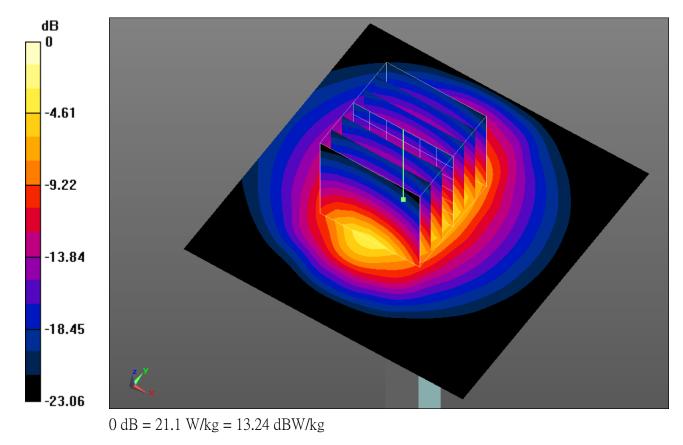
Appendix B: SAR System Check Plots

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

Date: 2023/3/13

System Performance Check-2450MHz


DUT: D2450V2-988

Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2450 MHz; σ = 1.831 S/m; ϵ_r = 38.723; ρ = 1000 kg/m³ Ambient Temperature : 23.7 °C; Liquid Temperature : 22.7 °C DASY5 Configuration:

- Probe: EX3DV4 SN3901; ConvF(7.91, 7.91, 7.91) @ 2450 MHz; Calibrated: 2022/10/18
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1360; Calibrated: 2022/9/29
- Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213
- Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

System Check/2450MHz/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.3 W/kg

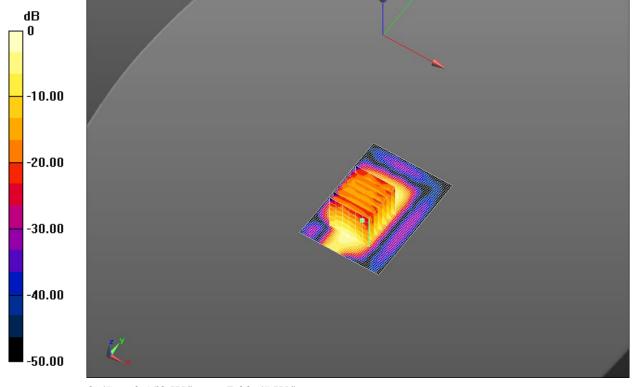
System Check/2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.6 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 26.1 W/kg SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.77 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 48% Maximum value of SAR (measured) = 21.1 W/kg

Appendix C: Highest SAR Test Plots

Test Laboratory: Underwriters Laboratories Taiwan Co., Ltd

Date: 2023/3/13

Blurtooth BLE(2Mbps)_Horizontal-Up_5mm_ch19


DUT: Dongle

Communication System: UID 0, Bluetooth (0); Frequency: 2440 MHz;Duty Cycle: 1:1 Medium: HSL2450 Medium parameters used: f = 2440 MHz; σ = 1.826 S/m; ϵ_r = 38.746; ρ = 1000 kg/m³ Ambient Temperature : 23.7 °C; Liquid Temperature : 22.7 °C DASY5 Configuration:

- Probe: EX3DV4 SN3901; ConvF(7.91, 7.91, 7.91) @ 2440 MHz; Calibrated: 2022/10/18
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1360; Calibrated: 2022/9/29
- Phantom: ELI v5.0_1213; Type: QDOVA001BB; Serial: 1213
- Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

Test/Bluetooth/Area Scan (51x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.159 W/kg

Test/Bluetooth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.648 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.145 W/kg SAR(1 g) = 0.074 W/kg; SAR(10 g) = 0.033 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 50.1% Maximum value of SAR (measured) = 0.115 W/kg

0 dB = 0.159 W/kg = -7.99 dBW/kg

Appendix D: SAR Probe and Dipole Calibration Certificates

Page 7 of 7

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Client

Certificate No:

