



# **TEST REPORT**

Verified Code: 403651

| Report No.:                                                                                                                                                                                                                                                    | E2020120                                                                                           | 93237-3             | Application | No.:      | E2020120932 | 237 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------|-------------|-----------|-------------|-----|
| Client:                                                                                                                                                                                                                                                        | JIANGMEN PEL LIGHTING CO.LTD.                                                                      |                     |             |           |             |     |
| Address:                                                                                                                                                                                                                                                       | 2nd Floor, Building#2, No.30, Gaoxin East Road, Jianghai District, Jiangmen City, Guangdong, China |                     |             | District, |             |     |
| Sample<br>Description:                                                                                                                                                                                                                                         | 12V RGB LED STRIP                                                                                  |                     |             |           |             |     |
| Model:                                                                                                                                                                                                                                                         | DR-12V-5050-RGB-300-10m-BL-U                                                                       |                     |             |           |             |     |
| Test Specification:                                                                                                                                                                                                                                            | CFR47 FCC Part 15 Subpart C 15.247<br>RADIO FREQUENCY DEVICES Subpart C—Intentional Radiators      |                     |             |           |             |     |
| Receipt Date:                                                                                                                                                                                                                                                  | 2020-12-15                                                                                         |                     |             |           |             |     |
| Test Date:                                                                                                                                                                                                                                                     | 2021-02-02 to 2021-03-16                                                                           |                     |             |           |             |     |
| 2 0.50 2 0000                                                                                                                                                                                                                                                  | _0_1 0_ 0                                                                                          |                     |             |           |             |     |
|                                                                                                                                                                                                                                                                |                                                                                                    |                     |             |           |             |     |
| Issue Date:                                                                                                                                                                                                                                                    | 0001 04                                                                                            | 15                  |             |           | <u>_</u>    |     |
| Issue Date:                                                                                                                                                                                                                                                    | 2021-04-                                                                                           | 15                  |             |           |             |     |
| Test Result:                                                                                                                                                                                                                                                   | Pass                                                                                               | Ć                   |             |           |             |     |
| Prepared By:                                                                                                                                                                                                                                                   |                                                                                                    | <b>Reviewed By:</b> |             |           | oved By:    |     |
| Test Engineer                                                                                                                                                                                                                                                  |                                                                                                    | Technical Manag     | er          | Manag     | ger 🔿       |     |
| xie Jang                                                                                                                                                                                                                                                       |                                                                                                    | Jiong Toro          |             | Y         | ong Vai     |     |
| Other Aspects:                                                                                                                                                                                                                                                 |                                                                                                    |                     |             |           |             |     |
| Note: Note                                                                                                                                                                                                                                                     |                                                                                                    |                     |             |           |             |     |
| Abbreviations: ok / P = passed; fail / F = failed; n.a. / N = not applicable;   The test result in this test report refers exclusively to the presented test sample. This report shall not be reproduced except in full, without the written approval of GRGT. |                                                                                                    |                     |             |           |             |     |





Fax:+86-20-38695185

Email: emckf@grgtest.com

http://www.grgtest.com

Address:No.163 Pingyun Road, West of Huangpu Avenue, Guangzhou GuangdongChina

#### **DIRECTIONS OF TEST**

- 1. This station carries out test task according to the national regulation of verifications which can be traced to National Primary Standards and BIPM.
- 2. The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.
- 3. If there is any objection concerning the test, the client should inform the laboratory within 15 days from the date of receiving the test report.

Í

### **TABLE OF CONTENTS**

| 1. TEST      | T RESULT SUMMARY                                       | 4  |  |  |  |
|--------------|--------------------------------------------------------|----|--|--|--|
| 2. GEN       | 2. GENERAL DESCRIPTION OF EUT                          |    |  |  |  |
| 2.1.         | APPLICANT                                              | 5  |  |  |  |
| 2.1.         | MANUFACTURER                                           |    |  |  |  |
| 2.3.         | FACTORY                                                |    |  |  |  |
| 2.4.         | BASIC DESCRIPTION OF EQUIPMENT UNDER TEST              |    |  |  |  |
| 2.5.         | TEST OPERATION MODE                                    |    |  |  |  |
| 2.6.         | LOCAL SUPPORTIVE                                       |    |  |  |  |
| 3. LAB       | ORATORY AND ACCREDITATIONS                             |    |  |  |  |
| 3.1.         | LABORATORY                                             | 7  |  |  |  |
| 3.2.         | ACCREDITATIONS                                         |    |  |  |  |
| 3.3.         | MEASUREMENT UNCERTAINTY                                |    |  |  |  |
|              | OF USED TEST EQUIPMENT AT GRGT                         |    |  |  |  |
|              |                                                        |    |  |  |  |
|              | NDUCTED EMISSION MEASUREMENT                           |    |  |  |  |
| 5.1.         | LIMITS.                                                |    |  |  |  |
| 5.2.         | TEST PROCEDURES                                        |    |  |  |  |
| 5.3.         | TEST SETUP                                             |    |  |  |  |
| 5.4.         | DATA SAMPLE                                            |    |  |  |  |
| 5.5.         | TEST RESULTS                                           |    |  |  |  |
| 6. RAD       | DIATED SPURIOUS EMISSIONS                              | 13 |  |  |  |
| 6.1.         | LIMITS                                                 | 13 |  |  |  |
| 6.2.         | TEST PROCEDURES (PLEASE REFER TO MEASUREMENT STANDARD) |    |  |  |  |
| 6.3.         | TEST SETUP                                             |    |  |  |  |
| 6.4.         | DATA SAMPLE                                            |    |  |  |  |
| 6.5.         | TEST RESULTS                                           |    |  |  |  |
| 7. 6DB       | BANDWIDTH                                              | 30 |  |  |  |
| 7 1          |                                                        | 20 |  |  |  |
| 7.1.<br>7.2. | LIMITS<br>TEST PROCEDURES                              |    |  |  |  |
| 7.2.<br>7.3. | TEST PROCEDURES                                        |    |  |  |  |
| 7.3.<br>7.4. | TEST RESULTS                                           |    |  |  |  |
|              |                                                        |    |  |  |  |
| 8. MAX       | XIMUM PEAK OUTPUT POWER                                | 33 |  |  |  |
| 8.1.         | LIMITS                                                 |    |  |  |  |
| 8.2.         | TEST PROCEDURES                                        |    |  |  |  |
| 8.3.         | TEST SETUP                                             |    |  |  |  |
| 8.4.         | ) TEST RESULTS                                         |    |  |  |  |
| 9. POV       | NER SPECTRAL DENSITY                                   | 34 |  |  |  |
| 9.1.         | LIMITS                                                 | 34 |  |  |  |
| 9.2.         | TEST PROCEDURES                                        |    |  |  |  |
| 9.3.         | TEST SETUP                                             |    |  |  |  |
| 9.4.         | TEST RESULTS                                           |    |  |  |  |
| 10. CON      | IDUCTED BAND EDGES AND SPURIOUS EMISSIONS              |    |  |  |  |
| 10.1.        | LIMITS                                                 |    |  |  |  |
| 10.1.        | TEST PROCEDURES                                        |    |  |  |  |
| 10.2.        | TEST FROCEDORES                                        |    |  |  |  |
| 10.3.        | TEST RESULTS                                           |    |  |  |  |
|              | TRICTED BANDS OF OPERATION                             |    |  |  |  |
| II. RES      |                                                        |    |  |  |  |
| 11.1.        | LIMITS                                                 |    |  |  |  |
| 11.2.        | TEST PROCEDURES                                        | 41 |  |  |  |
|              |                                                        |    |  |  |  |

| 11.3. | TEST SETUP   | 6                     |  |
|-------|--------------|-----------------------|--|
| 11.4. | TEST RESULTS | / <u>(</u> )<br>/ ()/ |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       |              |                       |  |
|       | (je)         |                       |  |
|       |              | Page 3 of 46          |  |

### 1. TEST RESULT SUMMARY

#### **Technical Requirements**

| Limit / Severity                  | Item                                        | Result |  |
|-----------------------------------|---------------------------------------------|--------|--|
| §15.207                           | Conducted emission AC power port            | Pass   |  |
| §15.247(b)(1)                     | Conducted output power for FHSS             | N/A    |  |
| §15.247(b)(3)                     | Conducted output power for DTS              | Pass   |  |
| §15.247(e)                        | Power spectral density                      | Pass   |  |
| §15.247(a)(2)                     | 6dB bandwidth                               | Pass   |  |
| §15.247(a)(1)                     | 20dB Occupied bandwidth                     | N/A    |  |
| )                                 | 99% Occupied Bandwidth                      | N/A    |  |
| §15.247(a)(1)                     | Carrier frequency separation                | N/A    |  |
| §15.247(a)(1)(iii)                | Number of hopping frequencies               | N/A    |  |
| §15.247(a)(1)(iii)                | Dwell Time                                  | N/A    |  |
| §15.247(d)                        | Spurious RF conducted emissions             | Pass   |  |
| §15.247(d)                        | Band edge                                   | Pass   |  |
| §15.247(d) & §15.209 &<br>§15.205 | Spurious radiated emissions for transmitter | Pass   |  |
| §15.203                           | Antenna requirement                         | Pass   |  |

The EUT has one antenna. The antenna is PCB antenna.

The max gain of antenna is 3.5dBi.which accordance 15.203.is considered sufficient to comply with the provisions of this section.

