

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC178593

Page: 1 of 41

FCC Radio Test Report FCC ID: 2AYVV-PHD20

Original Grant

Report No. : TB-FCC178593

Applicant: INNOVATIVE CONCEPTS GROUP SAC

Equipment Under Test (EUT)

EUT Name : Tablet PC

Model No. : PHD20

Series Model No. : N/A

Brand Name : Blackline

Sample ID : 20201217-21-1#& 20201217-21-2#

Receipt Date : 2021-01-26

Test Date : 2021-01-26 to 2021-02-27

Issue Date : 2021-03-03

Standards : FCC Part 15, Subpart C 15.247

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer :)

Engineer Supervisor : JUNI SU

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TB-FCC178593 Page: 2 of 41

Contents

TOBY

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	16
	6.5 EUT Operating Condition	17
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	19
2. 3. 4. 5.	7.5 EUT Operating Condition	19
	7.6 Test Data	19
8.	BANDWIDTH TEST	20
	8.1 Test Standard and Limit	20
	8.2 Test Setup	20
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	20
	8.5 EUT Operating Condition	20
	8.6 Test Data	20

Report No.: TB-FCC178593 Page: 3 of 41

9.	PEAK OUTPUT POWER TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	21
	9.5 EUT Operating Condition	21
	9.6 Test Data	21
10.	POWER SPECTRAL DENSITY TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	22
	10.3 Test Procedure	22
	10.4 Deviation From Test Standard	22
	10.5 EUT Operating Condition	22
	10.6 Test Data	22
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	23
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	23
	11.4 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	26
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND ED	GE TEST DATA
		31
ATT	ACHMENT D BANDWIDTH TEST DATA	36
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	38
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	40

Report No.: TB-FCC178593 Page: 4 of 41

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178593	Rev.01	Initial issue of report	2021-03-03
(TOB)	a Troops		MOBIL
			Dr. Ca
TUDE OF THE PARTY	The same	EN PROPERTY.	A THURST OF
THE REAL PROPERTY.	misi	MORA GIVE	
	600		The same of the sa
33	037	TO THE REAL PROPERTY.	
4000	THE REAL PROPERTY.		MORIS
10:33		1000	7000
CIT CITE	m BY	TODA TO	

Page: 5 of 41

1. General Information about EUT

1.1 Client Information

Applicant	Applicant : INNOVATIVE CONCEPTS GROUP SAC	
Address : Av. El Derby 254 Of. 1603, Santiago de Surco, Lima, Peru		Av. El Derby 254 Of. 1603, Santiago de Surco, Lima, Peru
Manufacturer : Shenzhen Ployer Electronics Co., Ltd.		Shenzhen Ployer Electronics Co., Ltd.
Address : 6F and 7F, Building 8, Rundong Community, Xixiang Street, Back		6F and 7F, Building 8, Rundongsheng Industrial Area, Longzhu Community, Xixiang Street, Bao'an District, Shenzhen, China

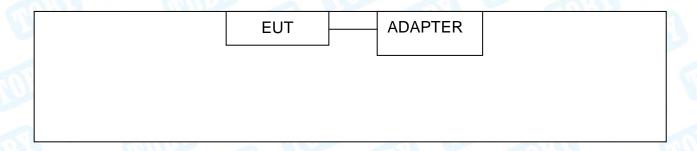
1.2 General Description of EUT (Equipment Under Test)

EUT Name		Tablet PC	Tablet PC		
Model(s) No.	all a	PHD20			
Model Different		N/A			
		Operation Frequency:	Bluetooth 4.2(BLE): 2402MHz~2480MHz		
	V	Number of Channel:	Bluetooth 4.2(BLE): 40 channels see note(3)		
Product	:	RF Output Power:	-4.368(Max)		
Description		Antenna Gain:	1.11 dBi FPC Antenna		
		Modulation Type:	GFSK		
	N	Bit Rate of Transmitter:	1Mbps		
Power Rating DC 5V from Adapter(EE-0502500UZ) Input: AC 100-240V, 50/60Hz, 0.5A Output: DC 5V 2.5A DC 3.8V by 6000mAh rechargeable Li-ion battery					
Software Version		V01	WORLD WITH		
Hardware Version		V01			
Remark	:	The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.			

Note:

This Test Report is FCC Part 15.247 for Bluetooth, the test procedure follows the FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.