Z20-60445

CALIBRATION CERTIFICATE

UL

Object

D2450V2 - SN: 988

November 10, 2020

Fax: +86-10-62304633-2504

http://www.chinattl.cn

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	12-May-20 (CTTL, No.J20X02965)	May-21
Power sensor NRP6A	101369	12-May-20 (CTTL, No.J20X02965)	May-21
ReferenceProbe EX3DV4	SN 3617	30-Jan-20(SPEAG,No.EX3-3617_Jan20)	Jan-21
DAE4	SN 771	10-Feb-20(CTTL-SPEAG,No.Z20-60017)	Feb-21
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Feb-20 (CTTL, No.J20X00516)	Feb-21
NetworkAnalyzer E5071C	MY46110673	10-Feb-20 (CTTL, No.J20X00515)	Feb-21
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	E.K.
Reviewed by:	Lin Hao	SAR Test Engineer	林游
Approved by:	Qi Dianyuan	SAR Project Leader	àn
		Issued: Nove	mber 19, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.78 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition		
SAR measured	250 mW input power	13.0 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	52.2 W/kg ± 18.8 % (<i>k</i> =2)	
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition		
SAR measured	250 mW input power	5.96 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 18.7 % (<i>k</i> =2)	

Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4Ω+ 3.51jΩ	
Return Loss	- 25.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1 022 pc
Liectical Delay (one direction)	1.022 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

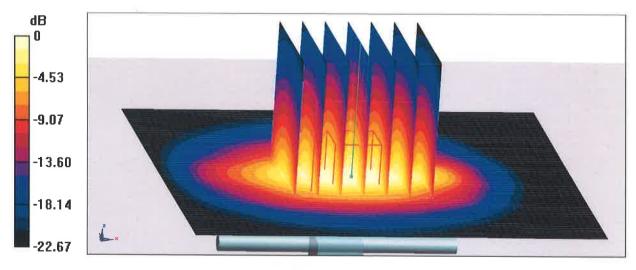
Manufactured by	SPEAG
-----------------	-------

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

- Probe: EX3DV4 SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2020-02-10
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7)(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm References Value = 106.2 V/me Device Drift = .0.05 dD

Reference Value = 106.2 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 5.96 W/kg

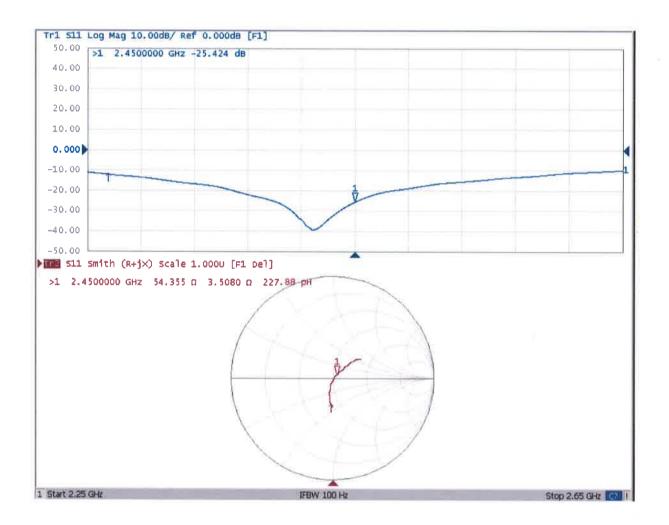
Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 47.1%

Maximum value of SAR (measured) = 22.2 W/kg

0 dB = 22.2 W/kg = 13.46 dBW/kg

Certificate No: Z20-60445

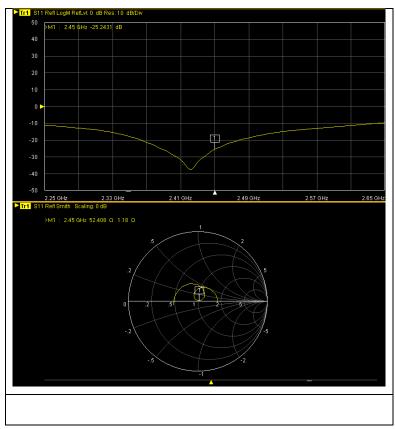


In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL


Dipole: 2450MHz, S/N: 988, Dipole calibration

According to KDB 865664 & IEEE Std 1528 - 2013:

3.2.2. Dipole calibration

It is necessary to re-calibrate reference dipoles at regular intervals to confirm the electrical specifications and SAR targets. A dipole must be calibrated using a fully validated SAR system according to the tissue dielectric parameters and SAR probe calibration frequency required for device testing. It is generally unacceptable to calibrate a dipole using the SAR system that has been validated by the same dipole; therefore, dipoles should be returned to the SAR system manufacturer or its designated calibration facilities for re-calibration. However, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements.