### 2. GENERAL DESCRIPTION OF EUT

### 2.1. APPLICANT

| Name:    | JIANGMEN PEL LIGHTING CO.LTD.                                                                      |
|----------|----------------------------------------------------------------------------------------------------|
| Address: | 2nd Floor, Building#2, No.30, Gaoxin East Road, Jianghai District, Jiangmen City, Guangdong, China |

### 2.2. MANUFACTURER

| Name:    | JIANGMEN PEL LIGHTING CO.LTD.                                                                      |  |  |
|----------|----------------------------------------------------------------------------------------------------|--|--|
| Address: | 2nd Floor, Building#2, No.30, Gaoxin East Road, Jianghai District, Jiangmen City, Guangdong, China |  |  |

## 2.3. FACTORY

| Name :    | JIANGMEN PEL LIGHTING CO.LTD.                                                                      |
|-----------|----------------------------------------------------------------------------------------------------|
| Address : | 2nd Floor, Building#2, No.30, Gaoxin East Road, Jianghai District, Jiangmen City, Guangdong, China |

### 2.4. BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

| 12V RGB LED STRIP                                                          |                                                                                                                                                                                                                                                                                               |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DR-12V-5050-RGB-300-10m-BL-U                                               |                                                                                                                                                                                                                                                                                               |  |
| 1                                                                          |                                                                                                                                                                                                                                                                                               |  |
| PEL                                                                        |                                                                                                                                                                                                                                                                                               |  |
| 2AYYP-IR40BT                                                               |                                                                                                                                                                                                                                                                                               |  |
| DC12V power supplied by adapter                                            |                                                                                                                                                                                                                                                                                               |  |
| MODEL:GQ36-120300-AU<br>INPUT:100-240V~50/60Hz 1.0A Max<br>OUTPUT:12V 3.0A |                                                                                                                                                                                                                                                                                               |  |
| 2402 MHz ~ 2480 MHz                                                        |                                                                                                                                                                                                                                                                                               |  |
| 1.041dBm                                                                   |                                                                                                                                                                                                                                                                                               |  |
| GFSK for 1Mbps                                                             |                                                                                                                                                                                                                                                                                               |  |
| 2MHz                                                                       |                                                                                                                                                                                                                                                                                               |  |
| PCB Antenna with 3.5dBi (Max)                                              |                                                                                                                                                                                                                                                                                               |  |
| -25℃~85℃                                                                   |                                                                                                                                                                                                                                                                                               |  |
| V2.0                                                                       |                                                                                                                                                                                                                                                                                               |  |
| 1.4.0                                                                      |                                                                                                                                                                                                                                                                                               |  |
|                                                                            | DR-12V-5050-RGB-300-10m-BL-U<br>/<br>PEL<br>2AYYP-IR40BT<br>DC12V power supplied by adapter<br>MODEL:GQ36-120300-AU<br>INPUT:100-240V~50/60Hz 1.0A Max<br>OUTPUT:12V 3.0A<br>2402 MHz ~ 2480 MHz<br>1.041dBm<br>GFSK for 1Mbps<br>2MHz<br>PCB Antenna with 3.5dBi (Max)<br>-25°C~85°C<br>V2.0 |  |

Sample No: E202012093237-0001, E202012093237-A021

Note:

## 2.5. TEST OPERATION MODE

/

| Mode No. | Description of the modes     |  |
|----------|------------------------------|--|
| 1        | Bluetooth LE fixed frequency |  |

### 2.6. LOCAL SUPPORTIVE

| Name of Equipment | Manufacturer Model |  | Serial Number | Note |  |  |
|-------------------|--------------------|--|---------------|------|--|--|
|                   | /                  |  | S/            | /    |  |  |
| Cable             |                    |  |               |      |  |  |
| 1                 | $\sim$ /           |  | /             |      |  |  |

### **Test software:**

| (<br><<br>) | Software version | Test level |
|-------------|------------------|------------|
|             | 1                |            |

Page 6 of 46

### **3. LABORATORY AND ACCREDITATIONS**

### **3.1. LABORATORY**

Add

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of Guangzhou GRG Metrology & Test Co,. Ltd.

Address: No.1301 Guanguang Road Xinlan Community, Guanlan Street, : Longhua District Shenzhen, 518110, People's Republic of China

| P.C. | : | 518000        |
|------|---|---------------|
| Tel  | : | 0755-61180008 |
| Fax  | : | 0755-61180008 |

### **3.2. ACCREDITATIONS**

Our laboratories are accredited and approved by the following approval agencies according to GB/T 27025(ISO/IEC 17025:2017)

A2LA(Certificate #:2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada USA

USA

Industry Canada

FCC

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.grgtest.com</u>

### **3.3. MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measuren   | nent       | Frequency        | Uncertainty |
|------------|------------|------------------|-------------|
|            | (Sh        | 30MHz~1000MHz    | 4.30dB      |
|            | Horizontal | 1GHz~18GHz       | 5.60dB      |
| Radiated   |            | 18GHz~26GHz      | 3.65dB      |
| Emission   | Vertical   | 30MHz~1000MHz    | 4.30dB      |
|            |            | 1GHz~18GHz       | 5.60dB      |
|            |            | 18GHz~26GHz      | 3.65dB      |
|            |            | 9 kHz ~ 150 kHz  | 2.80dB      |
| Conduction | Emission   | 150 kHz ~ 10 MHz | 2.80dB      |
|            |            | 10 MHz ~ 30 MHz  | 2.20dB      |

This uncertainty represents an expanded uncertainty factor of k=2.

7

# 4. LIST OF USED TEST EQUIPMENT AT GRGT

| Name of Equipment          | Manufacturer       | Model               | Serial Number    | Calibration Due |
|----------------------------|--------------------|---------------------|------------------|-----------------|
|                            | Manufacturer       | Widder              | Serial Number    | Cambration Duc  |
| Conducted Emissions        | 1                  |                     |                  | 1               |
| EMI TEST<br>RECEIVER       | R&S                | ESCI                | 100783           | 2021-10-08      |
| LISN(EUT)                  | R&S                | ENV216              | 101543           | 2021-03-24      |
| EZ-EMC                     | EZ                 | CCS-3A1-CE          | /                | 1               |
| Radiated Spurious En       | nission& Restricte | d bands of opera    | tion             |                 |
| Spectrum Analyzer          | KEYSIGHT           | N9020B              | MY5712019        | 2021-07-15      |
| Spectrum Analyzer          | Agilent            | N9010A              | MY52221469       | 2021-05-16      |
| Bilog Antenna              | Schwarzbeck        | VULB 9163           | 01279            | 2021-03-14      |
| Horn Antenna               | Schwarzbeck        | BBHA<br>9120D(1201) | 02143            | 2021-12-27      |
| Board-Band Horn<br>Antenna | Schwarzbeck        | BBHA 9170           | BBHA<br>9170-497 | 2021-11-05      |
| Amplifier                  | Tonscend           | TAP01018048         | AP20E8060075     | 2021-06-28      |
| Amplifier                  | Tonscend           | TAP037030           | AP20E8060081     | 2021-06-28      |
| Amplifier                  | Tonscend           | TAP184050           | AP20E806071      | 2021-06-15      |
| Test S/W                   | Tonscend           | JS32-RSE/2.5.1      | .5               |                 |
| 6 dB Bandwidth             | ·                  |                     |                  |                 |
| Spectrum Analyzer          | Agilent            | N9010A              | MY52221469       | 2021-05-16      |
| Maximum Peak Outp          | ut Power           |                     |                  |                 |
| Spectrum Analyzer          | Agilent            | N9010A              | MY52221469       | 2021-05-16      |
| Conducted band edge        | s and Spurious Em  | nission             |                  | •<br>•          |
| Spectrum Analyzer          | Agilent            | N9010A              | MY52221469       | 2021-05-16      |
| Peak Output Spectral       | Density Measuren   | nent                |                  |                 |
| Spectrum Analyzer          | Agilent            | N9010A              | MY52221469       | 2021-05-16      |

Page 8 of 46

0

### **5. CONDUCTED EMISSION MEASUREMENT**

### 5.1. LIMITS

| Englisher sange                          | Limits (dBµV) |         |  |  |  |
|------------------------------------------|---------------|---------|--|--|--|
| Frequency range                          | Quasi-peak    | Average |  |  |  |
| $150 \mathrm{kHz}~\sim~0.5 \mathrm{MHz}$ | 66~56         | 56~46   |  |  |  |
| $0.5~\mathrm{MHz}~\sim~5~\mathrm{MHz}$   | 56            | 46      |  |  |  |
| 5 MHz $\sim$ 30 MHz /                    | 60            | 50      |  |  |  |

NOTE: (1) The lower limit shall apply at the transition frequencies.

(2) The limit decreases in line with the logarithm of the frequency in the range of 150 kHz to 0.5MHz.

### **5.2. TEST PROCEDURES**

#### **Procedure of Preliminary Test**

Test procedures follow ANSI C63.10:2013.

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:

1) place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or

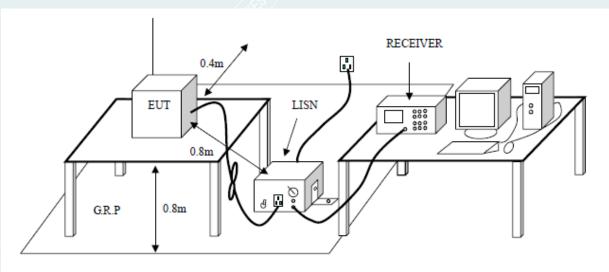
2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;

– All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;

- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;

– Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.

– I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.


The test mode(s) described in Item 2.4 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.4 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

#### **Procedure of Final Test**

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

Page 9 of 46

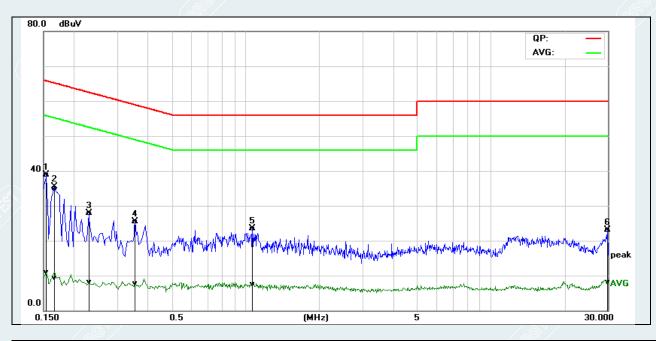
### 5.3. TEST SETUP



# 5.4. DATA SAMPLE

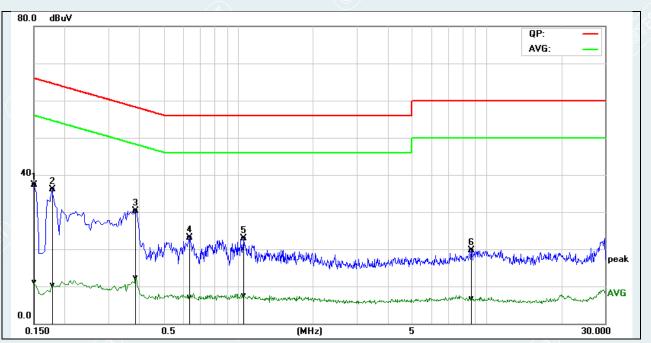
| Frequence<br>(MHz) | y QuasiPeak<br>Reading<br>(dBuV) | Average<br>Reading<br>(dBuV) | Correction<br>Factor<br>(dB) | QuasiPeak<br>Result<br>(dBuV) | Average<br>Result<br>(dBuV) | QuasiPeak<br>Limit<br>(dBuV) | Average<br>Limit<br>(dBuV) | QuasiPeak<br>Margin<br>(dB) | Average<br>Margin<br>(dB) | Remark<br>(Pass/Fail) |
|--------------------|----------------------------------|------------------------------|------------------------------|-------------------------------|-----------------------------|------------------------------|----------------------------|-----------------------------|---------------------------|-----------------------|
| X.XXXX             | 32.69                            | 25.65                        | 11.52                        | 44.21                         | 37.17                       | 65.78                        | 55.79                      | -21.57                      | -18.62                    | Pass                  |

