Line
9		1.770	19.43	9.53	28.96	46.00	-17.04	Average	Line
10		1.770	25.15	9.53	34.68	56.00	-21.32	QP	Line
11		3.480	12.04	9.64	21.68	46.00	-24.32	Average	Line
12		3.480	21.19	9.64	30.83	56.00	-25.17	QP	Line

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

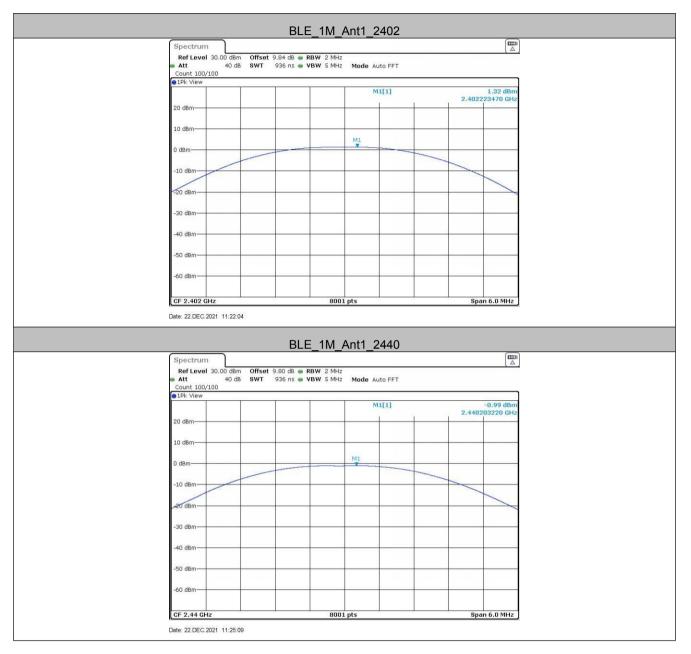
Neutral line:


		Enog	Read	Factor	Level	Limit Line	Over	Remark	Pol/Phase
		Freq	rever	Factor	rever	Line	LIMIC	Reliark	P01/Pliase
		MHZ	dBuV	dB	dBuV	dBuV	dB		
1		0.380	21.06	9.53	30.59	48.28	-17.69	Average	Neutral
2		0.380	26.68	9.53	36.21	58.28	-22.07	QP	Neutral
3		0.495	25.77	9.59	35.36	46.08	-10.72	Average	Neutral
4		0.495	30.61	9.59	40.20	56.08	-15.88	QP	Neutral
5	PP	0.550	27.08	9.65	36.73	46.00	-9.27	Average	Neutral
6	QP	0.550	34.21	9.65	43.86	56.00	-12.14	QP	Neutral
7		0.585	20.45	9.70	30.15	46.00	-15.85	Average	Neutral
8		0.585	25.94	9.70	35.64	56.00	-20.36	QP	Neutral
9		0.810	21.70	9.80	31.50	46.00	-14.50	Average	Neutral
10		0.810	27.84	9.80	37.64	56.00	-18.36	QP	Neutral
11		1.195	20.67	9.72	30.39	46.00	-15.61	Average	Neutral
12		1.195	26.01	9.72	35.73	56.00	-20.27	QP	Neutral