Report No.: TB-FCC178593 Page: 6 of 41

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 7 of 41

1.4 Description of Support Units

Equipment Information							
Name	Used "√"						
			(1)				
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
Cable 1	Yes	Yes	1.0M				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1 USB Charging+TX Mode				
	For Radiated Test			
Final Test Mode Description				
Mode 1	USB Charging+TX Mode			
Mode 2 TX 1Mbps Mode (Channel 00/20/39)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 41

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	GIUL	*#*#83781#*#*	
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 41

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC178593 Page: 10 of 41

2. Test Summary

		art 15 Subpart C(15.247	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1000
Standard So	ection	Test Item	Test Comple(s)	ludamont	Remark
FCC	IC	rest item	Test Sample(s)	Judgment	
15.203		Antenna Requirement	20201217-21-2#	PASS	N/A
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	20201217-21-1#	PASS	N/A
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	20201217-21-2#	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	20201217-21-2#	PASS	N/A
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	20201217-21-2#	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	20201217-21-2#	PASS	N/A
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20201217-21-1# 20201217-21-2#	PASS	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC178593 Page: 11 of 41

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021		
	Compliance		2				
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021		
	Inc		N. N. S.				
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021		
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021		
adiation Emission T	est						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021		
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021		
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021		
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022		
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022		
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582 Mar.01, 2020		Feb. 28, 2022		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021		
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021		
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021		
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Mar.01, 2020	Feb. 28, 2021		
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021		
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A		
	,	Antenna Conducted E	mission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date		
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021		
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021		
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021		
ector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021		
nalog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021		
DE Davis O	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021		
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021		
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021		

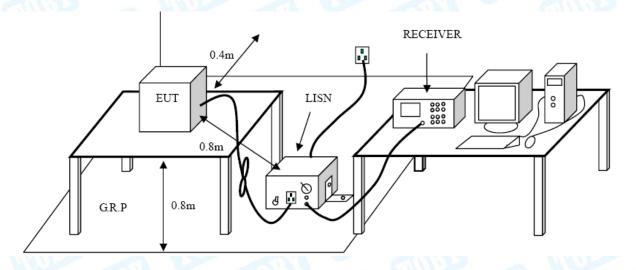
Page: 12 of 41

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguanav	Maximum RF Lin	e Voltage (dBμV)			
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 41

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 41

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d)

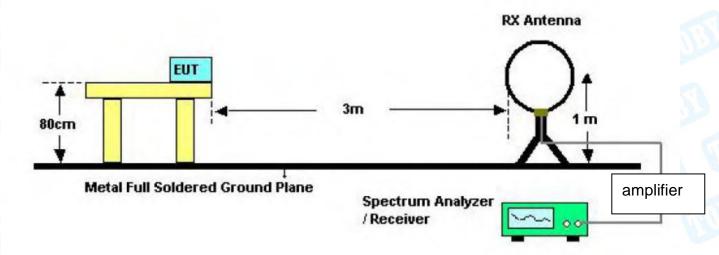
6.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

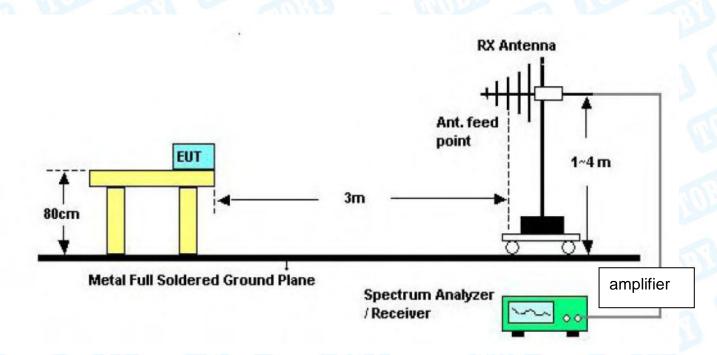
1.00	diated Elilission Elilits (ski	12 1000111112)
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