- The test laboratory must ensure that the required supporting information and documentation are included in the SAR report to qualify for the three-year extended calibration interval; otherwise, the IEEE Std 1528-2013 recommended annual calibration applies.
- 2) Immediate re-calibration is required for the following conditions.
 - a) After a dipole is damaged and properly repaired to meet required specifications.
 - b) When the measured SAR deviates from the calibrated SAR value by more than 10% due to changes in physical, mechanical, electrical or other relevant dipole conditions; i.e., the error is not introduced by incorrect measurement procedures or other issues relating to the SAR measurement system.
 - c) When the most recent return-loss result, measured at least annually, deviates by more than 20% from the previous measurement (i.e. value in dB \times 0.2) or not meeting the required 20 dB minimum return-loss requirement.²⁴
 - d) When the most recent measurement of the real or imaginary parts of the impedance, measured at least annually, deviates by more than 5 Ω from the previous measurement.

Copyright© UL LLC. All rights reserved. May not be reproduced without permission. UL PROPRIETARY AND CONFIDENTIAL. FOR UL INTERNAL USE ONLY. This document is controlled and has been released electronically. The version on the UL intranet is the up-to-date document. Hard copies are uncontrolled and may not be up-to-date. Users of hard copies should confirm the revision by comparing it with the electronically controlled version.

Calibration Date	Impedance R (ohm)	Delta (ohm)	Impedance jX (ohm)	Delta (ohm)	Return-loss (dB)	Delta (%)
2020/11/10	54.4	N/A	3.51	N/A	-25.4	N/A
2022/10/11	52.408	-1.99	1.18	-2.33	-25.2431	-0.62

Copyright© UL LLC. All rights reserved. May not be reproduced without permission. **UL PROPRIETARY AND CONFIDENTIAL. FOR UL INTERNAL USE ONLY.** This document is controlled and has been released electronically. The version on the UL intranet is the up-to-date document. Hard copies are uncontrolled and may not be up-to-date. Users of hard copies should confirm the revision by comparing it with the electronically controlled version.

•	In C	ollabora	tion wit	h		
	S	p	е	a	g	
	CAL	BRATIC	N LA	ORATO	DRY	

UL

Client :

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Certificate No: Z22-60427

CALIBRATION CERTIFICATE							
Object	DAE4	- SN: 1360	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Calibration Procedure(s)		1-002-01 ation Procedure for the Data Acquisi <)	tion Electronics				
Calibration date:	Septe	mber 29, 2022					
	neasurements and	traceability to national standards, which the uncertainties with confidence proba					
All calibrations have be humidity<70%.	en conducted in	the closed laboratory facility: environ	iment temperature(22±3)°C and				
Calibration Equipment us	ed (M&TE critical	for calibration)					
Primary Standards	ards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration						
Process Calibrator 753	1971018	14-Jun-22 (CTTL, No.J22X04180)	Jun-23				
	Nama	Function	Signatura				
Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature				
Reviewed by:	Lin Hao	SAR Test Engineer	林北				
Approved by:	Qi Dianyuan	SAR Project Leader	ana				
This calibration certificate	e shall not be repro	ا oduced except in full without written app	ssued: October 02, 2022 roval of the laboratory.				