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

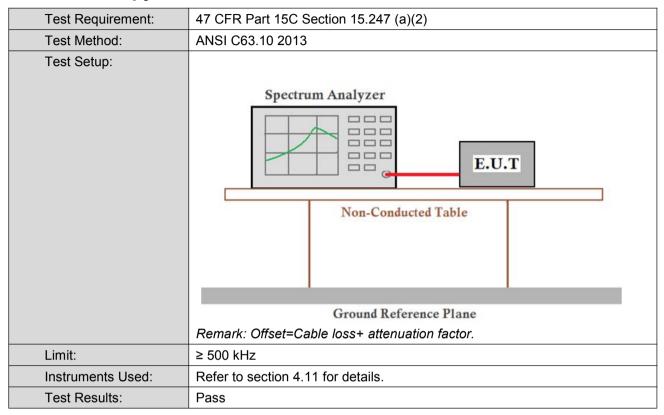
5.3 Conducted Peak Output Power



Test Result

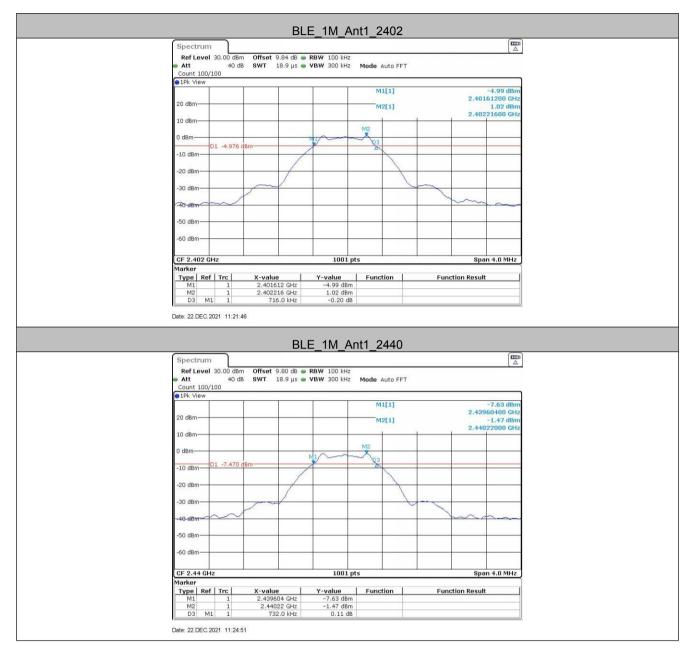
TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2402	1.32	≤30	PASS
BLE_1M	Ant1	2440	-0.99	≤30	PASS
		2480	-2.36	≤30	PASS

Test Graphs



Spectrum							
Ref Level 30.00	lBm Offset 9	.80 dB 🕳 RBV	V 2 MHz				(4)
	dB SWT	936 ns 👄 VBN	VISMHz Mode	uto FFT			
Count 100/100							
				M1[1]			-2.36 dBm
20 dBm				1		2.4801	59730 GHz
10 dBm							
0 dBm	-		M1		~		
-10 dBm						~	
-20 dBm-							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
CF 2.48 GHz		2	8001 pts	VA	2	Spa	n 6.0 MHz

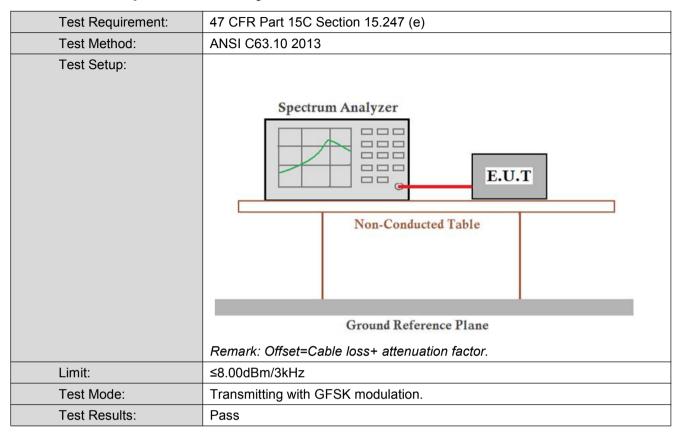
5.4 6dB Occupy Bandwidth



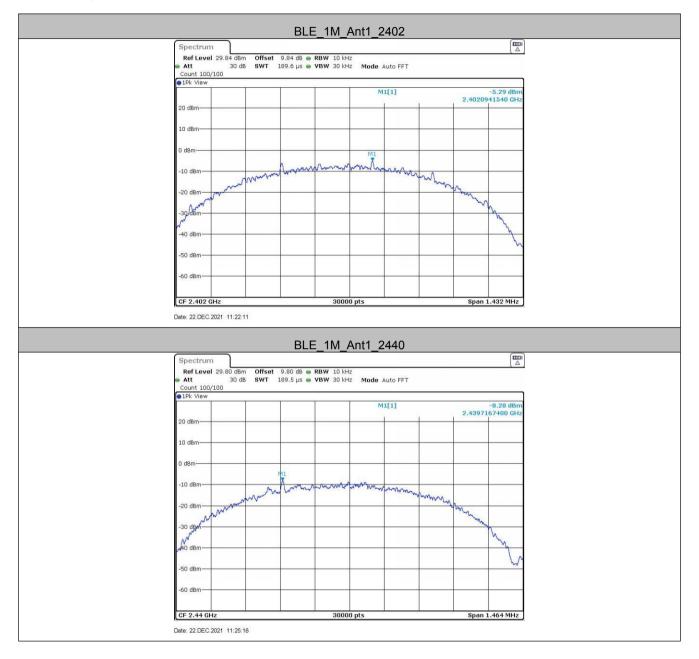
Test Result

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.716	2401.612	2402.328	0.5	PASS
BLE_1M	Ant1	2440	0.732	2439.604	2440.336	0.5	PASS
		2480	0.740	2479.596	2480.336	0.5	PASS