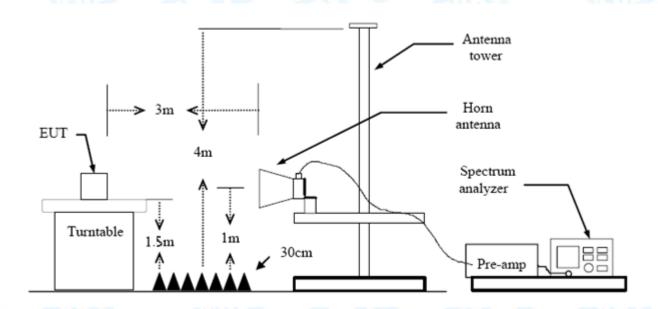

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 41

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 41

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

Page: 17 of 41

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

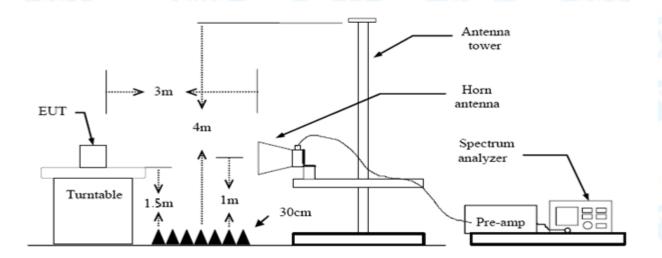
6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 41

7. Restricted Bands Requirement


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)					
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)				
2310 ~2390	74	54				
2483.5 ~2500	74	54				

7.2 Test Setup

7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

Page: 19 of 41

and then Quasi Peak detector mode re-measured.

(5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

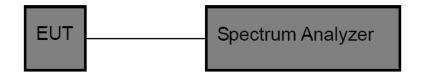
7.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 41

8. Bandwidth Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC F	FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Limit	Frequency Range(MHz)					
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5					

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

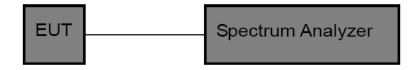
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

Page: 21 of 41

9. Peak Output Power Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)(3)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247						
Test Item	Limit	Frequency Range(MHz)				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5				

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 Meas Guidance v05r02.

- (1) Set the RBW ≥ DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

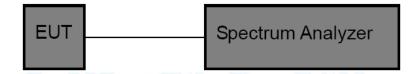
The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.

Page: 22 of 41

10. Power Spectral Density Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)								
Test Item	Limit	Frequency Range(MHz)						
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5						

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 Meas Guidance v05r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

Page: 23 of 41

11. Antenna Requirement

11.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

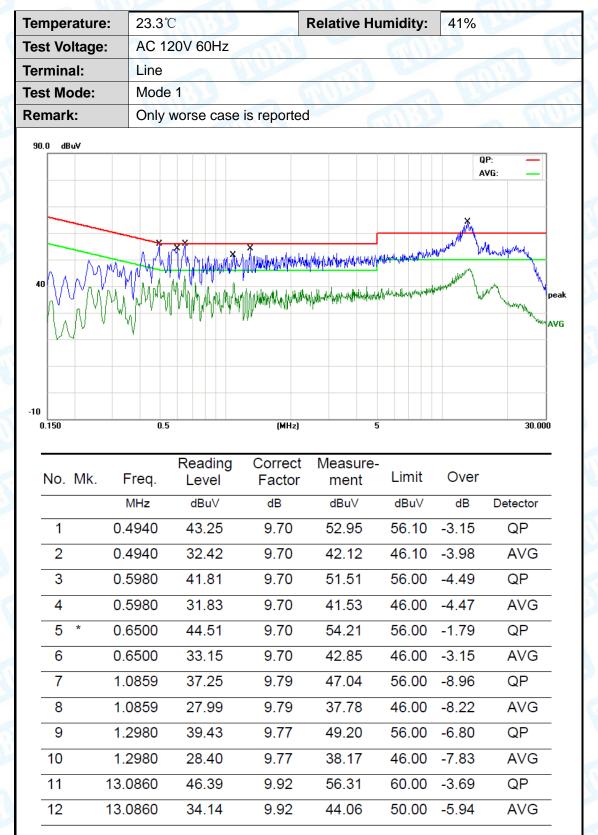
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.11dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.


	Antenna Type	
THE WAY	Permanent attached antenna	
Will San	⊠Unique connector antenna	CAL
37	☐Professional installation antenna	

