

TEST REPORT FOR SAR TESTING

Report No.:	SRTC2022-9004(F)-22082501(H)

Product Name: Smartphone

Model Name: F-51C

Applicant: FCNT LIMITED

FCC ID: 2AYY9FMP192

Reference Specification

Part 2.1093

IEEE Std 1528

KDB Procedures

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30 Shixing Street, ShijingshanDistrict, Beijing, P.R.China

Tel: 86-10-57996183 Fax: 86-10-5799638

1 GENERAL INFORMATION	3
 1.1 Notes of the test report 1.2 Information about the testing laboratory 1.3 Applicant's details 1.4 Manufacturer's details 	
2 DESCRIPTION OF THE EQUIPMENT UNDER TEST	4
2.1 DUT information2.2 Exposure conditions2.3 Other information	6
3 SPECIFICATION	7
4 TEST CONDITIONS	8
 4.1 Test signal, frequencies and output power	
5 RESULT SUMMARY	
6 TEST RESULTS	
6.1 Scenario 6.2 Average conducted power with Tune up tolerance	
7 SAR RESULTS	
7.1 T-issue and System Check 7.2 SAR Test result 7.3 Simultaneous Transmission SAR Analysis	
8 MEASUREMENT UNCERTAINTY	
9 TEST EQUIPMENTS	54

1 GENERAL INFORMATION

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC). The certification and accreditation identifiers used in this report shall not be applicable to the tested or calibrated samples thereof. The manufacturer shall not mark the tested samples or items (or a separate part of the item) with the identifiers of certification and accreditation to mislead relevant parties about the tested samples or items.

1.2 Information about the testing laboratory

Company:	The State Radio_monitoring_center Testing Center (SRTC)		
Designation number:	CN1267		
Registration number:	239125		
CAB identifier	CN0049		
Test lab Number	7308A		
Address:	15th Building, No.30 Shixing Street, Shijingshan District, Beijing		
	P.R.China		
Contacted person:	Liu Jia		
Tel:	+86 10 57996183		
Fax:	+86 10 57996388		
Email:	liujiaf@srtc.org.cn		

1.3 Applicant's details

Company:	FCNT LIMITED
Address:	Chuorinkan 7-10-1 Yamato, Kanagawa 2420007, Japan

1.4 Manufacturer's details

Company:	FCNT LIMITED
Address:	Chuorinkan 7-10-1 Yamato, Kanagawa 2420007, Japan

2 DESCRIPTION OF THE EQUIPMENT UNDER TEST

2.1 DUT information

Band Information	Frequency range	
GSM850	824~849MHz	
GSM1900	1850~1910MHz	
WCDMA Band V	826.4~846.6MHz	
LTE Band5	824~849 MHz	
LTE Band12	699~716MHz	
Bluetooth	2400~2483.5MHz	
Bluetooth Low Energy	2400~2483.5MHz	
WIFI2.4GHz	2412MHz~2462MHz	
WIFI5GHz UNII-1	5150MHz-5250MHz	
WIFI5GHz UNII-2A	5250~5350MHz	
WIFI5GHz UNII-2C	5470~5725MHz	
WIFI5GHz UNII-3	5725MHz-5850MHz	

Mode supported	Note	
GSM GMSK	NA	
WCDMA_RMC Rel.99	NA	
WCDMA_HSDPA Rel.5	NA	
WCDMA_HSUPA Rel.6	NA	
LTE_QPSK	NA	
LTE_16QAM	NA	
LTE_64QAM	NA	
BR/EDR	NA	
BLE	NA	
802.11b(2.4GHz)	NA	
802.11g(2.4GHz)	NA	
802.11n HT20(2.4GHz)	NA	
802.11a(5GHz)	NA	
802.11n HT20(5GHz)	NA	
802.11ac VHT20(5GHz)	NA	
802.11n HT40(5GHz)	NA	
802.11ac VHT40(5GHz)	NA	
802.11ac VHT80(5GHz)	NA	

Capability Class:	GPRS Multi-slots :	EGPRS Multi-slots :	NFC
Class B	Class 33(Four Up)	Class 33(Four Up)	Support

RF exposure environment	Device type	
General Public	Production unit	

2.2 Exposure conditions General description

Head Configuration: Measurements were made in "cheek" and "tilt" positions on both the left hand and right-hand sides of the phantom. The positions used in the measurements were according to IEEE 1528 "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques".

Body Worn Configuration: The device was placed in the SPEAG holder below the flat section of the phantom. The distance between the device and the phantom was kept at the separation distance using a separate flat spacer that was removed before the start of the measurements. And the distance is normally determined according to the actual scene which might be the worst use condition for general exposure. The device's front and rear were oriented facing the phantom since these orientations give higher results for most regular portable devices.

Hotspot Configuration: Hotspot mode SAR is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge; for the data modes, wireless technologies and frequency bands supporting hotspot mode.

Body Configuration: Body SAR is measured for all edges and surfaces of the device or refer to hotspot configuration. (For the device such as tablet and mobile phone etc.)

Limb Configuration: Extremity limb SAR is measured for all edges and surfaces of the device or refer to hotspot configuration.

Body-support Configuration: Body-support device such as laptop is not commonly require SAR test.

DUT Exposure Condition	Distance(mm)	
Head	0	
Body-worn	10	
Hotspot	10	

2.3 Other information

Testing Start Date:	2022/8/25
Testing End Date:	2022/9/7
DUT IMEI:	354676360010218 354676360010176
DUT H/W Version:	V1.2.0
DUT S/W Version:	V00R028A-UD
Ambient Temperature within 18-25℃	22 °C
Liquid Temperature change within $\pm 2^{\circ}C$	22 °C
Humidity:	35%
Note	N/A

3 SPECIFICATION

Specification	Version	Title
Part 2.1093	Latest	Radio frequency radiation exposure evaluation: portable devices.
IEEE Std 1528	2013	IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC/IEEE 62209-1528	2020	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1528: Human models, instrumentation, and (Frequency range of 4 MHz to 10 GHz)
KDB 248227 D01	v02r02	SAR GUIDANCE FOR IEEE 802.11 (Wi-Fi) TRANSMITTERS
KDB 447498 D01	v06	General RF Exposure Guidance
KDB 447498 D02	v02r01	SAR MEASUREMENT PROCEDURES FOR USB DONGLE TRANSMITTERS
KDB 643646 D01	v01r03	SAR TEST REDUCTION CONSIDERATIONS FOR OCCUPATIONAL PTT RADIOS
KDB 616217 D04	v01r02	SAR for laptop and tablets
KDB 648474 D04	v01r03	Handset SAR
KDB 865664 D01	v01r04	SAR Measurement from 100 MHz to 6 GHz
KDB 865664 D02	v01r02	RF Exposure Reporting
KDB 941225 D01	v03r01	3G SAR MEAUREMENT PROCEDURES
KDB 941225 D05	v02r05	SAR for LTE Devices
KDB 941225 D06	v02r01	SAR EVALUATION PROCEDURES FOR PORTABLE DEVICES WITH WIRELESS ROUTER CAPABILITIES
KDB 941225 D07	v01r02	SAR EVALUATION PROCEDURES FOR UMPC MINI-TABLET DEVICES

4 TEST CONDITIONS

4.1 Test signal, frequencies and output power

The device was put into operation by using a call tester. Communication between the device and the call tester was established by air link. Non-signaling mode also applied. The device output power was set to maximum power level for all tests; a fully charged battery was used for every test sequence. In all operating bands the measurements were performed on lowest, middle and highest channels.

4.2 SAR measurement set-up

The system is based on a high precision robot (working range greater than 0.9m), which positions the probes with a positional repeatability of better than ± 0.02mm. Special E- probe have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines (length =300mm) to the data acquisition unit. A cell controller system contains the power supply, robot controller, teaches pendant (Joystick), and remote control, is used to drive the robot motors. The PC consists of the Micron Pentium IV computer with Win7 system and SAR Measurement Software DASY5 Professional, A/D interface card, monitor, mouse, and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card. The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical Downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection .The robot uses its own controller with a built in VME-bus computer.

4.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin headed "SAM Phantom", manufactured by SPEAG. The phantom conforms to the requirements. System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles. The SPEAG device holder (see Section 4.6.1) was used to position the device in all tests whilst a tripod was used to position the validation dipoles against the flat section of phantom.

Shell thickness: 2 ± 0.2 mm on flat section (6 ± 0.2 mm at ear point)

4.4 Tissue stimulants

Recommended values for the dielectric parameters of the tissue simulants are given in reference standards. The depth of the tissue simulant was 15.0 ± 0.5 cm measured from the ear reference point during system checking and device measurements. The following tissue stimulants were used for test:

Name	Broadband tissue-equivalent liquid				
Туре	HBBL600-10000V6 Simulating Liquid				
Supplier	SPEAG				
Component	Material used refer to 62209-1528 Annex F, the details are confidential.				
	Liquid doth for SAP Magurament				
	Liquid depth for SAR Measurement				

4.5 Device holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the Dasy52 system.

4.6 Scan procedure

First, area scans were used for determination of the field distribution and the approximate location of the local peak SAR values. The SAR distribution is scanned along the inside surface, at least for an area larger than the projection of the handset and antenna. The angle between the probe axis and the surface normal line is recommended but not required to be less than 30°. The SAR distribution is first measured on a 2-D coarse grid. The scan region should cover all areas that are exposed and encompassed by the projection of the handset. There are 15 mm × 15 mm (equal or less than 2GHz), 12 mm × 12 mm (from 2GHz~4GHz) and 10mm x 10mm (from 4GHz~6GHz) measurement grid used when two staggered one-dimensional cubic splines are used to estimate the maximum SAR location.

When the reported 1g-SAR estimated by area scan is less than 1.40 w/kg.

Zoom scan was performed by using the configuration mentioned below or more conservative scan area and step to determine the averaged SAR value. Drift was determined by measuring the same point at the start of the area scan and again at the end of the zoom scan.

Below 3GHz: 32mmX32mmX30mm scan area with 8 mm X8 mm X5 mm steps

2GHz-3GHz: 32mmX32mmX30mm scan area with 8 mm X8 mm X5 mm steps

3GHz-4GHz: 28mmX28mmX28mm scan area with 7 mm X7 mm X4 mm steps

4GHz-5GHz: 25mmX25mmX24mm scan area with 5 mm X5 mm X3 mm steps

5GHz-6GHz: 25mmX25mmX22mm scan area with 5 mm X5 mm X2 mm steps

4.7 SAR averaging methods

The maximum SAR value was averaged over a cube of tissue using interpolation and extrapolation.

The interpolation, extrapolation and maximum search routines within Dasy5 are all based on the modified Quadratic Shepard's method (Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148).

The interpolation scheme combines a least-square fitted function method with a weighted average method. A trivariate 3-D / bivariate 2-D quadratic function is computed for each measurement point and fitted to neighboring points by a least-square method. For the zoom scan, inverse distance weighting is incorporated to fit distant points more accurately. The interpolating function is finally calculated as a weighted average of the quadratics.

In the zoom scan, the interpolation function is used to extrapolate the Peak SAR from the deepest measurement points to the inner surface of the phantom.

5 RESULT SUMMARY

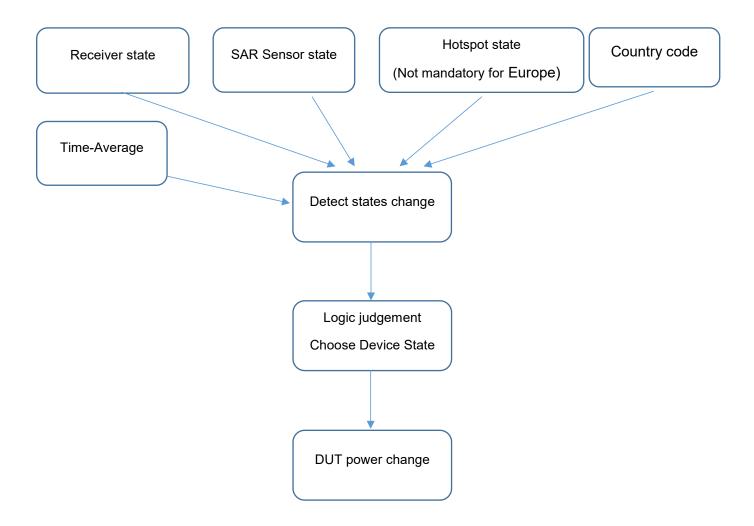
The maximum reported SAR values for all exposure conditions supported are given as following. The device meet the compliance.