Test Graphs



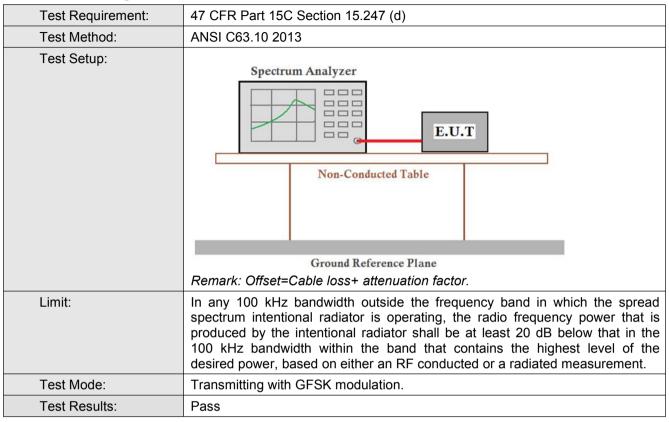
5.5 Power Spectral Density



Test Result

TestMode	Antenna	Channel	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
		2402	-5.29	≤8	PASS
BLE_1M	Ant1	2440	-8.28	≤8	PASS
		2480	-10.34	≤8	PASS

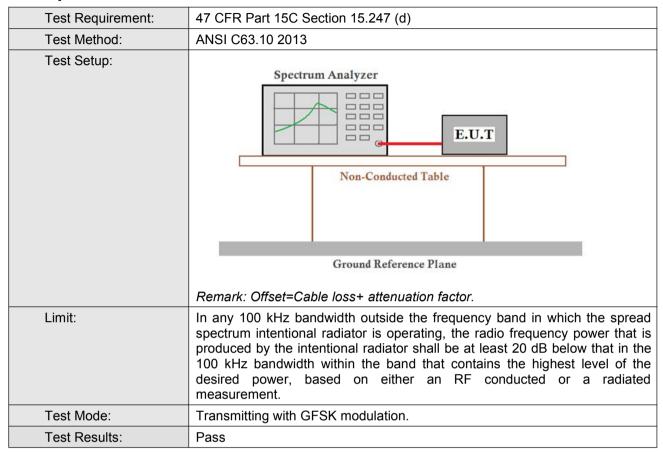
Test Graphs



5.6 Band-edge for RF Conducted Emissions

Test Result

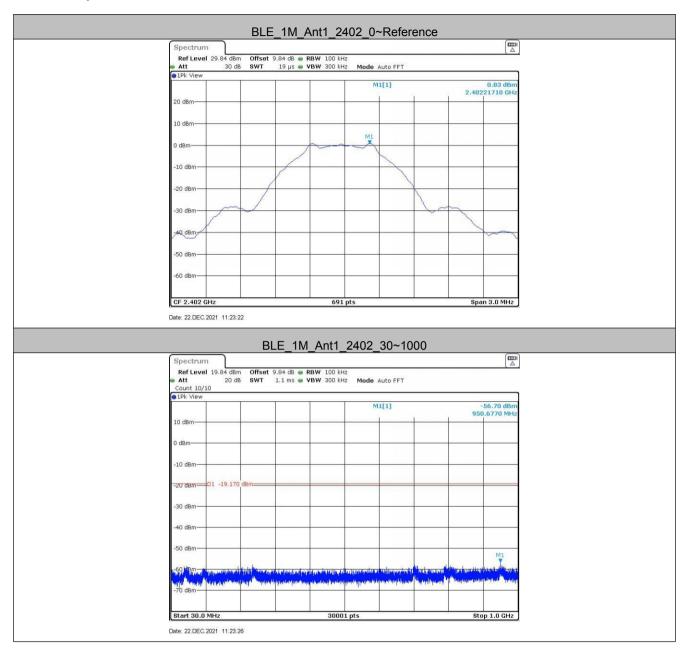
TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
		Low	2402	1.14	-46.02	≤-18.86	PASS
BLE_1M	Ant1	High	2480	-3.12	-47.28	≤-23.12	PASS