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Y	Z	
High Range	403.679 \pm 0.15% (k=2)	404.112 \pm 0.15% (k=2)	404.210 \pm 0.15% (k=2)	
Low Range	3.97851±0.7% (k=2)	$3.99497 \pm 0.7\%$ (k=2)	$3.97645 \pm 0.7\%$ (k=2)	

Connector Angle

Conn	ector Angle to be used in DASY system	18° ± 1 °

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'etalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

UL (Auden)

Certificate No

EX-3901_Oct22

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3901
Calibration procedure(s)	QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes
Calibration date	October 18, 2022
This calibration certificate docu	ments the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	10-Oct-22 (No. DAE4-660_Oct22)	Oct-23
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22
	f		
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Dewer concer E44104	CNI: 000110010	00 Anis 40 (in house she had not	

Tower meter L4413D	3N. GD41293074	00-Apr-16 (in nouse check Jun-22)	In nouse check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Michael Weber	Laboratory Technician	MEST
Approved by	Sven Kühn	Technical Manager	5.6
This calibration certificate shall r	not be reproduced except in full with	nout written approval of the laborat	lssued: October 18, 2022 ory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528. "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell: f > 1800 MHz; R22 waveguide). NORMx, y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y, z = NORMx, y, z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Parameters of Probe: EX3DV4 - SN:3901

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm (μ V/(V/m) ²) ^A	0.40	0.46	0.39	±10.1%
DCP (mV) ^B	103.0	101.3	106.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	167.7	±1.7%	±4.7%
		Y	0.00	0.00	1.00		155.0		
		Z	0.00	0.00	1.00		162.8		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

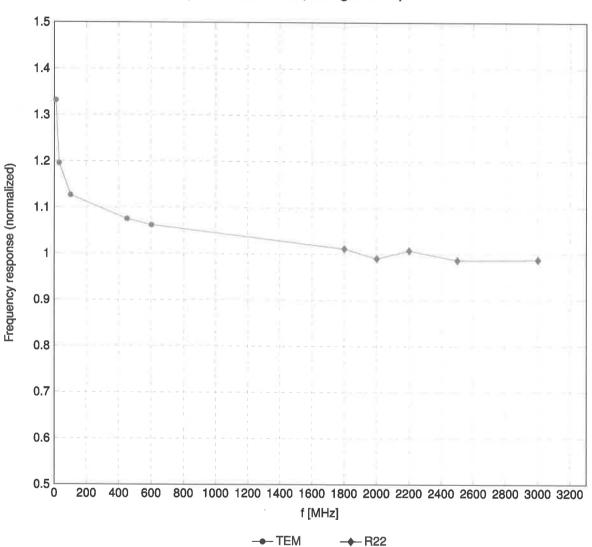
Parameters of Probe: EX3DV4 - SN:3901

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-177.0°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