Licensed Band Standalone Transmission Summary(1g)							
Exposure Position	Frequency Band	SAR Result(W/kg)	Limit(W/kg)	Verdict			
	GSM850	0.20					
	GSM1900	0.12					
Head	WCDMA Band V	0.08					
	LTE Band5	0.16					
	LTE Band12	0.03					
	GSM850	0.43					
	GSM1900	0.99					
Body-Worn	WCDMA Band V	0.15	1.60	Pass			
	LTE Band5	0.28					
	LTE Band12	0.13					
	GSM850	0.43					
	GSM1900	1.16					
Hotspot	WCDMA Band V	0.15					
	LTE Band5	0.28					
	LTE Band12	0.13					

Unlicensed Band Standalone Transmission Summary(1g)							
Exposure Position	Frequency Band	SAR Result(W/kg)	Limit(W/kg)	Verdict			
	BT/BLE	0.43					
	WLAN2.4GHz	0.22	7				
Head	WLAN5GHz UNII-1	0.22					
neau	WLAN5GHz UNII-2A	0.23					
	WLAN5GHz UNII-2C	0.36					
	WLAN5GHz UNII-3	0.44	7				
	BT/BLE	0.00	7				
	WLAN2.4GHz	0.04	7	Pass			
Dedy Worn	WLAN5GHz UNII-1	0.27	1.60				
Body-Worn	WLAN5GHz UNII-2A	0.33	- 1.00	Pass			
	WLAN5GHz UNII-2C	0.24					
	WLAN5GHz UNII-3	0.18					
	BT/BLE	0.06	7				
	WLAN2.4GHz	0.04]				
Hotopot	WLAN5GHz UNII-1	Not support]				
Hotspot	WLAN5GHz UNII-2A	Not support]				
	WLAN5GHz UNII-2C	Not support]				
	WLAN5GHz UNII-3	Not support]				

Simultaneous Transmission Summary							
Exposure Position	Mode Highest SAR Result(W/kg) Limit(W/kg) Verdic						
Head	GSM850+BT+WLAN5GHz	1.03	1.60	Pass			
Body-Worn	GSM1900+BT+WLAN5GHz	1.33	1.60	Pass			
Hotspot	GSM1900	1.16	1.60	Pass			

This Test Report Is Approved by:	Review by:
Mr. Peng Zhen 長く 抗	Mr. Chang Tian yu
Tested and issued by:	Approved date:
Ms. Li Jin	2022/9/16



6 TEST RESULTS

6.1 Scenario General description:

In common, there are several power change schemes based on technologies mentioned below, but different product use different method to change conducted power for relevant transmitters. These methods could be used together on both standalone and simultaneous transmission (Depends on specific scenario)

Receiver:	Triggered when receive ON/OFF
P-sensor:	Triggered when sensor ON/OFF
Hotspot:	Triggered when hotspot ON/OFF
Country code:	Triggered through MCC/A-GNSS
TA:	Time average SAR based on Qualcomm

DUT Power change scheme	Scenario	Note
Receiver	Head	Receiver ON with full power

6.2 Average conducted power with Tune up tolerance

6.2.1 GSM General description:

GPRS Coding Scheme	Bit Ra (kbit/s/		Modulation	Code Rate
CS-1	8.0		GMSK	1/2
CS-2	12.0)	GMSK	≈2/3
CS-3	14.4	l I	GMSK	≈3/4
CS-4	20.0)	GMSK	1
EDGE Modulation and Coding Scheme (MCS)	Bit Rate (kbit/s/slot)	Modulation	Data Code Rate	Header Code Rate
MCS-1	8.8	GMSK	≈0.53	≈0.53
MCS-2	11.2	GMSK	≈0.66	≈0.53
MCS-3	14.8	GMSK	≈0.85	≈0.53
MCS-4	17.6	GMSK	1	≈0.53
MCS-5	22.4	8PSK	≈0.37	1/3
MCS-6	29.6	8PSK	≈0.49	1/3
MCS-7	44.8	8PSK	≈0.76	≈0.39
MCS-8	57.05	8PSK	≈0.92	≈0.39
MCS-9	61.85	8PSK	1	≈0.39

Division Factors:

To average the power, the division factor is as follows:

1TX-slot (1uplink) = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB 2TX-slots(2uplink) = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB 3TX-slots (3uplink) = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB 4TX-slots (4uplink) = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

Note: GSM SAR was tested under the mode with maximum frame average power.

Licensed SISO1

Full Power

GSM850

		Burst Power (dBm)				Frame power(dBm)		
TV Mede	TV alat	Frequency/Channel			Tuneup	Frequency/Channel		
TX Mode	TX slot	824.2	836.6	848.8	Tolerance (dBm)	824.2	836.6	848.8
		128	190	251		128	190	251
GSM	1 slot	31.49	31.59	31.97	32.50	23.23	23.32	23.28
	1 slot	31.45	31.41	31.79	32.50	23.26	23.29	23.16
	2 slots	30.83	31.16	31.37	32.00	23.58	23.51	23.56
GPRS (GMSK)	3 slots	29.27	29.17	29.34	30.50	23.41	23.52	23.50
	4 slots	28.41	28.18	28.36	29.50	23.57	23.56	23.54

GSM1900

		Burst Power (dBm)				Frame power(dBm)		
TV Mede	TV alat	Frequency/Channel			Tuneup	Frequency/Channel		
TX Mode	TX slot	1850	1880	1910	− Tolerance _ (dBm)	1850	1880	1910
		512	661	810		512	661	810
GSM	1 slot	29.07	29.25	29.18	30.00	20.04	20.22	20.15
	1 slot	29.16	29.22	29.13	30.00	20.13	20.19	20.10
	2 slots	26.29	26.46	26.33	27.50	20.27	20.44	20.31
GPRS (GMSK)	3 slots	24.77	24.24	24.13	25.70	20.51	19.98	19.87
	4 slots	24.48	24.21	24.10	25.50	21.47	21.20	21.09

Reduced Power

GSM1900

		Burst Power (dBm)				Frame power(dBm)		
TV Mode	TX slot	Frequency/Channel			Tuneup	Frequency/Channel		
TX Mode	TA SIOL	1850	1880	1910	Tolerance (dBm)	1850	1880	1910
		512	661	810	(dBiii)	512	661	810
GSM	1 slot	27.04	27.22	27.28	28.00	18.01	18.19	18.25
	1 slot	27.30	27.15	27.15	28.00	18.27	18.12	18.12
	2 slots	24.27	24.61	24.34	25.50	18.25	18.59	18.32
GPRS (GMSK)	3 slots	22.88	22.31	22.25	23.70	18.62	18.05	17.99
	4 slots	22.54	22.36	22.25	23.50	19.53	19.35	19.24

6.2.2 WCDMA General description:

Release 99

The following tests were completed according to the test requirements outlined in 3GPP TS34.121-1 specification.

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
	RMC mode	12.2kbps RMC
WCDMA General Settings	AMR mode	12.2kbps RMC in 3.4 kbps SRB
	Power Control Algorithm	Algorithm2
	βc/βd	8/15

Release 5

The following 4 Sub-tests were completed according to Release 5 procedures in 3GPP TS34.121.

Sub-test	βc	β_d	β _d (SF)	$\beta_{c/}\beta_{d}$	$\beta_{hs}{}^{(1)}$	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/18	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15^*\beta_c$.

Note2:CM=1 for β_{c}/β_{d} =12/15, β_{hs}/β_{c} =24/15.

Note3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to β_c =11/15 and β_d =15/15.

Release 6

The following 5 Sub-tests were completed according to Release 6 procedures in 3GPP TS34.121.

Sub-test	β _c	β_d	β _d (SF)	β _{c/} β _d	$\beta_{hs}^{(1)}$	β _{ec}	β_{ed}	β _{ed} (SF)	β _{ed} (codes)	CM (2) (dB)	MP R (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	2.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} :47/15 β _{ed2} :47/15	4	2	2.0	2.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	2.0	21	81

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15^*\beta_c$.

Note2:CM=1 for β_c/β_d =12/15, β_{hs}/β_c =24/15.For all other combinations of DPDCH,DPCCH,HS-DPCCH,E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note3: For subtest 1 the β_d/β_d ratio of 11/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to β_c =10/15 and β_d =15/15.

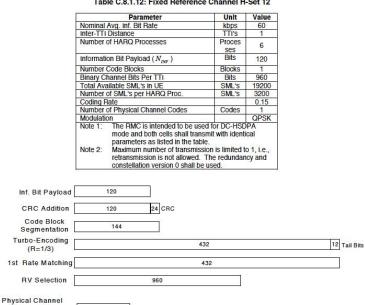
Note4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to $\beta_c=14/15$ and $\beta_d=15/15$.

NOTE5: Testing UE using E-DPDCH Physical layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

NOTE6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

Release 7

The following 1 Sub-test was completed according to Release 7 procedures in section 5.2 of 3GPP TS34.121.


Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with	h 16QAM

Sub- test	β _c (Note3)	βd	βнs (Note1)	β _{ec}	β _{ed} (2xSF2) (Note 4)	β _{ed} (2xSF4) (Note 4)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 4)	E-TFCI (Note 5)	E-TFCI (boost)
1	1	0	30/15	30/15	β _{ed} 1: 30/15 β _{ed} 2: 30/15	β _{ed} 3: 24/15 β _{ed} 4: 24/15	3.5	2.5	14	105	105
Note 1 Note 2 Note 3 Note 4 Note 5	2: CM = 3: DPD 4: β _{ed} c 5: All th DPD	= 3.5 a CH is an no e sub CH ca	and the Mi not config t be set di -tests requ ategory 7.	PR is base jured, the rectly; it is uire the U E-DCH T	with $\beta_{hs} = 30/15$ ed on the relative refore the β_c is signature set by Absolute E to transmit 2S TI is set to 2ms allocated. The U	e CM difference et to 1 and βd = Grant Value. F2+2SF4 16QA TTI and E-DCH	0 by defau M EDCH a table index	ult. and they a x = 2. To :	apply for l support th	nese E-DO	

Release 8

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Table E.5.0: Levels for HSDPA connection setup

Table C.8.1.12: Fixed Reference Channel H-Set 12

The following 4 Sub-tests for HSDPA were completed according to Release 8 procedures in 3GPP TS34.121.

Sub-test	β _c	β_d	β _d (SF)	$\beta_{c/}\beta_{d}$	$\beta_{hs}^{(1)}$	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/18	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15*\beta_c$.

Note2:CM=1 for $\beta_c/\beta_d=12/15$, $\beta_{hs}/\beta_c=24/15$.

Note3: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period(TF1,TF0) is achieved by setting the signaled gain factors for the reference TFC(TF1,TF1) to $\beta_c=11/15$ and β_d=15/15.

Release 9

The clause (UE Maximum Output Power for DC-HSUPA) is **incomplete** in 3GPP TS34.121 so far.

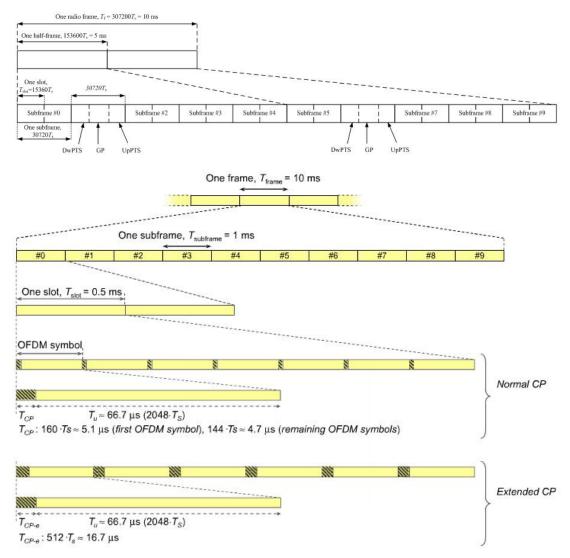
Parameter	Unit	Cell 1
Cell type	5	Serving cell
UTRA RF Channel Number	9	As defined in clause 5.2BB.4.1
Qqualmin	dB	-24
Qrxlevmin	dBm	-115
UE TXPWR MAX RACH	dBm	+21
lor (see notes 1 and 2)	dBm/3.84 MHz	-86
	ent, whereas the SS ca	

Note: UMTS SAR was tested under Rel.99 RMC 12.2kbps mode. For other higher release configuration, SAR was not required.

