


| Test specification: | cation: Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                                 |              |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.12                                                            | ANSI C63.10, Sections 9.9, 9.12 |              |  |  |  |
| Test mode:          | Compliance                                                                                 | Verdict:                        | PASS         |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                                      | verdict.                        | PASS         |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                                    | Air Pressure: 1010 hPa          | Power: 5 VDC |  |  |  |
| Remarks:            |                                                                                            |                                 |              |  |  |  |

#### Plot 7.4.38 Spurious emission measurements in 300 - 310 GHz range



#### Mid carrier frequency:

| Spectrum Analy<br>Swept SA      |                                                                                                                | Spectrum Analyze<br>Swept SA |                                                   | +                            |            |                                           |       |                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|------------------------------|------------|-------------------------------------------|-------|--------------------------------|
|                                 | Input Ext Mixer<br>Signal ID: On<br>Align: Auto                                                                | Corr<br>Freq Ref: Int (S)    | PNO: Fast<br>Gate: Off<br>IF Gain: L<br>Sig Track | Avg Hok<br>ow Trig: Fre      |            | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N N |       |                                |
| l Spectrum<br>Scale/Div 10 d    | r<br>B                                                                                                         |                              |                                                   | set 40.00 dB<br>69.99 dBµV/m |            |                                           |       | 300.33 GH<br>.58 dBµV/         |
| 160                             |                                                                                                                |                              |                                                   |                              |            |                                           |       | DL1 160.85 dByV                |
| 150                             |                                                                                                                |                              |                                                   |                              |            |                                           |       |                                |
| 140 <b></b><br>130              | anatan na anatan sa mana ang sa mana s | Anna mar strate retention of | an a          | a star a last or growing     | man grande | ~ lodent ~ management                     |       | lang-age                       |
| 120                             |                                                                                                                |                              |                                                   |                              |            |                                           |       |                                |
| 110                             |                                                                                                                |                              |                                                   |                              |            |                                           |       |                                |
| 100<br>90.0                     |                                                                                                                |                              |                                                   |                              |            |                                           |       |                                |
| 80.D                            |                                                                                                                |                              |                                                   |                              |            |                                           |       |                                |
| Start 300.000 (<br>Res BW 1.0 M |                                                                                                                |                              | #Video E                                          | SW 3.0 MHz                   |            |                                           |       | op 310.000 GH<br>0 ms (1001 pt |
| 1                               | ? 🔳                                                                                                            | Nov 13, 2022                 | 7                                                 |                              |            |                                           | .:: 🕅 |                                |

#### High carrier frequency:

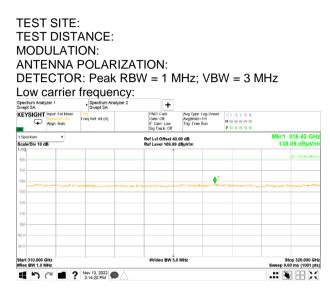
| Spectrum Analys<br>Swept SA   | zer 1                                            | Spectrum Analyzer<br>Swept SA    |          | +                          |                                                                                                                |                                                                                                                 |                      |                                |
|-------------------------------|--------------------------------------------------|----------------------------------|----------|----------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
|                               | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Int (S)        |          |                            | Awg Type: Log-Power<br>Awg Hold:>1/1<br>Trig: Free Run                                                         | 123456<br>MWWWWW<br>PNNNNN                                                                                      |                      |                                |
| 1 Spectrum<br>Scale/Div 10 dB |                                                  |                                  |          | Offset 40.0<br>el 169.99 d |                                                                                                                |                                                                                                                 |                      | 300.59 GH<br>.94 dBµV/i        |
| Log                           | _                                                |                                  |          | Ť                          |                                                                                                                |                                                                                                                 |                      |                                |
| 160                           |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      | DL1 160.85 dByV                |
| 150                           |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 150                           | 1                                                |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 140                           | Indersetter                                      | بيد حد مدير معرفة العديد بي موجد | mangener | 1                          | م المعدام المعدوم المنظ                                                                                        |                                                                                                                 |                      | 4                              |
| 130                           |                                                  |                                  |          |                            | and a second | had a start and | مردا فالمصادر ويدرهم | - all application              |
| 120                           |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 120                           |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 110                           |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 100                           |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 90.0                          |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 90.0                          |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| 80.0                          |                                                  |                                  |          |                            |                                                                                                                |                                                                                                                 |                      |                                |
| Start 300.000 G               |                                                  |                                  | ≢Vid     | 60 BW 3.0                  | MHz                                                                                                            |                                                                                                                 | Steep 9.6            | op 310.000 GH<br>0 ms (1001 pt |
| <b>1</b> 50                   | ⊴∎?                                              | Nov 13, 2022                     |          |                            |                                                                                                                |                                                                                                                 | .::                  |                                |

