

RF TEST REPORT

For

Shenzhen Inkbird Technology Co., Ltd Product Name: Air Quality Monitor Test Model(s).: IAQM-129-W

Report Reference No. : POCE240401002RL002

FCC ID : 2AYZD-IAQM-129-W

V1.0

Applicant's Name : Shenzhen Inkbird Technology Co., Ltd

Room 1803, Guowei Building, NO.68 Guowei Road, Xianhu Community,

Liantang, Luohu District, Shenzhen, China

Testing Laboratory : Shenzhen POCE Technology Co., Ltd.

Address : 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology

Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : April 1, 2024

Date of Test : April 1, 2024 to April 8, 2024

Data of Issue : April 8, 2024

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

V1.0

Revision History Of Report

Version Description		REPORT N	0.	Issue Date	
V1.0	Original	POCE240401002RL002		April 8, 2024	
E	POCE	POCE	POCE	POCE	
	3				
- oce	OCE	POCE	POCE	POCE	
	Po		1		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Ben Tang	Tomchen	Machoel Mo
Ben Tang /Test Engineer	Tom Chen / Project Engin	neer Machael Mo / Manager

V1.0

CONTENTS

1 TEST SUMMARY		5
1.1 TEST STANDARDS		
2 GENERAL INFORMATION	4-	6
2.1 CLIENT INFORMATION		
3 EVALUATION RESULTS (EVALUATION)		
3.1 ANTENNA REQUIREMENT	20CF 20CF	12
3.1.1 Conclusion:		
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	<u>ace</u>	13
4.1 CONDUCTED EMISSION AT AC POWER LINE		
4.1.1 E.U.T. Operation:	-E	13
4.1.2 Test Setup Diagram:	600, 60,	13
4.1.3 Test Data:		14
4.2 OCCUPIED BANDWIDTH	TE OCE	16
4.2.1 E.U.T. Operation:		
4.2.2 Test Setup Diagram:		16
4.2.3 Test Data:		
4.3 MAXIMUM CONDUCTED OUTPUT POWER		
4.3.1 E.U.T. Operation:		
4.3.2 Test Setup Diagram:		
4.3.3 Test Data:		
4.4 Power Spectral Density		
4.4.1 E.U.T. Operation:		
4.4.2 Test Setup Diagram:		
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS		
4.5.1 E.U.T. Operation:		
4.5.2 Test Setup Diagram:		
4.5.3 Test Data:		
4.6 BAND EDGE EMISSIONS (RADIATED)		
4.6.1 E.U.T. Operation:		
4.6.2 Test Setup Diagram:		
4.6.3 Test Data:		
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz).		
4.7.1 E.U.T. Operation:		
4.7.2 Test Data:		
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ).		29
4.8.1 E.U.T. Operation:		30

4.8.2 Test Data:	30
5 TEST SETUP PHOTOS	35
16DB BANDWIDTH	44
2. 99% OCCUPIED BANDWIDTH	
3. DUTY CYCLE	
5. Power Spectral Density	
6. BANDEDGE	
7. Spurious Emission	56

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

V1.0

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247	POCE PO	47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

2 GENERAL INFORMATION

V1.0

2.1 Client Information

Applicant's Name : Shenzhen Inkbird Technology Co., Ltd

Address : Room 1803, Guowei Building, NO.68 Guowei Road, Xianhu Community,

Liantang, Luohu District, Shenzhen, China

Manufacturer : Protech International Group Co., Ltd

Address : 5th Floor, Building A, No. 9, Dakan Gongye 2nd Road, Dakan Community,

Xili Street, Nanshan District, Shenzhen, GuangDong, China.

2.2 Description of Device (EUT)

Product Name:	Air Quality Monitor
Model/Type reference:	IAQM-129-W
Series Model:	IAQM-129, IAQM-130, IAQM-130-W, IAQM-131, IAQM-131-W,
	IAQM-129-B, IAQM-129-A, PTH-1, PTH-2, PTH-3, PTH-3M, PTH-3T,
	PTH-4, PTH-5, PTH-8, PTH-12, PTH-12W, PTH-9A, PTH-9AW,
	PTH-9B, PTH-9BW, PTH-9C, PTH-9CW, PTH-9D, PTH-9DW, PTH-9E,
	PTH-9EW, PTH-9F, PTH-9FW, PTH-9R, PTH-9RW, PTH-10D,
	PTH-10DW, PTH-10DH, PTH-10E, PTH-10EW, PTH-11D, PTH-11DW,
	PTH-11E, PTH-11EW, PTH-13A, PTH-13AW, PTH-13B, PTH-13BW,
	PTH-13C, PTH-13CW, PTH-13D, PTH-13DW, PTH-13E, PTH-13EW,
	PTH-14A, PTH-14AW, PTH-14B, PTH-14BW, PTH-14C, PTH-14CW,
	PTH-14D, PTH-14DW, PTH-14E, PTH-14EW, PTH-15A, PTH-15AW,
	PTH-15B, PTH-15BW, PTH-15C, PTH-15CW, PTH-15D, PTH-15DW,
	PTH-15E, PTH-15EW, PTH-16A, PTH-16AW, PTH-16B, PTH-16BW,
	PTH-16C, PTH-16CW, PTH-16D, PTH-16DW, PTH-16E, PTH-16EW,
	PTH-17A, PTH-17AW, PTH-17B, PTH-17BW, PTH-17C, PTH-17CW,
	PTH-17D, PTH-17DW, PTH-17E, PTH-17EW, PTH-18A, PTH-18AW,
	PTH-18B, PTH-18BW, PTH-18C, PTH-18CW, PTH-18D, PTH-18DW,
	PTH-18E, PTH-18EW, PTH-19A, PTH-19AW, PTH-19B, PTH-19BW,
	PTH-19C, PTH-19CW, PTH-19D, PTH-19DW, PTH-19E, PTH-19EW, PTH-20A, PTH-20AW, PTH-20B, PTH-20BW, PTH-20C, PTH-20CW,
	PTH-20D, PTH-20DW, PTH-20E, PTH-20EW, PTH-21A, PTH-21AW,
	PTH-21B, PTH-21BW, PTH-21C, PTH-21CW, PTH-21D, PTH-21DW,
	PTH-21E, PTH-21EW, PTH-22A, PTH-22AW, PTH-22B, PTH-22BW,
	PTH-22C, PTH-22CW, PTH-22D, PTH-22DW, PTH-22E, PTH-22EW,
	PTH-23A, PTH-23AW, PTH-23B, PTH-23BW, PTH-23C, PTH-23CW,
	PTH-23D, PTH-23DW, PTH-23E, PTH-23EW, PTH-24A, PTH-24AW,
	PTH-24B, PTH-24BW, PTH-24C, PTH-24CW, PTH-24D, PTH-24DW,
	PTH-24E, PTH-24EW, PTH-25A, PTH-25AW, PTH-25B, PTH-25BW,
	PTH-25C, PTH-25CW, PTH-25D, PTH-25DW, PTH-25E, PTH-25EW,
	PTH-26A, PTH-26AW, PTH-26B, PTH-26BW, PTH-26C, PTH-26CW,
	PTH-26D, PTH-26DW, PTH-26E, PTH-26EW, PTH-27A, PTH-27AW,
	PTH-27B, PTH-27BW, PTH-27C, PTH-27CW, PTH-27D, PTH-27DW,
	PTH-27E, PTH-27EW, PTH-28A, PTH-28AW, PTH-28B, PTH-28BW,
	PTH-28C, PTH-28CW, PTH-28D, PTH-28DW, PTH-28E, PTH-28EW,