Licensed SISO1.

band V

		RF	Output Power(dl	Bm)	
Ν	<i>l</i> lode	4132	4183	4233	Tuneup Tolerance (dBm)
		826.4	836.6	846.6	(dbiii)
Release 99	RMC,12.2kbps	23.17	23.22	23.23	24
	Subtest1	22.00	22.41	22.12	23
HSDPA	Subtest2	22.26	22.12	22.28	23
HODFA	Subtest3	21.61	21.71	21.56	22.5
	Subtest4	21.63	21.77	21.70	22.5
	Subtest1	22.22	22.22	22.08	23
	Subtest2	20.05	20.23	20.09	21
HSUPA	Subtest3	21.05	21.40	21.23	22
	Subtest4	20.25	20.02	20.04	21
	Subtest5	22.09	22.42	22.08	23


6.2.3 LTE General description:

FDD-LTE frame structure

	rame,Tf=307200Ts=10	Ums	
ne slot,Tslot=15360	Ts=0.5ms		
#1 #2	#3	#18	#19
		ne slot,Tslot=15360Ts=0.5ms #1 #2 #3	

Type 1 is used as LTE FDD frame structure. As shown in the figure above, an LTE TDD frame is made of total 20 slots, each of 0.5ms. Two consecutive time slots will form one subframe. 10 such subframes form one radio frame. One subframe duration is about 1 ms. and the duty cycle is inherent as100%.

TDD-LTE frame structure

Tel: 86-10-57996183 Fax: 86-10-57996388

Page number: 20 of 58

Uplink-downlink configuration

Uplink-downlink Downlink-to-Uplink			Subframe number								
configuration	Switch-point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	s	U	U	U	D	s	U	U	U
1	5 ms	D	s	U	U	D	D	s	U	U	D
2	5 ms	D	s	U	D	D	D	s	U	D	D
3	10 ms	D	s	U	U	U	D	D	D	D	D
4	10 ms	D	s	U	U	D	D	D	D	D	D
5	10 ms	D	s	U	D	D	D	D	D	D	D
6	5 ms	D	s	U	U	U	D	s	U	U	D

Special sub-frame configuration

Special subframe	Norma	I cyclic prefix i	n downlink	Exte	Extended cyclic prefix in downlink				
configuration	DWPTS	Up	PTS	DWPTS	PTS				
		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink			
0	6592 <i>·T</i> ,			7680 <i>.T</i> ,					
1	19760 · T,	1		20480 · T,	2192 · 7,	0.570 77			
2	21952- <i>T</i> ,	2192 · T,	2560 · T,	23040 <i>.T</i> ,		2560 <i>-T</i> ,			
3	24144 · T _s		255	25600 <i>·T</i> ,	1				
4	26336·T,			7680 <i>.T</i> ,		1			
5	6592 · T _s			20480 · T,	4384 · <i>T</i> ,	5120 · T,			
6	19760 <i>.T</i> ,	4204 77	5100 77	23040 · T,					
7	21952- <i>T</i> ,	4384 · <i>T</i> _s	5120 · T _s	-	¥	-			
8	24144 T,	1		12	9	9			

Special sub-frame with cyclic prefix uplink

Special sub-fra	me configuration	Duty factor with normal cyclic prefix in uplink	Duty factor with extended cyclic prefix in uplink
Normal cyclic prefix in	0~4	7.13%	8.33%
downlink	5~9	14.3%	16.7%
Extended cyclic prefix in	0~3	7.13%	8.33%
downlink	4~7	14.3%	16.7%

One sub-frame is 30720Ts=1ms, when UpPTS(uplink) in special sub-frame with extended cyclic prefix, duty factor = 5120/30720=0.167.There are 5 sub-frames in half frame(3up link),so the final duty factor is (30720*3+5120)/(30720*5)=63.3% which we used to evaluate the SAR compliance (worst case)

Note: SRTC perform SAR test with maximum duty factor equal to 63.3% by using uplink-downlink configuration 0.

Licensed SISO1

LTE Band5

			Conducted power(dBm)				
BW	Modulation	RB Size	RB Offset	20407	20525	20643	Tune-up
				824.7	836.5	848.3	Tolerance
		1	0	23.09	23.09	23.37	24
		1	3	23.11	22.98	23.22	24
		1	5	23.09	22.91	23.33	24
	QPSK	3	0	22.97	22.95	23.21	24
		3	1	22.95	22.99	23.18	24
		3	3	23.01	23.00	23.19	24
		6	0	22.03	22.01	22.31	23
		1	0	22.06	21.94	22.34	23
		1	3	21.96	22.05	22.29	23
		1	5	22.00	22.09	22.26	23
1.4	16QAM	3	0	21.97	21.95	22.37	23
		3	1	22.07	22.08	22.28	23
		3	3	22.07	21.95	22.36	23
		6	0	20.96	21.01	21.29	22
		1	0	21.12	21.05	21.35	22
		1	3	20.99	21.09	21.17	22
		1	5	21.11	21.00	21.32	22
	64QAM	3	0	21.03	21.05	21.31	22
		3	1	20.97	21.00	21.27	22
		3	3	21.07	20.99	21.34	22
		6	0	20.01	19.93	20.29	21

LTE Band5

					Conducted	power(dBm)	
BW	Modulation	RB Size	RB Offset	20415	20525	20635	Tune-up
				825.5	836.5	847.5	Tolerance
		1	0	23.01	23.00	23.39	24
		1	8	23.12	23.03	23.28	24
		1	14	23.06	23.16	23.29	24
	QPSK	8	0	22.13	22.05	22.25	23
		8	4	22.07	22.11	22.32	23
		8	7	22.00	22.12	22.30	23
		15	0	22.09	22.09	22.28	23
		1	0	22.64	22.57	22.87	23
		1	8	22.53	22.61	22.90	23
		1	14	22.49	22.61	22.73	23
3	16QAM	8	0	21.18	21.11	21.34	22
		8	4	21.12	20.99	21.23	22
		8	7	21.09	21.08	21.24	22
		15	0	21.02	21.11	21.33	22
		1	0	21.00	21.14	21.33	22
		1	8	21.01	21.13	21.31	22
		1	14	21.12	21.13	21.42	22
	64QAM	8	0	20.14	20.11	20.40	21
		8	4	20.14	20.06	20.35	21
		8	7	20.04	20.04	20.29	21
		15	0	20.19	20.13	20.36	21

LTE Band5

				Conducted power(dBm)			
BW	Modulation	RB Size	RB Offset	20425	20525	20625	Tune-up
				826.5	836.5	846.5	Tolerance
		1	0	23.12	23.03	23.44	24
		1	12	23.11	23.06	23.34	24
		1	24	23.10	23.13	23.33	24
	QPSK	12	0	22.18	22.16	22.33	23
		12	7	22.22	22.11	22.38	23
		12	13	22.08	22.05	22.45	23
		25	0	22.22	22.17	22.43	23
		1	0	22.72	22.65	22.78	23
		1	12	22.64	22.66	22.89	23
		1	24	22.71	22.68	22.78	23
5	16QAM	12	0	21.17	21.04	21.28	22
		12	7	21.16	21.15	21.42	22
		12	13	21.21	21.15	21.32	22
		25	0	21.15	21.14	21.29	22
		1	0	21.10	21.18	21.34	22
		1	12	21.19	21.13	21.42	22
		1	24	21.21	21.02	21.46	22
	64QAM	12	0	20.06	20.18	20.30	21
		12	7	20.05	20.21	20.41	21
		12	13	20.21	20.05	20.45	21
		25	0	20.19	20.08	20.27	21

The State Radio_monitoring_center Testing Center (SRTC)

LTE Band5

					Conducted	l power(dBm)	
BW	Modulation	RB Size	RB Offset	20450	20525	20600	Tune-up
				829	836.5	844	Tolerance
		1	0	23.24	23.21	23.47	24
		1	25	23.17	23.05	23.29	24
		1	49	23.18	23.08	23.34	24
	QPSK	25	0	22.11	22.14	22.30	23
		25	12	22.16	22.09	22.32	23
		25	25	22.16	22.08	22.43	23
		50	0	22.17	22.04	22.36	23
		1	0	22.60	22.69	22.88	23
		1	25	22.59	22.55	22.79	23
		1	49	22.55	22.62	22.96	23
10	16QAM	25	0	21.20	21.06	21.40	22
		25	12	21.11	21.12	21.47	22
		25	25	21.07	21.07	21.46	22
		50	0	21.10	21.15	21.45	22
		1	0	21.21	21.18	21.40	22
		1	25	21.17	21.16	21.30	22
		1	49	21.09	21.11	21.30	22
	64QAM	25	0	20.16	20.19	20.34	21
		25	12	20.16	20.07	20.46	21
		25	25	20.19	20.03	20.29	21
		50	0	20.14	20.08	20.29	21

LTE Band12

				Conducted power(dBm)			
BW	Modulation	RB Size	RB Offset	23017	23095	23173	Tune-up
				699.7	707.5	715.3	Tolerance
		1	0	23.15	23.06	23.11	24
		1	3	23.23	22.98	23.01	24
		1	5	23.15	23.00	22.99	24
	QPSK	3	0	23.21	23.00	23.15	24
		3	1	23.11	23.07	22.98	24
		3	3	23.23	23.04	23.12	24
		6	0	22.08	22.06	22.12	23
		1	0	22.19	22.15	22.02	23
		1	3	22.14	22.03	22.02	23
		1	5	22.11	22.04	22.12	23
1.4	16QAM	3	0	22.06	22.10	22.16	23
		3	1	22.20	21.96	22.10	23
		3	3	22.16	22.06	22.14	23
		6	0	21.08	21.12	21.13	22
		1	0	21.11	21.02	20.97	22
		1	3	21.20	21.05	20.98	22
		1	5	21.21	21.15	21.11	22
	64QAM	3	0	21.09	21.12	21.09	22
		3	1	21.14	21.04	20.96	22
		3	3	21.16	21.14	21.09	22
		6	0	20.13	20.04	20.06	21

The State Radio_monitoring_center Testing Center (SRTC)

LTE Band12

					Conducted	l power(dBm)	
BW	Modulation	RB Size	RB Offset	23025	23095	23165	Tune-up
				700.5	707.5	714.5	Tolerance
		1	0	23.13	23.09	23.08	24
		1	8	23.09	23.10	22.98	24
		1	14	23.15	23.16	23.13	24
	QPSK	8	0	22.07	22.03	22.05	23
		8	4	22.18	22.08	22.12	23
		8	7	22.22	22.01	22.08	23
		15	0	22.19	22.15	22.03	23
		1	0	22.73	22.63	22.51	23
		1	8	22.66	22.56	22.63	23
	16QAM	1	14	22.74	22.54	22.62	23
3		8	0	21.16	21.10	21.03	22
		8	4	21.18	21.16	21.07	22
		8	7	21.14	21.07	20.99	22
		15	0	21.09	21.07	21.11	22
		1	0	21.21	21.08	20.98	22
		1	8	21.15	21.08	21.09	22
		1	14	21.17	21.00	21.12	22
	64QAM	8	0	20.20	20.14	20.11	21
		8	4	20.09	20.13	20.05	21
		8	7	20.15	20.14	20.16	21
		15	0	20.14	20.07	19.97	21

LTE Band12

					Conducted	power(dBm)	
BW	Modulation	RB Size	RB Offset	23035	23095	23155	Tune-up
				701.5	707.5	713.5	Tolerance
		1	0	23.28	23.05	23.09	24
		1	12	23.24	23.14	23.11	24
		1	24	23.31	23.15	23.10	24
	QPSK	12	0	22.40	22.15	22.13	23
		12	7	22.46	22.10	22.20	23
		12	13	22.40	22.06	22.02	23
		25	0	22.30	22.08	22.04	23
		1	0	22.91	22.58	22.65	23
	16QAM	1	12	22.86	22.55	22.53	23
		1	24	22.81	22.56	22.70	23
5		12	0	21.41	21.10	21.08	22
		12	7	21.27	21.20	21.15	22
		12	13	21.35	21.08	21.01	22
		25	0	21.29	21.15	21.14	22
		1	0	21.38	21.05	21.16	22
		1	12	21.32	21.05	21.11	22
		1	24	21.28	21.20	21.07	22
	64QAM	12	0	20.31	20.13	20.18	21
		12	7	20.47	20.20	20.07	21
		12	13	20.29	20.20	20.10	21
		25	0	20.38	20.17	20.14	21

The State Radio_monitoring_center Testing Center (SRTC)

Page number: 25 of 58

LTE Band12 Conducted power(dBm) BW Modulation **RB** Size **RB** Offset 23060 23095 23130 Tune-up Tolerance 704 707.5 711 23.30 24 1 0 23.16 23.03 25 23.32 24 1 23.14 23.16 1 49 23.34 23.27 23.11 24 **QPSK** 25 0 22.36 22.04 22.17 23 25 12 22.28 22.17 22.19 23 25 25 22.43 22.20 22.20 23 0 22.09 23 50 22.37 22.17 0 22.83 22.61 22.63 23 1 1 25 22.88 22.68 22.53 23 1 49 22.88 22.64 22.53 23 0 21.11 21.06 22 10 16QAM 25 21.31 25 12 21.43 21.05 21.09 22 25 21.29 21.20 21.01 22 25 50 0 21.33 21.11 21.04 22 1 0 21.28 21.02 21.20 22 1 25 21.31 21.13 21.21 22 49 21.43 21.15 21.02 1 22 0 64QAM 25 20.33 20.19 20.08 21 25 12 20.28 20.13 20.20 21 25 25 20.43 20.18 20.16 21 0 50 20.32 20.09 20.02 21

6.2.4 Bluetooth

Note: Exclusion method based on EIRP is not applied for the BT, SRTC perform SAR measurement.