OATS 0.005 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz

Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA + Swept SA KEYSIGHT Input: Ext Mixer Signal ID: On Align: Auto IO: Fast ste: Off Corr Freq Ref: Int (S) Avg Type: Avg|Hold Trig: Free ANNNN Gate: Off IF Gain: Low Sig Track: Off LUI 1 Spectrum 
Scale/Div 10 dB 1kr1 300.05 GH 132.84 dBµV/n Ref LvI Offset 40.00 dB Ref Level 169.99 dBµV/m 140 130 #Video BW 3.0 MHz\* Span 10.00 GHz Sweep 12.4 ms (1001 pts)

#### 121000 MHz

Spectrum Analyzer 1 Swept SA KEYSIGHT Input: Ext Mover Signal ID: On Align: Auto Spectrum Analyzer 2 Swept SA + Corr Freq Ref: Int (S) Avg Type: Pow Avg|Hold>1/1 Trig: Free Run U# • Mkr1 300.30 GH 132.06 dBµV/r 1 Spectrum Scale/Div 10 dB Ref LvI Offset 40.00 dB Ref Level 169.99 dBµV/m ٠ #Video BW 3.0 MHz\* Span 10.00 GHz eep 12.4 ms (1001 pts) Center 305.000 GHz #Res BW 1.0 MHz 1 Nov 13, 2022 .:: 🖹 🗄 🔀


| Spectrum Analyzer 1<br>Swept SA                           | Spectrum Analyzer 2<br>Swept SA | • +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
|-----------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| KEYSIGHT Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Int (S)       | PNC: Fast Awg Type: Power (R<br>Gale: Off Awg[Hold>1/1<br>IF Gain: Low Trig: Free Run<br>Sig Track: Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MS) 1 2 3 4 5 6<br>M W W W W W<br>A N N N N N                           |
| 1 Spectrum v<br>Scale/Div 10 dB                           |                                 | Ref Lvi Offset 40.00 dB<br>Ref Level 169.99 dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mkr1 300.07 GH<br>131.97 dBµV/r                                         |
| 160                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 150                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 140                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DL1 140.86 dBy//                                                        |
| 130                                                       |                                 | and a state of the second | والمسيح والروسة المستعملين والمستعربين وأحضيت ليدارا مستحر فيتورد والمع |
| 110                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 100                                                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 90.0                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| 80.0                                                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |
| Center 305.000 GHz<br>#Res BW 1.0 MHz                     | 1                               | #Video BW 3.0 MHz*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Span 10.00 GH<br>Sweep 12.4 ms (1001 pts                                |
| 1) C I 3                                                  | Nov 13, 2022                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |



| Test specification: | eation: Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                                 |              |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.1                                                             | ANSI C63.10, Sections 9.9, 9.12 |              |  |  |  |
| Test mode:          | Compliance                                                                                 | Verdict:                        | PASS         |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                                      | verdict.                        | PASS         |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                                    | Air Pressure: 1010 hPa          | Power: 5 VDC |  |  |  |
| Remarks:            |                                                                                            |                                 |              |  |  |  |

#### Plot 7.4.39 Spurious emission measurements in 310 - 320 GHz range

OATS



Mid carrier frequency:

| Spectrum Analy<br>Swept SA     |                                                 | Spectrum Analyze<br>Swept SA |                                                          |                                                        |                                           |                                                      |
|--------------------------------|-------------------------------------------------|------------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|------------------------------------------------------|
| _                              | Input Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Int (S)    | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off | Avg Type: Log-Power<br>Avg Hold:>1/1<br>Trig: Free Run | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N N |                                                      |
| 1 Spectrum<br>Scale/Div 10 d   | в                                               |                              | Ref Lvi Offset 40<br>Ref Level 169.99                    |                                                        |                                           | Mkr1 310.81 GH<br>137.56 dBµV/r                      |
| 160                            |                                                 |                              |                                                          |                                                        |                                           | DL1 160.85 dByV/                                     |
| 150                            |                                                 |                              |                                                          |                                                        |                                           |                                                      |
| 140                            | 1 -                                             | and the survey of            | and the strength of the second                           | ميغ العربي المرجع التربي ومحاولتين أعاريهم             |                                           | and water and with the same the set of a first bards |
| 130                            |                                                 | all control of the           |                                                          |                                                        |                                           |                                                      |
| 120                            |                                                 |                              |                                                          |                                                        |                                           |                                                      |
| 110                            |                                                 |                              |                                                          |                                                        |                                           |                                                      |
| 0.0                            |                                                 |                              |                                                          |                                                        |                                           |                                                      |
| 30.0                           |                                                 |                              |                                                          |                                                        |                                           |                                                      |
| tart 310.000 (<br>Res BW 1.0 h |                                                 |                              | #Video BW 3.                                             | 0 MHz                                                  |                                           | Stop 320.000 GF<br>Sweep 9.60 ms (1001 pt            |
| <b>4</b> 5                     | 례∎?                                             | Nov 13, 2022                 | <u></u>                                                  |                                                        |                                           |                                                      |