TOBY

Page: 24 of 41

Attachment A-- Conducted Emission Test Data

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	23.3℃	A Branch	Relative H	lumidity:	41%	133
Test Voltage:	AC 120V 60Hz		MAIL		182	
Terminal:	Neutral					
Test Mode:	Mode 1	1300		8	em!	
Remark:	Only worse cas	e is reported	M.			
90.0 dBuV					QP: AVG:	
	* *				X	
40		TO COMPANY AND			allowed and a	Market Market
		Marina Antonio	get water resignation and the	(ulper 1) let l'en voire de le l'en voire de le l'en voire de le l'en voire de le l'en voire de l'en voire de le l'en voire de l'en voire de le l'en voire de l'en voire de le l'en voire de l'en voire de le l'en voire de l'en voire de le l'en voire de le l'en voire de le l'en voire de le l'en voire de l'	\psi'	pea Mariana AVE
0.150	0.5 Reading	(MHz)	Measure-			30.000
No. Mk. Fre	q. Level	Factor	ment	Limit	Over	
MHz	z dBu∨	dB	dBu∨	dBu∨	dB	Detector
1 0.494	10 44.45	9.80	54.25	56.10	-1.85	QP
2 0.494	10 32.61	9.80	42.41	46.10	-3.69	AVG
3 * 0.650	00 45.44	9.80	55.24	56.00	-0.76	QP
4 0.650	00 33.82	9.80	43.62	46.00	-2.38	AVG
5 0.805	59 38.87	9.80	48.67	56.00	-7.33	QP
6 0.805	59 26.05	9.80	35.85	46.00	-10.15	AVG
7 1.898	39.84	9.80	49.64	56.00	-6.36	QP
8 1.898	30 28.33	9.80	38.13	46.00	-7.87	AVG
9 12.874	10 45.11	9.96	55.07	60.00	-4.93	QP
10 12.874	10 32.54	9.96	42.50	50.00	-7.50	AVG
10 12.07-			EE 70	60.00	-4.30	QP
11 13.654	10 45.73	9.97	55.70	00.00	-4 .50	S 1

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 26 of 41

Attachment B-- Radiated Emission Test Data

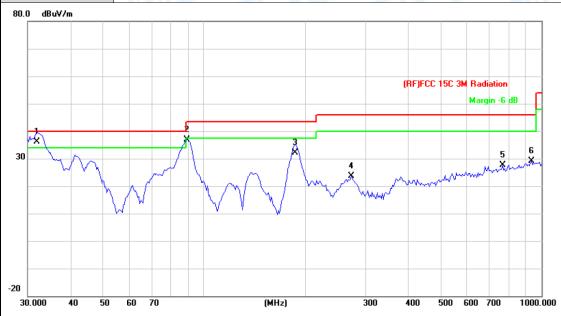
9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

				16								16		1 1 1					67-18	
	Temp	eratur	e:	25°			1	M	1		Rela	tive	Hun	nidity	y:	55	%	S	(and	
	Test \	/oltage	e :	DC	3.8\	/	W			111				9	61		5000			A
	Ant. F	Pol.		Hori	izon	tal	4	5						13			11		W	
	Test I	Mode:		Mod	de 1															
	Rema	ırk:		Only	y wc	rse	cas	e is	repor	ted.	13			1	M		7		1	
		80.0 dBu	ıV/m																1	
														(RF)FC	C 15C 3	BM Radi	ation			
											_					Marg	in -6 d	В		
1		1 X					2			/x\	Ϊ-	5 X	6					\dashv		
9		30					Ă		3 X	+	<i>٧</i> ٠٠,	ΛV	M	Ŋ			weeth	www	1	
			~ m~4				\downarrow		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V				ww	www	~~~~				
			,	\ \ \	~			~w												
																			-	
		-20																		
		30.000	40	50		70 80				Hz)			300	400	500	600	700	1000	.000	
	No	Mk.	Er	eq.	F	Rea		g	Corr			asu		Lin	nit	(Ove	ar.		
ı	110.	. IVIK.				Le			Fac			nent							<u> </u>	
				Hz		dB			dB/r			BuV/ı			uV/m		dB		Dete	
	1	*	31.7	313		51.	.11		-14.2	25	3	86.86	6	40	0.00	-	-3.1	14	pe	ak
V	2		90.2	205		53.	.09		-21.8	36	3	31.23	3	43	3.50	-	12.	27	ре	ak
	3		143.3	3261		48.	80		-22.0)4	2	26.70	6	43	3.50	-	16.	74	pe	ak
	4	į	185.7	7882	2	60.	06		-19.9	94	4	0.12	2	43	3.50	-	3.3	38	Q	Р
	5	:	275.	1570)	52.	63		-16.7	76	3	85.8	7	46	6.00	-	10.	13	ре	ak
	6	;	305.6	3800)	50.	38		-16.1	10	3	34.28	В	46	6.00	-	11.	72	ре	ak
3																				


^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	25°C Relative Humidity: 55%
Test Voltage:	DC 3.8V
Ant. Pol.	Vertical
Test Mode:	Mode 1
Remark:	Only worse case is reported.