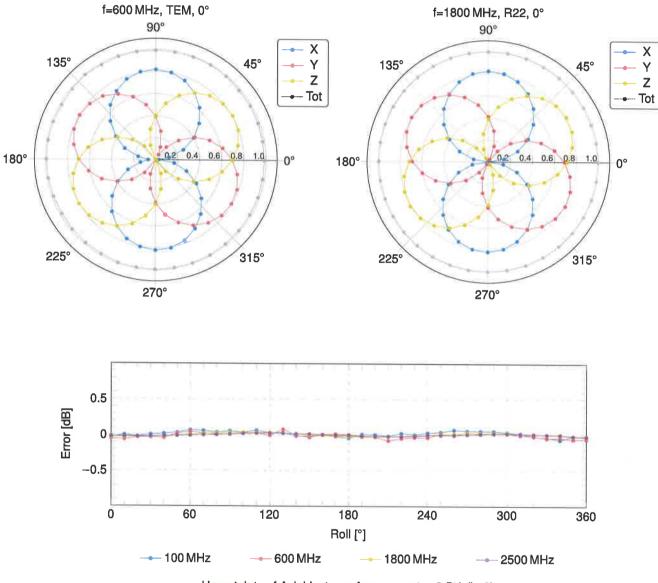
Parameters of Probe: EX3DV4 - SN:3901


Calibration Parameter Determined in Head Tissue Simulating Media

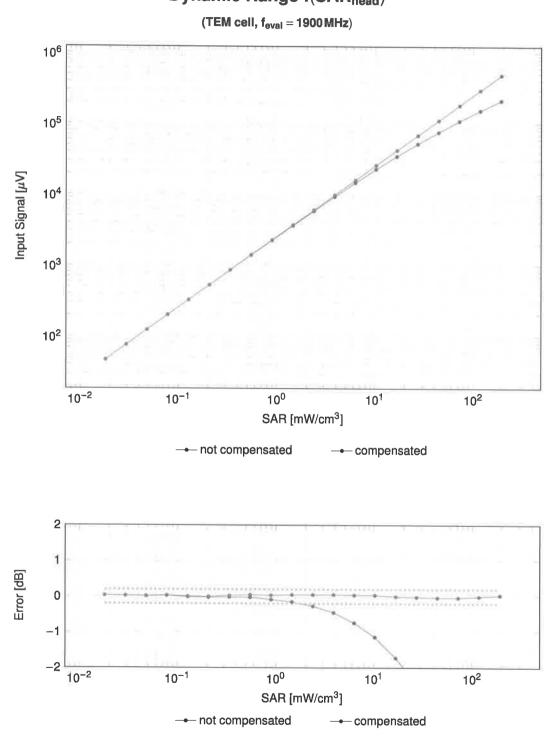
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	10.24	10.24	10.24	0.51	0.81	±12.0%
835	41.5	0.90	9.99	9.99	9.99	0.44	0.86	±12.0%
900	41.5	0.97	9.75	9.75	9.75	0.47	0.80	±12.0%
1450	40.5	1.20	8.77	8.77	8.77	0.46	0.80	±12.0%
1640	40.2	1.31	8.66	8.66	8.66	0.31	0.86	±12.0%
1750	40.1	1.37	8.58	8.58	8.58	0.33	0.86	±12.0%
1900	40.0	1.40	8.32	8.32	8.32	0.27	0.86	±12.0%
2000	40.0	1.40	8.24	8.24	8.24	0.37	0.86	±12.0%
2300	39.5	1.67	8.14	8.14	8.14	0.29	0.90	±12.0%
2450	39.2	1.80	7.91	7.91	7.91	0.37	0.90	±12.0%
2600	39.0	1.96	7.59	7.59	7.59	0.38	0.90	±12.0%
3500	37.9	2.91	7.00	7.00	7.00	0.35	1.30	±13.1%
5250	35.9	4.71	5.05	5.05	5.05	0.40	1.80	±13.1%
5300	35.9	4.76	4.94	4.94	4.94	0.40	1.80	±13.1%
5600	35.5	5.07	4.46	4.46	4.46	0.40	1.80	±13.1%
5800	35.3	5.27	4.40	4.40	4.40	0.40	1.80	±13.1%

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

As so and rown in the solution assessment as a sense of the solution in the solution in the solution in the solution in the solution is applied to measured SAR values. At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

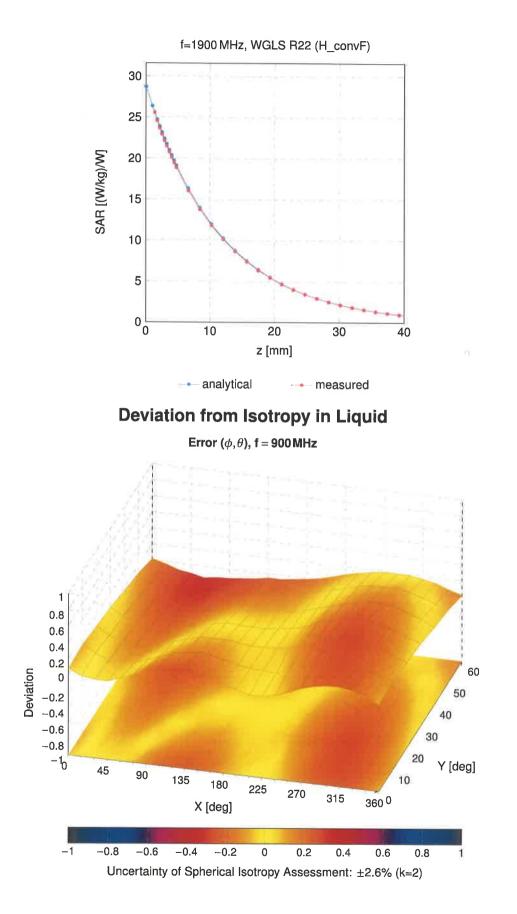

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