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 6 of 58

	PTH-29A, PTH-29AW, PTH-29B, PTH-29BW, PTH-29C, PTH-29CW,
	PTH-29D, PTH-29DW, PTH-29E, PTH-29EW, PTH-30A, PTH-30AW,
	PTH-30B, PTH-30BW, PTH-30C, PTH-30CW, PTH-30D, PTH-30DW,
	PTH-30E, PTH-30EW, PTH-31A, PTH-31AW, PTH-31B, PTH-31BW,
E	PTH-31C, PTH-31CW, PTH-31D, PTH-31DW, PTH-31E, PTH-31EW,
PO	PTH-32A, PTH-32AW, PTH-32B, PTH-32BW, PTH-32C, PTH-32CW,
	PTH-32D, PTH-32DW, PTH-32E, PTH-32EW, PTH-33A, PTH-33AW,
OCE	PTH-33B, PTH-33BW, PTH-33C, PTH-33CW, PTH-33D, PTH-33DW,
OCE	PTH-33E, PTH-33EW, PTH-34A, PTH-34AW, PTH-34B, PTH-34BW,
	PTH-34C, PTH-34CW, PTH-34D, PTH-34DW, PTH-34E, PTH-34EW,
BOCK	PTH-35A, PTH-35AW, PTH-35B, PTH-35BW, PTH-35C, PTH-35CW,
POCE	PTH-35D, PTH-35DW, PTH-35E, PTH-35EW, PTH-36A, PTH-36AW,
CE.	PTH-36B, PTH-36BW, PTH-36C, PTH-36CW, PTH-36D, PTH-36DW,
POCE	PTH-36E, PTH-36EW, PTH-37A, PTH-37AW, PTH-37B, PTH-37BW,
	PTH-37C, PTH-37CW, PTH-37D, PTH-37DW, PTH-37E, PTH-37EW,
OCE	PTH-38A, PTH-38AW, PTH-38B, PTH-38BW, PTH-38C, PTH-38CW,
PO	PTH-38D, PTH-38DW, PTH-38E, PTH-38EW, PTH-39A, PTH-39AW,
	PTH-39B, PTH-39BW, PTH-39C, PTH-39CW, PTH-39D, PTH-39DW,
DOC.	PTH-39E, PTH-39EW, PTH-40A, PTH-40AW, PTH-40B, PTH-40BW,
	PTH-40C, PTH-40CW, PTH-40D, PTH-40DW, PTH-40E, PTH-40EW,
~E	PTH-9W, PTH-9S
Model Difference:	since the electrical circuit design, layout, components used and internalwiring
	were identical for the above models, Only the sales customers, sales
JOCE JOCE	region,product appearance isdifferent.Test sample model:IAQM-129-W
Trade Mark:	N/A
Power Supply:	DC 5V/2A from adapter Battery:DC3.7V 2700mA
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK OO
Antenna Type:	PCB
Antenna Gain:	1.37dBi
Hardware Version:	V1.0
Software Version:	V1.0
(Pomark: The Antonna (Sain is supplied by the customer POCE is not responsible for

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

This data and the related calculations associated with it)					SE		
Operation Frequency each of channel					POCE	PC	C
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	2011E	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16 🥑	2432 MHz	26	2452 MHz 🥐	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 7 of 58

9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see

OCE	Frequency (MHz)	Toot showned	
	BLE	Test channel	
0(2402MHz	Lowest channel	
PO.	2440MHz	Middle channel	
	2480MHz	Highest channel	
_	2480MHz et mode would be recorded in this report.		

2.3 Description of Test Modes

V1.0

Desci	ription of Test Modes			
No	Title	Description		
TM1 Lowest channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		
TM3	Highest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.		

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	C.E

2.5 Equipments Used During The Test

V1.0

Conducted Emission at AC power line										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
loop antenna	EVERFINE	LLA-2	80900L-C	2024-02-19	2025-02-18					
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	POCE	2023-12-12	2024-12-11					
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1 PC	CE /					
Cable	SCHWARZ BECK	POCE	/ poct	2023-12-27	2024-12-26					
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11					
50ΩCoaxial Switch	Anritsu	MP59B	M20531	L	/					
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12					
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11					

Power Spectral Density
Emissions in non-restricted frequency bands

Occupied Bandwidth

Maximum Conducted Output Power

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	PC 1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	OCE	/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	CE HP	66311B	38444359	TOCE	/
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	POCE	/
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	LOCE	/
Positioning Controller	1	MF-7802	1	1	CE 1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	, PC	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	CE /	CE /	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-02-19	2025-02-18
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	CE	2024-02-19	2025-02-18
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI 00	102109	2023-06-13	2024-06-12

2.6 Statement Of The Measurement Uncertainty

V1.0

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE	Technology Co., Ltd	d.	
Address:	101-102 Building H Tangtou, Shiyan, E	H5 & 1/F., Building Bao'an District, She	H, Hongfa Science enzhen, Guangdong	& Technology Park, g, China
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252	POCE	POCE	PC
FCC Registration Number:	0032847402	•	*	•
Designation Number:	CN1342	-nc ^r	= -0	CE
Test Firm Registration Number:	778666	6	PC	a.E.
A2LA Certificate Number:	6270.01	P	000	POUL

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 11 of 58

3 Evaluation Results (Evaluation)

V1.0

3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

POCE POCE POCE POCE

POCE POCE POCE

POCE POCE

POCE POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

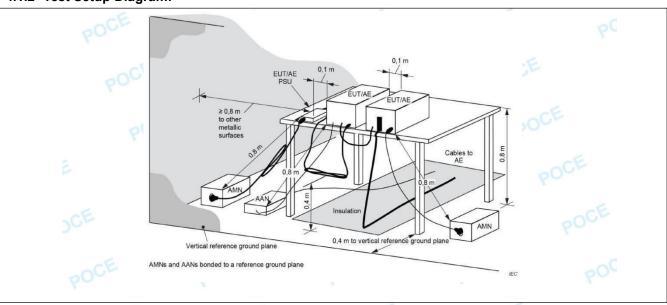
POCE

POCE

P

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 12 of 58

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

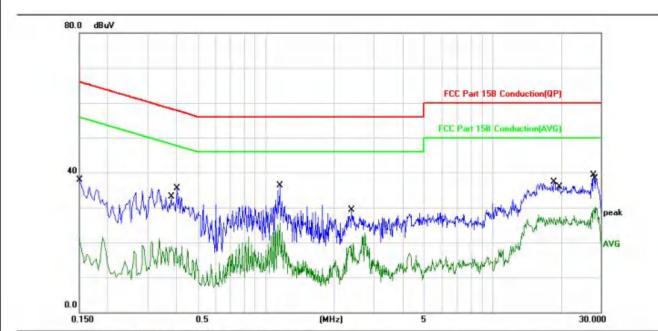
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)						
CE	-CE -CE	Average					
POOL	0.15-0.5	66 to 56*	56 to 46*				
- E	0.5-5	56 46 60 50					
POCE	5-30						
	*Decreases with the logarithm of the	frequency.					
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

4.1.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.7 °C	POC	Humidity:	50.5 %	Atmospheric Pressure:	102 kPa		
Pretest mode:		TM1						
Final test mode:		TM1	OCE	SOCE	BOCE	POCA		

4.1.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 13 of 58



4.1.3 Test Data:

TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 20 / CH: L

V1.0

Power:AC120V60Hz

1 2	0.1500 0.1500	dBuV 27.78	dB 10.05	dBuV	dBuV	dB	D 1 1	0
			10.05			ub	Detector	Comment
2	0.1500	10.07		37.83	65.99	-28.16	QP	
		10.97	10.05	21.02	55.99	-34.97	AVG	
3	0.3820	8.92	10.00	18.92	48.23	-29.31	AVG	
4	0.4060	25.51	10.00	35.51	57.73	-22.22	QP	
5	1.1500	15.88	9.91	25.79	46.00	-20.21	AVG	
6 *	1.1539	26.44	9.92	36.36	56.00	-19.64	QP	
7	2.3860	19.28	10.00	29.28	56.00	-26.72	QP	
8	2.4140	9.65	10.00	19.65	46.00	-26.35	AVG	
9	18.7180	26.76	10.46	37.22	60.00	-22.78	QP	
10	19.7900	16.93	10.46	27.39	50.00	-22.61	AVG	
11	27.9020	28.76	10.58	39.34	60.00	-20.66	QP	
12	28.4820	19.60	10.58	30.18	50.00	-19.82	AVG	

POCE POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE

POCE POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

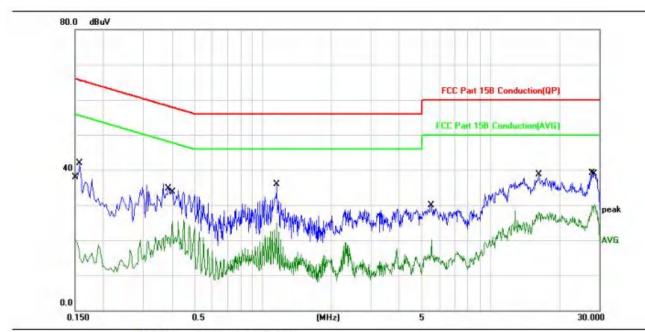
POCE

POCE

POCE

POCE

POCE


POCE

POC

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 20 / CH: L

Power:AC120V60Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	10.30	10.04	20.34	55.99	-35.65	AVG		
2		0.1580	31.92	10.03	41.95	65.56	-23.61	QP		
3		0.3860	24.67	10.00	34.67	58.15	-23.48	QP		
4		0.4020	15.31	10.00	25.31	47.81	-22.50	AVG		
5		1.1539	25.98	9.92	35.90	56.00	-20.10	QP		
6		1.1539	15.00	9.92	24.92	46.00	-21.08	AVG		
7		5.4860	19.82	10.16	29.98	60.00	-30.02	QP		
8		5.5100	10.03	10.16	20.19	50.00	-29.81	AVG		
9		16.3100	17.46	10.49	27.95	50.00	-22.05	AVG		
10		16.3819	28.15	10.49	38.64	60.00	-21.36	QP		
11		27.8860	28.45	10.65	39.10	60.00	-20.90	QP		
12	*	28.6540	19.43	10.66	30.09	50.00	-19.91	AVG		
									*/	