Factor Result Limit Margin = Insertion loss of LISN + Cable Loss


= Quasi-peak Reading/ Average Reading + Factor

=Limit stated in standard

= Result (dBuV) – Limit (dBuV)


# 5.5. TEST RESULTS

| Model No.                   | DR-12V-5050-RGB-300-10m-BL-U | RBW,VBW      | 9 kHz       |
|-----------------------------|------------------------------|--------------|-------------|
| Environmental<br>Conditions | 25.4°C/64%RH                 | Test Mode    | Mode 1      |
| Tested By                   | Chen Xiaocong                | Line         | L           |
| Tested Date                 | 2021-03-12                   | Test Voltage | AC120V/60Hz |



| No. | Frequency | QuasiPeak<br>reading | Average<br>reading | Correction<br>factor | QuasiPeak<br>result | Average<br>result | QuasiPeak<br>limit | Average<br>limit | QuasiPeak<br>margin | Average<br>margin | Remark |
|-----|-----------|----------------------|--------------------|----------------------|---------------------|-------------------|--------------------|------------------|---------------------|-------------------|--------|
|     | (MHz)     | (dBuV)               | (dBuV)             | ( <b>dB</b> )        | (dBuV)              | (dBuV)            | (dBuV)             | (dBuV)           | (dB)                | ( <b>dB</b> )     |        |
| 1*  | 0.1540    | 29.36                | 1.28               | 9.60                 | 38.96               | 10.88             | 65.78              | 55.78            | -26.82              | -44.90            | Pass   |
| 2   | 0.1660    | 25.29                | -0.37              | 9.60                 | 34.89               | 9.23              | 65.16              | 55.16            | -30.27              | -45.93            | Pass   |
| 3   | 0.2300    | 18.29                | -1.55              | 9.60                 | 27.89               | 8.05              | 62.45              | 52.45            | -34.56              | -44.40            | Pass   |
| 4   | 0.3540    | 15.90                | -1.91              | 9.61                 | 25.51               | 7.70              | 58.87              | 48.87            | -33.36              | -41.17            | Pass   |
| 5   | 1.0660    | 13.97                | -2.05              | 9.61                 | 23.58               | 7.56              | 56.00              | 46.00            | -32.42              | -38.44            | Pass   |
| 6   | 29.9660   | 13.24                | -1.75              | 9.94                 | 23.18               | 8.19              | 60.00              | 50.00            | -36.82              | -41.81            | Pass   |

| Model No.                   | DR-12V-5050-RGB-300-10m-BL-U | RBW,VBW      | 9 kHz       |
|-----------------------------|------------------------------|--------------|-------------|
| Environmental<br>Conditions | 25.4°C/64%RH                 | Test Mode    | Mode 1      |
| Tested By                   | Chen Xiaocong                | Line         | N           |
| Tested Date                 | 2021-03-12                   | Test Voltage | AC120V/60Hz |



| No. | Frequency | QuasiPeak<br>reading | Average<br>reading | Correction<br>factor | QuasiPeak<br>result | Average<br>result | QuasiPeak<br>limit | Average<br>limit | QuasiPeak<br>margin | Average<br>margin | Remark |
|-----|-----------|----------------------|--------------------|----------------------|---------------------|-------------------|--------------------|------------------|---------------------|-------------------|--------|
|     | (MHz)     | (dBuV)               | (dBuV)             | ( <b>dB</b> )        | (dBuV)              | (dBuV)            | (dBuV)             | (dBuV)           | ( <b>dB</b> )       | ( <b>dB</b> )     |        |
| 1   | 0.1500    | 27.74                | 1.47               | 9.60                 | 37.34               | 11.07             | 66.00              | 56.00            | -28.66              | -44.93            | Pass   |
| 2   | 0.1780    | 26.43                | 0.70               | 9.60                 | 36.03               | 10.30             | 64.58              | 54.58            | -28.55              | -44.28            | Pass   |
| 3*  | 0.3860    | 20.77                | 2.74               | 9.61                 | 30.38               | 12.35             | 58.15              | 48.15            | -27.77              | -35.80            | Pass   |
| 4   | 0.6340    | 13.41                | -2.51              | 9.61                 | 23.02               | 7.10              | 56.00              | 46.00            | -32.98              | -38.90            | Pass   |
| 5   | 1.0540    | 13.27                | -2.08              | 9.61                 | 22.88               | 7.53              | 56.00              | 46.00            | -33.12              | -38.47            | Pass   |
| 6   | 8.7260    | 9.99                 | -3.00              | 9.72                 | 19.71               | 6.72              | 60.00              | 50.00            | -40.29              | -43.28            | Pass   |

### SS -

, N | |

### 6. RADIATED SPURIOUS EMISSIONS

### 6.1. LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

| Frequency   | Quasi-peak(µV/m) | Measurement | Quasi-peak(dBµV/m)@distance |
|-------------|------------------|-------------|-----------------------------|
| (MHz)       |                  | distance(m) | 3m                          |
| 0.009-0.490 | 2400/F(kHz)      | 300         | 53.8~88.5                   |
| 0.490-1.705 | 24000/F(kHz)     | 30          | 43~53.8                     |
| 1.705-30.0  | 30               | 30          | 49.5                        |
| 30 ~ 88     | 100              | 3           | 40                          |
| 88~216      | 150              | 3           | 43.5                        |
| 216 ~ 960   | 200              | 3           | 46                          |
| Above 960   | 500              | 3           | 54                          |

**NOTE**: (1) The lower limit shall apply at the transition frequencies. **NOTE**: (2) Above 18G Limit=74+20log(3/1)=83.54 (dBµV/m).

#### 6.2. TEST PROCEDURES (please refer to measurement standard)

#### 1) Sequence of testing 9 kHz to 30 MHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### **Pre measurement:**

--- The turntable rotates from 0° to 315° using 45° steps.

--- The antenna height is 0.8 meter.

--- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

#### **Final measurement:**

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0 ° to 360 °) and by rotating the elevation axes (0 ° to 360 °).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP or AVG detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

#### 2) Sequence of testing 30 MHz to 1 GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

--- The EUT was set into operation.

#### Pre measurement:

--- The turntable rotates from 0 ° to 315 ° using 45 ° steps.

--- The antenna is polarized vertical and horizontal.

--- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ( $\pm 45$  °) and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 3 meter.

3) Sequence of testing 1 GHz to 18 GHz

--- The EUT was set into operation.

#### Pre measurement:

- --- The turntable rotates from 0 ° to 315 ° using 45 ° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ( $\pm 45$  °) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

# 4) Sequence of testing above 18 GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

--- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.

--- Auxiliary equipment and cables were positioned to simulate normal operation conditions

--- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.

--- The measurement distance is 1 meter.

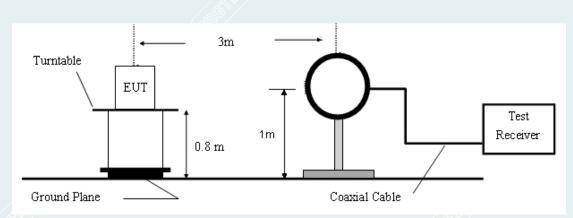
--- The EUT was set into operation.

#### Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

#### **Final measurement:**

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.


--- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

NOTE: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).

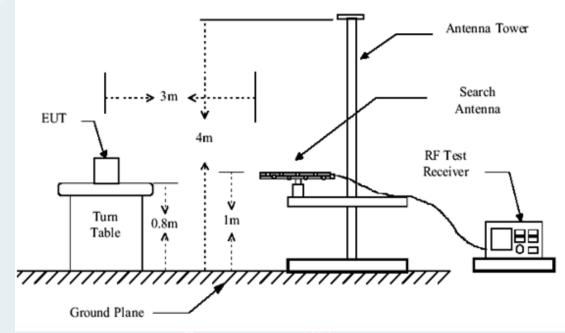
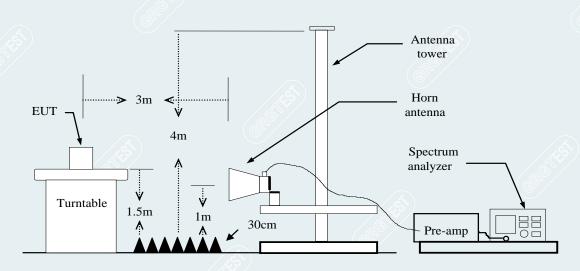
2

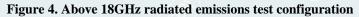
E

### 6.3. TEST SETUP







Figure 2. 30MHz to 1GHz radiated emissions test configuration





\_(





### 6.4. DATA SAMPLE

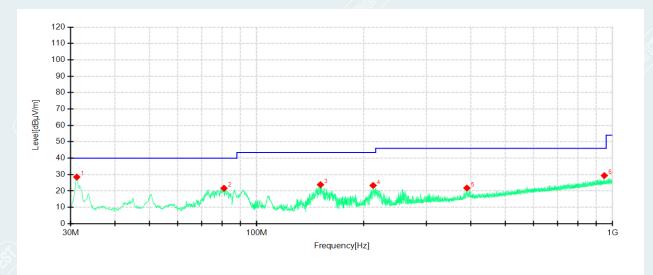
#### **30MHz to 1GHz**

| No. | No. Frequency Reading |          | equency Reading Correct Result Limit |          | Limit    | Margin        | Remark | Pole     |
|-----|-----------------------|----------|--------------------------------------|----------|----------|---------------|--------|----------|
|     | (MHz)                 | (dBuV/m) | Factor(dB/m)                         | (dBuV/m) | (dBuV/m) | ( <b>dB</b> ) |        |          |
| XXX | xxx                   | 37.06    | -15.48                               | 21.58    | 40.00    | -18.42        | QP     | Vertical |