Test Graphs

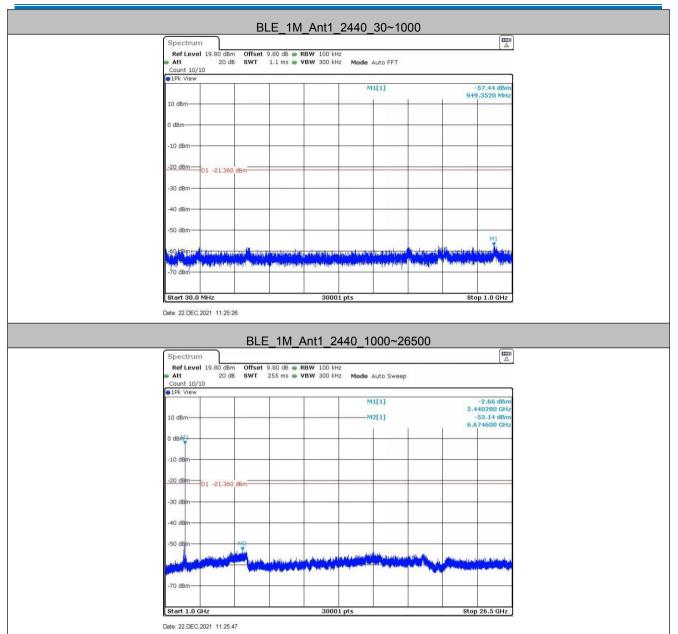
		BLE_	1M_Ant1_	Low_2402	2		
Spect Ref L	rum evel 20.00 dBm						
👄 Att	30 dB 300/300		VBW 300 kHz r	Mode Auto FFT			1
10 dBm				M1[1]	2	1.14 dBm .4016970 GHz	
0 dBm-				M2[1]	5	-46.83 dBm .4000000 GHz	
-10 dBr	n						
-20 de	D1 -18.860 c	dBm					
-30 dBr	n					+	
-40 dB	04 X				МЗ	13	
∿50-d8j		man man man	and and a state of the state of	and and and a second	and more thank the	and the	
-60 dBi -70 dBi							
						. 105 011	
Marker	Ref Trc	X-value	691 pts Y-value	Function	Function Re	op 2.405 GHz	
M1 M2 M3	1	2.401697 GHz 2.4 GHz 2.39 GHz 2.3539855 GHz	1.14 dBm -46.83 dBm -48.58 dBm -46.02 dBm				
M4 Date: 22.	1 DEC.2021 11:22:20						<u> </u>
Date: 22.	PEC.2021 11:22:20	Offset 9.80 dB	1M_Ant1_	High_248	0]
Date: 22.	PEC.2021 11:22:20	Offset 9.80 dB	1M_Ant1_			-3.12 dBm]
Spect Ref L Att Count ID dBr	rum evel 20.00 dBm 30 dB 300/300 iew	Offset 9.80 dB	1M_Ant1_	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm]
Date: 22. Spect Att Count ID dBm 0 dBm-	PUC 2021 11:22 20	Offset 9.80 dB	1M_Ant1_	Mode Auto FFT		-3.12 dBm 2.480250 GHz]
Date: 22. Specf att Count PIR V 10 dBm -10 dBm	EVEN 20.00 dBm 300/300 dBm M1	Offset 9.80 dB SwT 94.8 μs	1M_Ant1_	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm]
Date: 22. Spect Att Count ID dBm 0 dBm-	PEC.2021 11:22 20	Offset 9.80 dB SwT 94.8 μs	1M_Ant1_	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm	
Date: 22. Spect Ref L Att Count © 1Pk V 10 dBm -10 dBm -20 dBm	rum evel 20.00 dBm 300/300 iew M1 0 0 1 -23.120 e	0 Offset 9.80 dB SwT 94.8 μs 48m	1M_Ant1	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm	
Date: 22. Spect Ref L Att Count © IPK V 10 dBm -10 dBm -20 dBm -30 dBm	PEC.2021 11:22 20 Prum evel 20.00 dBm 300/300 Pew M1 0 01 -23,120 0 M2	Offset 9.80 dB SwT 94.8 μs	1M_Ant1	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm	
Date: 22. Spect Ref I Att Count © 1Pk V 10 dBm 0 dBm- -10 dBu -20 dBu -30 dBu -30 dBu -60 dBu -60 dBu	PEC.2021 11:22 20	0 Offset 9.80 dB SwT 94.8 µs •	1M_Ant1	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm 2.483500 GHz	
Date: 22. Spect Ref L Att Count ● IPF V 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50,dBm	PEC.2021 11:22 20	0 Offset 9.80 dB SwT 94.8 µs •	1M_Ant1	Mode Auto FFT		-3.12 dBm 2.480250 GHz -50.27 dBm 2.483500 GHz	
Date: 22. Spect Ref I Att Count © 1Pk -V 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -5	EC. 2021 11:22 20	0 Offset 9.80 dB SwT 94.8 µs •	1M_Ant1	Mode Auto FFT	And Well, 1999 - Mallary	-3.12 dBm 2.480250 GHz -50.27 dBm 2.483500 GHz	
Date: 22. Spect Att Count ● IPL V 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	PEC.2021 11:22 20 rum	0 Offset 9.80 dB SwT 94.8 µs •	1M_Ant1	Mode Auto FFT	And Well, 1999 - Mallary	-3.12 dBm 2.480250 GHz -50.27 dBm 2.483500 GHz	