SISO1

ΒT

Modulation	Cond	Tune-up		
type	2402MHz	2441MHz	2480MHz	
GFSK	11.11	10.95	10.83	11.5
π/4DQPSK	7.92	6.99	7.32	8
8DPSK	7.76	6.97	7.27	8

BLE

Modulation type	Con			
Modulation type	2402MHz	2440MHz	2480MHz	Tune-up
GFSK (LE 1Mbps)	-2.03	-2.14	-1.07	-1.0
GFSK (LE 2Mbps)	-4.86	-4.95	-3.92	-3.5
Coded 125K	-1.56	-3.62	-2.21	-1.5
Coded 500K	-3.20	-3.63	-2.20	-2.0

6.2.5 WIFI

Note: Exclusion method based on EIRP is not applied for the WIFI, SRTC perform SAR measurement.

Unlicensed SISO1

WLAN2.4GHz

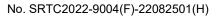
Mode	Freq(MHz)	Average power (dBm)	Tune-up (dBm)
	2412	10.74	11
802.11b	2437	10.88	11
	2462	10.11	11
	2412	10.54	11
802.11g	2437	10.76	11
	2462	10.38	11
	2412	10.73	11
802.11n HT20	2437	10.72	11
	2462	10.76	11

WLAN5GHz UNII-1

Mode	Freq(MHz)	Average power (dBm)	Tune-up (dBm)
	5180	10.59	11
802.11a	5220	10.26	11
	5240	10.23	11
	5180	10.40	11
802.11n HT20	5220	9.60	11
	5240	9.68	11
802.11n HT40	5190	10.18	11
602.1111H140	5230	9.77	11
	5180	10.15	11
802.11ac VHT20	5220	10.58	11
	5240	9.61	11
	5190	10.10	11
802.11ac VHT40	5230	9.53	11
802.11ac VHT80	5210	9.71	11

WLAN5GHz UNII-2A

Mode	Freq(MHz)	Average power (dBm)	Tune-up (dBm)
	5260	10.27	11
802.11a	5280	10.38	11
	5320	10.71	11
	5260	9.97	11
802.11n HT20	5280	10.25	11
	5320	10.52	11
802.11n HT40	5270	9.99	11
802.1111H140	5310	9.98	11
	5260	10.51	11
802.11ac VHT20	5280	9.97	11
	5320	10.09	11
902 11cc \/UT40	5270	9.79	11
802.11ac VHT40	5310	10.36	11
802.11ac VHT80	5290	9.86	11


WLAN5GHz UNII-2C

Mode	Freq(MHz)	Average power (dBm)	Tune-up (dBm)
	5500	9.97	12
802.11a	5580	10.42	12
	5700	9.69	12
	5500	9.38	12
802.11n HT20	5580	10.40	12
	5700	9.83	12
	5510	10.06	12
802.11n HT40	5590	10.33	12
	5670	10.10	12
	5500	9.96	12
802.11ac VHT20	5580	10.34	12
	5700	9.55	12
	5510	9.89	12
802.11ac VHT40	5590	10.18	12
	5670	10.25	12
802.11ac VHT80	5530	10.01	12
002.11ac VIT100	5610	9.97	12

WLAN5GHz UNII-3

Mode	Freq(MHz)	Average power (dBm)	Tune-up (dBm)
	5745	10.95	11
802.11a	5785	10.60	11
	5825	10.86	11
	5745	10.84	11
802.11n HT20	5785	10.83	11
	5825	10.69	11
802.11n HT40	5755	10.82	11
802.11111140	5795	10.86	11
	5745	10.64	11
802.11ac VHT20	5785	10.55	11
	5825	10.83	11
802.11ac VHT40	5755	10.54	11
002.11aC VH140	5795	10.86	11
802.11ac VHT80	5775	10.77	11

7 SAR RESULTS

7.1 T-issue and System Check

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue stimulants were measured every day using the dielectric probe kit and the network analyser. For the measurement of the following parameters the SPEAG DAKS-3.5 dielectric parameter probe is used, representing the open-ended coaxial probe measurement procedure. All tests were carried out within 24 hours of measuring the dielectric parameters.

Freq.(MHz)	Date	Liquid parameters	Measured	Target	Delta (%)	Tolerance (%)	Verdict
750	2022/8/28	εr	43.07	41.90	2.78	±10	Pass
750	2022/0/20	σ[S/m]	0.93	0.89	4.94	±10	Pass
835	2022/9/1	εr	42.99	41.50	3.58	±10	Pass
835	2022/9/1	σ[S/m]	0.93	0.90	2.78	±10	Pass
000	0000/0/0	εr	40.05	41.50	-3.51	±10	Pass
900	2022/9/2	σ[S/m]	1.01	0.97	4.02	±10	Pass
1000	1000	٤r	39.31	40.00	-1.72	±10	Pass
1800	2022/9/4	σ[S/m]	1.40	1.40	-0.29	±10	Pass
2450	2022/0/7	٤r	40.83	39.20	4.17	±10	Pass
2450	2022/9/7	σ[S/m]	1.74	1.80	-3.61	±10	Pass
5000	2022/0/0	εr	36.68	36.00	1.88	±5	Pass
5200	2022/9/6	σ[S/m]	4.67	4.66	0.15	±5	Pass
5200	2022/0/0	εr	35.55	35.90	-0.99	±5	Pass
5300	2022/9/6	σ[S/m]	4.85	4.76	1.89	±5	Pass
5600	2022/0/5	εr	36.77	35.50	3.57	±5	Pass
5600	2022/9/5	σ[S/m]	5.21	5.07	2.76	±5	Pass
5900	2022/0/5	εr	36.37	35.30	3.04	±5	Pass
5800	2022/9/5	σ[S/m]	5.40	5.27	2.54	±5	Pass

A system check measurement was made following the determination of the dielectric parameters of the stimulant, using the dipole validation kit. Dipole was placed under the flat section of the twin SAM phantom. The system checking results (dielectric parameters and SAR values) are given in the table below. All tests were carried out within 24 hours of checking system. Plots of the system checking scans are given in Annex A. Tissue Stimulants used in the Measurements. For the same frequency range, SAR measurement is the same day with system check, and there is no need to manually add test date in ANNEX A.

Freq.(MHz)	Date	SAR measured (normalized to 1W)		Target (Ref. Value)	Delta(%)	Tolerance(%)	Verdict
750	2022/8/28	1g	8.56	8.40	1.90	±10	Pass
750	2022/0/20	10g	5.88	5.70	3.16	±10	Pass
835	2022/9/1	1g	9.28	9.38	-1.07	±10	Pass
000	2022/9/1	10g	6.08	6.25	-2.72	±10	Pass
000	2022/0/2	1g	10.72	10.90	-1.65	±10	Pass
900	2022/9/2	10g	7.32	7.00	4.57	±10	Pass
1800	0000/0//	1g	40.00	38.90	2.83	±10	Pass
1000	2022/9/4	10g	20.88	20.30	2.86	±10	Pass
2450		1g	50.76	53.00	-4.23	±10	Pass
2450	2022/9/7	10g	25.44	24.50	3.84	±10	Pass
5000	2022/0/0	1g	73.40	75.90	-3.29	±10	Pass
5200	2022/9/6	10g	21.50	21.40	0.47	±10	Pass
5000	0000/0/0	1g	79.90	78.00	2.44	±10	Pass
5300	2022/9/6	10g	22.80	22.00	3.64	±10	Pass
5000	2022/0/5	1g	82.70	80.00	3.38	±10	Pass
5600	2022/9/5	10g	22.80	22.60	0.88	±10	Pass
5000	2022/0/5	1g	79.60	78.50	1.40	±10	Pass
5800	2022/9/5	10g	21.40	21.90	-2.28	±10	Pass

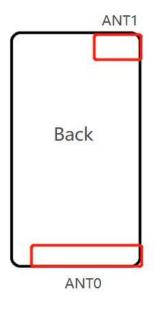
7.2 SAR Test result

In order to determine the largest value of the peak spatial-average SAR of a handset, all device positions, configurations, and operational modes should be tested for each frequency band according to Steps 1 to 3 below.

Step 1: The tests should be performed at the channel that is closest to the centre of the transmit frequency band.

a) All device positions (cheek and tilt, for both left and right sides of the SAM phantom),

b) All configurations for each device position in a), e.g., antenna extended and retracted, and


c) All operational modes for each device position in item a) and configuration in item b) in each frequency band, e.g., analog and digital, If more than three frequencies need to be tested (i.e., Nc > 3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing the highest peak spatial-average SAR determined in Step 1 for each frequency, perform all tests at all other test frequency channels, e.g., lowest and highest frequencies. In addition, for all other conditions (device position, configuration, and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies should be tested as well.

Step 3: Examine all data to determine the largest value of the peak.

Test and antenna position describe as follow:

Note: SRTC defined these positions (Back, Front, left, right, Top, Bottom) when facing the DUT screen.

License antenna	Position	Distances to edge (mm)	Test or not	Note
	Back	0.0	YES	
Ant0	Front	0.0 YES		
	Тор	144.0	NO	ANT for WWAN
	Bottom	0.0	YES	
	Left	14.0	YES	
	Right	0.0	YES	

Unlicense antenna	Position	Distances to edge (mm)	Test or not	Note
	Back	0.0	YES	
	Front	0.0	YES	
Ant1	Тор	0.0	YES	BT/WIFI
AIIU	Bottom	138.0	NO	DI/WIFI
	Left		NO	
	Right	0.0	YES	

Note: L<1GHz; 1GHz<M<2GHz; H>2GHz

The measured and reported SAR values are tabulated below:

Non-signaling mode duty cycle could be the most conservative condition which with 100% duty cycle. So duty factor=1/ duty cycle shall be taken into consideration for SAR measurement with Non-signaling mode.

SRTC ensure each reference point power drift within 0.21 dB, and the value of worst case of each frequency band mentioned in Annex_Plot.

7.2.1 Licensed SISO1

Test case							Meas SAR(w/kg)		Report SAR(w/kg)	
GSM850	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
			L	30.83	32.00	1.31				
		Left Cheek	М	31.16	32.00	1.21	0.162		0.196	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Left tilt	м	31.16	32.00	1.21	0.053		0.064	
			н	31.37	32.00	1.16				
	Head		L	30.83	32.00	1.31				
		Right Cheek	м	31.16	32.00	1.21	0.127		0.154	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Right tilt	м	31.16	32.00	1.21	0.059		0.071	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Back	М	31.16	32.00	1.21	0.352		0.426	
			н	31.37	32.00	1.16				
	Body-worn	Front	L	30.83	32.00	1.31				
			М	31.16	32.00	1.21	0.287		0.347	
			н	31.37	32.00	1.16				
GPRS GMSK			L	30.83	32.00	1.31				
		Back	м	31.16	32.00	1.21	0.352		0.426	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Front	м	31.16	32.00	1.21	0.287		0.347	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Тор	м	31.16	32.00	1.21				
			н	31.37	32.00	1.16				
	Hotspot		L	30.83	32.00	1.31				
		Bottom	м	31.16	32.00	1.21	0.188		0.227	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Left	м	31.16	32.00	1.21	0.101		0.122	
			н	31.37	32.00	1.16				
			L	30.83	32.00	1.31				
		Right	м	31.16	32.00	1.21	0.091		0.110	
			н	31.37	32.00	1.16				

No. SRTC2022-9004(F)-22082501(H)