POCE POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE

POCE POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

POCE

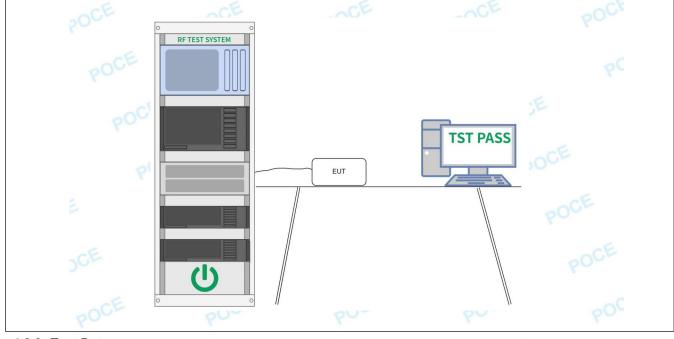
POCE

POCE

POCE

POC

4.2 Occupied Bandwidth


V1.0

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak.
	d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize.
	g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
4.2.1 E.U.T. Operation:	POOL BOOK BOOK

4.2.1 E.U.T. Operation:

Operating Envir	onment:	-6		a E	aE.	Œ
Temperature:	22.7 °C	OCH	Humidity:	50.5 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode:		TM1,	TM2, TM3	BOCE	BOCE	POCE

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 16 of 58

4.3 Maximum Conducted Output Power

V1.0

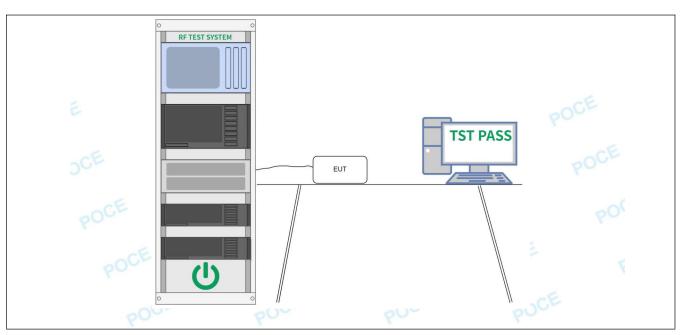
Test Limit: Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative peak power measurement, compliance with the one Watt limit can be based of measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas antenna elements averaged across all symbols in the signaling alphabet when transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not in any time intervals during which the transmitter is off or is transmitting at a red power level. If multiple modes of operation are possible (e.g., alternative mod methods), the maximum conducted output power is the highest total transmit occurring in any mode.	e to a on a d and n the nclude uced lulation
MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative peak power measurement, compliance with the one Watt limit can be based of measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas antenna elements averaged across all symbols in the signaling alphabet whe transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not in any time intervals during which the transmitter is off or is transmitting at a red power level. If multiple modes of operation are possible (e.g., alternative mod methods), the maximum conducted output power is the highest total transmit	e to a on a d and on the nclude uced lulation
any time intervals during which the transmitter is off or is transmitting at a red power level. If multiple modes of operation are possible (e.g., alternative mod methods), the maximum conducted output power is the highest total transmit	uced lulation
occaning in any incom	
Test Method: ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	
Procedure: ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted power Core 0, Core 1,, Core i were first measured separately, as shown in the section above (this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated up the following formula, where GN is the gain of the nth antenna and NANT, the	ction
number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/C (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation:	
e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)	

4.3.1 E.U.T. Operation:

Operating Environment:				OCE	DOCE	POCE
Temperature:	22.7 °C		Humidity:	50.5 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3	OCE	TOCE	OCE
Final test mode		TM1,	TM2, TM3	PO	Po	Po

4.3.2 Test Setup Diagram:

POCE POCE POCE POCE POCE


POCE POCE POCE POCE POCE

POCE POCE POCE

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 17 of 58

V1.0

4.3.3 Test Data:

Please Refer to Appendix for Details.

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

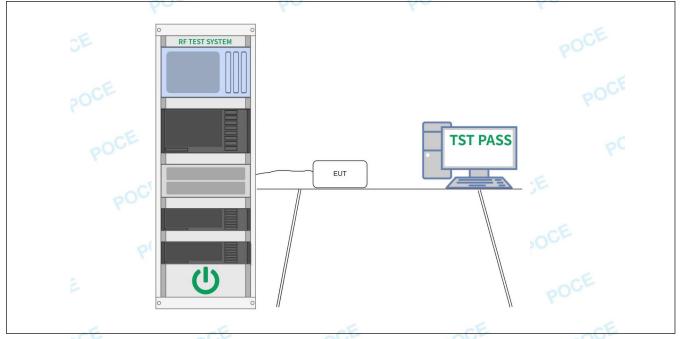
POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

4.4 Power Spectral Density


V1.0

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

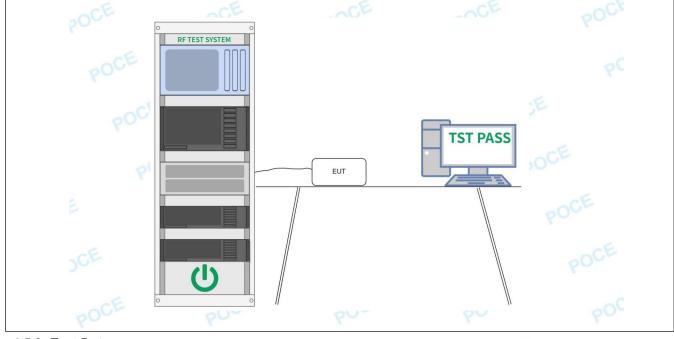
Operating Envir	onment:	POCT		POCE	POO		F
Temperature:	22.7 °C	Humidity:	50.5 %	Atmosphe	ric Pressure:	102 kPa	
Pretest mode:	TM ²	, TM2, TM3	CE	POCE	D	OCE	
Final test mode	: TM ²	, TM2, TM3		•			

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 19 of 58


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205						
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak						
	conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.						
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3						
4.5.1 E.U.T. Operation:	boo boo boo						

4.5.1 E.U.T. Operation:

Operating Envir	onment:			-E	aE.	Œ
Temperature:	22.7 °C	OCL	Humidity:	50.5 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode	:	TM1,	TM2, TM3	BOCE	BOCE	POCE

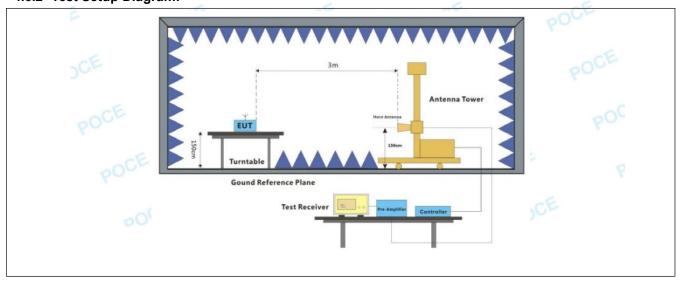
4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

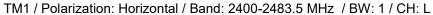
101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 20 of 58

4.6 Band edge emissions (Radiated)

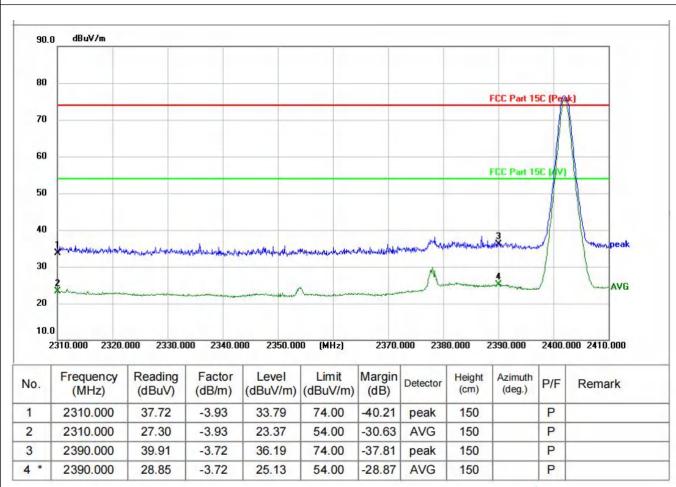

V1.0

Test Requirement:	restricted bands, as defined	n addition, radiated emissions wh in § 15.205(a), must also comply 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency band 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation with these frequency bands is permitted under other sections of this part, e.g., §§ 15 and 15.241.							
	The emission limits shown in employing a CISPR quasi-pe 110–490 kHz and above 100	the tighter limit applies at the ban the above table are based on me eak detector except for the frequen MHz. Radiated emission limits is employing an average detector.	easurements ncy bands 9–90 kHz,				
Test Method:	ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Me	3.10	POC				
Procedure:	ANSI C63.10-2013 section 6	.10.5.2					