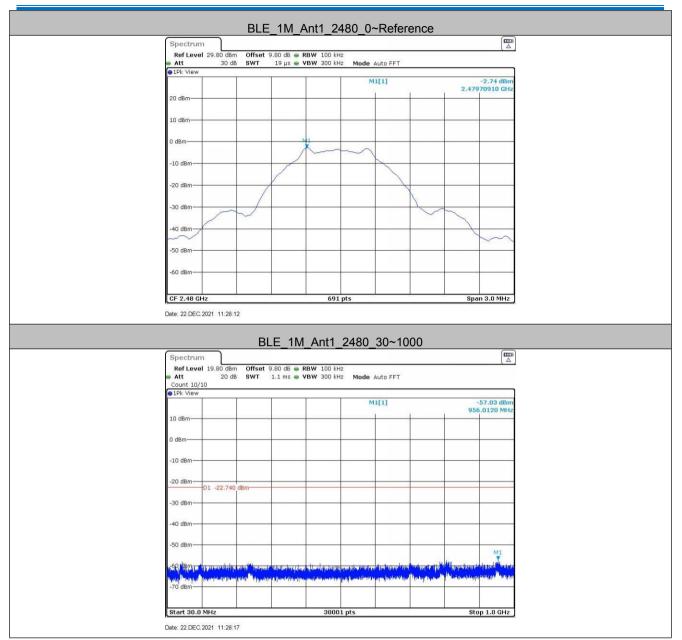
5.7 Spurious RF Conducted Emissions

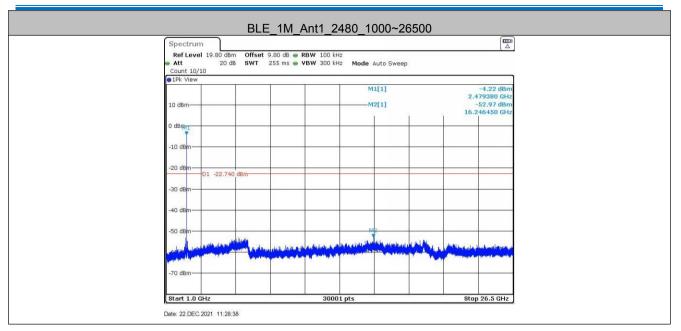


Test Result


TestMode	Antenna	Channel	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
			Reference	0.83	0.83		PASS
		2402	30~1000	0.83	-56.7	≤-19.17	PASS
			1000~26500	0.83	-51.27	≤-19.17	PASS
		nt1 2440	Reference	-1.36	-1.36		PASS
BLE_1M	Ant1		30~1000	-1.36	-57.44	≤-21.36	PASS
			1000~26500	-1.36	-53.14	≤-21.36	PASS
			Reference	-2.74	-2.74		PASS
			30~1000	-2.74	-57.03	≤-22.74	PASS
			1000~26500	-2.74	-52.97	≤-22.74	PASS