	Test case						Meas SAR(w/kg)		Report SAR(w/kg)	
GSM1900	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
			L	24.48	25.50	1.26				
		Left Cheek	м	24.21	25.50	1.35	0.088		0.119	
			н	24.10	25.50	1.38				
			L	24.48	25.50	1.26				
		Left tilt	м	24.21	25.50	1.35	0.050		0.068	
	llead		н	24.10	25.50	1.38				
	Head		L	24.48	25.50	1.26				
		Right Cheek	м	24.21	25.50	1.35	0.062		0.084	
			н	24.10	25.50	1.38				
			L	24.48	25.50	1.26				
		Right tilt	м	24.21	25.50	1.35	0.047		0.063	
			н	24.10	25.50	1.38				
			L	22.54	23.50	1.25				
		Back	м	22.36	23.50	1.30	0.763		0.992	
	Determine		н	22.25	23.50	1.33				
	Body-worn	Front	L	22.54	23.50	1.25				
			м	22.36	23.50	1.30	0.459		0.597	
			н	22.25	23.50	1.33				
GPRS GMSK			L	22.54	23.50	1.25				
		Back	м	22.36	23.50	1.30	0.763		0.992	
			н	22.25	23.50	1.33				
		Front	L	22.54	23.50	1.25				
			м	22.36	23.50	1.30	0.459		0.597	
			н	22.25	23.50	1.33				
			L	22.54	23.50	1.25				
		Тор	м	22.36	23.50	1.30				
	Unterest		н	22.25	23.50	1.33				
	Hotspot		L	22.54	23.50	1.25	0.900	0.899	1.125	1.124
		Bottom	м	22.36	23.50	1.30	0.893	0.891	1.161	1.158
			н	22.25	23.50	1.33	0.870	0.871	1.157	1.158
			L	22.54	23.50	1.25				
		Left	м	22.36	23.50	1.30	0.071		0.092	
			н	22.25	23.50	1.33				
			L	22.54	23.50	1.25				
		Right	М	22.36	23.50	1.30	0.063		0.082	
			н	22.25	23.50	1.33				

	Test case	-	-				Meas SA	AR(w/kg)	Report S	AR(w/kg)
WCDMA V	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
			L	23.17	24.00	1.21				
		Left Cheek	м	23.22	24.00	1.20	0.067		0.080	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Left tilt	м	23.22	24.00	1.20	0.022		0.026	
	Hood		н	23.23	24.00	1.19				
	Head		L	23.17	24.00	1.21				
		Right Cheek	м	23.22	24.00	1.20	0.055		0.066	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Right tilt	м	23.22	24.00	1.20	0.017		0.020	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Back	м	23.22	24.00	1.20	0.123		0.148	
	Darks sugar		н	23.23	24.00	1.19				
	Body-worn	Front	L	23.17	24.00	1.21				
			м	23.22	24.00	1.20	0.101		0.121	
544			н	23.23	24.00	1.19				
RMC			L	23.17	24.00	1.21				
		Back	м	23.22	24.00	1.20	0.123		0.148	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Front	м	23.22	24.00	1.20	0.101		0.121	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Тор	м	23.22	24.00	1.20				
			н	23.23	24.00	1.19				
	Hotspot		L	23.17	24.00	1.21				
		Bottom	М	23.22	24.00	1.20	0.073		0.088	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Left	м	23.22	24.00	1.20	0.050		0.060	
			н	23.23	24.00	1.19				
			L	23.17	24.00	1.21				
		Right	м	23.22	24.00	1.20	0.065		0.078	
			н	23.23	24.00	1.19				

	Test case		-				Meas SA	AR(w/kg)	Report S	AR(w/kg)
LTE5	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
			L	23.24	24.00	1.19				
		Left Cheek	м	23.21	24.00	1.20	0.137		0.164	
			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Left tilt	м	23.21	24.00	1.20	0.070		0.084	
	Head		н	23.47	24.00	1.13				
	neau		L	23.24	24.00	1.19				
		Right Cheek	М	23.21	24.00	1.20	0.118		0.142	
			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Right tilt	М	23.21	24.00	1.20	0.068		0.082	
			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Back	м	23.21	24.00	1.20	0.223		0.268	
	Body-worn		н	23.47	24.00	1.13				
	,		L	23.24	24.00	1.19				
		Front	М	23.21	24.00	1.20	0.236		0.283	
QPSK 1RB			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Back	М	23.21	24.00	1.20	0.223		0.268	
			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Front	М	23.21	24.00	1.20	0.236		0.283	
			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Тор	М	23.21	24.00	1.20				
	Hotspot		н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Bottom	м	23.21	24.00	1.20	0.170		0.204	
			н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Left	М	23.21	24.00	1.20	0.081		0.097	
			Н	23.47	24.00	1.13				
			L	23.24	24.00	1.19				
		Right	М	23.21	24.00	1.20	0.158		0.190	
	Head		н	23.47	24.00	1.13				
			L	22.16	23.00	1.21				
		Left Cheek	M	22.08	23.00	1.24	0.130		0.161	
			н	22.43	23.00	1.14				
QPSK 50%RB			L	22.16	23.00	1.21				
		Left tilt	M	22.08	23.00	1.24	0.063		0.078	
			н	22.43	23.00	1.14				
		Right Cheek	L	22.16	23.00	1.21				
			М	22.08	23.00	1.24	0.112		0.139	

			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Right tilt	М	22.08	23.00	1.24	0.061	 0.076	
			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Back	М	22.08	23.00	1.24	0.215	 0.267	
	Dubuum		н	22.43	23.00	1.14		 	
	Body-worn		L	22.16	23.00	1.21		 	
		Front	М	22.08	23.00	1.24	0.225	 0.279	
			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Back	М	22.08	23.00	1.24	0.215	 0.267	
			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Front	М	22.08	23.00	1.24	0.225	 0.279	
			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Тор	М	22.08	23.00	1.24		 	
	Unternat		н	22.43	23.00	1.14		 	
	Hotspot		L	22.16	23.00	1.21		 	
		Bottom	М	22.08	23.00	1.24	0.162	 0.201	
			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Left	М	22.08	23.00	1.24	0.073	 0.091	
			н	22.43	23.00	1.14		 	
			L	22.16	23.00	1.21		 	
		Right	М	22.08	23.00	1.24	0.151	 0.187	
			н	22.43	23.00	1.14		 	

	Test case	-					Meas S/	AR(w/kg)	Report S	AR(w/kg)
LTE12	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	First	Second	First	Second
			L	23.34	24.00	1.16				
		Left Cheek	м	23.27	24.00	1.18	0.028		0.033	
			н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Left tilt	м	23.27	24.00	1.18	0.015		0.018	
	Head		Н	23.11	24.00	1.23				
	neau		L	23.34	24.00	1.16				
		Right Cheek	М	23.27	24.00	1.18	0.018		0.021	
			н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Right tilt	М	23.27	24.00	1.18	0.001		0.001	
			н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Back	м	23.27	24.00	1.18	0.109		0.129	
	Body-worn		н	23.11	24.00	1.23				
	,		L	23.34	24.00	1.16				
		Front	М	23.27	24.00	1.18	0.093		0.110	
QPSK 1RB			н	23.11	24.00	1.23				
2			L	23.34	24.00	1.16				
		Back	М	23.27	24.00	1.18	0.109		0.129	
			н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Front	м	23.27	24.00	1.18	0.093		0.110	
		Front	н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Тор	м	23.27	24.00	1.18				
	Hotspot		н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Bottom	М	23.27	24.00	1.18	0.073		0.086	
			н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Left	м	23.27	24.00	1.18	0.049		0.058	
			н	23.11	24.00	1.23				
			L	23.34	24.00	1.16				
		Right	м	23.27	24.00	1.18	0.057		0.067	
			н	23.11	24.00	1.23				
	Head		L	22.43	23.00	1.14				
		Left Cheek	М	22.20	23.00	1.20	0.026		0.031	
			н	22.20	23.00	1.20				
QPSK 50%RB			L	22.43	23.00	1.14				
		Left tilt	м	22.20	23.00	1.20	0.012		0.014	
			н	22.20	23.00	1.20				
		Right Cheek	L	22.43	23.00	1.14				
		-	М	22.20	23.00	1.20	0.015		0.018	

		н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Right tilt	М	22.20	23.00	1.20	0.001	 0.001	
		н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Back	М	22.20	23.00	1.20	0.101	 0.121	
D. I.		н	22.20	23.00	1.20		 	
Body-worn		L	22.43	23.00	1.14		 	
	Front	М	22.20	23.00	1.20	0.089	 0.107	
		н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Back	М	22.20	23.00	1.20	0.101	 0.121	
		н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Front	М	22.20	23.00	1.20	0.089	 0.107	
		н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Тор	М	22.20	23.00	1.20		 	
Unternat		н	22.20	23.00	1.20		 	
Hotspot		L	22.43	23.00	1.14		 	
	Bottom	М	22.20	23.00	1.20	0.071	 0.085	
	-	н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Left	М	22.20	23.00	1.20	0.047	 0.056	
		н	22.20	23.00	1.20		 	
		L	22.43	23.00	1.14		 	
	Right	М	22.20	23.00	1.20	0.053	 0.064	
		н	22.20	23.00	1.20		 	

7.2.2 Unlicensed SISO1

	Test	case							Meas S	AR(w/kg)	Report S	SAR(w/kg)
вт	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up (dBm)	Scaling factor	Duty cycle	Duty factor	First	Second	First	Second
			L	11.11	11.50	1.09	80%	1.26				
		Left Cheek	м	10.95	11.50	1.14	80%	1.26	0.116		0.166	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Left tilt	м	10.95	11.50	1.14	80%	1.26	0.086		0.123	
BR	Head		н	10.83	11.50	1.17	80%	1.26				
DR	neau		L	11.11	11.50	1.09	80%	1.26				
		Right Cheek	м	10.95	11.50	1.14	80%	1.26	0.302		0.433	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Right tilt	М	10.95	11.50	1.14	80%	1.26	0.244		0.349	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Back	м	10.95	11.50	1.14	80%	1.26	0.001		0.001	
	D. I		н	10.83	11.50	1.17	80%	1.26				
BR	Body-worn		L	11.11	11.50	1.09	80%	1.26				
		Front	м	10.95	11.50	1.14	80%	1.26	0.001		0.001	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Back	м	10.95	11.50	1.14	80%	1.26	0.001		0.001	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Front	м	10.95	11.50	1.14	80%	1.26	0.001		0.001	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Тор	м	10.95	11.50	1.14	80%	1.26	0.041		0.059	
	Hotspot		н	10.83	11.50	1.17	80%	1.26				
BR	Hotspot (Support Bluetooth Thetering)		L	11.11	11.50	1.09	80%	1.26				
		Bottom	м	10.95	11.50	1.14	80%	1.26				
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Left	м	10.95	11.50	1.14	80%	1.26	0.001		0.001	
			н	10.83	11.50	1.17	80%	1.26				
			L	11.11	11.50	1.09	80%	1.26				
		Right	м	10.95	11.50	1.14	80%	1.26				
			н	10.83	11.50	1.17	80%	1.26				
				10.00	11.00	1.17	0070	1.20				