4.6.1 E.U.T. Operation:


Operating Enviro	onment:		-CE		OCE		CE
Temperature:	22.7 °C	Hum	idity:	50.5 %	Atmosphe	eric Pressure:	102 kPa
Pretest mode:		TM1, TM2,	TM3	aE.	25		cE.
Final test mode:	PO	TM1,, TM3	PC	CP	POU		POUL

4.6.2 Test Setup Diagram:



101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 21 of 58

4.6.3 Test Data:

V1.0

POCE POCE POCE POCE

4 *

2390.000

28.78

-4.91

23.87

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 90.0 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 AVG 20 10.0 2310.000 2320.000 2330.000 2340.000 2350.000 (MHz) 2370.000 2380.000 2390.000 2400.000 2410.000 Frequency Reading Factor Level Limit Margin Azimuth Height Detector P/F No. Remark (MHz) (dBuV/m) (dBuV/m) (cm) (deg.) (dBuV) (dB/m) (dB) 2310.000 38.50 -5.23 33.27 P 1 74.00 -40.73150 peak -5.2354.00 P 2 2310.000 27.16 21.93 -32.07AVG 150 2390.000 39.10 -4.91 34.19 74.00 -39.81 P 3 peak 150

54.00

-30.13

AVG

150

P

P

P

P

2 *

3

4

2483.500

2500.000

2500.000

40.47

40.38

29.73

-3.47

-3.43

-3.43

37.00

36.95

26.30

54.00

74.00

54.00

-17.00

-37.05

-27.70

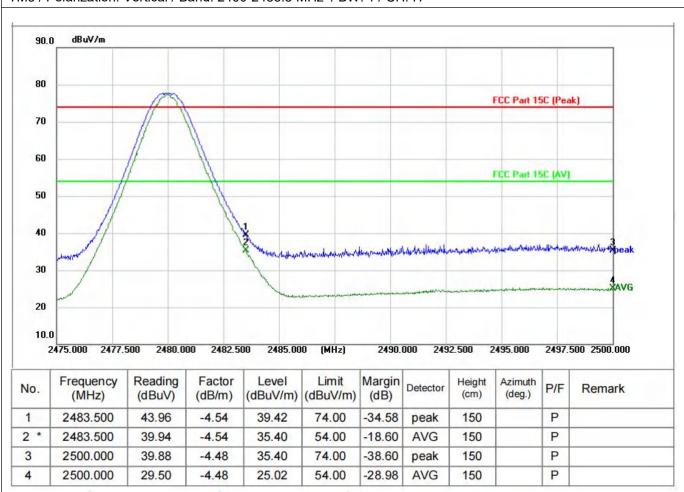
AVG

peak

AVG

150

150


150

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H dBuV/m 90.0 80 FCC Part 15C (Peak) 70 60 FCC Part 15C (AV) 50 40 30 XAVG 20 10.0 2475.000 2477.500 2480.000 2482.500 2485.000 (MHz) 2490.000 2492.500 2495.000 2497.500 2500.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (deg.) (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) P 1 2483.500 44.40 -3.4740.93 74.00 -33.07150 peak

		POCE	

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

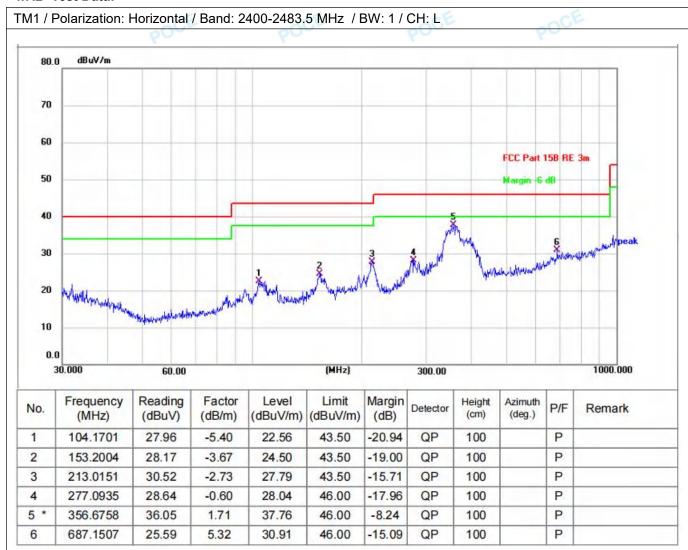
4.7 Emissions in frequency bands (below 1GHz)

V1.0

O.009- 0.490- 1.705- 30-88 88-216 216-96 Above ** Excerradiators 54-72 M these from and 15.3 In the enterm employing 110-490 are base Test Method: ANSI Control KDB 55 Procedure: a. For book above the state of t	1.705 30.0 6	Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 **	Measurement distance (meters) 300 30 30					
0.490- 1.705- 30-88 88-216 216-96 Above ** Excer radiator: 54-72 M these from and 15.3 In the ememploying 110-490 are base. Test Method: ANSI Compare the state of the state	1.705 30.0 6	24000/F(kHz) 30	30					
1.705- 30-88 88-216 216-96 Above ** Except radiators 54-72 M these for and 15.3 In the enterploying 110-490 are base Test Method: ANSI Control KDB 55 Procedure: a. For beabove the 360 deg bear of the procedure of the second power of the secon	30.0	30						
30-88 88-216 216-96 Above ** Exceradiators 54-72 M these from and 15.3 In the ememploying 110-490 are basis Test Method: ANSI Company KDB 55 Procedure: a. For both above the 360 degree before a showe the 360 deg	60 00		30					
88-216 216-96 Above ** Excel radiators 54-72 M these from and 15.3 In the end are base Test Method: ANSI Control KDB 55 Procedure: a. For beabove the 360 degent bear and bove the 360 degent bear and 560 degent bear and 56	60 0CE	100 **	00					
216-96 Above ** Excepradiators 54-72 M these from and 15.3 In the ememploying 110-490 are base Test Method: ANSI Company KDB 55 Procedure: a. For both above the street of the stre	60 0CE	1.00	3					
Above ** Except radiators 54-72 M these for and 15.3 In the enterploying 110–490 are base. Test Method: ANSI Control KDB 55 Procedure: a. For beabove the 360 degent bear and 5.3 in the enterploying 110–490 are base.	90	150 **	3					
** Exceprediators 54-72 M these from and 15.2 In the enterproperty of the semiliar section of the semi		200 **	3					
radiators 54-72 M these from and 15.3 In the em employing 110–490 are base. Test Method: ANSI Con KDB 55 Procedure: a. For book above the 360 deg book for an above the showes the show	960	500	3					
Test Method: ANSI Cr KDB 55 Procedure: a. For b above th 360 deg b. For a above th	radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.2 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kH							
Test Method: ANSI Ct KDB 55 Procedure: a. For b above th 360 deg b. For a above th	110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.							
above the state of	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
c. The E which w d. The a determin polariza e. For e the ante below 3 was turn f. The te Bandwid g. If the specifie reported tested of reported h. Test t i. The ra Transmi	ne ground at a 3 or 1 prees to determine the bove 1GHz, the EUT ne ground at a 3 meres to determine the positions of the antenna height is varied the maximum valuations of the antenna ach suspected emissional was tuned to he 0MHz, the antenna hed from 0 degrees the est-receiver system with with Maximum Hemission level of the d, then testing could d. Otherwise the emisione by one using pead in a data sheet.	was placed on the top of a rotation meter semi-anechoic chamber, the position of the highest radiation was placed on the top of a rotation was radiation. The top of the highest radiation was easied from one meter to four meters use of the field strength. Both horizon are set to make the measurements on the EUT was arranged to its eights from 1 meter to 4 meters (for was tuned to heights 1 meter) and to 360 degrees to find the maximular was set to Peak Detect Function and Mode. The EUT in peak mode was 10dB to be stopped and the peak values sesions that did not have 10dB match, quasi-peak or average method to the channel, the middle channel, the stare performed in X, Y, Z axis produced to the X axis positioning which it is a reperformed in X, Y, Z axis produced to the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positioning which it is a reperformed in X, Y, Z axis produced the X axis positio	The table was rotated it. Ing table 1.5 meters able was rotated 360 me-receiving antenna, ower. Is above the ground to contal and vertical int. In worst case and then or the test frequency of it the rotatable table im reading. Ind Specified mer than the limit of the EUT would be replaced in the specified and then in the Highest channel. In the Highest channel in the Highest channel is the worst case.					
Remark 1) For e	idiation measuremen itting mode, and four	until all frequencies measured wa	as complete.					