#### High carrier frequency:

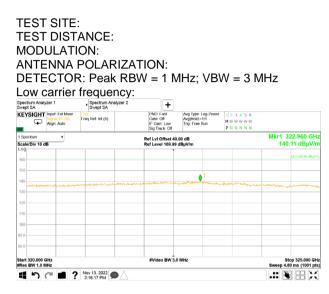
| Spectrum Analy<br>Swept SA | zer 1                                            | Swept SA                                                                                                       |                                          | +              |                                                       |                                           |      |                                |
|----------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-------------------------------------------------------|-------------------------------------------|------|--------------------------------|
|                            | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Int (S)                                                                                      | PND: F<br>Gate: O<br>IF Gain<br>Sig Trai | Low            | Avg Type: Log-Power<br>Avg Hold>1/1<br>Trig: Free Run | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N N |      |                                |
| 1 Spectrum                 | ,                                                |                                                                                                                | Ref Lvi O                                | ffset 40 0     | 0 dB                                                  |                                           | Mkr1 | 310.43 GH                      |
| Scale/Div 10 d             | в                                                |                                                                                                                | Ref Level                                |                |                                                       |                                           | 137  | .95 dBµV/                      |
| Log                        |                                                  |                                                                                                                |                                          | Ť              |                                                       |                                           |      |                                |
| 160                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      | DL1 160.86 dBy/V               |
| 150                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
|                            |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 140                        | and the part and                                 | and an and a second | maria                                    | and the second | And a             | ويحجبه العرور والمالية المراجد الم        | -    | www.www.                       |
| 130                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 120                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 110                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
|                            |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 100                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 0.0                        |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 30.0                       |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| 55.5                       |                                                  |                                                                                                                |                                          |                |                                                       |                                           |      |                                |
| Start 310.000 C            |                                                  |                                                                                                                | #Video                                   | BW 3.0         | MHz                                                   |                                           |      | top 320.000 G<br>50 ms (1001 p |
| 15                         | a 🖬 🤉                                            | Nov 13, 2022                                                                                                   |                                          |                |                                                       |                                           |      |                                |

0.005 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz

Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA Swept SA KEYSIGHT Input: Ext Mixer Signal ID: On Align: Auto Corr Freq Ref: Int (S) Avg Type: Pow Avg[Hold>1/1 Trig: Free Run ANNNN Gate: Off IF Gain: Low Sig Track: Off D4 Mkr1 310.35 GHz 130.25 dBµV/m 1 Spectrum Scale/Div 10 dB Ref LvI Offset 40.00 dB Ref Level 169.99 dBµV/m • #Video BW 3.0 MHz\* Span 10.00 GHz Sweep 12.4 ms (1001 pts) Center 315.000 GHz #Res BW 1.0 MHz 📲 🕤 (~ 🔳 ? Nov 13, 2022 🗩 🛆

121000 MHz 

| Swept SA                        | 2.61                                             | Swept SA                  | · +                                                      |                                                     |                                                                                                                |                           |                                 |
|---------------------------------|--------------------------------------------------|---------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------|
| KEYSIGHT                        | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Int (S) | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off | Avg Type: Power (<br>Avg Hold>1/1<br>Trig: Free Run | (RMS) 1 2 3 4 5 6<br>M W W W W W<br>A N N N N N                                                                |                           |                                 |
| 1 Spectrum                      | ۲                                                |                           | Ref LvI Offset                                           |                                                     |                                                                                                                |                           | 315.37 GH                       |
| Scale/Div 10 d                  | в                                                |                           | Ref Level 169.                                           | 99 dBµV/m                                           |                                                                                                                | 130                       | .17 dBµV/r                      |
| 5                               |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| 160                             |                                                  |                           |                                                          |                                                     |                                                                                                                |                           | -                               |
| 150                             |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| 140                             |                                                  |                           |                                                          |                                                     |                                                                                                                |                           | DL1 140.85 dByV                 |
|                                 |                                                  |                           |                                                          | <b>≜</b> 1                                          |                                                                                                                |                           |                                 |
| 130                             |                                                  |                           | a and an are the second the produces                     |                                                     | and a second | and a second and a second | and and a server                |
| 120                             |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| 110                             |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
|                                 |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| 100                             |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| 90.0                            |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| 80.0                            |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
|                                 |                                                  |                           |                                                          |                                                     |                                                                                                                |                           |                                 |
| Center 315.000<br>#Res BW 1.0 N |                                                  |                           | #Video BW 3                                              | .0 MHz*                                             |                                                                                                                | Sweep 12                  | Span 10.00 GH<br>.4 ms (1001 pt |
| 15                              |                                                  | Nov 13, 2022              |                                                          |                                                     |                                                                                                                |                           |                                 |
|                                 |                                                  | 3:15:08 PM                |                                                          |                                                     |                                                                                                                |                           |                                 |