NMMNomNo		Test	case							Meas S	AR(w/kg)	Report \$	SAR(w/kg)
	WLAN2.4GHz	Exposure condition	Position	Channel		Tune-up(dBm)	Scaling factor		Duty factor	First	Second	First	Second
Partial <				L	10.74	11.00	1.06	99%	1.01				
Ref I <thi< th=""> I I I</thi<>			Left Cheek	м	10.88	11.00	1.03	99%	1.01	0.088		0.092	
Part Image Image <thi< td=""><td></td><td></td><td></td><td>н</td><td>10.11</td><td>11.00</td><td>1.23</td><td>99%</td><td>1.01</td><td></td><td></td><td></td><td></td></thi<>				н	10.11	11.00	1.23	99%	1.01				
Partial <				L	10.74	11.00	1.06	99%	1.01				
Matrix Image Image <t< td=""><td></td><td></td><td>Left tilt</td><td>м</td><td>10.88</td><td>11.00</td><td>1.03</td><td>99%</td><td>1.01</td><td>0.090</td><td></td><td>0.094</td><td></td></t<>			Left tilt	м	10.88	11.00	1.03	99%	1.01	0.090		0.094	
Res Image: A constraint of the sector of the s	000 115	Used		н	10.11	11.00	1.23	99%	1.01				
Respond Concor	802.110	Head		L	10.74	11.00	1.06	99%	1.01				
Reg Bgr MaxI I MaxI MaxI MaxI MaxI MaxI MaxI MaxI MaxI MaxI 			Right Cheek	м	10.88	11.00	1.03	99%	1.01	0.208		0.216	
Pair NameM1001001000001010000.000.000.0000010100101010001000000010100000.000.000.00000000000100010001000000010000000.000.000.0000.000000000000100010001000100010001000.0000.0000.0000.0000.000000000000100010001000100010001000.0000.0000.0000.0000.000000000000100010001000100010001000.0000.0000.0000.0000.0000000010001000100010001000100010001000.0000.0000.0000.00000000100010001000100010001000100010001000.0000.0000.000000001000100010001000100010001000100010001000.0000.0000.00000000100 <t< td=""><td></td><td></td><td></td><td>н</td><td>10.11</td><td>11.00</td><td>1.23</td><td>99%</td><td>1.01</td><td></td><td></td><td></td><td></td></t<>				н	10.11	11.00	1.23	99%	1.01				
Image in the series in the s				L	10.74	11.00	1.06	99%	1.01				
BeackL10.7411.0010.06099%10.010.0030.010.010.01M10.0110.0010.0110.0010.010.0430.0430.0430.0410.043M10.0110.0010.0110.0010.010.0410.0410.0410.0410.0410.041PorterN10.0110.0010.010.09%10.010.0420.0410.0410.041N10.0110.0010.010.020.010.0410.0110.011N10.0110.0010.010.0100.0100.0110.0110.011N10.0110.0010.010.0100.0110.0110.0110.0110.011NN10.0110.0010.010.0110.0110.0110.0110.0110.011NN10.0110.0110.010.0110.0110.0110.0110.0110.011NN10.0110.0110.010.0110.0110.0110.0110.0110.011N10.0110.0110.0110.010.0110.0110.0110.0110.0110.011N10.0110.0110.0110.010.0110.0110.0110.0110.0110.011N10.0110.0110.0110.010.0110.0110.0110.0110.0110.011N10.0110.01 <t< td=""><td></td><td></td><td></td><td>м</td><td>10.88</td><td>11.00</td><td>1.03</td><td>99%</td><td>1.01</td><td>0.201</td><td></td><td>0.209</td><td></td></t<>				м	10.88	11.00	1.03	99%	1.01	0.201		0.209	
<table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container><table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container></table-container>				н	10.11	11.00	1.23	99%	1.01				
Beay-weiNoNoNoNoNoNoNoNoNoNoBeay-weiNoNo101100 <td></td> <td></td> <td></td> <td>L</td> <td>10.74</td> <td>11.00</td> <td>1.06</td> <td>99%</td> <td>1.01</td> <td></td> <td></td> <td></td> <td></td>				L	10.74	11.00	1.06	99%	1.01				
BodysomImage: provide the state of the state			Back	м	10.88	11.00	1.03	99%	1.01	0.043		0.045	
Normal NetworkL107110010899%1010.010.0020.000.0000.000Normal Network101010301030109%10100.0420.0400.0400.0400.040Normal Network10111010110012399%1010.0420.00 </td <td></td> <td></td> <td></td> <td>н</td> <td>10.11</td> <td>11.00</td> <td>1.23</td> <td>99%</td> <td>1.01</td> <td></td> <td></td> <td></td> <td></td>				н	10.11	11.00	1.23	99%	1.01				
Normal Name	802.11b	Body-worn		L	10.74	11.00	1.06	99%	1.01				
Note Note L 10.74 11.00 10.6 99% 1.01 Back M 10.88 11.00 1.03 99% 1.01 0.043 0.045 H 10.11 11.00 1.23 99% 1.01			Front	м	10.88	11.00	1.03	99%	1.01	0.042		0.044	
Back M 10.08 1100 10.3 99% 1.01 0.043 0.045 H 10.1 11.00 123 99% 1.01 <t< td=""><td></td><td></td><td></td><td>н</td><td>10.11</td><td>11.00</td><td>1.23</td><td>99%</td><td>1.01</td><td></td><td></td><td></td><td></td></t<>				н	10.11	11.00	1.23	99%	1.01				
$802.11b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				L	10.74	11.00	1.06	99%	1.01				
$802.11b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			Back	м	10.88	11.00	1.03	99%	1.01	0.043		0.045	
$82.1b$ $ \begin{tabular}{ c c c c c c } \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $				н	10.11	11.00	1.23	99%	1.01				
$80.11b \ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $				L	10.74	11.00	1.06	99%	1.01				
802.11b \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Front	м	10.88	11.00	1.03	99%	1.01	0.042		0.044	
				н	10.11	11.00	1.23	99%	1.01				
$802.11b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				L	10.74	11.00	1.06	99%	1.01				
			Тор	м	10.88	11.00	1.03	99%	1.01	0.040		0.042	
Bottom L 10.74 11.00 1.06 99% 1.01				н	10.11	11.00	1.23	99%	1.01				
H 10.11 11.00 1.23 99% 1.01	802.11b	Hotspot		L	10.74	11.00	1.06	99%	1.01				
Left L 10.74 11.00 1.06 99% 1.01 M 10.88 11.00 1.03 99% 1.01 0.011 0.011			Bottom	м	10.88	11.00	1.03	99%	1.01				
Left M 10.88 11.00 1.03 99% 1.01 0.011 0.011 H 10.11 11.00 1.23 99% 1.01 Right M 10.88 11.00 1.03 99% 1.01				н	10.11	11.00	1.23	99%	1.01				
H 10.11 11.00 1.23 99% 1.01 Right L 10.74 11.00 1.06 99% 1.01 <td< td=""><td></td><td></td><td></td><td>L</td><td>10.74</td><td>11.00</td><td>1.06</td><td>99%</td><td>1.01</td><td></td><td></td><td></td><td></td></td<>				L	10.74	11.00	1.06	99%	1.01				
L 10.74 11.00 1.06 99% 1.01 Right M 10.88 11.00 1.03 99% 1.01			Left	м	10.88	11.00	1.03	99%	1.01	0.011		0.011	
M 10.88 11.00 1.03 99% 1.01				н	10.11	11.00	1.23	99%	1.01				
				L	10.74	11.00	1.06	99%	1.01				
H 10.11 11.00 1.23 99% 1.01			Right	м	10.88	11.00	1.03	99%	1.01				
				н	10.11	11.00	1.23	99%	1.01				

	Test	case							Meas SA	AR(w/kg)	Report S	SAR(w/kg)	
WLAN5GHz UNII-1	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	Duty cycle	Duty factor	First	Second	First	Second	
			L	10.59	11.00	1.10	98%	1.02					
		Left Cheek	м	10.26	11.00	1.19	98%	1.02	0.133		0.161		
			н	10.23	11.00	1.19	98%	1.02					
			L	10.59	11.00	1.10	98%	1.02					
		Left tilt	м	10.26	11.00	1.19	98%	1.02	0.112		0.135		
802.11a	Head		н	10.23	11.00	1.19	98%	1.02					
002.114	neau		L	10.59	11.00	1.10	98%	1.02					
		Right Cheek	м	10.26	11.00	1.19	98%	1.02	0.179		0.216		
			н	10.23	11.00	1.19	98%	1.02					
			L	10.59	11.00	1.10	98%	1.02					
		Right tilt	м	10.26	11.00	1.19	98%	1.02	0.119		0.144		
			н	10.23	11.00	1.19	98%	1.02					
			L	10.59	11.00	1.10	98%	1.02					
		Back	м	10.26	11.00	1.19	98%	1.02	0.223		0.269		
				н	10.23	11.00	1.19	98%	1.02				
802.11a	Body-worn		L	10.59	11.00	1.10	98%	1.02					
		Front	м	10.26	11.00	1.19	98%	1.02	0.074		0.089		
			н	10.23	11.00	1.19	98%	1.02					

	Test	case							Meas SA	AR(w/kg)	Report S	SAR(w/kg)
WLAN5GHz UNII-2A	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	Duty cycle	Duty factor	First	Second	First	Second
			L	10.27	11.00	1.18	98%	1.02				
		Left Cheek	М	10.38	11.00	1.15	98%	1.02	0.097		0.114	
			н	10.71	11.00	1.07	98%	1.02				
			L	10.27	11.00	1.18	98%	1.02				
		Left tilt	М	10.38	11.00	1.15	98%	1.02	0.083		0.097	
802.11a	Head		н	10.71	11.00	1.07	98%	1.02				
002.11a	neau		L	10.27	11.00	1.18	98%	1.02				
		Right Cheek	М	10.38	11.00	1.15	98%	1.02	0.194		0.228	
			н	10.71	11.00	1.07	98%	1.02				
			L	10.27	11.00	1.18	98%	1.02				
		Right tilt	М	10.38	11.00	1.15	98%	1.02	0.130		0.153	
			н	10.71	11.00	1.07	98%	1.02				
			L	10.27	11.00	1.18	98%	1.02				
		Back	М	10.38	11.00	1.15	98%	1.02	0.284		0.333	
			н	10.71	11.00	1.07	98%	1.02				
802.11a	Body-worn		L	10.27	11.00	1.18	98%	1.02				
		Front	М	10.38	11.00	1.15	98%	1.02	0.071		0.083	
			н	10.71	11.00	1.07	98%	1.02				

	Test	case							Meas S/	AR(w/kg)	Report S	SAR(w/kg)
WLAN5GHz UNII-2C	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	Duty cycle	Duty factor	First	Second	First	Second
			L	9.97	11.00	1.27	98%	1.02				
		Left Cheek	М	10.42	11.00	1.14	98%	1.02	0.172		0.200	
			н	9.69	11.00	1.35	98%	1.02				
			L	9.97	11.00	1.27	98%	1.02				
		Left tilt	М	10.42	11.00	1.14	98%	1.02	0.109		0.127	
802.11a	Head		н	9.69	11.00	1.35	98%	1.02				
002.114	neau		L	9.97	11.00	1.27	98%	1.02				
		Right Cheek	М	10.42	11.00	1.14	98%	1.02	0.312		0.363	
			н	9.69	11.00	1.35	98%	1.02				
			L	9.97	11.00	1.27	98%	1.02				
		Right tilt	М	10.42	11.00	1.14	98%	1.02	0.167		0.194	
			н	9.69	11.00	1.35	98%	1.02				
			L	9.97	11.00	1.27	98%	1.02				
		Back	М	10.42	11.00	1.14	98%	1.02	0.204		0.237	
			н	9.69	11.00	1.35	98%	1.02				
802.11a	Body-worn		L	9.97	11.00	1.27	98%	1.02				
		Front	М	10.42	11.00	1.14	98%	1.02	0.097		0.113	
			н	9.69	11.00	1.35	98%	1.02				

	Test	case							Meas SA	AR(w/kg)	Report S	SAR(w/kg)
WLAN5GHz UNII-3	Exposure condition	Position	Channel	Meas power(dBm)	Tune-up(dBm)	Scaling factor	Duty cycle	Duty factor	First	Second	First	Second
			L	10.95	11.00	1.01	98%	1.02				
		Left Cheek	М	10.60	11.00	1.10	98%	1.02	0.104		0.116	
			н	10.86	11.00	1.03	98%	1.02				
			L	10.95	11.00	1.01	98%	1.02				
		Left tilt	М	10.60	11.00	1.10	98%	1.02	0.088		0.098	
802.11a	Head		н	10.86	11.00	1.03	98%	1.02				
002.114	neau		L	10.95	11.00	1.01	98%	1.02				
		Right Cheek	М	10.60	11.00	1.10	98%	1.02	0.395		0.442	
			н	10.86	11.00	1.03	98%	1.02				
			L	10.95	11.00	1.01	98%	1.02				
		Right tilt	М	10.60	11.00	1.10	98%	1.02	0.168		0.188	
			н	10.86	11.00	1.03	98%	1.02				
			L	10.95	11.00	1.01	98%	1.02				
		Back	М	10.60	11.00	1.10	98%	1.02	0.160		0.179	
			н	10.86	11.00	1.03	98%	1.02				
802.11a	Body-worn		L	10.95	11.00	1.01	98%	1.02				
		Front	М	10.60	11.00	1.10	98%	1.02	0.080		0.090	
			н	10.86	11.00	1.03	98%	1.02				

7.3 Simultaneous Transmission SAR Analysis

7.3.1 Multi-TX SAR

SRTC use algebraic summation first, if the value exceed limit, then adopt field vector summation as final result as well as satisfy any pair SPLSR for 1g-SAR = (SAR1+ SAR2)1.5/Ri \leq 0.04 (rounded to two decimal digits), SPLSR for 10g-SAR = (SAR1 + SAR2)1.5/R \leq 0.10(rounded to two decimal digits)

Exposure condition		He	ad	
Position	Left cheek	Left tilt	Right cheek	Right tilt
WWAN_MAX	GSM850	LTE Band5	GSM850	LTE Band5
WWAN_MAX	0.196	0.084	0.154	0.082
ВТ	0.166	0.123	0.433	0.349
WLAN2.4GHz	0.115	0.117	0.271	0.262
WLAN5GHz	0.200	0.135	0.442	0.194
+BT	0.362	0.207	0.586	0.431
+WLAN2.4GHz	0.311	0.201	0.425	0.344
+WLAN5GHz	0.396	0.219	0.596	0.276
+BT +WLAN5GHz	0.562	0.343	1.028	0.625
Simultaneous Transmission	GSM850+BT +WLAN5GHz	LTE Band5+BT +WLAN5GHz	GSM850+BT +WLAN5GHz	LTE Band5+BT +WLAN5GHz
Simultaneous Transmission	0.562	0.343	1.028	0.625