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 26 of 58

V1.0


channel. Only the worst case is recorded in the report.

- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:

Operating Envir	onment:		POO	PO	POS		bo.
Temperature:	22.7 °C		Humidity:	50.5 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	POCE	TM1	POCI	P	OCT POO		4
Final test mode		TM1	7				

4.7.2 Test Data:

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L 80.0 dBuV/m 70 60 FCC Part 15B RE 3m 50 40 30 20 10 0.0 (MHz) 30.000 60.00 300.00 1000.000 Reading Level Limit Frequency Factor Margin Height Azimuth No. Detector P/F Remark (MHz) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) (dBuV) QP P 1 48.1626 32.05 -9.07 22.98 40.00 -17.02100 2 * 83.8156 41.90 -7.0540.00 P 34.85 -5.15QP 100 P 3 103.0800 41.19 -5.43 35.76 43.50 -7.74 QP 100 153.2004 P 31.13 -3.6727.46 43.50 -16.04 QP 100 4 -2.73P 5 213.0151 33.50 30.77 43.50 -12.73QP 100 30.12 0.95 31.07 46.00 QP P 6 365.5391 -14.93 100

4.8 Emissions in frequency bands (above 1GHz)

V1.0

Test Requirement:		ns which fall in the restricted band with the radiated emission limits	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	54-72 MHz, 76-88 MHz, 174 these frequency bands is pe and 15.241. In the emission table above, The emission limits shown ir employing a CISPR quasi-pe 110–490 kHz and above 100	s section shall not be located in the 1-216 MHz or 470-806 MHz. Howe rmitted under other sections of the tighter limit applies at the barn the above table are based on meak detector except for the freque 00 MHz. Radiated emission limits	ever, operation within is part, e.g., §§ 15.231 and edges. easurements ncy bands 9–90 kHz,
	-02	s employing an average detector.	- ncf
Test Method:	ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Me		
Procedure: POCE POCE POCE	above the ground at a 3 or 1 360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 met degrees to determine the poc. The EUT was set 3 or 10 which was mounted on the td. The antenna height is varied determine the maximum valuation polarizations of the antenna e. For each suspected emission the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees tf. The test-receiver system was turned from 0 degrees tf. The test-receiver system was turned from level of the specified, then testing could reported. Otherwise the emistested one by one using peareported in a data sheet. h. Test the EUT in the lowes in the radiation measuremer transmitting mode, and four	e EUT in peak mode was 10dB low be stopped and the peak values of ssions that did not have 10dB mark, quasi-peak or average method to channel, the middle channel, the sare performed in X, Y, Z axis pend the X axis positioning which it is	The table was rotated
	Remark:	until all frequencies measured wa	·
	1) For emission below 1GHz	through pre-scan found the wors	st case is the lowest

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 29 of 58

Report No.: POCE240401002RL002

channel. Only the worst case is recorded in the report.

- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:

Operating Envir	onment:	POC	POC	POS	Po
Temperature:	22.7 °C	Humidity:	50.5 %	Atmospheric Pressure:	102 kPa
Pretest mode:	POCE	TM1, TM2, TM3	P	DOD BOO	Y
Final test mode:		TM1, TM2, TM3			

4.8.2 Test Data:

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4809.498	44.35	3.74	48.09	74.00	-25.91	peak	150		Р	
2	4809.498	30.48	3.74	34.22	54.00	-19.78	AVG	150		Р	
3	7643.682	36.66	11.14	47.80	74.00	-26.20	peak	150		Р	
4	7663.164	24.61	11.18	35.79	54.00	-18.21	AVG	150		Р	
5	10916.265	37.15	16.87	54.02	74.00	-19.98	peak	150		Р	
6 *	10944.088	25.37	16.92	42.29	54.00	-11.71	AVG	150		Р	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

									W 11 W 2		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4809.498	43.17	3.12	46.29	74.00	-27.71	peak	150		Р	
2	4809.498	29.62	3.12	32.74	54.00	-21.26	AVG	150		Р	
3	7840.752	36.31	11.80	48.11	74.00	-25.89	peak	150		Р	
4	8002.060	24.22	12.38	36.60	54.00	-17.40	AVG	150		Р	
5	10999.947	37.59	17.37	54.96	74.00	-19.04	peak	150		Р	
6 *	11140.845	25.52	17.45	42.97	54.00	-11.03	AVG	150		Р	

TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

V1.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4883.519	42.98	3.37	46.35	74.00	-27.65	peak	150		Р	
2	4883.519	29.05	3.37	32.42	54.00	-21.58	AVG	150		Р	
3	7413.726	37.38	10.46	47.84	74.00	-26.16	peak	150		Р	
4	7432.622	24.87	10.48	35.35	54.00	-18.65	AVG	150		Р	
5	10534.087	36.91	16.56	53.47	74.00	-20.53	peak	150		Р	
6 *	10696.212	25.74	16.85	42.59	54.00	-11.41	AVG	150		Р	
	000		PU		PU			PU			PC

TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4883.519	45.30	3.98	49.28	74.00	-24.72	peak	150		Р	
2	4883.519	30.94	3.98	34.92	54.00	-19.08	AVG	150		Р	
3	7432.622	24.96	10.63	35.59	54.00	-18.41	AVG	150		Р	
4	7451.566	36.61	10.68	47.29	74.00	-26.71	peak	150		Р	
5	9784.466	40.18	15.14	55.32	74.00	-18.68	peak	150		Р	
6 *	9784.466	25.55	15.14	40.69	54.00	-13.31	AVG	150		Р	

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE

POCE POCE POCE

POCE POCE POCE

POCE POCE POCE

POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

V1.0

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
4388.352	39.12	1.85	40.97	74.00	-33.03	peak	150		Р	
4433.263	27.69	1.94	29.63	54.00	-24.37	AVG	150		Р	
6315.233	37.28	7.30	44.58	74.00	-29.42	peak	150		Р	
6379.864	25.38	7.50	32.88	54.00	-21.12	AVG	150		Р	
9042.038	36.75	15.01	51.76	74.00	-22.24	peak	150		Р	
9065.084	24.60	15.02	39.62	54.00	-14.38	AVG	150		Р	
	(MHz) 4388.352 4433.263 6315.233 6379.864 9042.038	(MHz) (dBuV) 4388.352 39.12 4433.263 27.69 6315.233 37.28 6379.864 25.38 9042.038 36.75	(MHz) (dBuV) (dB/m) 4388.352 39.12 1.85 4433.263 27.69 1.94 6315.233 37.28 7.30 6379.864 25.38 7.50 9042.038 36.75 15.01	(MHz) (dBuV) (dB/m) (dBuV/m) 4388.352 39.12 1.85 40.97 4433.263 27.69 1.94 29.63 6315.233 37.28 7.30 44.58 6379.864 25.38 7.50 32.88 9042.038 36.75 15.01 51.76	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 4388.352 39.12 1.85 40.97 74.00 4433.263 27.69 1.94 29.63 54.00 6315.233 37.28 7.30 44.58 74.00 6379.864 25.38 7.50 32.88 54.00 9042.038 36.75 15.01 51.76 74.00	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 4388.352 39.12 1.85 40.97 74.00 -33.03 4433.263 27.69 1.94 29.63 54.00 -24.37 6315.233 37.28 7.30 44.58 74.00 -29.42 6379.864 25.38 7.50 32.88 54.00 -21.12 9042.038 36.75 15.01 51.76 74.00 -22.24	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 4388.352 39.12 1.85 40.97 74.00 -33.03 peak 4433.263 27.69 1.94 29.63 54.00 -24.37 AVG 6315.233 37.28 7.30 44.58 74.00 -29.42 peak 6379.864 25.38 7.50 32.88 54.00 -21.12 AVG 9042.038 36.75 15.01 51.76 74.00 -22.24 peak	(MHz) (dBuV) (dB/m) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) 4388.352 39.12 1.85 40.97 74.00 -33.03 peak 150 4433.263 27.69 1.94 29.63 54.00 -24.37 AVG 150 6315.233 37.28 7.30 44.58 74.00 -29.42 peak 150 6379.864 25.38 7.50 32.88 54.00 -21.12 AVG 150 9042.038 36.75 15.01 51.76 74.00 -22.24 peak 150	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) 4388.352 39.12 1.85 40.97 74.00 -33.03 peak 150 4433.263 27.69 1.94 29.63 54.00 -24.37 AVG 150 6315.233 37.28 7.30 44.58 74.00 -29.42 peak 150 6379.864 25.38 7.50 32.88 54.00 -21.12 AVG 150 9042.038 36.75 15.01 51.76 74.00 -22.24 peak 150	(MHz) (dBuV) (dB/m) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) PT 4388.352 39.12 1.85 40.97 74.00 -33.03 peak 150 P 4433.263 27.69 1.94 29.63 54.00 -24.37 AVG 150 P 6315.233 37.28 7.30 44.58 74.00 -29.42 peak 150 P 6379.864 25.38 7.50 32.88 54.00 -21.12 AVG 150 P 9042.038 36.75 15.01 51.76 74.00 -22.24 peak 150 P