|                                                                         | vept SA                                                            |                                       |                                         |
|-------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-----------------------------------------|
| SIGHT Input: Ext Mixer Corr<br>Signal ID: On<br>Align: Auto     Freq Re | ef: Int (S) PNC: Fast<br>Gate: Off<br>IF Gain: Los<br>Sig Track: C |                                       |                                         |
| ectrum v                                                                | Ref Lvi Offse<br>Ref Level 16                                      |                                       | Mkr1 311.50 GH<br>130.06 dBµV/r         |
|                                                                         |                                                                    | I I I I I I I I I I I I I I I I I I I |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       | DL1 140.86 dBy//                        |
| ▲1                                                                      |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
|                                                                         |                                                                    |                                       |                                         |
| er 315.000 GHz<br>BW 1.0 MHz                                            | #Video BW                                                          | 3.0 MHz*                              | Span 10.00 GH<br>Sweep 12.4 ms (1001 pt |
| ් 🔳 ? Nov 13                                                            | 3, 2022                                                            |                                       |                                         |



| Test specification: | cation: Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                                 |              |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------|---------------------------------|--------------|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.12                                                            | ANSI C63.10, Sections 9.9, 9.12 |              |  |  |  |
| Test mode:          | Compliance                                                                                 | Verdict:                        | PASS         |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                                      | verdict.                        | PASS         |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                                    | Air Pressure: 1010 hPa          | Power: 5 VDC |  |  |  |
| Remarks:            |                                                                                            |                                 |              |  |  |  |

#### Plot 7.4.40 Spurious emission measurements in 320 - 325 GHz range

OATS

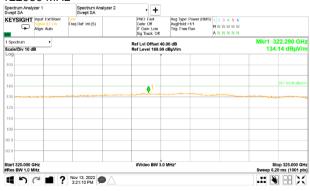


#### Mid carrier frequency:

| Spectrum Analy<br>Swept SA   |                                                 | Spectrum Ana<br>Swept SA   |                                         | +                        |                                                        |                                           |                    |                         |
|------------------------------|-------------------------------------------------|----------------------------|-----------------------------------------|--------------------------|--------------------------------------------------------|-------------------------------------------|--------------------|-------------------------|
|                              | Input Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Int (S)  | PND: I<br>Gate: 0<br>IF Gain<br>Sig Tra | off<br>t: Low            | Avg Type: Log-Power<br>Avg Hold:>1/1<br>Trig: Free Run | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N N |                    |                         |
| 1 Spectrum<br>Scale/Div 10 d | B                                               |                            |                                         | Offset 40.<br>I 169.99 ( |                                                        |                                           |                    | 22.845 GH<br>.16 dBµV/r |
| 160 Log                      |                                                 |                            |                                         | Ĭ                        |                                                        |                                           |                    | DL1 160.85 dByW         |
| 150                          |                                                 |                            |                                         |                          | <u>_1</u>                                              |                                           |                    |                         |
| 140                          |                                                 | 196-1967 (1989-1971-1976)  | وموقعه ورابعان ويود لوي معود ور         | ولحصارب                  |                                                        | an a  | eren alto angerena | ويعاديه معيديان         |
| 120                          |                                                 |                            |                                         |                          |                                                        |                                           |                    |                         |
| 110                          |                                                 |                            |                                         |                          |                                                        |                                           |                    |                         |
| 100                          |                                                 |                            |                                         |                          |                                                        |                                           |                    |                         |
| 90.0<br>90.0                 |                                                 |                            |                                         |                          |                                                        |                                           |                    |                         |
| Start 320.000 (              |                                                 |                            | #Vide                                   | o BW 3.0                 | MHz                                                    |                                           |                    | op 325.000 GH           |
| Res BW 1.0 M                 | (~) 🔳 ?                                         | Nov 13, 2022<br>3:16:44 PM |                                         |                          |                                                        |                                           | Sweep 4.8          | 0 ms (1001 pts          |