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	31.9544	50.66	-14.41	36.25	40.00	-3.75	QP
2		88.9637	58.83	-21.93	36.90	43.50	-6.60	peak
3		185.7882	52.19	-19.94	32.25	43.50	-11.25	QP
4		273.2341	40.32	-16.79	23.53	46.00	-22.47	peak
5		766.0571	33.90	-6.29	27.61	46.00	-18.39	peak
6		932.2715	33.37	-4.26	29.11	46.00	-16.89	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Report No.: TB-FCC178593 Page: 28 of 41

Above 1GHz

3.2℃	Relative Humidity:	41%			
OC 3.8V					
lorizontal	The state of the s				
LE(1Mbps) Mode TX 2402	MHz				
Remark: No report for the emission which more than 10					
prescribed limit.					
	C 3.8V orizontal LE(1Mbps) Mode TX 2402 o report for the emission w	C 3.8V orizontal LE(1Mbps) Mode TX 2402 MHz o report for the emission which more than 10 dB			

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.526	41.47	13.01	54.48	74.00	-19.52	peak
2	*	4803.862	28.11	13.01	41.12	54.00	-12.88	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical	TUUL	
Test Mode:	BLE(1Mbps) Mode T	X 2402 MHz	
Remark:	No report for the em prescribed limit.	ission which more than 10 dB	3 below the

No	. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.738	28.21	13.01	41.22	54.00	-12.78	AVG
2		4804.082	41.02	13.01	54.03	74.00	-19.97	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

23.2℃	Relative Humidity:	41%		
DC 3.8V	MAN	Contract of the second		
Horizontal	COUNTY OF THE PARTY OF THE PART			
BLE(1Mbps) Mode TX 244	2 MHz			
No report for the emission which more than 20 dB below the				
	DC 3.8V Horizontal BLE(1Mbps) Mode TX 2442	DC 3.8V Horizontal BLE(1Mbps) Mode TX 2442 MHz No report for the emission which more than 20 dB		

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.202	41.70	13.60	55.30	74.00	-18.70	peak
2	*	4884.280	28.52	13.61	42.13	54.00	-11.87	AVG

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	DC 3.8V		
Ant. Pol.	Vertical		
Test Mode:	BLE(1Mbps) Mode TX 2442	MHz	
Remark:	No report for the emission w prescribed limit.	hich more than 20 dB	below the

No.	. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.150	42.23	13.60	55.83	74.00	-18.17	peak
2	*	4884.150	28.24	13.60	41.84	54.00	-12.16	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	DC 3.8V	THU	Contract of the second
Ant. Pol.	Horizontal		
Test Mode:	BLE(1Mbps) Mode TX 2480) MHz	
Remark:	below the		
	prescribed limit.		CHILL CHILL

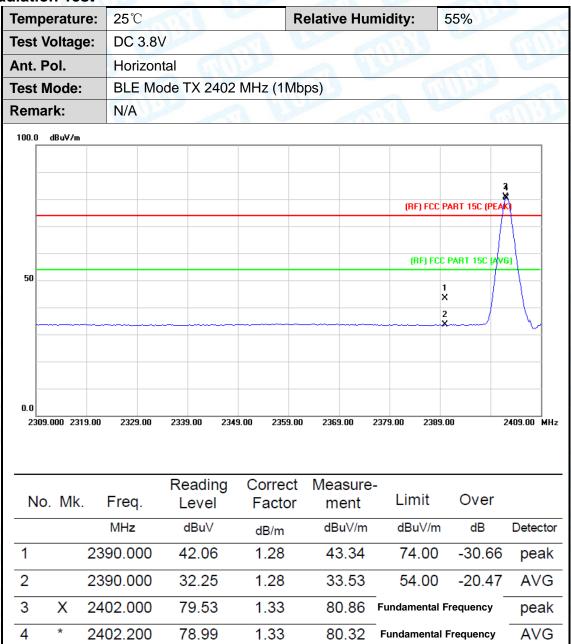
No	. MI	K. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.432	27.78	14.16	41.94	54.00	-12.06	AVG
2		4960.488	42.16	14.16	56.32	74.00	-17.68	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.2℃	Relative Humidity:	41%
Test Voltage:	DC 3.8V	13	100
Ant. Pol.	Vertical		133
Test Mode:	BLE(1Mbps) Mode TX 2480	MHz	3 130
Remark:	No report for the emission w prescribed limit.	hich more than 20 dB	below the