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4958.678	45.13	4.23	49.36	74.00	-24.64	peak	150		Р	
2	4958.678	30.93	4.23	35.16	54.00	-18.84	AVG	150		Р	
3	7209.015	37.20	10.10	47.30	74.00	-26.70	peak	150		Р	
4	7357.326	24.81	10.44	35.25	54.00	-18.75	AVG	150		Р	
5	9935.053	38.80	15.24	54.04	74.00	-19.96	peak	150		Р	
6 *	9935.053	25.47	15.24	40.71	54.00	-13.29	AVG	150		Р	

POCE POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

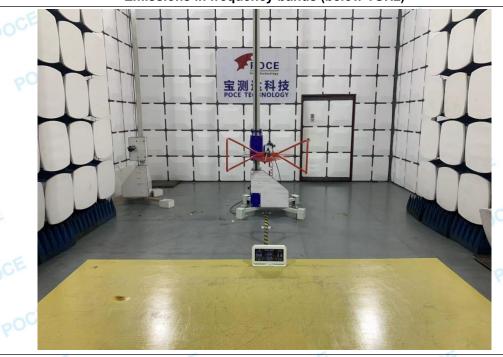
POCE POCE POCE POCE

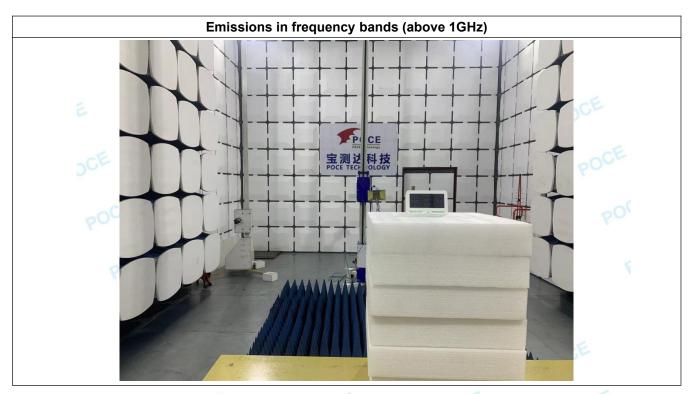
POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE


POCE POCE POCE POCE POCE POCE


5 TEST SETUP PHOTOS

Emissions in frequency bands (below 1GHz)

V1.0

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE

POCE POCE POCE POCE POCE

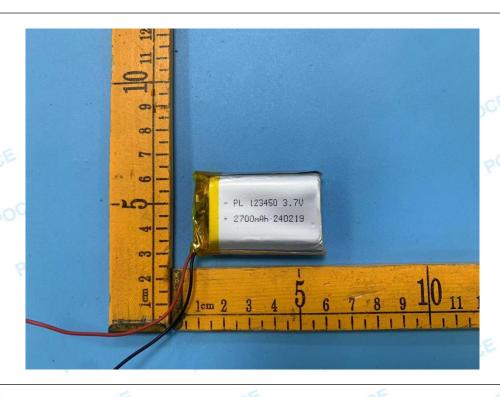
POCE POCE POCE POCE POCE POCE

POCE POCE POCE POCE POCE POCE POCE

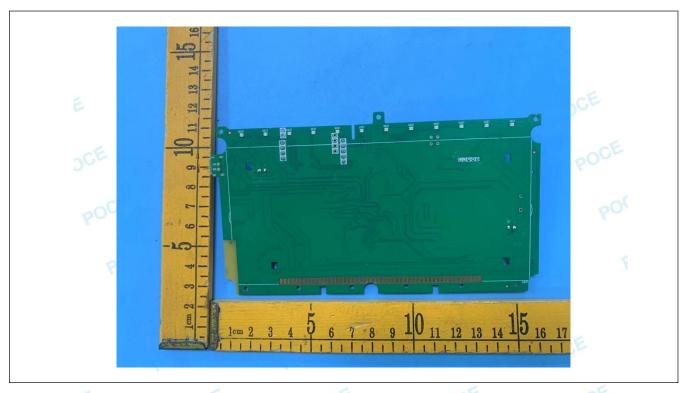
6 PHOTOS OF THE EUT

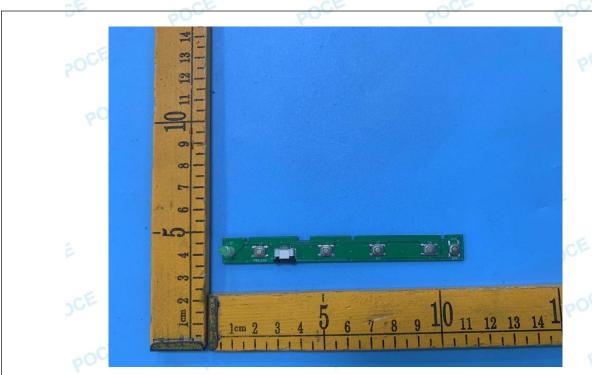
V1.0

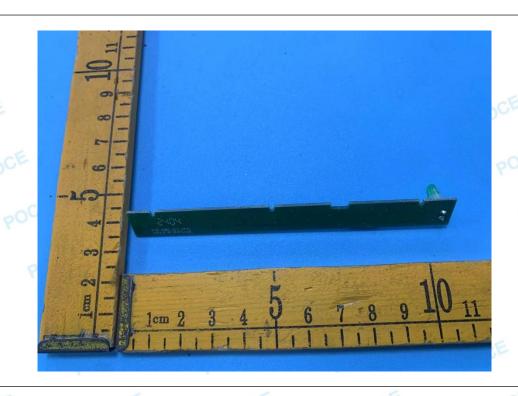
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 35 of 58