## High carrier frequency:

| Spectrum Analyzer 1<br>Swept SA      | <ul> <li>Spectrum Analyzer 2</li> <li>Swept SA</li> </ul>                                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KEYSIGHT Input Ext Mixe              | er Corr<br>Freq Ref: Int (S)                                                                                     | Gate: Off A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wg Type: Log-Power         1         2         3         4         5         6           wg[Hold:>1/1         M         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W         W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 Spectrum                           |                                                                                                                  | Ref Lvi Offset 40.00 c<br>Ref Level 169.99 dBµ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mkr1 323.165 GH<br>140.63 dBµV/r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Log                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 160                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DL1 160.05 dByV/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 150                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 140                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <b>≬</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A month and a start of the second    | and the second | and a start of the | and the second sec | und and the fight of the state |
| 130                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 120                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 110                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 90.0                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 80.0                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Start 320.000 GHz<br>#Res BW 1.0 MHz |                                                                                                                  | #Video BW 3.0 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Stop 325.000 GH<br>Sweep 4.80 ms (1001 pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15CI                                 | ? Nov 13, 2022                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

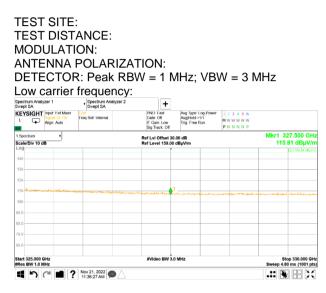

0.005 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz

Spectrum Analyzer 1 Swept SA Spectrum Analyzer 2 Swept SA + KEYSIGHT Input: Ext Name Signal ID: On Align: Auto PNC: Fast Gate: Off IF Gain: Low Sig Track: Off Corr Freq Ref: Int (S) Avg Type: Pow Avg[Hold>1/1 Trig: Free Run ANNNN U kr1 322.400 GHz 133.81 dBµV/m , Ref LvI Offset 40.00 dB Ref Level 169.99 dBµV/m Scale/Div 10 dB #Video BW 3.0 MHz\* Stop 325.000 GHz Sweep 6.20 ms (1001 pts) Start 320.000 GHz #Res BW 1.0 MHz ■ ? Nov 13, 2022 ● /

#### 121000 MHz

Spectrum Analyzer 1 Swept SA KEYSIGHT Input: Ext Mover Signal ID: On Align: Auto Spectrum Analyzer 2 Swept SA + NO: Fast Sate: Off Corr Freq Ref: Int (S) Avg Type: Pow Avg|Hold>1/1 Trig: Free Run 1 2 3 4 5 6 MWWWWW ANNNN 1 Spectrum Scale/Div 10 dB IF Gain: Low Sin Track: Of • Mkr1 322.860 GH 133.89 dBµV/ Ref Lvi Offset 40.00 dB Ref Level 169.99 dBµV/m ٠ #Video BW 3.0 MHz\* Start 320.000 GHz #Res BW 1.0 MHz Stop 325.000 GHz eep 6.20 ms (1001 pts) ■ ? Nov 13, 2022 .# 🖲 🗄 🔀

#### 122980 MHz



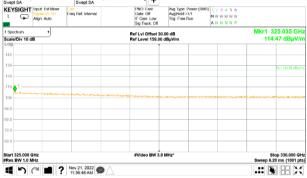

#### Page 72 of 90



| Test specification: | Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                        |              |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|------------------------|--------------|--|--|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.1                                                     | 2                      |              |  |  |  |  |  |
| Test mode:          | Compliance                                                                         | Verdict:               | PASS         |  |  |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                              | verdict.               | PASS         |  |  |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                            | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |  |
| Remarks:            |                                                                                    |                        |              |  |  |  |  |  |