#### Above 1 GHz

| No. | Frequency Reading Correct Result Limit Margin |          |              |          |          |               | Remark | Pole     |
|-----|-----------------------------------------------|----------|--------------|----------|----------|---------------|--------|----------|
|     | (MHz)                                         | (dBuV/m) | Factor(dB/m) | (dBuV/m) | (dBuV/m) | ( <b>dB</b> ) |        |          |
| XXX | XXX                                           | 65.45    | -11.12       | 54.33    | 74.00    | -19.67        | Peak   | Vertical |
| XXX | XXX                                           | 63.00    | -11.12       | 51.88    | 54.00    | -2.12         | AVG    | Vertical |

| Frequency (MHz)          | = Emission frequency in MHz                    |  |
|--------------------------|------------------------------------------------|--|
| Ant.Pol. (H/V)           | = Antenna polarization                         |  |
| Reading (dBuV)           | = Uncorrected Analyzer / Receiver reading      |  |
| Correction Factor (dB/m) | = Antenna factor + Cable loss – Amplifier gain |  |
| Result (dBuV/m)          | = Reading (dBuV) + Correction Factor (dB/m)    |  |
| Limit (dBuV/m)           | = Limit stated in standard                     |  |
| Margin (dB)              | = Remark Result (dBuV/m) – Limit (dBuV/m)      |  |
| Peak                     | = Peak Reading                                 |  |
| QP                       | = Quasi-peak Reading                           |  |
| AVG                      | = Average Reading                              |  |
|                          |                                                |  |

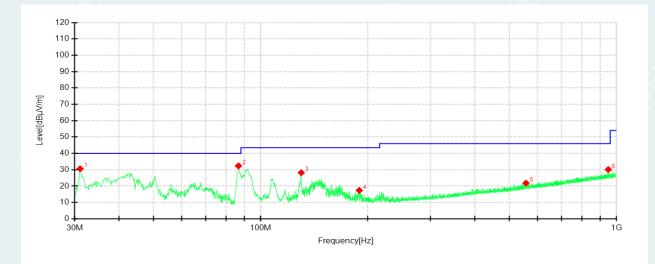

Page 18 of 46

# 6.5. TEST RESULTS

### **30MHz to 1GHz**

Mode: TX Lowest channel (2402MHz) Polarity

Date: 2021-02-02 Horizontal

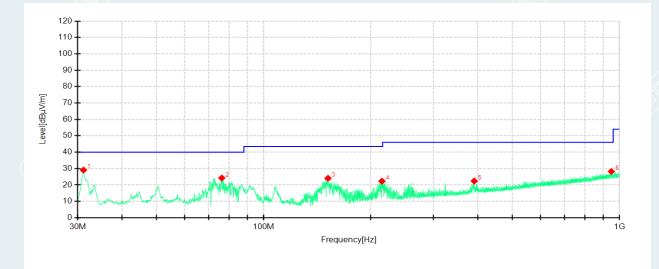



| Suspect    | Suspected Data List |                     |                   |                |                   |                |                |              |            |  |  |  |  |
|------------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|--|--|--|--|
| NO.        | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity   |  |  |  |  |
| 1          | 31.2125             | 58.96               | 28.48             | -30.48         | 40.00             | 11.52          | 200            | 132          | Horizontal |  |  |  |  |
| 2          | 80.9250             | 53.48               | 21.65             | -31.83         | 40.00             | 18.35          | 200            | 180          | Horizontal |  |  |  |  |
| 3          | 151.1288            | 55.36               | 23.82             | -31.54         | 43.50             | 19.68          | 200            | 339          | Horizontal |  |  |  |  |
| <b>a</b> 4 | 212.4813            | 51.08               | 23.34             | -27.74         | 43.50             | 20.16          | 200            | 212          | Horizontal |  |  |  |  |
| 5          | 389.8700            | 45.00               | 21.79             | -23.21         | 46.00             | 24.21          | 100            | 214          | Horizontal |  |  |  |  |
| 6          | 948.5900            | 42.98               | 29.37             | -13.61         | 46.00             | 16.63          | 100            | 281          | Horizontal |  |  |  |  |



Mode: TX Lowest channel (2402MHz) Polarity

Date: 2021-02-02 Vertical

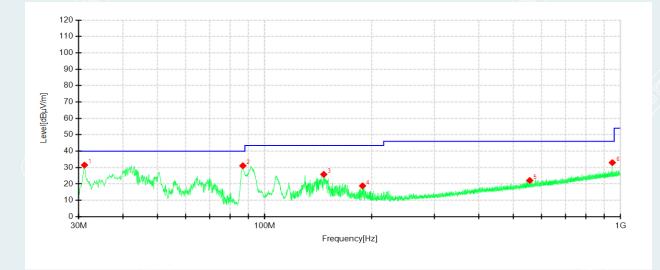



|         |                | $\sim$              |                   |                |                   |                |                | $\smile$     |          |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|
| Suspect | ed Data List   |                     |                   |                |                   |                |                |              |          |
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity |
| 1       | 31.0913        | 59.76               | 30.60             | -29.16         | 40.00             | 9.40           | 100            | 147          | Vertical |
| 2       | 86.6238        | 63.77               | 32.37             | -31.40         | 40.00             | 7.63           | 100            | 30           | Vertical |
| 3       | 130.0313       | 56.22               | 28.20             | -28.02         | 43.50             | 15.30          | 100            | 47           | Vertical |
| 4       | 189.3225       | 45.89               | 17.39             | -28.50         | 43.50             | 26.11          | 100            | 147          | Vertical |
| 5       | 556.5888       | 41.41               | 21.82             | -19.59         | 46.00             | 24.18          | 100            | 183          | Vertical |
| 6       | 948.4688       | 43.04               | 30.13             | -12.91         | 46.00             | 15.87          | 100            | 74           | Vertical |



Mode: TX Lowest channel (2426MHz) Polarity

Date: 2021-02-02 Horizontal

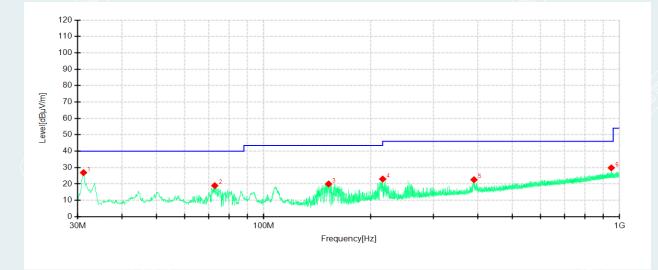



|         |                |                     |                   |                |                   |                |                | $( \odot / )$ |                                       |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|---------------|---------------------------------------|
| Suspect | ted Data List  |                     |                   |                |                   |                |                |               |                                       |
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ]  | Polarity                              |
| 1       | 31.1640        | 59.59               | 29.10             | -30.49         | 40.00             | 10.90          | 200            | 31            | Horizontal                            |
| 2       | 76.2690        | 56.04               | 24.26             | -31.78         | 40.00             | 15.74          | 200            | 9             | Horizontal                            |
| 3       | 151.6380       | 55.58               | 24.07             | -31.51         | 43.50             | 19.43          | 200            | 4             | Horizontal                            |
| 4       | 214.9790       | 49.99               | 22.30             | -27.69         | 43.50             | 21.20          | 100            | 179           | Horizontal                            |
| 5       | 390.6460       | 45.56               | 22.37             | -23.19         | 46.00             | 23.63          | 100            | 209           | Horizontal                            |
| 6       | 948.6870       | 41.81               | 28.21             | -13.60         | 46.00             | 17.79          | 200            | 106           | Horizontal                            |
|         |                |                     |                   |                |                   |                |                |               | · · · · · · · · · · · · · · · · · · · |



Mode: TX Lowest channel (2426MHz) Polarity

Date: 2021-02-02 Vertical

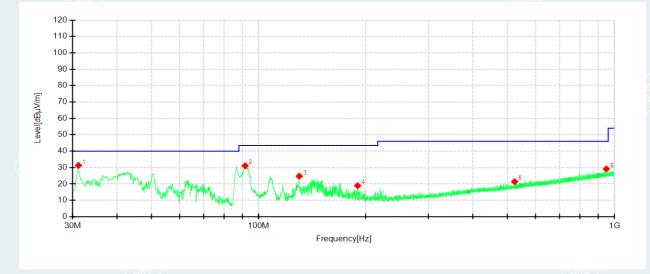



| Suspect | ed Data List   |                     |                   |                |                   |                |                |              |          |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity |
| 1       | 31.1640        | 60.67               | 31.51             | -29.16         | 40.00             | 8.49           | 100            | 1            | Vertical |
| 2       | 86.8420        | 62.51               | 31.12             | -31.39         | 40.00             | 8.88           | 100            | 45           | Vertical |
| 3       | 146.5940       | 51.75               | 25.83             | -25.92         | 43.50             | 17.67          | 100            | 63           | Vertical |
| 4       | 188.4010       | 47.21               | 18.82             | -28.39         | 43.50             | 24.68          | 100            | 172          | Vertical |
| 5       | 555.8370       | 41.75               | 22.14             | -19.61         | 46.00             | 23.86          | 100            | 34           | Vertical |
| 6       | 948.5900       | 45.92               | 33.01             | -12.91         | 46.00             | 12.99          | 100            | 299          | Vertical |
|         |                |                     |                   |                |                   |                |                |              |          |



Mode: TX Highest channel (2480MHz) Polarity

Date: 2021-02-02 Horizontal




| Suspect | ed Data List   |                     |                   |                |                   |                |                |              |            |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity   |
| 1       | 31.1640        | 57.39               | 26.90             | -30.49         | 40.00             | 13.10          | 100            | 84           | Horizontal |
| 2       | 72.8740        | 50.58               | 18.96             | -31.62         | 40.00             | 21.04          | 100            | 356          | Horizontal |
| 3       | 152.2200       | 51.49               | 20.01             | -31.48         | 43.50             | 23.49          | 100            | 31           | Horizontal |
| 4       | 216.0460       | 50.65               | 22.99             | -27.66         | 46.00             | 23.01          | 100            | 210          | Horizontal |
| 5       | 390.0640       | 45.79               | 22.58             | -23.21         | 46.00             | 23.42          | 100            | 210          | Horizontal |
| 6       | 948.5900       | 43.45               | 29.84             | -13.61         | 46.00             | 16.16          | 100            | 359          | Horizontal |
|         |                |                     |                   |                |                   |                |                |              |            |