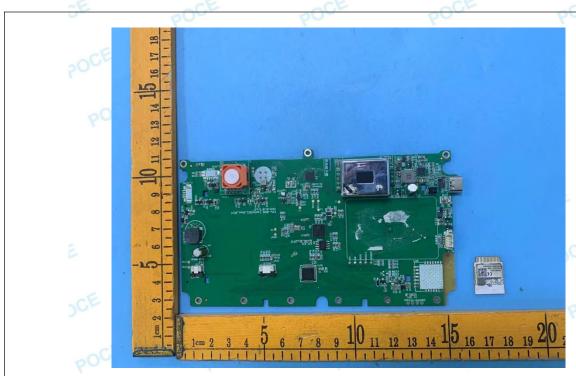


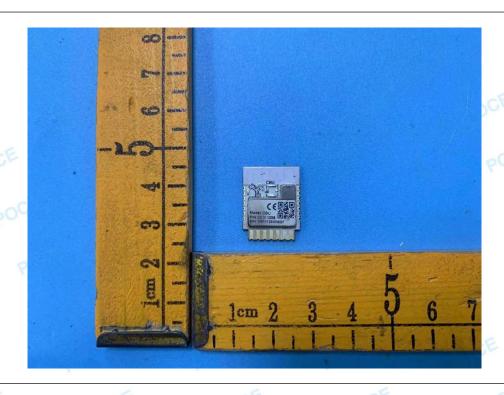
Internal

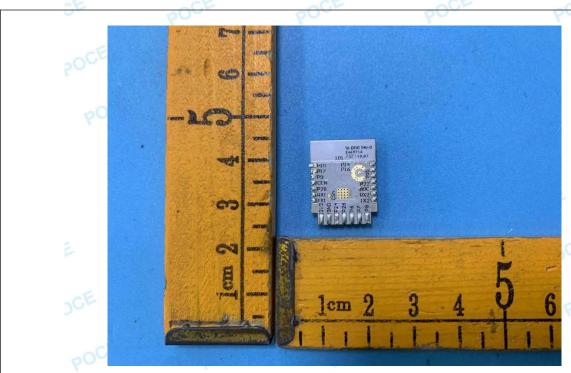




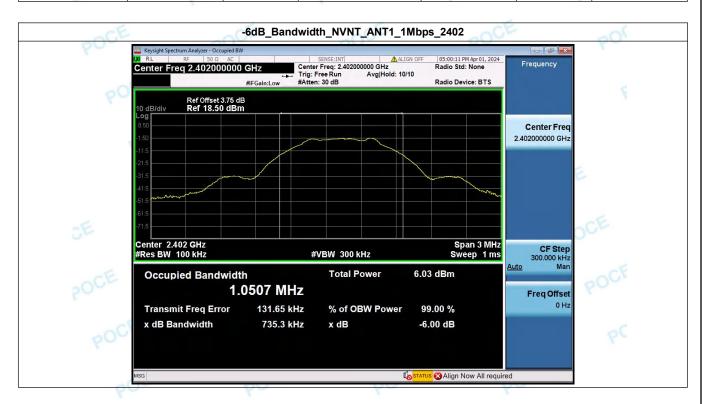




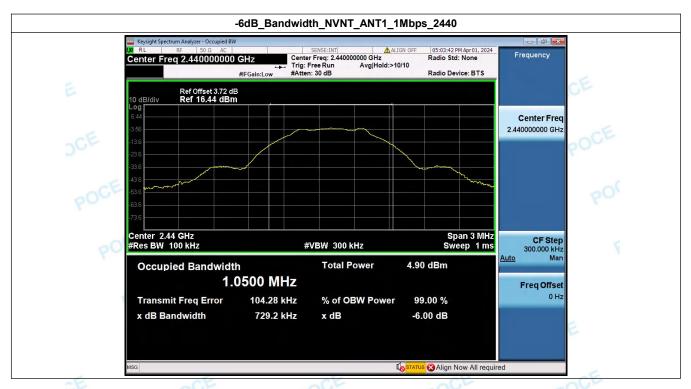


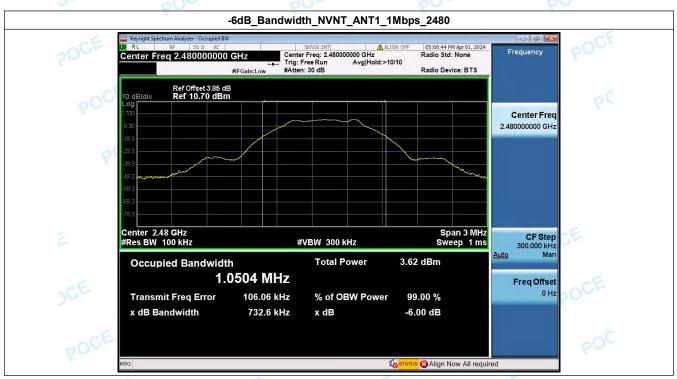


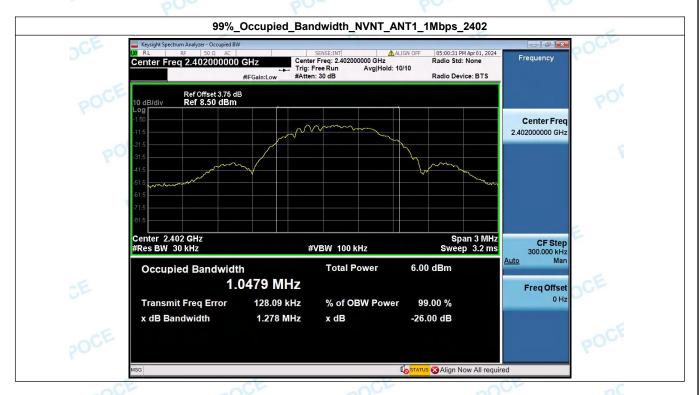
Appendix

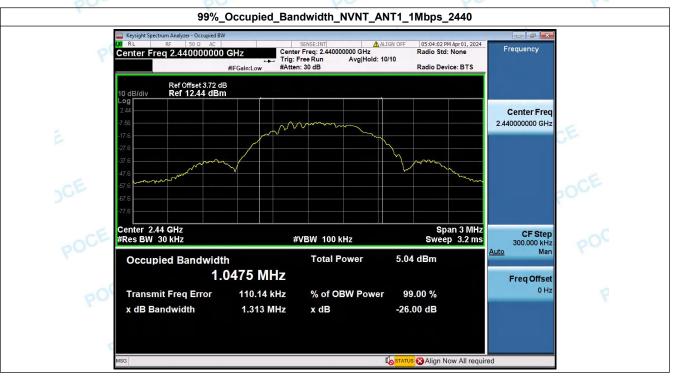

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 43 of 58

IAQM-129-W--FCC ID FCC_BLE (Part15.247) Test Data

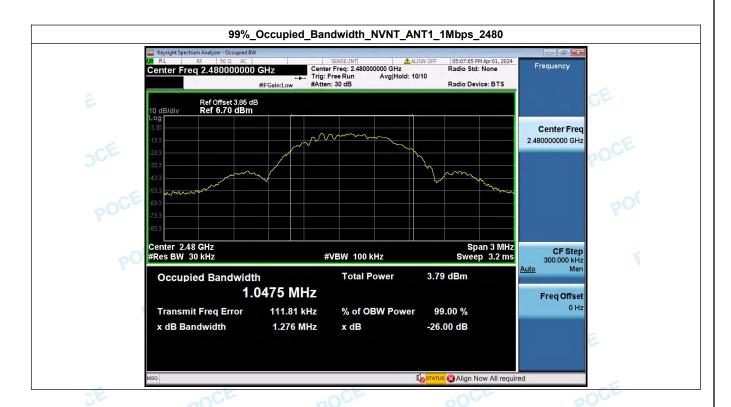

1. -6dB Bandwidth


Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402	735.30	500	Pass
NVNT	ANT1	1Mbps	2440.00	729.17	500	Pass
NVNT	ANT1	1Mbps	2480	732.56	500	Pass



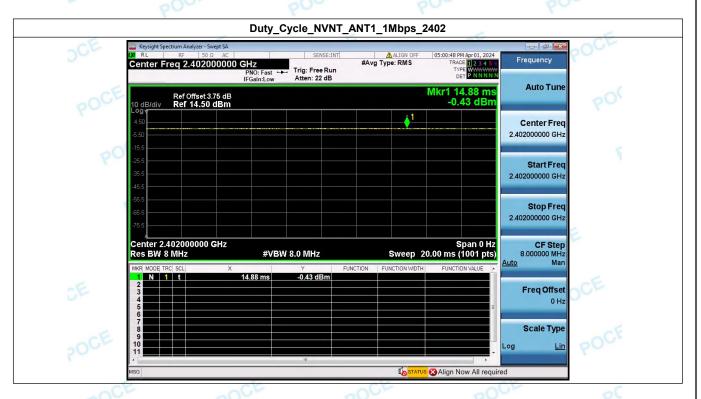


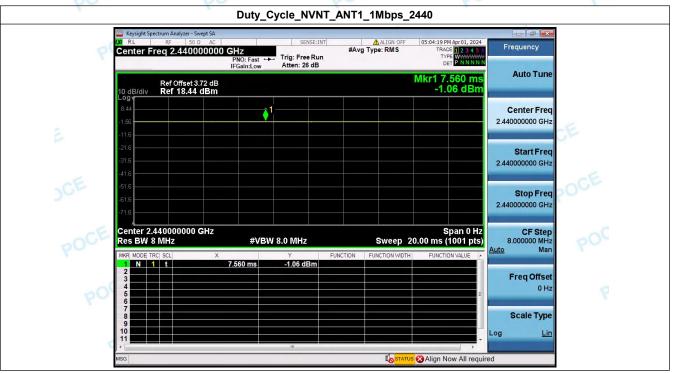
2. 99% Occupied Bandwidth


V1.0

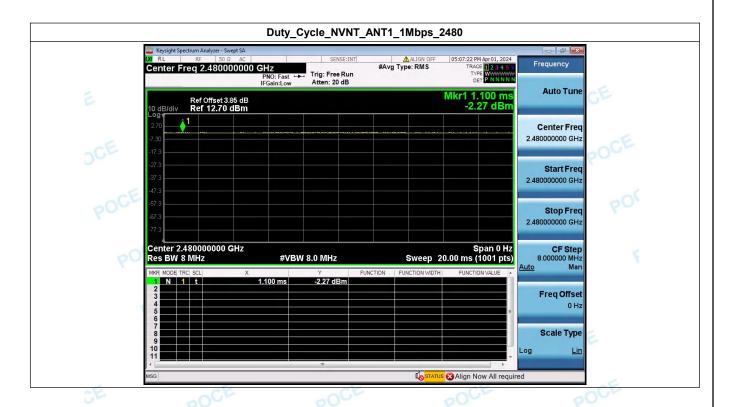
Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402	1.048
NVNT	ANT1	1Mbps	2440.00	1.047
NVNT	ANT1	1Mbps	2480	1.047