#### Plot 7.4.41 Spurious emission measurements in 325 - 330 GHz range




#### Mid carrier frequency:

| Swept                               |                       |                                  | Spectrum Ana<br>Swept SA          | iyzer 2                         | +                      |                                      |                                                                                                                |              |                             |
|-------------------------------------|-----------------------|----------------------------------|-----------------------------------|---------------------------------|------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------|-----------------------------|
|                                     | SIGHT                 | Input Ext Mixer<br>Signal ID: On | Corr<br>Freg Ref: Internal        |                                 | PNO: Fast<br>Gate: Off | Avg Type: Log-Power<br>AvgiHold:>1/1 | 1 2 3 4 5 6                                                                                                    |              |                             |
| L                                   | Ģ                     | Align: Auto                      | rieq Kei, inieniai                |                                 | IF Gain: Low           | Trig: Free Run                       | $M \otimes W \otimes W \otimes W$                                                                              |              |                             |
| м                                   |                       |                                  |                                   |                                 | Sig Track: Off         |                                      | PNNNP                                                                                                          |              |                             |
| 1 Spe                               | ctrum                 |                                  |                                   | r                               | Ref Lyl Offset 30.0    | 00 dB                                |                                                                                                                |              | 7.500 GH                    |
|                                     | Div 10 d              | 8                                |                                   | F                               | Ref Level 159.00 d     | dBμV/m                               |                                                                                                                | 116.6        | 65 dBµV/r                   |
| Log                                 |                       |                                  |                                   |                                 | Ţ                      |                                      |                                                                                                                |              | DL1 154.84 dByV/            |
| 149                                 |                       |                                  | _                                 |                                 |                        |                                      |                                                                                                                |              |                             |
| 139                                 |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 129                                 |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 110                                 | bern and all          |                                  | and the second second             |                                 | 1                      |                                      |                                                                                                                |              |                             |
|                                     |                       |                                  | and the state of the state of the | And water and the second second | manusa                 | alexiners/heatres/heatre             | ing and a second se | -dimensional | encuencedes                 |
| 109                                 |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 99.0                                |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 00.0                                |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
|                                     |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 39.0                                |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 89.0<br>79.0                        |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 39.0<br>79.0 -                      |                       |                                  |                                   |                                 |                        |                                      |                                                                                                                |              |                             |
| 89.0 -<br>79.0 -<br>69.0 -<br>Start | 325.000 G<br>BW 1.0 M |                                  |                                   |                                 | ≢Video BW 3.0          | MHz                                  |                                                                                                                |              | p 330.000 GH<br>ms (1001 pt |

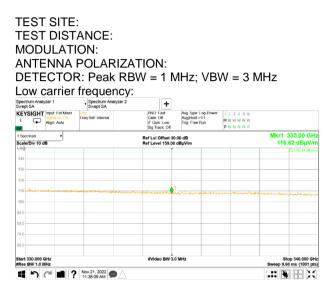
#### High carrier frequency:

| Spectrum Analy:<br>Swept SA      | zer 1                                            | Spectrum Analyzer 2<br>Swept SA                   | +                                                        |                                                        |                                           |                                      |                                          |
|----------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| L G                              | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal                        | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off | Awg Type: Log-Power<br>Awg Hold:>1/1<br>Trig: Free Run | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N P |                                      |                                          |
| 1 Spectrum                       | •                                                |                                                   | Ref Lvi Offset 30.0                                      |                                                        |                                           |                                      | 25.685 GH                                |
| Scale/Div 10 di                  | в                                                |                                                   | Ref Level 159.00 d                                       | BµV/m                                                  |                                           | 120.4                                | 46 dBµV/ı                                |
| Log                              |                                                  |                                                   | T                                                        |                                                        |                                           |                                      | DL1 154.84 dByV                          |
| 149                              |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 139                              |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 129                              | ▲1                                               |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 119 millionational               |                                                  | and the second second second second second second | وروبيه العرور وحالا المالية والمراجع                     | ann an airte ann an   |                                           | 1. and 10 me allow 11 me and a grant | an a |
| 109                              |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 99.0                             |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 89.0                             |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 79.D                             |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| 69.D                             |                                                  |                                                   |                                                          |                                                        |                                           |                                      |                                          |
| Start 325.000 G<br>#Res BW 1.0 M |                                                  |                                                   | #Video BW 3.0 P                                          | MHz                                                    |                                           | Sto<br>Sweep 4.80                    | op 330.000 GH<br>0 ms (1001 pt           |
| <b>1</b> 5                       | ₽.                                               | Nov 21, 2022                                      |                                                          |                                                        |                                           | .:: 🔖                                |                                          |

OATS 0.01 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz Sector Analyzer 1 Sector Analyzer 2 +



#### 121000 MHz


Spectrum Analyzer 1 Swept SA KEYSIGHT Input: Ext Mixer L Signal ID: On Align: Auto Spectrum Analyzer 2 Swept SA Corr Freq Ref: Internal Avg Type: Pow Avg|Hold>1/1 Trig: Free Run 1 2 3 4 5 6 MWWWWW ANNNP 1 Spectrum Scale/Div 10 dB F Gain: Low Sin Track: O • Mkr1 325.095 GH 114.01 dBµV/r Ref LvI Offset 30.00 dB Ref Level 159.00 dBµV/m 139 #Video BW 3.0 MHz\* Start 325.000 GHz #Res BW 1.0 MHz Stop 330.000 GHz eep 6.20 ms (1001 pts) 11:34:03 AM .:: 🖹 🗄 🔀