Mode: TX Highest channel (2480MHz) Polarity

Date: 2021-02-02 Vertical



|         |                |                     |                   |                |                   |                |                | $\langle \Im \rangle$ |          |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|-----------------------|----------|
| Suspect | ted Data List  |                     |                   |                |                   |                |                |                       |          |
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ]          | Polarity |
| 1       | 31.1640        | 60.46               | 31.30             | -29.16         | 40.00             | 8.70           | 100            | 115                   | Vertical |
| 2       | 91.5950        | 62.31               | 31.09             | -31.22         | 43.50             | 12.41          | 100            | 83                    | Vertical |
| 3       | 130.0070       | 52.75               | 24.72             | -28.03         | 43.50             | 18.78          | 100            | 137                   | Vertical |
| 4       | 189.7590       | 47.51               | 18.96             | -28.55         | 43.50             | 24.54          | 100            | 152                   | Vertical |
| 5       | 524.0210       | 41.64               | 21.37             | -20.27         | 46.00             | 24.63          | 100            | 174                   | Vertical |
| 6       | 948.5900       | 42.09               | 29.18             | -12.91         | 46.00             | 16.82          | 100            | 1                     | Vertical |
|         |                |                     |                   |                |                   |                |                |                       |          |

#### Remark:

1 No emission found between lowest internal used/generated frequency to 30MHz.

2 Data of measurement within this frequency range in the table above the reading of PK detector are more 6dB than

QP limit, therefore it's unnecessary to performed QP scan.

3 The IF bandwidth of Receiver between 30MHz to 1GHz was 120 kHz.

Page 24 of 46

#### Above 1GHz:

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

#### Mode: TX

Lowest channel (2402MHz)

Date: 2021-02-02

| Suspect | Suspected Data List |                     |                                         |                |                   |                |                |              |            |  |  |  |
|---------|---------------------|---------------------|-----------------------------------------|----------------|-------------------|----------------|----------------|--------------|------------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m]                       | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity   |  |  |  |
| 1       | 1508.5636           | 58.35               | 35.27                                   | -23.08         | 74.00             | 38.73          | 100            | 255          | Horizontal |  |  |  |
| 2       | 2384.6731           | 79.49               | 58.79                                   | -20.70         | 74.00             | 15.21          | 200            | 204          | Horizontal |  |  |  |
| 3       | 3920.8845           | 54.67               | 39.40                                   | -15.27         | 74.00             | 34.60          | 200            | 105          | Horizontal |  |  |  |
| 4       | 4804.2669           | 52.92               | 42.20                                   | -10.72         | 74.00             | 31.80          | 100            | 105          | Horizontal |  |  |  |
| 5       | 6552.6974           | 51.38               | 43.53                                   | -7.85          | 74.00             | 30.47          | 200            | 123          | Horizontal |  |  |  |
| 6       | 11107.9504          | 43.43               | 47.13                                   | 3.70           | 74.00             | 26.87          | 100            | 123          | Horizontal |  |  |  |
|         |                     | 1 25                | ) / ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |                |                   |                |                |              |            |  |  |  |

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |          |  |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|--|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity |  |  |  |  |
|         | 1476.3095           | 58.78               | 35.57             | -23.21         | 74.00             | 38.43          | 200            | 197          | Vertical |  |  |  |  |
| 2       | 2385.1731           | 73.37               | 52.67             | -20.70         | 74.00             | 21.33          | 100            | 255          | Vertical |  |  |  |  |
| 3       | 4182.5657           | 53.55               | 39.34             | -14.21         | 74.00             | 34.66          | 200            | 300          | Vertical |  |  |  |  |
| 4       | 4804.2669           | 52.48               | 41.76             | -10.72         | 74.00             | 32.24          | 100            | 104          | Vertical |  |  |  |  |
| 5       | 6342.6857           | 52.42               | 44.11             | -8.31          | 74.00             | 29.89          | 200            | ) 104        | Vertical |  |  |  |  |
| 6       | 11018.7788          | 45.23               | 48.36             | 3.13           | 74.00             | 25.64          | 200            | 193          | Vertical |  |  |  |  |



### Date: 2021-02-02

| Suspect | ed Data List   |                     |                   |                |                   |                |                |              |            |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity   |
| 1       | 1463.3079      | 58.80               | 35.53             | -23.27         | 74.00             | 38.47          | 100            | 183          | Horizontal |
| 2       | 2384.4231      | 80.92               | 60.21             | -20.71         | 74.00             | 13.79          | 100            | 212          | Horizontal |
| 3       | 4054.2252      | 55.14               | 39.72             | -15.42         | 74.00             | 34.28          | 200            | 177          | Horizontal |
| 4       | 4851.7695      | 58.08               | 47.52             | -10.56         | 74.00             | 26.48          | 100            | 274          | Horizontal |
| 5       | 7277.7377      | 60.90               | 55.46             | -5.44          | 74.00             | 18.54          | 100            | 239          | Horizontal |
| 6       | 17859.1588     | 40.01               | 50.09             | 10.08          | 74.00             | 23.91          | 200            | 104          | Horizontal |
|         |                |                     |                   |                |                   |                |                |              |            |

| AV Fina | AV Final Data List |                |                           |                          |                      |                   |                |              |            |  |  |  |
|---------|--------------------|----------------|---------------------------|--------------------------|----------------------|-------------------|----------------|--------------|------------|--|--|--|
| NO.     | Freq.<br>[MHz]     | Factor<br>[dB] | AV<br>Reading<br>[dBμV/m] | AV Value<br>[dBµV/m<br>] | AV Limit<br>[dBµV/m] | AV Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity   |  |  |  |
| 1       | 7277.8105          | -5.45          | 56.82                     | 51.37                    | 54.00                | 2.63              | 100            | 358          | Horizontal |  |  |  |

| Suspect | ted Data List  |                     |                   |                |                   |                |                |              |          |  |  |  |
|---------|----------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|--|--|--|
| NO.     | Freq.<br>[MHz] | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity |  |  |  |
| 1       | 1461.0576      | 59.26               | 35.98             | -23.28         | 74.00             | 38.02          | 100            | 255          | Vertical |  |  |  |
| 2       | 2384.1730      | 76.28               | 55.57             | -20.71         | 74.00             | 18.43          | 100            | 255          | Vertical |  |  |  |
| 3       | 4225.9014      | 52.91               | 38.56             | -14.35         | 74.00             | 35.44          | 100            | 159          | Vertical |  |  |  |
| 4       | 4854.2697      | 56.21               | 45.63             | -10.58         | 74.00             | 28.37          | 100            | 248          | Vertical |  |  |  |
| 5       | 7277.7377      | 54.95               | 49.51             | -5.44          | 74.00             | 24.49          | 200            | 104          | Vertical |  |  |  |
| 6       | 14103.1168     | 41.82               | 49.76             | 7.94           | 74.00             | 24.24          | 200            | 336          | Vertical |  |  |  |



Date: 2021-02-02

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |            |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity   |  |  |  |
| 1       | 1525.5657           | 58.27               | 35.21             | -23.06         | 74.00             | 38.79          | 200            | 255          | Horizontal |  |  |  |
| 2       | 2524.6906           | 80.24               | 60.26             | -19.98         | 74.00             | 13.74          | 200            | 211          | Horizontal |  |  |  |
| 3       | 4166.7315           | 53.36               | 39.03             | -14.33         | 74.00             | 34.97          | 100            | 178          | Horizontal |  |  |  |
| 4       | 6746.8748           | 50.48               | 43.22             | -7.26          | 74.00             | 30.78          | 100            | 339          | Horizontal |  |  |  |
| 5       | 9660.3700           | 46.97               | 47.80             | 0.83           | 74.00             | 26.20          | 100            | 169          | Horizontal |  |  |  |
| 6       | 13334.7408          | 43.27               | 49.66             | 6.39           | 74.00             | 24.34          | 200            | 222          | Horizontal |  |  |  |
|         | ( ())               |                     |                   |                |                   | ( 🔊 /          |                |              |            |  |  |  |

| Suspect           | Suspected Data List |                     |                   |                |                   |                |                |              |          |  |  |  |
|-------------------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|--|--|--|
| NO.               | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity |  |  |  |
| 1                 | 1581.0726           | 58.80               | 35.74             | -23.06         | 74.00             | 38.26          | 100            | 159          | Vertical |  |  |  |
| 2                 | 2525.4407           | 74.27               | 54.31             | -19.96         | 74.00             | 19.69          | 200            | 131          | Vertical |  |  |  |
| 3                 | 4135.8964           | 53.34               | 38.77             | -14.57         | 74.00             | 35.23          | 200            | 105          | Vertical |  |  |  |
| 4                 | 6848.5471           | 50.29               | 43.75             | -6.54          | 74.00             | 30.25          | 100            | 274          | Vertical |  |  |  |
| (5 <sup>°</sup> / | 10478.7488          | 46.05               | 47.74             | 1.69           | 74.00             | 26.26          | 100            | 149          | Vertical |  |  |  |
| 6                 | 14090.6161          | 41.83               | 49.63             | 7.80           | 74.00             | 24.37          | 100            | 105          | Vertical |  |  |  |

Page 27 of 46

### Above 18GHz:

### Mode: TX Highest channel (2402MHz)

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |            |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity   |  |  |  |
| 1       | 19389.3250          | 56.90               | 45.92             | -10.98         | 83.50             | 37.58          | 100            | 259          | Horizontal |  |  |  |
| 2       | 20240.1750          | 55.36               | 44.69             | -10.67         | 83.50             | 38.81          | 100            | 169          | Horizontal |  |  |  |
| 3       | 21581.9000          | 55.64               | 45.70             | -9.94          | 83.50             | 37.80          | 100            | 30           | Horizontal |  |  |  |
| 4       | 22863.7000          | 55.76               | 46.73             | -9.03          | 83.50             | 36.77          | 100            | 333          | Horizontal |  |  |  |
| 5       | 23933.4250          | 54.70               | 46.37             | -8.33          | 83.50             | 37.13          | 100            | 194          | Horizontal |  |  |  |
| 6       | 25651.7000          | 54.60               | 46.65             | -7.95          | 83.50             | 36.85          | 100            | 30           | Horizontal |  |  |  |
|         |                     |                     |                   |                |                   |                |                |              |            |  |  |  |