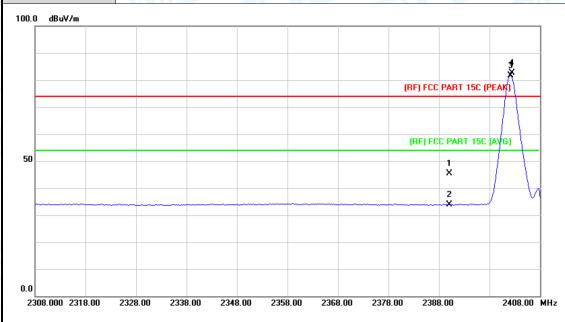
No. Mk.		. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.736	41.31	14.15	55.46	74.00	-18.54	peak
2	*	4960.302	27.79	14.15	41.94	54.00	-12.06	AVG


- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 31 of 41

Attachment C-- Restricted Bands Requirement and Band Edge Test Data

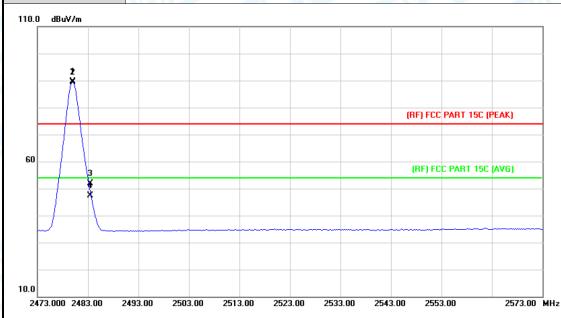
(1) Radiation Test



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC178593 Page: 32 of 41

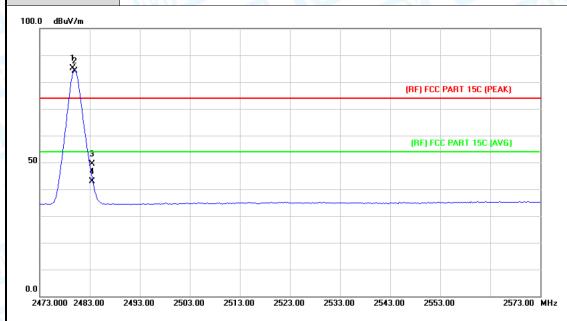
Temperature:	25℃ Relative Humidity: 55%
Test Voltage:	DC 3.8V
Ant. Pol.	Vertical
Test Mode:	BLE Mode TX 2402 MHz(1Mbps)
Remark:	N/A


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	43.99	1.28	45.27	74.00	-28.73	peak
2		2390.000	32.53	1.28	33.81	54.00	-20.19	AVG
3	*	2402.200	80.35	1.33	81.68	Fundamental Frequency		AVG
4	Χ	2402.400	81.24	1.33	82.57	Fundamental Frequency		beak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC178593 Page: 33 of 41

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.8V	THU					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	BLE Mode TX 2480 MHz (1	BLE Mode TX 2480 MHz (1Mbps)					
Remark:	N/A						