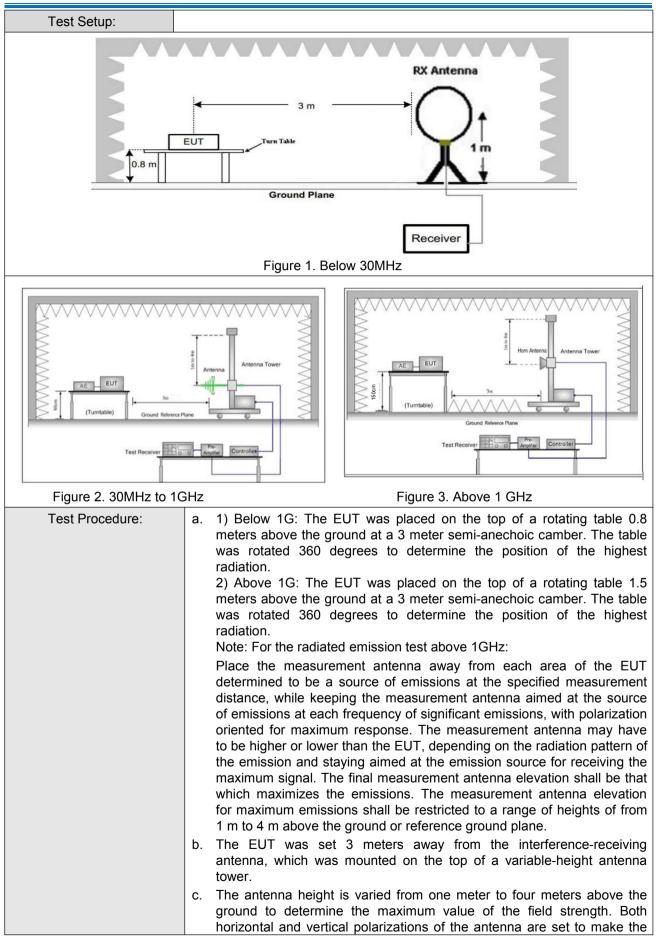

Test Graphs





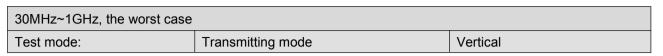
Report No.: CQASZ20211102030E-01

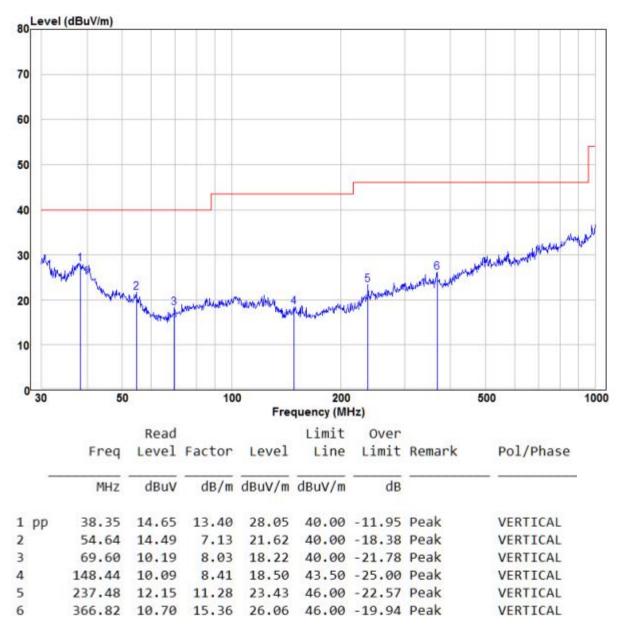
Remark:


Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

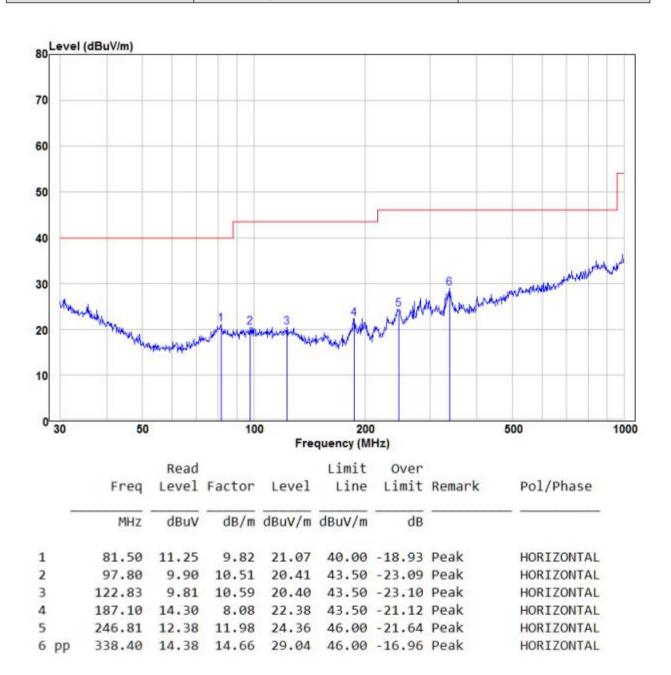
5.8 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013							
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)				
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	z	Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak			
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak			
	Above 1GHz		Peak	1MHz	: 3MHz	Peak			
			Peak	1MHz	: 10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (r			
	0.009MHz-0.490MHz		400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz	500		54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rad	20d quip	B above the ment under t	maximum est. This p	permitted ave	erage emissio			