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |          |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity |  |  |  |
| 1       | 18850.0000          | 57.74               | 46.50             | -11.24         | 83.50             | 37.00          | 100            | 256          | Vertical |  |  |  |
| 2       | 19939.7000          | 56.76               | 45.90             | -10.86         | 83.50             | 37.60          | 100            | 27           | Vertical |  |  |  |
| 3       | 22110.6000          | 55.73               | 45.90             | -9.83          | 83.50             | 37.60          | 100            | 154          | Vertical |  |  |  |
| 4       | 23209.2250          | 55.74               | 46.90             | -8.84          | 83.50             | 36.60          | 100            | 256          | Vertical |  |  |  |
| 5       | 24505.4750          | 54.73               | 46.59             | -8.14          | 83.50             | 36.91          | 100            | 353          | Vertical |  |  |  |
| 6       | 25225.4250          | 54.74               | 47.09             | -7.65          | 83.50             | 36.41          | 100            | 191          | Vertical |  |  |  |
|         | 1                   |                     | $(\mathcal{C})$   |                |                   |                |                |              |          |  |  |  |

### Mode: TX Highest channel (2426MHz)

Date: 2021-02-02

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |            |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity   |  |  |  |
| 1       | 18637.9250          | 57.65               | 46.26             | -11.39         | 83.50             | 37.24          | 100            | 228          | Horizontal |  |  |  |
| 2       | 20331.1250          | 56.59               | 45.99             | -10.60         | 83.50             | 37.51          | 100            | 52           | Horizontal |  |  |  |
| 3       | 21038.3250          | 56.17               | 45.87             | -10.30         | 83.50             | 37.63          | 100            | 240          | Horizontal |  |  |  |
| 4       | 23342.6750          | 55.40               | 46.62             | -8.78          | 83.50             | 36.88          | 100            | 292          | Horizontal |  |  |  |
| 5       | 24265.3500          | 55.07               | 46.88             | -8.19          | 83.50             | 36.62          | 100            | 117          | Horizontal |  |  |  |
| 6       | 25160.8250          | 55.03               | 47.35             | -7.68          | 83.50             | 36.15          | 100            | 5            | Horizontal |  |  |  |
|         |                     |                     |                   |                |                   |                |                |              |            |  |  |  |

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |          |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[ ] | Polarity |  |  |  |
| 1       | <19127.1000         | 56.79               | 45.70             | -11.09         | 83.50             | 37.80          | 100            | 156          | Vertical |  |  |  |
| 2       | 20914.2250          | 56.05               | 45.74             | -10.31         | 83.50             | 37.76          | 100            | 271          | Vertical |  |  |  |
| 3       | 22306.9500          | 54.93               | 45.34             | -9.59          | 83.50             | 38.16          | 100            | 320          | Vertical |  |  |  |
| 4       | 23726.8750          | 55.11               | 46.57             | -8.54          | 83.50             | 36.93          | 100            | 69           | Vertical |  |  |  |
| 5       | 25196.5250          | 55.05               | 47.42             | -7.63          | 83.50             | 36.08          | 100            | 347          | Vertical |  |  |  |
| 6       | 25566.7000          | 54.60               | 46.73             | -7.87          | 83.50             | 36.77          | 100            | 347          | Vertical |  |  |  |

Date: 2021-02-02

### Mode: TX Highest channel (2480MHz)

Date: 2021-02-02

| Suspect | Suspected Data List |                     |                   |                |                   |                |                |              |            |  |  |  |
|---------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|------------|--|--|--|
| NO.     | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity   |  |  |  |
| 1       | 18819.4000          | 57.33               | 46.06             | -11.27         | 83.50             | 37.44          | 100            | 18           | Horizontal |  |  |  |
| 2       | 20035.7500          | 56.45               | 45.62             | -10.83         | 83.50             | 37.88          | 100            | 107          | Horizontal |  |  |  |
| 3       | 21526.2250          | 55.89               | 45.90             | -9.99          | 83.50             | 37.60          | 100            | 271          | Horizontal |  |  |  |
| 4       | 22799.9500          | 55.00               | 45.93             | -9.07          | 83.50             | 37.57          | 100            | 258          | Horizontal |  |  |  |
| 5       | 23721.3500          | 55.54               | 46.99             | -8.55          | 83.50             | 36.51          | 100            | 181          | Horizontal |  |  |  |
| 6       | 24938.5500          | 54.67               | 46.72             | -7.95          | 83.50             | 36.78          | 100            | 258          | Horizontal |  |  |  |
|         |                     |                     |                   |                |                   | (%)            | 5 /            |              |            |  |  |  |

|            |                     |                     |                   |                |                   | 1 11/6/51 /    |                |              |          |  |  |  |
|------------|---------------------|---------------------|-------------------|----------------|-------------------|----------------|----------------|--------------|----------|--|--|--|
| Suspect    | Suspected Data List |                     |                   |                |                   |                |                |              |          |  |  |  |
| NO.        | Freq.<br>[MHz]      | Reading<br>[dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height<br>[cm] | Angle<br>[°] | Polarity |  |  |  |
| 1          | 19552.5250          | 57.09               | 46.20             | -10.89         | 83.50             | 37.30          | 100            | 192          | Vertical |  |  |  |
| 2          | 21174.3250          | 55.59               | 45.31             | -10.28         | 83.50             | 38.19          | 100            | 90           | Vertical |  |  |  |
| 3          | 21738.3000          | 55.36               | 45.42             | -9.94          | 83.50             | 38.08          | 100            | <u> </u>     | Vertical |  |  |  |
| 4          | 23175.2250          | 55.90               | 47.05             | -8.85          | 83.50             | 36.45          | 100            | 254          | Vertical |  |  |  |
| <b>5</b> 0 | 23733.2500          | 55.24               | 46.71             | -8.53          | 83.50             | 36.79          | 100            | 217          | Vertical |  |  |  |
| 6          | 25465.9750          | 55.21               | 47.41             | -7.80          | 83.50             | 36.09          | 100            | 16           | Vertical |  |  |  |

Page 29 of 46

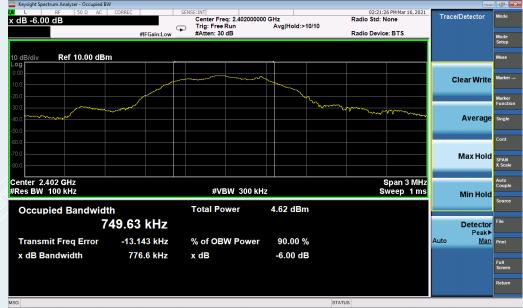
### 7.6dB BANDWIDTH

#### 7.1. LIMITS

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

### 7.2. TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set resolution bandwidth (RBW) = 100kHz.Set the video bandwidth (VBW) ≥ 3 x RBW. Detector = Peak. Trace mode = max hold. Sweep = auto couple. Allow the trace to stabilize, record 6dB bandwidth value.
- 3) Repeat above procedures until all frequencies measured were complete.


### 7.3. TEST SETUP



### 7.4. TEST RESULTS

| Channel | Frequency<br>(MHz) | Bandwidth<br>(kHz) | Limit<br>(kHz) | Test Result |
|---------|--------------------|--------------------|----------------|-------------|
| Lowest  | 2402               | 776.6              |                | PASS        |
| Middle  | 2426               | 767.6              | >500           | PASS        |
| Highest | 2480               | 804.0              |                | PASS        |

#### Lowest channel (2402MHz)



#### Middle channel (2426 MHz)

| Agilent Spectrum Analyzer - Occupied BW      |             |                                   |                 |                                             |
|----------------------------------------------|-------------|-----------------------------------|-----------------|---------------------------------------------|
| XX RL RF 50Ω AC<br>X dB -6.00 dB             | SENS        | SE:PULSE<br>Center Freg: 2.426000 |                 | 11:39:45 AM Mar 18, 2021<br>Radio Std: None |
|                                              | #IFGain:Low | Trig: Free Run<br>#Atten: 10 dB   | Avg Hold:>10/10 | Radio Device: BTS                           |
| Ref Offset 0.5 dB<br>10 dB/div Ref 20.00 dBm |             |                                   |                 |                                             |
| Log<br>10.0                                  |             |                                   |                 |                                             |
| 0.00                                         |             |                                   | ~               |                                             |
| -10.0                                        |             |                                   |                 |                                             |
| -30.0                                        |             |                                   |                 |                                             |
| -40.0                                        |             |                                   |                 |                                             |
| -50.0                                        |             |                                   |                 |                                             |
| -70.0                                        |             |                                   |                 |                                             |
|                                              |             |                                   |                 |                                             |
| Center 2.426 GHz<br>#Res BW 100 kHz          |             | #VBW 300 k                        | Hz              | Span 3 MHz<br>Sweep 1 ms                    |
| Occupied Bandwidth                           |             | Total Power                       | 9.37 dBm        |                                             |
| 1.6                                          | 280 MHz     |                                   |                 |                                             |
| Transmit Freq Error                          | 285.51 kHz  | OBW Power                         | 90.00 %         |                                             |
| x dB Bandwidth                               | 767.6 kHz   | x dB                              | -6.00 dB        |                                             |
|                                              |             |                                   |                 |                                             |
|                                              |             |                                   |                 |                                             |
| MSG                                          |             |                                   | STATUS          |                                             |