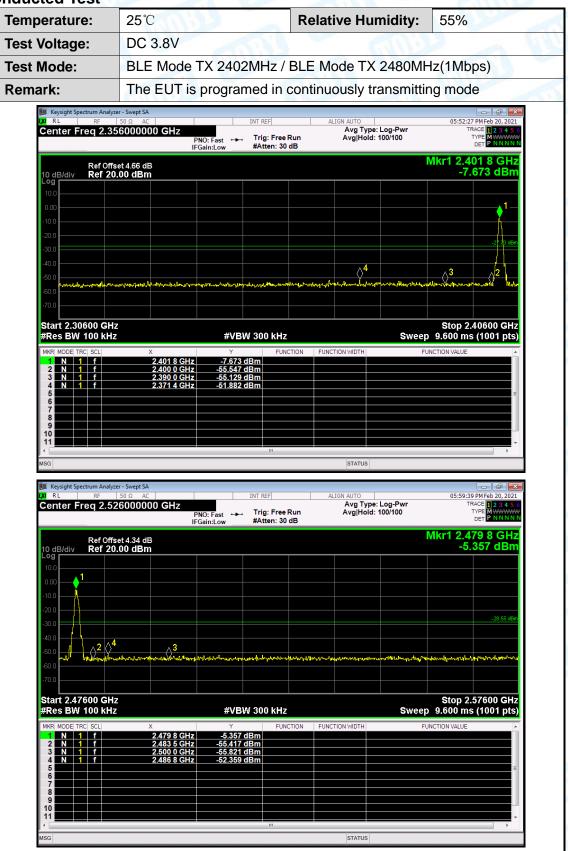

N	lo. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2480.000	87.88	1.85	89.73	Fundamental F	requency	peak
2	*	2480.000	87.49	1.85	89.34	Fundamental F	requency	AVG
3		2483.500	50.08	1.88	51.96	74.00	-22.04	peak
4		2483.500	45.43	1.88	47.31	54.00	-6.69	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Report No.: TB-FCC178593 Page: 34 of 41

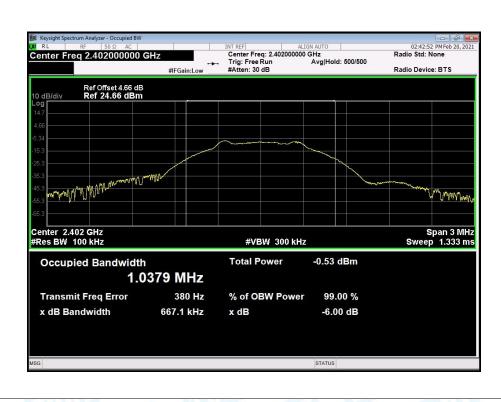
		T Market Language Village Vill				
Temperature:	25℃	Relative Humidity:	55%			
Test Voltage:	DC 3.8V					
Ant. Pol.	Vertical					
Test Mode:	BLE Mode TX 2480 MHz (1Mbps)					
Remark:	N/A					

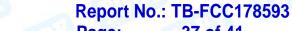
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.600	83.24	1.85	85.09	Fundamental Frequency		peak
2	*	2480.000	82.30	1.85	84.15	Fundamenta	l Frequency	AVG
3		2483.500	47.39	1.88	49.27	74.00	-24.73	peak
4		2483.500	40.88	1.88	42.76	54.00	-11.24	AVG


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Page: 35 of 41

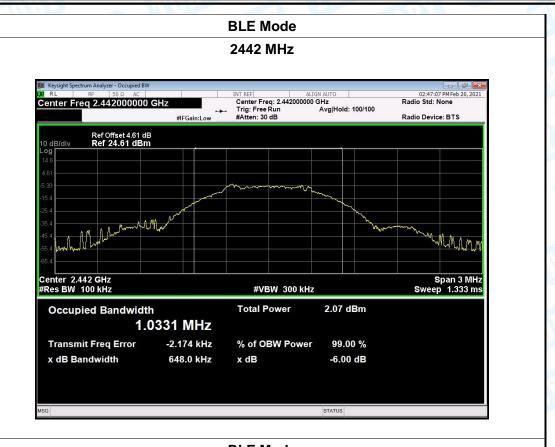
(2) Conducted Test

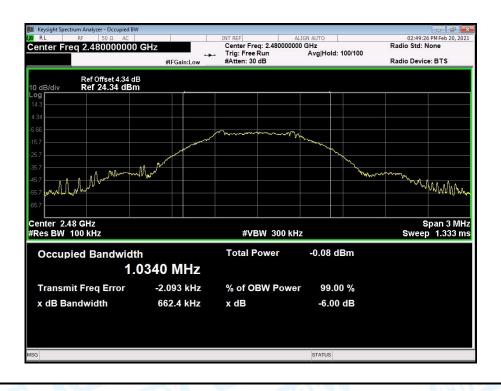



Page: 36 of 41

Attachment D-- Bandwidth Test Data

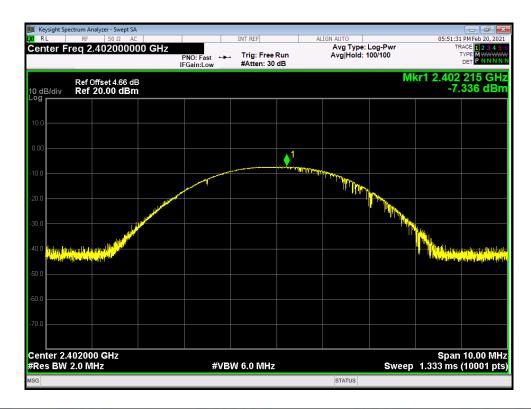
Temperature:	25℃		Relative Humidity:	55%	
Test Voltage:	DC 3	3.8V			
Test Mode:	BLE	TX Mode(1 Mbps)			
Channel frequency		6dB Bandwidth	6dB Bandwidth 99% Bandwidth		
(MHz)		(kHz)	(kHz) (kHz)		
2402		667.1	1037.9		
2442		648.0	1033.1	>=500	
2480		662.4	1034.0		
i e			*		