	measurement.
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.
	For below 1GHz part, through pre-scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass


Radiated Emission below 1GHz

30MHz~1GHz, the worst case		
Test mode:	Transmitting mode	Horizontal

Transmitter Emission above 1GHz

Worse case mode:		GFSK(1Mbps)		Test channel:		Lowest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	55.41	-9.2	46.21	74	-27.79	Peak	н
2400	55.68	-9.39	46.29	74	-27.71	Peak	Н
4804	53.08	-4.33	48.75	74	-25.25	Peak	Н
7206	49.42	1.01	50.43	74	-23.57	Peak	Н
2390	54.00	-9.2	44.80	74	-29.20	Peak	v
2400	51.04	-9.39	41.65	74	-32.35	Peak	V
4804	52.25	-4.33	47.92	74	-26.08	Peak	V
7206	48.82	1.01	49.83	74	-24.17	Peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	52.78	-4.11	48.67	74	-25.33	peak	н
7320	49.44	1.51	50.95	74	-23.05	peak	н
4880	53.22	-4.11	49.11	74	-24.89	peak	V
7320	50.81	1.51	52.32	74	-21.68	peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.86	-9.29	45.57	74	-28.43	Peak	н
4960	51.56	-4.04	47.52	74	-26.48	Peak	н
7440	50.29	1.57	51.86	74	-22.14	Peak	н
2483.5	57.12	-9.29	47.83	74	-26.17	Peak	v
4960	50.05	-4.04	46.01	74	-27.99	Peak	V
7440	49.18	1.57	50.75	74	-23.25	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

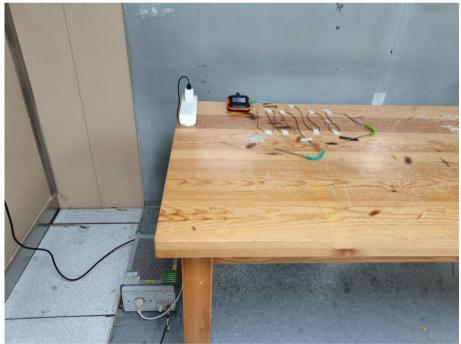
Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

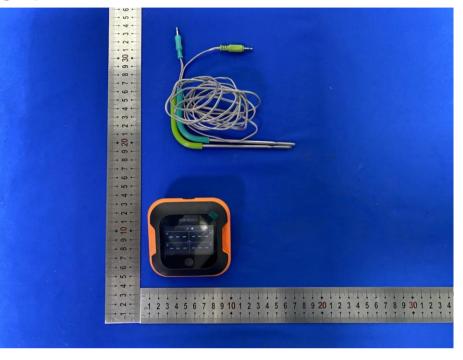
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

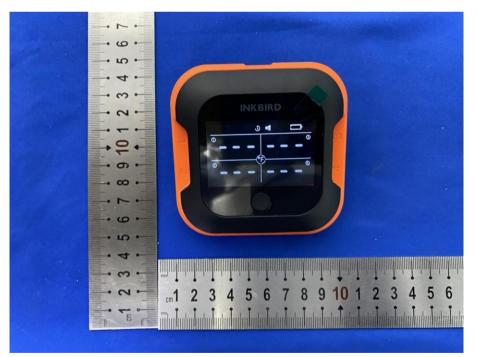
6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