#### Highest channel (2480MHz)

| Keysight Spectrum Analyzer - Occupied BW | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                 |                          |                 |                    |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------------------------|-----------------|--------------------|
|                                          | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SENSE:INT              |                 | 02:22:38 PM Mar 16, 2021 |                 |                    |
| Center Freq 2.480000000                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center Freq: 2.4800000 | 0 GHz           | Radio Std: None          | Trace/Detector  | Mode               |
| Center 11eq 2.400000000                  | G112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 🕤 Trig: Free Run       | Avg Hold:>10/10 |                          |                 |                    |
|                                          | #IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #Atten: 30 dB          |                 | Radio Device: BTS        |                 | Mode               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Setup              |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 |                    |
| 10 dB/div Ref 10.00 dBm                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                 |                          |                 | Meas               |
| Log                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 |                    |
| 0.00                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | Clear Write     | Marker →           |
| -10.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | Cical Write     |                    |
| -20.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Marker<br>Function |
| -30.0                                    | - and the second s |                        |                 |                          |                 |                    |
| -40.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | Average         | Single             |
| -50.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | _               |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Cont               |
| -60.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Cont               |
| -70.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | Max Hold        |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | INIAX HOIG      | SPAN               |
| -80.0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | X Scale            |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 | 0                        |                 | Auto               |
| Center 2.48 GHz                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 | Span 3 MHz               |                 | Couple             |
| #Res BW 100 kHz                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | #VBW 300 kH            | IZ              | Sweep 1 ms               | Min Hold        |                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Source             |
| Occupied Bandwidth                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Power            | 3.34 dBm        |                          |                 |                    |
| 70                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          | Detector        | File               |
|                                          | 69.68 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                 |                          | Detector        |                    |
|                                          | 0.740 1.11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | 00.00.0/        |                          | Peak►           |                    |
| Transmit Freq Error                      | -9.746 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | % of OBW Power         | 90.00 %         |                          | Auto <u>Man</u> | Print              |
| x dB Bandwidth                           | 804.0 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x dB                   | -6.00 dB        |                          |                 |                    |
|                                          | 00 1.0 KHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        | 0100 410        |                          |                 | Full               |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Screen             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | -                  |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 | Return             |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                 |                          |                 |                    |

STATUS

### 8. MAXIMUM PEAK OUTPUT POWER

### 8.1.LIMITS

The maximum Peak output power measurement is 1W

### **8.2.TEST PROCEDURES**

- 1) Place the EUT on a bench and set it in transmitting mode.
- 2) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter.

### **8.3.TEST SETUP**



### **8.4.TEST RESULTS**

| Channel | Frequency<br>(MHz) | Measured<br>Channel Power<br>(dBm) | Limit     | Peak/<br>Average | Result |
|---------|--------------------|------------------------------------|-----------|------------------|--------|
| Lowest  | 2402               | -2.306                             | 1W        |                  | Pass   |
| Middle  | 2426               | 1.041                              | (30 dBm)  | Peak             | Pass   |
| Highest | 2480               | -3.410                             | (JUUDIII) |                  | Pass   |

### 9. POWER SPECTRAL DENSITY

### **9.1. LIMITS**

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### 9.2. TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3) Set the analyzer span to 1.5 times the DTS bandwidth. Set the RBW = 3 kHz. Set the VBW  $\geq$ 3 RBW. Detector = peak. Ensure that the number of measurement points in the sweep  $\geq$  2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4) Repeat above procedures until all frequencies measured were complete.

#### 9.3. TEST SETUP



### 9.4. TEST RESULTS

| Channel | Frequency<br>(MHz) | PSD<br>(dBm) | Limit<br>(dBm/3kHz) | Test Result |
|---------|--------------------|--------------|---------------------|-------------|
| Lowest  | 2402               | -2.500       |                     | PASS        |
| Middle  | 2426               | 0.834        | 8                   | PASS        |
| Highest | 2480               | -3.651       |                     | PASS        |

01



#### Middle channel (2426 MHz)



Page 35 of 46

, G

C

### Highest channel (2480MHz)

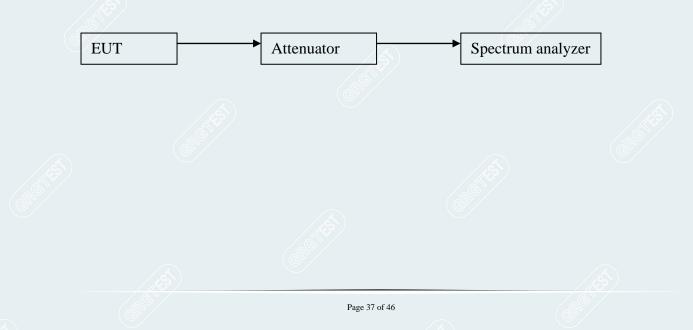


۶G

### 10. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

#### **10.1. LIMITS**

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

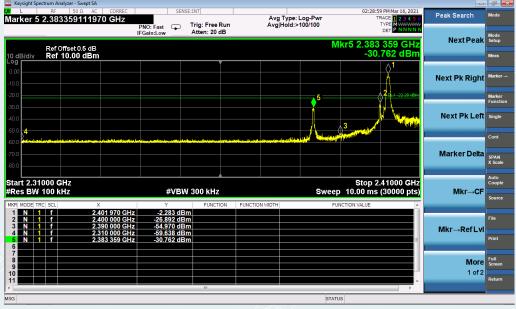

#### **10.2. TEST PROCEDURES**

Test procedures follow KDB 558074 D01 DTS Measurement Guidance v05r02.

Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.

- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW =100KHz; VBW =300KHz, Span = 10MHz to 26.5GHz; Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 5) Measurements are made over the 9 kHz to 26GHz range with the transmitter set to the lowest, middle, and highest channels. No emission found between lowest internal used/generated frequency to 10MHz, it is only recorded 10MHz to 26GHz.

#### **10.3. TEST SETUP**




# **10.4. TEST RESULTS**

#### Lowest channel (2402MHz) 0.03GHz-26.5GHz Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Keysight Spectrum Analyzer - Swept SA Marker 1 25.832051401713 GHz Tdg: Free Purp



### 2.31GHz-2.41GHz



# Middle channel (2426 MHz)



| Keysight Spectrum Analyzer - Swept SA          |        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                            |                             |
|------------------------------------------------|--------|-------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------|-----------------------------|
| L RF 50Ω AC CORREC<br>Display Line 1 -7.67 dBm | _      | rig: Free Run                 |                | pe: Log-Pwr<br>ld:>100/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 02:34:19 PM Mar 16, 2021<br>TRACE 1 2 3 4 5<br>TYPE M | Display                                    | Mode                        |
| Ref Offset 0.5 dB<br>0 dB/div Ref 20.00 dBm    |        | rig: Free Run<br>Atten: 30 dB | Avginoi        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2.425 979 2 GHz<br>12.338 dBm                       | Annotation►                                | Mode<br>Setup<br>Meas       |
| .0g<br>10.0<br>0.00                            | ~      |                               | Mr.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DL1 -7.67 dBm                                         | Title►                                     | Marker                      |
|                                                |        |                               |                | Marine Contraction of the Contra | nu mana                                               | Graticule<br><u>On</u> Off                 | Marker<br>Functio<br>Single |
| 50.0                                           |        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | Display Line<br>-7.67 dBm<br><u>On</u> Off | SDAN                        |
| Center 2.426000 GHz<br>Res BW 100 kHz          | #VBW 3 | 100 kHz                       | FUNCTION WIDTH | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Span 10.00 MHz<br>2.000 ms (30000 pts)                |                                            | Auto<br>Coupi<br>Source     |
| 1 N 1 f 2.425 979 2 G                          |        | Tononion                      |                | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       | System<br>Display►<br>Settings             | File<br>Print               |
| 8<br>9<br>0                                    |        |                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                            | Full<br>Scree               |
|                                                |        | m                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                     |                                            | Return                      |
| G                                              |        |                               |                | STATU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IS                                                    |                                            |                             |

# Highest channel (2480MHz)



### 2.475GHz-2.5GHz

| Keysight Spectrum Analyzer - Swe     |                                                                               |                                                              |                        |                         |                                                                                                                 |                                                                              |                | 6                           |
|--------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|-----------------------------|
| arker 4 2.48466032                   | AC CORREC                                                                     |                                                              | ig: Free Run           | Avg Type:<br>Avg Hold:> |                                                                                                                 | 02:38:22 PM Mar 16, 2021<br>TRACE 1 2 3 4 5 6<br>TYPE M                      | Peak Search    | Mode                        |
| Ref Offset 0.5<br>dB/div Ref 10.00 d | dB                                                                            | IFGain:Low A                                                 | tten: 20 dB            |                         | Mkr4                                                                                                            | 2.484 660 3 GHz<br>-28.820 dBm                                               | Next Peak      | Mode<br>Setup<br>Meas       |
| og<br>0.00<br>0.0                    | <u></u> 1                                                                     |                                                              |                        |                         |                                                                                                                 |                                                                              | Next Pk Right  | Marker -                    |
| 0.0<br>0.0<br>0.0<br>0.0             | 1 Marine                                                                      | กระหาศักราช เมือง                                            | noruprilphiliperphipsy |                         | And the state of the | DL1-23.50 aBm                                                                | Next Pk Left   | Marker<br>Functio<br>Single |
|                                      |                                                                               |                                                              |                        |                         |                                                                                                                 | a ta fa fa fa ta fa fa ta fa fa fa ta fa | Marker Delta   | Cont<br>SPAN<br>X Scale     |
| art 2.47500 GHz<br>tes BW 100 kHz    |                                                                               | #VBW 3                                                       |                        |                         | · · ·                                                                                                           | Stop 2.50000 GHz<br>4.000 ms (30000 pts)                                     | Mkr→CF         | Auto<br>Coupl<br>Source     |
| 2 N 1 f<br>3 N 1 f<br>4 N 1 f        | ×<br>2.479 967 7 GHz<br>2.483 500 0 GHz<br>2.500 000 0 GHz<br>2.484 660 3 GHz | Y<br>-3.503 dBm<br>-41.530 dBm<br>-54.057 dBm<br>-28.820 dBm | FUNCTION               | FUNCTION WIDTH          | FUNC                                                                                                            | TION VALUE                                                                   | Mkr→RefLvl     | File<br>Print               |
|                                      |                                                                               |                                                              |                        |                         |                                                                                                                 |                                                                              | More<br>1 of 2 | Full<br>Screet              |
|                                      |                                                                               |                                                              | III                    |                         | STATUS                                                                                                          |                                                                              |                |                             |
|                                      |                                                                               |                                                              |                        |                         | 0                                                                                                               |                                                                              |                |                             |