Exposure condition	Body	worn
Position	Back	Front
WWAN_MAX	GSM1900	GSM1900
WWAN_MAX	0.992	0.597
BT	0.001	0.001
WLAN2.4GHz	0.056	0.055
WLAN5GHz	0.333	0.113
+BT	0.993	0.598
+WLAN2.4GHz	1.048	0.651
+WLAN5GHz	1.325	0.710
+BT +WLAN5GHz	1.327	0.711
Simultaneous Transmission	GSM1900+BT+WLAN5GHz	GSM1900+BT+WLAN5GHz
Simultaneous Transmission	1.327	0.711

Exposure condition			Hotsp	ot		
Position	Back	Front	Тор	Bottom	Left	Right
WWAN_MAX	GSM1900	GSM1900		GSM1900	GSM850	LTE Band5
WWAN_MAX	0.992	0.597		1.161	0.122	0.190
ВТ	0.001	0.001	0.059		0.001	
WLAN2.4GHz	0.056	0.055	0.052		0.014	
WLAN5GHz						
+BT	0.993	0.598	0.059	1.161	0.124	0.190
+WLAN2.4GHz	1.048	0.651	0.052	1.161	0.137	0.190
+WLAN5GHz						
+BT +WLAN5GHz						
Simultaneous Transmission	GSM1900+WLAN2.4GHz	GSM1900+WLAN2.4GHz	вт	GSM1900	GSM850+WLAN2.4GHz	LTE Band5
Simultaneous Transmission	1.048	0.651	0.059	1.161	0.137	0.190

8 MEASUREMENT UNCERTAINTY

	Uncertainty	•				datio	า	
		uency band: 3			. .			
Symbol	Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc. (1	Std. Unc
		value	Dist.		(1 g)	(10 g)	g)	(10 g)
		Measuremen	nt System	Errors	11		I I	
CF	Probe Calibration	±13.1%	N	2	1	1	±6.55%	±6.55%
CF _{drift}	Probe Calibration Drift	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
ISO	Probe Isotropy (axial)	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
DAE	Other Probe+Electronic	±1.2%	N	1	1	1	±1.2%	±1.2%
AMB	RF Ambient	±0.6%	N	1	1	1	±0.6%	±0.6%
Δ_{sys}	Probe Positioning	±0.5%	N	1	0.29	0.29	±0.1%	±0.1%
DAT	Data Processing	±0%	N	1	1	1	±0%	±0%
L		Phantom and	d Device	Errors			I I	
$LIQ(\sigma)$	Conductivity (meas.) ^{DAK}	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
$LIQ(T_{\sigma})$	Conductivity (temp.) ^{BB}	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%
EPS	Phantom Permittivity	±14.0%	R	$\sqrt{3}$	0.25	0.25	±2.0%	±2.0%
DIS	Distance DUT – TSL	±1.3%	N	1	2	2	±2.6%	±2.6%
MOD	DUT Modulation	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
TAS	Time-average SAR	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
VAL	Validation antenna	±3.2%	N	1	1	1	±3.2%	±3.2%
Pin	Accepted power	±2.0%	N	1	1	1	±2.0%	±2.0%
I		Correction to	the SAR	results	1		· · · · · · · · · · · · · · · · · · ·	
C(ε, σ)	Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
u(∆SAR)	Combined Uncertainty						±9.8%	±9.7%
U	Expanded Uncertainty						±19.6%	±19.5%

	(Freq	uency band: (- 6 GHz–10	GHz ra	nge)			
Symbol	Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc. (1	Std. Unc.
		value	Dist.		(1 g)	(10g)	g)	(10 g)
		Measuremen	t System	Errors				
CF	Probe Calibration	±18.6%	Ν	2	1	1	±9.30%	±9.30%
CF _{drift}	Probe Calibration Drift	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
ISO	Probe Isotropy (axial)	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
DAE	Other Probe+Electronic	±2.4%	Ν	1	1	1	±2.4%	±2.4%
AMB	RF Ambient	±0.6%	Ν	1	1	1	±0.6%	±0.6%
Δ_{sys}	Probe Positioning	±0.5%	Ν	1	0.50	0.50	±0.2%	±0.2%
DAT	Data Processing	±0%	Ν	1	1	1	±0%	±0%
		Phantom an	d Device	Errors				
LIQ(σ)	Conductivity (meas.) ^{DAK}	±2.5%	Ν	1	0.78	0.71	±2.0%	±1.8%
$LIQ(T_{\sigma})$	Conductivity (temp.) ^{BB}	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%
EPS	Phantom Permittivity	±14.0%	R	$\sqrt{3}$	0.5	0.5	±4.0%	±4.0%
DIS	Distance DUT – TSL	±2.6%	Ν	1	2	2	±5.3%	±5.3%
MOD	DUT Modulation	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
TAS	Time-average SAR	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
VAL	Validation antenna	±3.2%	Ν	1	1	1	±3.2%	±3.2%
P _{in}	Accepted power	±2.0%	Ν	1	1	1	±2.0%	±2.0%
·		Correction to	the SAR	results			·	
C(ε, σ)	Deviation to Target	±1.9%	Ν	1	1	0.84	±1.9%	±1.6%
u(∆SAR)	Combined Uncertainty						±13.3%	±13.2%
U	Expanded Uncertainty						±26.6%	±26.4%

Uncertainty Budget for System Validation

Uncertainty Budget for DUT

(Frequency band: 300 MHz-3 GHz range)

Symbol	Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc. (1	Std. Unc.
		value	Dist.		(1 g)	(10g)	g)	(10g)
I		Measurement	System E	rrors			1	
CF	Probe Calibration	±12.0%	N	2	1	1	±6.0%	±6.0%
CF _{drift}	Probe Calibration Drift	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%
ISO	Probe Isotropy	±7.6%	R	$\sqrt{3}$	1	1	±4.4%	±4.4%
DAE	Other Probe+Electronic	±0.7%	N	1	1	1	±0.7%	±0.7%
AMB	RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Δ_{sys}	Probe Positioning	±0.006 mm	N	1	0.14	0.14	±0.10%	±0.10%
DAT	Data Processing	±1.2%	N	1	1	1	±1.2%	±1.2%
ľ		Phantom and	Device E	rrors				
LIQ(σ)	Conductivity (meas.) ^{DAK}	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
$LIQ(T_{\sigma})$	Conductivity (temp.) ^{BB}	±3.3%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%
EPS	Phantom Permittivity	±14.0%	R	$\sqrt{3}$	0	0	±0%	±0%
DIS	Distance DUT – TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
D _{xyz}	Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
н	Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
MOD	DUT Modulation ^m	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
TAS	Time-average SAR	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
RF _{drift}	DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
VAL	Val Antenna Unc. ^{val}	±0.0%	N	1	1	1	±0%	±0%
RF _{in}	Unc. Input Power ^{val}	±0.0%	N	1	1	1	±0%	±0%
		Correction to the	he SAR r	esults				
C(ε, σ)	Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
C(R)	SAR scaling ^p	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
u(∆SAR)	Combined Uncertainty						±10.9%	±10.9%
U	Expanded Uncertainty						±21.9%	±21.8%

Uncertainty Budget for DUT

(Frequency	band: 3	GHz–6	GHz	range)
------------	---------	-------	-----	--------

Symbol	Error Description	Uncert. value	Prob. Dist.	Div.	(Ci)	(Ci)	Std. Unc. (1 g)	Std. Unc. (10 g)
		Value	Dist.		(1 g)	(10g)	97	(109)
		Measurement	System E	rrors				
CF	Probe Calibration	±13.1%	N	2	1	1	±6.55%	±6.55%
CF _{drift}	Probe Calibration Drift	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%
ISO	Probe Isotropy	±7.6%	R	$\sqrt{3}$	1	1	±4.4%	±4.4%
DAE	Other Probe+Electronic	±1.2%	N	1	1	1	±1.2%	±1.2%
AMB	RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Δ_{sys}	Probe Positioning	±0.005 mm	N	1	0.29	0.29	±0.15%	±0.15%
DAT	Data Processing	±2.3%	N	1	1	1	±2.3%	±2.3%
		Phantom and	Device E	rrors				
LIQ(σ)	Conductivity (meas.) ^{DAK}	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
$LIQ(T_{\sigma})$	Conductivity (temp.) ^{BB}	±3.4%	R	$\sqrt{3}$	0.78	0.71	±1.5%	±1.4%
EPS	Phantom Permittivity	±14.0%	R	$\sqrt{3}$	0.25	0.25	±2.0%	±2.0%
DIS	Distance DUT – TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
D _{xyz}	Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Н	Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
MOD	DUT Modulation ^m	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
TAS	Time-average SAR	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
RF _{drift}	DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
VAL	Val Antenna Unc. ^{val}	±0.0%	N	1	1	1	±0%	±0%
RF _{in}	Unc. Input Power ^{val}	±0.0%	N	1	1	1	±0%	±0%
		Correction to the	he SAR r	esults				
C(ε, σ)	Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
C(R)	SAR scaling ^p	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
u(∆SAR)	Combined Uncertainty						±11.6%	±11.5%
U	Expanded Uncertainty						±23.3%	±23.0%

Uncertainty Budget for DUT

(Frequency band: 6 GHz–10 GHz range)

Symbol	Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std. Unc. (1	Std. Unc.
		value	Dist.		(1 g)	(10g)	g)	(10g)
		Measurement	System E	rrors				
CF	Probe Calibration	±18.6%	N	2	1	1	±9.3%	±9.3%
CF _{drift}	Probe Calibration Drift	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±2.8%	R	$\sqrt{3}$	1	1	±1.6%	±1.6%
ISO	Probe Isotropy	±7.6%	R	$\sqrt{3}$	1	1	±4.4%	±4.4%
DAE	Other Probe+Electronic	±2.4%	N	1	1	1	±2.4%	±2.4%
AMB	RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Δ_{sys}	Probe Positioning	±0.005 mm	N	1	0.50	0.50	±0.25%	±0.25%
DAT	Data Processing	±3.5%	N	1	1	1	±3.5%	±3.5%
		Phantom and	Device E	rrors				
LIQ(σ)	Conductivity (meas.) ^{DAK}	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
$LIQ(T_{\sigma})$	Conductivity (temp.) ^{BB}	±2.4%	R	$\sqrt{3}$	0.78	0.71	±1.1%	±1.0%
EPS	Phantom Permittivity	±14.0%	R	$\sqrt{3}$	0.5	0.5	±4.0%	±4.0%
DIS	Distance DUT – TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
D _{xyz}	Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Н	Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
MOD	DUT Modulation ^m	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%
TAS	Time-average SAR	±1.7%	R	$\sqrt{3}$	1	1	±1.0%	±1.0%
RF _{drift}	DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
VAL	Val Antenna Unc. ^{val}	±0.0%	N	1	1	1	±0%	±0%
RF _{in}	Unc. Input Power ^{val}	±0.0%	N	1	1	1	±0%	±0%
		Correction to the	he SAR r	esults				
C(ε, σ)	Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
C(R)	SAR scaling ^p	±0%	R	$\sqrt{3}$	1	1	±0%	±0%
u(∆SAR)	Combined Uncertainty						±14.2%	±13.9%
U	Expanded Uncertainty						±28.4%	±27.9%

Note: SRTC evaluate the uncertainty of ambient noise, reflections and device Positioning periodically to make sure there is no influence on SAR result. When the measured value less than the value provided by SPEAG, SRTC adopt the worst value as final result.

9 TEST EQUIPMENTS

The measurements were performed using an automated near-field scanning system, DASY, manufactured by Schmid & Partner Engineering AG (SPEAG) in Switzerland, all the components and supplement devices listed below.

Test Equipment	Model	Serial Number	Calibration date	Calibration due data
DAE	DAE4	720	2021/10/08	2022/10/07
Dosimetric E-field Probe	EX3DV4	3708	2021/10/20	2022/10/19
Dipole Validation Kit	D450V2	1024	2020/10/26	2023/10/25
Dipole Validation Kit	D750V3	1101	2020/10/16	2023/10/15
Dipole Validation Kit	D835V2	4d023	2020/10/16	2023/10/15
Dipole Validation Kit	D900V2	171	2020/09/17	2023/09/16
Dipole Validation Kit	D1450V2	1065	2020/10/16	2023/10/15
Dipole Validation Kit	D1800V2	2d084	2020/09/18	2023/09/17
Dipole Validation Kit	D2000V2	1009	2020/10/14	2023/10/13
Dipole Validation Kit	D2450V2	738	2020/10/13	2023/10/12
Dipole Validation Kit	D2600V2	1166	2019/11/08	2022/11/07
Dipole Validation Kit	D3300V2	1014	2019/11/11	2022/11/10
Dipole Validation Kit	D3500V2	1090	2019/11/11	2022/11/10
Dipole Validation Kit	D3700V2	1058	2019/11/11	2022/11/10
Dipole Validation Kit	D3900V2	1033	2019/11/11	2022/11/10
Dipole Validation Kit	D4200V2	1013	2019/11/12	2022/11/11
Dipole Validation Kit	D4600V2	1033	2019/11/12	2022/11/11
Dipole Validation Kit	D4900V2	1025	2019/11/12	2022/11/11
Dipole Validation Kit	D5GHzV2	1079	2020/10/10	2023/10/09
Dipole Validation Kit	D6GHzV2	1055	2021/11/29	2024/11/28

Note: Longer calibration intervals of up to **3 years is acceptable** when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable.