BLE Mode



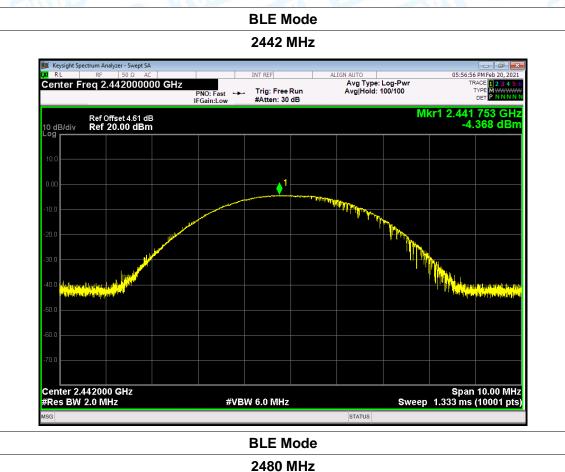
Page: 37 of 41

BLE Mode



Page: 38 of 41

Attachment E-- Peak Output Power Test Data


Temperature:	25℃		Relative Humidity	: 55%				
Test Voltage:	DC 3.8V	DC 3.8V						
Test Mode:								
Channel frequen	cy (MHz)	Test Result (dBm)		Limit (dBm)				
2402	2402		336					
2442		-4.368		30				
2480		-4.884						
BLE Mode								

Page: 39 of 41

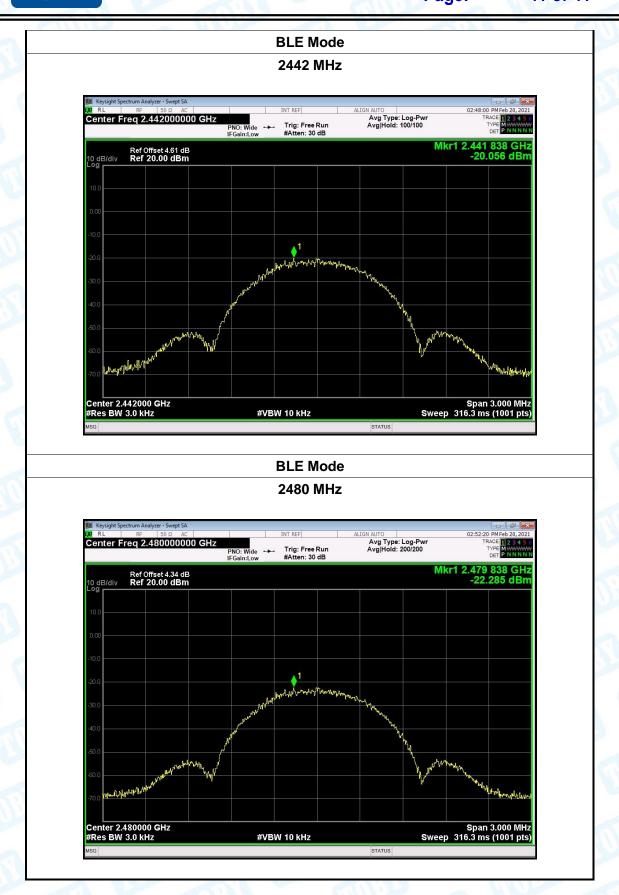
Relative Humidity: 55%

Page: 40 of 41



TOBY

Temperature: 25°C


						0070		
	Test Voltage:	DC 3.8V	1000		anys		Z BHI	
	Test Mode:	BLE TX M	Mode(1Mbps)					
	Channel Freque	uency	Power De	ensity	Limi	t	Result	
	(MHz)		(dBm/3kHz)		(dBm/3kHz)		Result	
	2402		-23.18	31				
	2442		-20.05	56	8 P		PASS	
3	2480		-22.28	35				
			DIEM	, da				

BLE Mode

Page: 41 of 41

END OF REPORT-