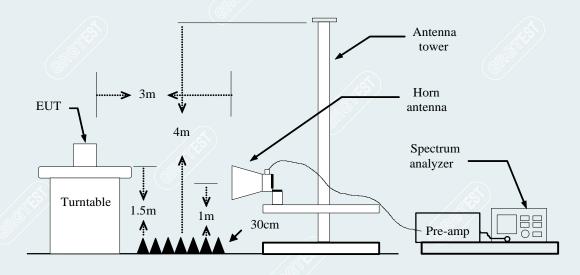
) JL( L

### 11. RESTRICTED BANDS OF OPERATION

#### **11.1. LIMITS**

Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c)).

| ş15.205(c)).               |                   |                 |               |
|----------------------------|-------------------|-----------------|---------------|
| MHz                        | MHz               | MHz             | GHz           |
| 0.090 - 0.110              | 16.42 - 16.423    | 399.9 - 410     | 4.5 - 5.15    |
| <sup>1</sup> 0.495 - 0.505 | 16.69475 -        | 608 - 614       | 5.35 - 5.46   |
| 2.1735 - 2.1905            | 16.69525          | 960 - 1240      | 7.25 - 7.75   |
| 4.125 - 4.128              | 16.80425 -        | 1300 - 1427     | 8.025 - 8.5   |
| 4.17725 - 4.17775          | 16.80475          | 1435 - 1626.5   | 9.0 - 9.2     |
| 4.20725 - 4.20775          | 25.5 - 25.67      | 1645.5 - 1646.5 | 9.3 - 9.5     |
| 6.215 - 6.218              | 37.5 - 38.25      | 1660 - 1710     | 10.6 - 12.7   |
| 6.26775 - 6.26825          | 73 - 74.6         | 1718.8 - 1722.2 | 13.25 - 13.4  |
| 6.31175 - 6.31225          | 74.8 - 75.2       | 2200 - 2300     | 14.47 - 14.5  |
| 8.291 - 8.294              | 108 - 121.94      | 2310 - 2390     | 15.35 - 16.2  |
| 8.362 - 8.366              | 123 - 138         | 2483.5 - 2500   | 17.7 - 21.4   |
| 8.37625 - 8.38675          | 149.9 - 150.05    | 2655 - 2900     | 22.01 - 23.12 |
| 8.41425 - 8.41475          | 156.52475 -       | 3260 - 3267     | 23.6 - 24.0   |
| 12.29 - 12.293             | 156.52525         | 3332 - 3339     | 31.2 - 31.8   |
| 12.51975 -                 | 156.7 - 156.9     | 3345.8 - 3358   | 36.43 - 36.5  |
| 12.52025                   | 162.0125 - 167.17 | 3600 - 4400     |               |
| 12.57675 -                 | 167.72 - 173.2    |                 |               |
| 12.57725                   | 240 - 285         |                 |               |
| 13.36 - 13.41              | 322 - 335.4       |                 |               |
|                            |                   |                 |               |


#### **11.2. TEST PROCEDURES**

Test procedures follow KDB 558074 D01 DTS Meas Guidance v03r01.

- 1) The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO
  - b) AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO
- 5) Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

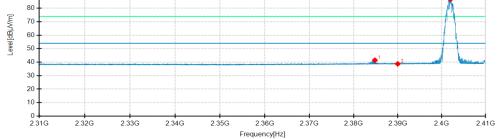
8

### **11.3. TEST SETUP**



TE

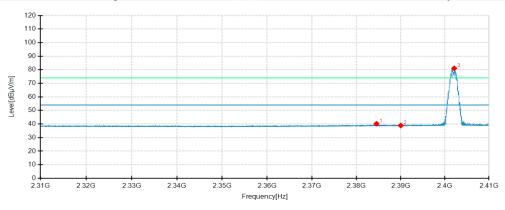
## **11.4. TEST RESULTS**



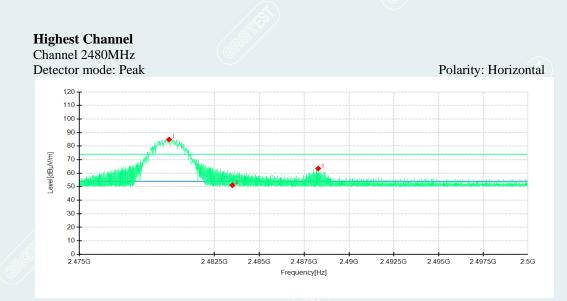

| No. | Frequency | Reading     | Level  | Factor | Limit  | Margin | Height | Angle | Pole       | Comment  |
|-----|-----------|-------------|--------|--------|--------|--------|--------|-------|------------|----------|
|     | MHz       | $dB\mu V/m$ | dBµV/m | dB     | dBuV/m | dB     | cm     | 0     |            |          |
| 1   | 2384.4700 | 61.12       | 64.22  | 3.10   | 74.00  | 9.78   | 150    | 211   | Horizontal |          |
| 2   | 2390.0000 | 47.22       | 50.41  | 3.19   | 74.00  | 23.59  | 150    | 31    | Horizontal | (87/1    |
| 3   | 2402.6000 | 84.35       | 87.70  | 3.35   | 74.00  | -13.70 | 150    | 211   | Horizontal | No limit |
| 1   | 2384.5600 | 55.84       | 58.94  | 3.10   | 74.00  | 15.06  | 150    | 306   | Vertical   | /        |
| 2   | 2390.0000 | 46.58       | 49.77  | 3.19   | 74.00  | 24.23  | 150    | 342   | Vertical   | /        |
| 3   | 2401.5500 | 78.73       | 82.08  | 3.35   | 74.00  | -8.08  | 150    | 312   | Vertical   | No limit |

<sup>120</sup> T 110 -100 90 -

Polarity: Horizontal

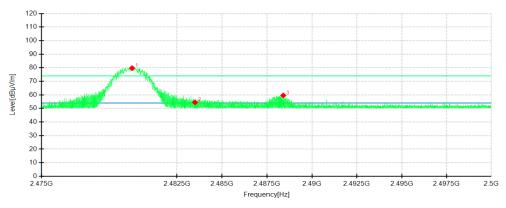






Detector mode: Average

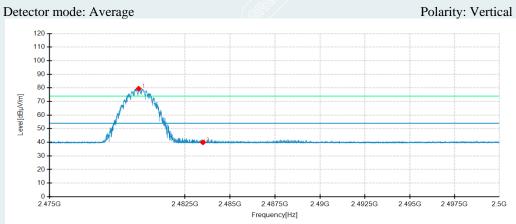
Polarity: Vertical

W.




| No. | Frequency | Reading     | Level  | Factor | Limit  | Margin | Height | Angle | Pole       | Comment    |
|-----|-----------|-------------|--------|--------|--------|--------|--------|-------|------------|------------|
|     | MHz       | $dB\mu V/m$ | dBµV/m | dB     | dBuV/m | dB     | cm     | 0     |            |            |
| 1   | 2384.8200 | 38.35       | 41.46  | 3.11   | 54.00  | 12.54  | 150    | 0     | Horizontal |            |
| 2   | 2390.0000 | 35.54       | 38.73  | 3.19   | 54.00  | 15.27  | 150    | 223   | Horizontal | 10         |
| 3   | 2401.9900 | 83.33       | 86.68  | 3.35   | 54.00  | -32.68 | 150    | 248   | Horizontal | No limit   |
| 1   | 2384.5400 | 37.11       | 40.21  | 3.10   | 54.00  | 13.79  | 150    | 139   | Vertical   | <u>ا</u> ک |
| 2   | 2390.0000 | 35.71       | 38.90  | 3.19   | 54.00  | 15.10  | 150    | 309   | Vertical   | /          |
| 3   | 2402.1200 | 77.70       | 81.05  | 3.35   | 54.00  | -27.05 | 150    | 297   | Vertical   | No limit   |




Detector mode: Peak

Polarity: Vertical



| P | No. | Frequency | Reading     | Level       | Factor | Limit  | Margin | Height | Angle | Pole       | Comment  |
|---|-----|-----------|-------------|-------------|--------|--------|--------|--------|-------|------------|----------|
|   |     | MHz       | $dB\mu V/m$ | $dB\mu V/m$ | dB     | dBuV/m | dB     | cm     | 0     |            |          |
|   | 1   | 2479.9775 | 81.27       | 84.82       | 3.55   | 74.00  | -10.82 | 150    | 218   | Horizontal | No limit |
|   | 2   | 2483.5000 | 47.54       | 51.10       | 3.56   | 74.00  | 22.90  | 150    | 349   | Horizontal | / {P /   |
|   | 3   | 2488.2800 | 59.84       | 63.40       | 3.56   | 74.00  | 10.60  | 150    | 223   | Horizontal |          |
|   | 1   | 2480.0125 | 76.18       | 79.73       | 3.55   | 74.00  | -5.73  | 150    | 60    | Vertical   | No limit |
|   | 2   | 2483.5000 | 50.94       | 54.50       | 3.56   | 74.00  | 19.50  | 150    | < 341 | Vertical   | /        |
| Γ | 3   | 2488.4050 | 56.01       | 59.57       | 3.56   | 74.00  | 14.43  | 150    | 95    | Vertical   | /        |





| No. | Frequency | Reading     | Level  | Factor | Limit  | Margin | Height | Angle | Pole       | Comment  |
|-----|-----------|-------------|--------|--------|--------|--------|--------|-------|------------|----------|
|     | MHz       | $dB\mu V/m$ | dBµV/m | dB     | dBuV/m | dB     | cm     | 0     |            |          |
| 1   | 2479.9575 | 80.78       | 84.33  | 3.55   | 54.00  | -30.33 | 150    | 223   | Horizontal | No limit |
| 2   | 2483.5000 | 36.35       | 39.91  | 3.56   | 54.00  | 14.09  | 150    | 164   | Horizontal |          |
| 3   | 2488.2500 | 39.85       | 43.41  | 3.56   | 54.00  | 10.59  | 150    | 218   | Horizontal |          |
| 1   | 2479.9350 | 75.86       | 79.41  | 3.55   | 54.00  | -25.41 | 150    | 58    | Vertical   | No limit |
| 2   | 2483.5000 | 36.33       | 39.89  | 3.56   | 54.00  | 14.11  | 150    | 220   | Vertical   | /        |

Remark: Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

----- This is the last page of the report. -----