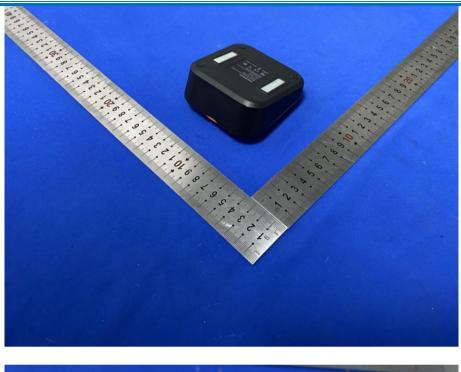
9kHz~30MHz:

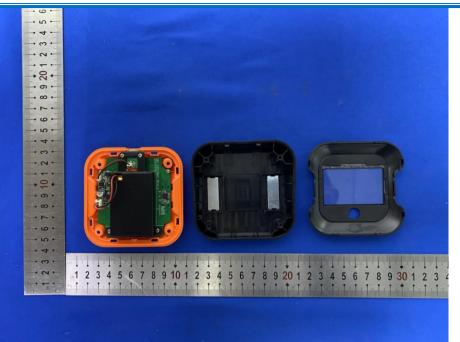


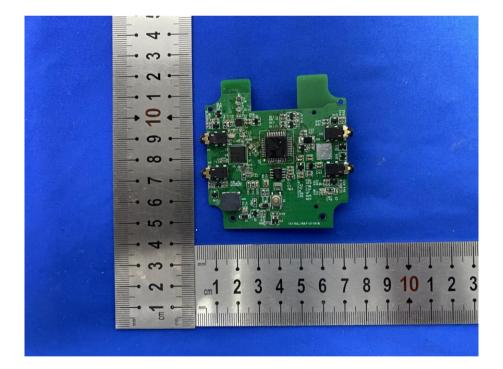


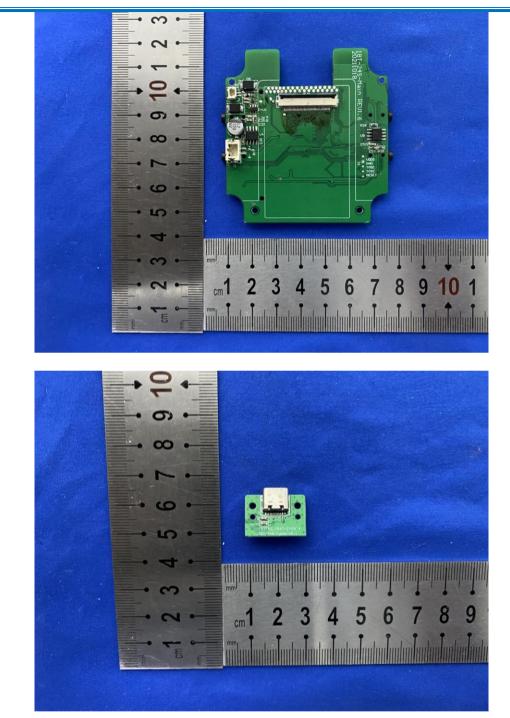

6.2 Conducted Emissions Test Setup

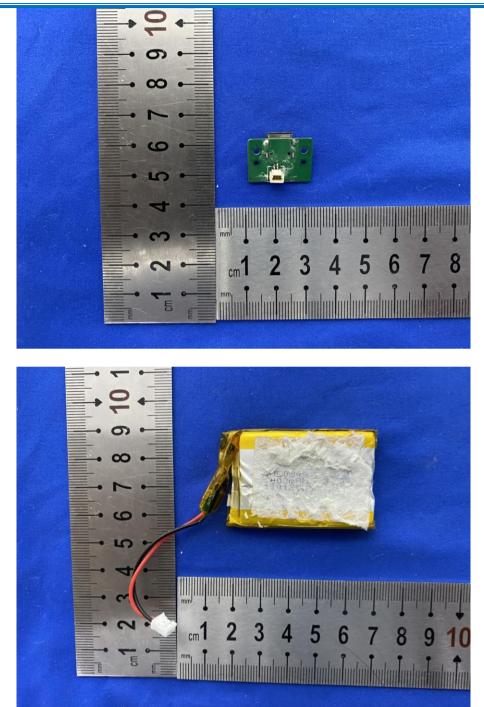
7 Photographs - EUT Constructional Details










(〇〇) 华夏准测

Shenzhen Huaxia Testing Technology Co., Ltd

Report No.: CQASZ20211102030E-01

*** END OF REPORT ***