Test Equipment	Model	Serial Number	Calibration within 1year
Signal Generator	E8257dD	MY46522016	Comply
Power meter	E4417A	MY45101004	Comply
Power Sensor	E9300B	MY41496001	Comply
Power Sensor	E9300B	MY41496003	Comply
Vector Network Analyzer	VNA R140	0011213	Comply
Dielectric Parameter Probe	DAKS-3.5	1042	Comply
Communication Tester	E5515C	MY48367401	Comply
Communication Tester	CMW500	161702	Comply
Communication Tester	MT8820C	6201300660	Comply
Communication Tester	SP9500	20334	Comply

Software	Version
DASY5	52.10.4.1527
DASY6	16.0.0.116
SEMCAD X	14.6.14
DAK	3.0.4.1

SAR Target: Refers to system check, measured SAR (1g and 10g) deviates from the Target SAR value of calibration report within 10%.

Impedance and Return loss measured by Network analyzer: The most recent measurement of the real or imaginary parts of the impedance deviates within 5 Ω from the previous measurement. The most recent return-loss result deviates within 20% from the previous measurement. (Target from the last calibration report, Return loss<20db)

(feed point 450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $56.1\Omega+6.06j\Omega$ $55.5\Omega+6.40j\Omega$ Return loss $-21.6 dB$ $-21.9 dB$ Dipole 750 TSL Parameters(feed point 750MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $53.9\Omega-2.02j\Omega$ $53.7\Omega-1.63j\Omega$ Return loss $-27.5 dB$ $-28.2dB$ Dipole835 TSL Parameters(feed point 835MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $53.4\Omega-3.16j\Omega$ $52.6\Omega-2.37j\Omega$ Return loss $-30.1 dB$ $-29.3dB$ Dipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $50.6\Omega-5.24j\Omega$ $49.1\Omega-6.69j\Omega$ Return loss $-23.3 dB$ Olipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $50.6\Omega-5.24j\Omega$ $49.1\Omega-6.69j\Omega$ (feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.60-5.24jΩ4.23.4dBDipole1450 TSL Parameters(fe
Impedance $56.1\Omega+6.06j\Omega$ $55.5\Omega+6.40j\Omega$ Return loss-21.6 dB-21.9 dBDipole750 TSL Parameters(feed point 750MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $53.9\Omega-2.02j\Omega$ $53.7\Omega-1.63j\Omega$ Return loss-27.5 dB-28.2dBDipole835 TSL Parameters(feed point 835MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $53.4\Omega-3.16j\Omega$ $52.6\Omega-2.37j\Omega$ Return loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $50.6\Omega-5.24j\Omega$ $49.1\Omega-6.69j\Omega$ Return loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $50.6\Omega-5.24j\Omega$ $49.1\Omega-6.69j\Omega$ Return loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersImpedance $53.7\Omega-2.95j\Omega$ $52.4\Omega-1.35j\Omega$
Return loss -21.6 dB -21.9 dB Dipole750 TSL Parameters (feed point 750MHz) Parameters Measured data Target (Ref. Value) Impedance 53.9Ω-2.02jΩ 53.7Ω-1.63jΩ Return loss -27.5 dB -28.2dB Dipole835 TSL Parameters (feed point 835MHz) Parameters Measured data Target (Ref. Value) Impedance 53.4Ω-3.16jΩ 52.6Ω-2.37jΩ Return loss -30.1 dB -29.3dB Dipole900 TSL Parameters (feed point 900MHz) (feed point 900MHz) Parameters Measured data Target (Ref. Value) Impedance 50.6Ω-5.24jΩ 49.1Ω-6.69jΩ Cifeed point 1450MHz) Parameters Measured data Target (Ref. Value) Impedance 50.6Ω-5.24jΩ 49.1Ω-6.69jΩ Return loss -23.8 dB -23.4dB Dipole1450 TSL Parameters (feed point 1450MHz) Parameters Measured data Impedance 53.7Ω-2.95jΩ 52.4Ω-1.35jΩ
Dipole750 TSL Parameters (feed point 750MHz) Parameters Measured data Target (Ref. Value) Impedance 53.9Ω-2.02jΩ 53.7Ω-1.63jΩ Return loss -27.5 dB -28.2dB Dipole835 TSL Parameters (feed point 835MHz) Parameters Measured data Target (Ref. Value) Impedance 53.4Ω-3.16jΩ 52.6Ω-2.37jΩ Return loss -30.1 dB -29.3dB Dipole900 TSL Parameters (feed point 900MHz) (feed point 900MHz) Parameters Measured data Target (Ref. Value) Impedance 50.6Ω-5.24jΩ 49.1Ω-6.69jΩ Return loss -23.8 dB -23.4dB Dipole1450 TSL Parameters (feed point 1450MHz) Parameters Measured data Target (Ref. Value) Impedance 50.6Ω-5.24jΩ 49.1Ω-6.69jΩ Return loss -23.8 dB -23.4dB Dipole1450 TSL Parameters (feed point 1450MHz) Parameters Measured data Target (Ref. Value) Impedance 53.7Ω-2.95jΩ
$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $
ParametersMeasured dataTarget (Ref. Value)Impedance53.9Ω-2.02jΩ53.7Ω-1.63jΩReturn loss-27.5 dB-28.2dBDipole835 TSL Parameters(feed point 835MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.4Ω-3.16jΩ52.6Ω-2.37jΩReturn loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
Impedance $53.9\Omega-2.02J\Omega$ $53.7\Omega-1.63J\Omega$ Return loss $-27.5 dB$ $-28.2dB$ Dipole835 TSL Parameters(feed point 835MHz)ParametersMeasured dataTarget (Ref. Value)Impedance $53.4\Omega-3.16J\Omega$ $52.6\Omega-2.37J\Omega$ Return loss $-30.1 dB$ $-29.3dB$ Dipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24JΩ49.1Ω-6.69JΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
Return loss-27.5 dB-28.2dBDipole835 TSL Parameters(feed point 835MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.4Ω-3.16jΩ52.6Ω-2.37jΩReturn loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
Dipole835 TSL Parameters(feed point 835MHz)ParametersMeasured dataImpedance53.4Ω-3.16jΩS2.6Ω-2.37jΩReturn loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataImpedance53.7Ω-2.95jΩS2.4Ω-1.35jΩ
(feed point 835MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.4Ω-3.16jΩ52.6Ω-2.37jΩReturn loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
ParametersMeasured dataTarget (Ref. Value)Impedance53.4Ω-3.16jΩ52.6Ω-2.37jΩReturn loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Return loss-30.1 dB-29.3dBDipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
Dipole900 TSL Parameters(feed point 900MHz)ParametersMeasured dataImpedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
(feed point 900MHz)ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
ParametersMeasured dataTarget (Ref. Value)Impedance50.6Ω-5.24jΩ49.1Ω-6.69jΩReturn loss-23.8 dB-23.4dBDipole1450 TSL Parameters(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
Impedance 50.6Ω-5.24jΩ 49.1Ω-6.69jΩ Return loss -23.8 dB -23.4dB Dipole1450 TSL Parameters (feed point 1450MHz) Parameters Measured data Target (Ref. Value) Impedance 53.7Ω-2.95jΩ 52.4Ω-1.35jΩ
Return loss -23.8 dB -23.4dB Dipole1450 TSL Parameters (feed point 1450MHz) Parameters Measured data Target (Ref. Value) Impedance 53.7Ω-2.95jΩ 52.4Ω-1.35jΩ
Dipole1450 TSL Parameters (feed point 1450MHz) Parameters Measured data Target (Ref. Value) Impedance 53.7Ω-2.95jΩ 52.4Ω-1.35jΩ
(feed point 1450MHz)ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
ParametersMeasured dataTarget (Ref. Value)Impedance53.7Ω-2.95jΩ52.4Ω-1.35jΩ
Impedance 53.7Ω-2.95jΩ 52.4Ω-1.35jΩ
Return loss -32.1 dB -31.5dB
Dipole1800 TSL Parameters
(feed point 1800MHz)
Parameters Measured data Target (Ref. Value)
Impedance 47.8Ω-3.06jΩ 48.9Ω-2.71jΩ
Return loss -31.3 dB -30.6dB
Dipole2000 TSL Parameters
(feed point 2000MHz)
Parameters Measured data Target (Ref. Value)
Impedance 51.1Ω-3.37jΩ 49.4Ω-2.46jΩ
Return loss -30.6 dB -31.9dB
Dipole2450 TSL Parameters
(feed point 2450MHz)
Parameters Measured data Target (Ref. Value)
Impedance 54.2Ω+5.98jΩ 53.3Ω+6.38jΩ
Return loss -22.9 dB -23.1dB
Dipole2600 TSL Parameters
(feed point 2600MHz)
Parameters Measured data Target (Ref. Value)
Impedance 48.4Ω-6.71jΩ 47.9Ω-7.80jΩ
Return loss -22.5 dB -21.7dB
Dipole3300 TSL Parameters
(feed point 3300MHz)
Parameters Measured data Target (Ref. Value)
Impedance 54.2Ω-6.1jΩ 54.7Ω-6.3jΩ

Return loss	-23.1dB	-22.5dB
	Dipole3500 TSL Parameters	
	(feed point 3500MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	53.3Ω+4.48jΩ	52.6Ω+3.5jΩ
Return loss	-29.1 dB	-27.4dB
	Dipole3700 TSL Parameters	
	(feed point 3700MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	47.6Ω+1.99jΩ	48.3Ω+1.1jΩ
Return loss	-34.5 dB	-33.6dB
	Dipole3900 TSL Parameters	
	(feed point 3900MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	50.1Ω-5.48jΩ	48.3Ω-4.9jΩ
Return loss	-26.7 dB	-25.6dB
	(feed point 4100MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	57.6Ω-1.70jΩ	59.0Ω-0.8jΩ
Return loss	-20.8 dB	-21.6dB
Tretain 1035	Dipole4200 TSL Parameters	-21.00D
	(feed point 4300MHz)	
Parameters	Measured data	Target (Ref. Value)
		52.1Ω-1.6jΩ
Impedance Return loss	53.9Ω-1.52jΩ	-31.7dB
Return loss	-33.5 dB	-31.7dB
	Dipole4600 TSL Parameters	
	(feed point 4500MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	46.9Ω-5.14jΩ	46.4Ω-4.5jΩ
Return loss	-25.2 dB	-24.5dB
	(feed point 4700MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	54.8Ω-2.91jΩ	55.9Ω-3.20jΩ
Return loss	-25.4 dB	-24.0dB
	Dipole4900 TSL Parameters	
	(feed point 4900MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	51.8Ω-4.40jΩ	50.6Ω-5.2jΩ
Return loss	-26.9 dB	-25.7dB
	Dipole5GHz TSL Parameters	
	(feed point 5200MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	51.2Ω-11.89jΩ	50.2Ω-10.0jΩ
Return loss	-21.2 dB	-20.0dB
	(feed point 5300MHz)	
Parameters	Measured data	Target (Ref. Value)
Impedance	49.0Ω-6.40jΩ	47.2Ω-7.33jΩ
Return loss	-22.4 dB	-21.9dB
	(feed point 5500MHz)	21.000
Parameters	Measured data	Target (Ref. Value)
Impedance	51.6Ω-6.61jΩ	52.0Ω-7.96jΩ
Return loss	-22.2 dB	-21.9dB
		-21.90D
Doromotoro	(feed point 5600MHz)	Torget (Def) (alua)
Parameters	Measured data	Target (Ref. Value)
Impedance	53.6Ω-4.31jΩ	55.7Ω-3.78jΩ
Return loss	-23.1 dB	-23.8dB
	(feed point 5800MHz)	

Parameters	Measured data	Target (Ref. Value)		
Impedance	51.8Ω-6.96jΩ	53.7Ω-5.87jΩ		
Return loss	-22.9 dB	-23.5dB		
Dipole6500 TSL Parameters				
(feed point 6500MHz)				
Parameters	Measured data	Target (Ref. Value)		
Impedance	52.3Ω-3.6jΩ	51.1Ω-2.2jΩ		
Return loss	-31.1 dB	-32.3dB		