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 46 of 58



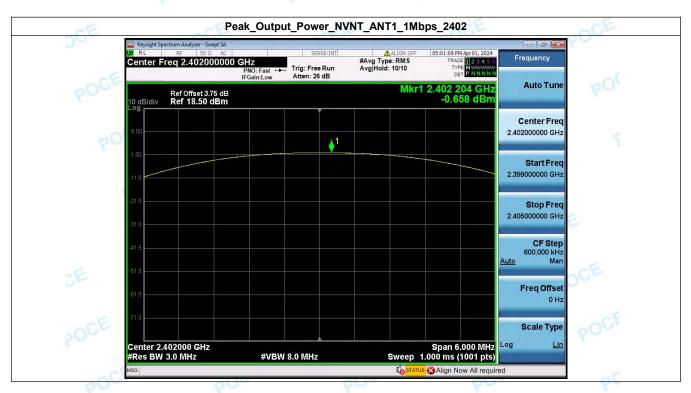


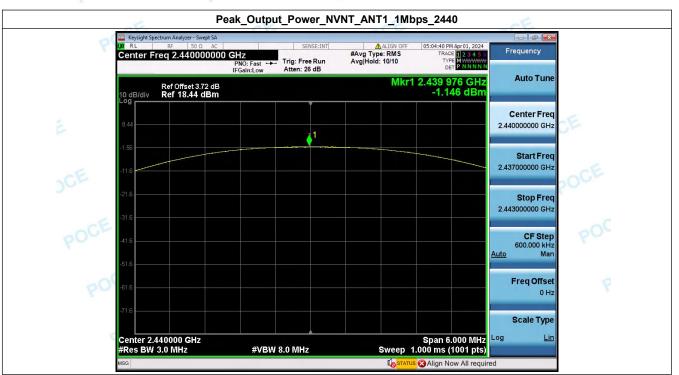
3. Duty Cycle

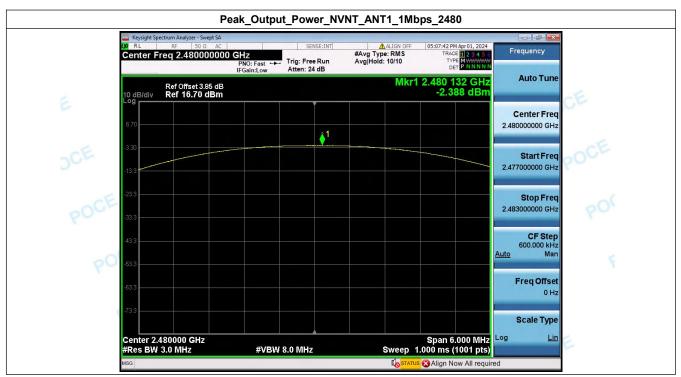

V1.0

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402	100	0.00
NVNT	ANT1	1Mbps	2440.00	100	0.00
NVNT	ANT1	1Mbps	2480	100	0.00

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 48 of 58

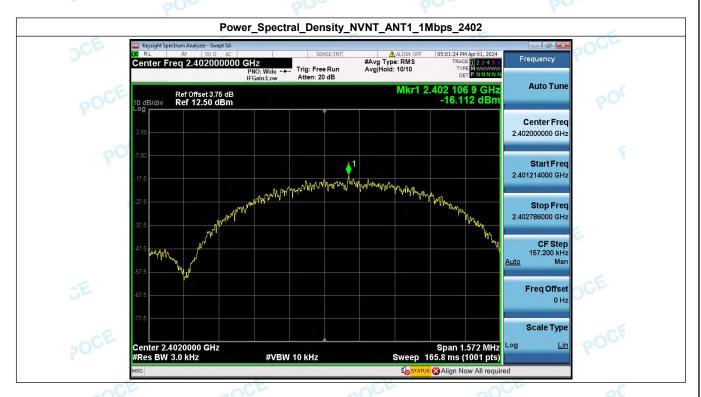




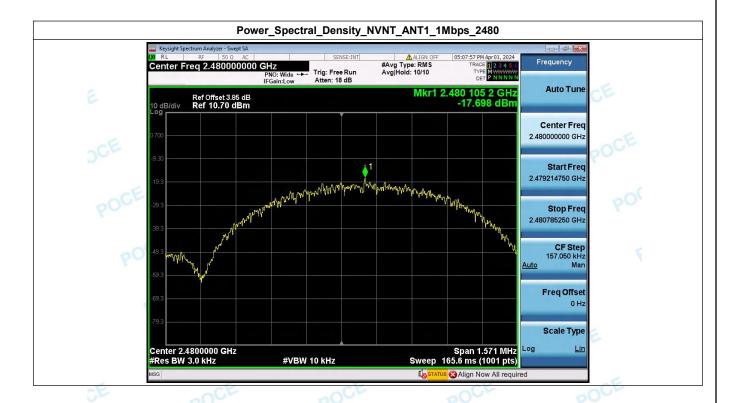


4. Peak Output Power

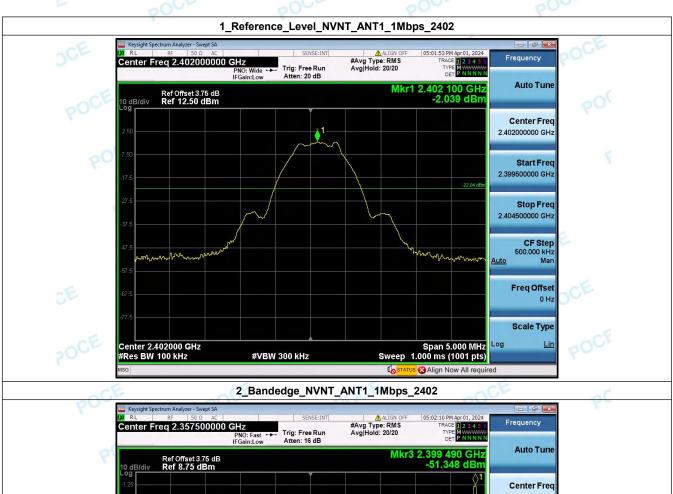
Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402	-0.66	0.86	1000	Pass
NVNT	ANT1	1Mbps	2440.00	-1.15	0.77	1000	Pass
NVNT	ANT1	1Mbps	2480	-2.39	0.58	1000	Pass



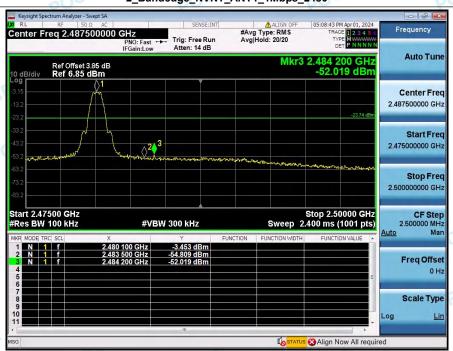
5. Power Spectral Density

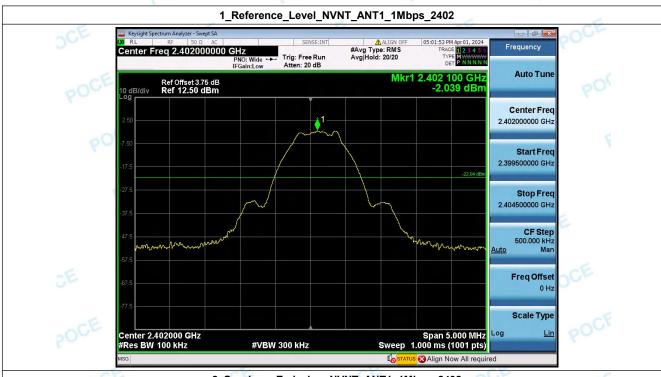

V1.0

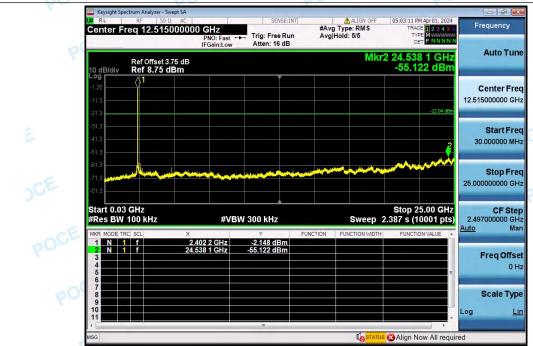
Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402	-16.11	8	Pass
NVNT	ANT1	1Mbps	2440.00	-16.21	8	Pass
NVNT	ANT1	1Mbps	2480	-17.70	8	Pass


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park,Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 52 of 58

6. Bandedge


Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402	2399.490	-51.348	-22.039	Pass
NVNT	ANT1	1Mbps	2480	2484.200	-52.019	-23.743	Pass






7. Spurious Emission

Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402	-55.122	-22.039	Pass
NVNT	ANT1	1Mbps	2440.00	-50.646	-22.375	Pass
NVNT	ANT1	1Mbps	2480	-57.137	-23.743	Pass