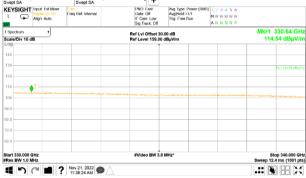
| Spectrum Analyzer 1<br>Swept SA      | Spectrum Analyz<br>Swept SA    | · I I                                                                                                           |                                                      |                                                                                                                  |                                          |                             |
|--------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|
| L C Align: Auto                      | Corr<br>Freq Ref: Internal     | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off                                                        | Avg Type: Power (R<br>Avg Hold>1/1<br>Trig: Free Run | MS) 1 2 3 4 5 6<br>M W W W W W<br>A N N N N P                                                                    |                                          |                             |
| 1 Spectrum   Scale/Div 10 dB         |                                | Ref Lvi Offset 30<br>Ref Level 159.00                                                                           |                                                      |                                                                                                                  |                                          | 25.385 GH<br>32 dBµV/r      |
| Log                                  |                                | Ĭ                                                                                                               |                                                      |                                                                                                                  |                                          |                             |
| 149                                  |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| 139                                  |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          | DL1 134.84 dByV             |
| 129                                  |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| 119                                  |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| 109                                  | strong and the states and a se | material and a state of the second of the second | allatic document of the second                       | hater and the state of the second states of the second states of the second states of the second states of the s | an a | califyrigersia              |
| 99.0                                 |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| 69.0                                 |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| 79.0                                 |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| 69.0                                 |                                |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |
| Start 325.000 GHz<br>#Res BW 1.0 MHz |                                | #Video BW 3.0                                                                                                   | MHz'                                                 |                                                                                                                  | Sto<br>Sweep 6.20                        | p 330.000 Gi<br>ms (1001 pt |
| #bc∎?                                | Nov 21, 2022                   |                                                                                                                 |                                                      |                                                                                                                  |                                          |                             |



| Test specification: | Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                        |              |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|------------------------|--------------|--|--|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.1                                                     | 2                      |              |  |  |  |  |  |
| Test mode:          | Compliance                                                                         | Verdict:               | PASS         |  |  |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                              | verdict.               | PASS         |  |  |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                            | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |  |
| Remarks:            |                                                                                    |                        |              |  |  |  |  |  |

#### Plot 7.4.42 Spurious emission measurements in 330 - 340 GHz range




#### Mid carrier frequency:

| Swept  |                       |                                  | Spectrum Anal<br>Swept SA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
|--------|-----------------------|----------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------|--------------------------------------------|
|        |                       | Input Ext Mixer<br>Signal ID: On | Corr<br>Freq Ref: Internal | PNO: Fast<br>Gate: Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Avg Type: Log-Power<br>AvgiHold:>1/1 | 1 2 3 4 5 6                |                                            |
| L      | Ģ                     | Align: Auto                      | rioq roci, inicina         | IF Gain: Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trig: Free Run                       | MWWWWW                     |                                            |
| м      |                       |                                  |                            | Sig Track: Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | PNNNP                      |                                            |
| 1 Spei | ctrum                 | •                                |                            | Ref Lvi Offset 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00 dB                              |                            | Mkr1 335.00 GH                             |
|        | /Div 10 d             | 8                                |                            | Ref Level 159.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 dBµV/m                             |                            | 116.57 dBµV/n                              |
| Log    |                       |                                  |                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                            | DL1 154.84 dByV/r                          |
| 149    |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | -                          |                                            |
| 139    |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
| 129    |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
| 119    |                       |                                  |                            | And a start of the | 1                                    |                            |                                            |
|        |                       |                                  |                            | and the state of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tortastra Rod The should be be be    | enserations and the second | Sectors and the second second in gravities |
| 109 -  |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
| 99.D   |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
| 39.0   |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
| 79.0   |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
| 59.D   |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
|        |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |
|        | 330.000 G<br>BW 1.0 N |                                  |                            | #Video BW 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0 MHz                               |                            | Stop 340.000 GH<br>Sweep 9.60 ms (1001 pts |
|        |                       |                                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                            |                                            |

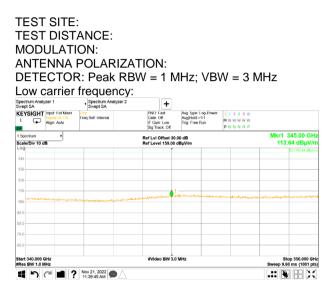
#### High carrier frequency:

| Spect<br>Swep | rum Analy<br>t SA     | zer 1                                           | Spectrum Analy<br>Swept SA                                                                                      | /zer 2         | +                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
|---------------|-----------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|------------------------------|
| L             | -                     | Input Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal                                                                                      | 0              | PNO: Fast<br>Sate: Off<br>F Gain: Low<br>Sig Track: Off | Avg Type: Log-Power<br>Avg Hold:>1/1<br>Trig: Free Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N P |                   |                              |
| Scale         | ctrum<br>/Div 10 d    | B                                               |                                                                                                                 |                | f Lvi Offset 30.0<br>f Level 159.00 d                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   | 333.69 GH<br>09 dBµV/        |
| Log           |                       |                                                 |                                                                                                                 |                | Ţ                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   | DL1 154.84 dBuV              |
| 149           |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
| 139           |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
| 129           |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
| 119           | ورمليومراء            | mananteriordates                                | and the state of the | معدر بالمجلوبة | والمستحد المالي معادية                                  | here and a start of the start o |                                           |                   |                              |
| 109           |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | alan 200 finiti d | an Arton                     |
| 99.0          |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
| 39.0          |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
|               |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
| 79.0          |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
| 69.0          |                       |                                                 |                                                                                                                 |                |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                   |                              |
|               | 330.000 C<br>BW 1.0 N |                                                 |                                                                                                                 |                | ≢Video BW 3.0 I                                         | MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                   | op 340.000 G<br>0 ms (1001 p |
| 1             | 5                     | ? 🖿                                             | Nov 21, 2022                                                                                                    | $\square$      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | .:: 🖲             |                              |

OATS 0.01 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz Beetrom Analyzer 1 Beetrom Analyzer 2 +



#### 121000 MHz


Spectrum Analyzer 1 Swept SA KEYSIGHT Input: Ext Mixer L Signal ID: On Align: Auto Spectrum Analyzer 2 Swept SA + Corr Freq Ref: Internal Avg Type: Pow Avg|Hold>1/1 Trig: Free Run 1 2 3 4 5 6 MWWWWW ANNNF 1 Spectrum Scale/Div 10 dB IF Gain: Low Sin Track: O • Mkr1 330.00 GH Ref LvI Offset 30.00 dB Ref Level 159.00 dBµV/m 139 119 #Video BW 3.0 MHz\* Start 330.000 GHz #Res BW 1.0 MHz Stop 340.000 GHz eep 12.4 ms (1001 pts) 11:32:17 AM .:: 🖹 🗄 🔀

| Spect<br>Swep | trum Analı<br>It SA   | yzer 1                                           |              | Spectrum Ana<br>Swept SA | alyzer 2 | ,     | +                      |                                                  |              |                             |                                  |
|---------------|-----------------------|--------------------------------------------------|--------------|--------------------------|----------|-------|------------------------|--------------------------------------------------|--------------|-----------------------------|----------------------------------|
| L             | (Sight                | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq | Ref: Internal            |          |       |                        | Avg Type: Powe<br>Avg[Hold>1/1<br>Trig: Free Run | м            | 2 3 4 5 6<br>WWWWW<br>NNNNP |                                  |
| Scale         | xtrum<br>e/Div 10 d   | iB T                                             |              |                          |          |       | Offset 30<br>el 159.00 |                                                  |              |                             | 330.45 GH<br>.50 dBµV/r          |
| Log           |                       |                                                  |              |                          |          |       | ľ                      |                                                  |              |                             |                                  |
| 149           |                       |                                                  | -            |                          |          |       | -                      |                                                  |              |                             |                                  |
| 139           |                       |                                                  | _            |                          |          |       |                        |                                                  |              |                             | DL1 134.84 dByV/                 |
| 129           |                       |                                                  |              |                          |          |       |                        |                                                  |              |                             |                                  |
| 119           | •1                    |                                                  | _            |                          |          |       |                        |                                                  |              |                             |                                  |
| 109           |                       |                                                  |              |                          |          |       |                        |                                                  | Christ Labor |                             | <br>                             |
| 99.D          |                       |                                                  |              |                          |          |       |                        |                                                  |              |                             |                                  |
| 89.0          |                       |                                                  |              |                          |          |       |                        |                                                  |              |                             |                                  |
| 79.0          |                       |                                                  |              |                          |          |       |                        |                                                  |              |                             |                                  |
| 69.D          |                       |                                                  | _            |                          |          |       |                        |                                                  |              |                             |                                  |
|               | 330.000 (<br>BW 1.0 N |                                                  |              |                          |          | #Vide | o BW 3.0               | MHz*                                             |              |                             | top 340.000 GH<br>.4 ms (1001 pt |
| 1             | 5                     | a 🔳 ?                                            | No           | v 21, 2022               |          |       |                        |                                                  |              |                             |                                  |



| Test specification: | Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                        |              |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|------------------------|--------------|--|--|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.1                                                     | 2                      |              |  |  |  |  |  |
| Test mode:          | Compliance                                                                         | Verdict:               | PASS         |  |  |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                              | verdict.               | PASS         |  |  |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                            | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |  |
| Remarks:            |                                                                                    |                        |              |  |  |  |  |  |

#### Plot 7.4.43 Spurious emission measurements in 340 - 350 GHz range



#### Mid carrier frequency:

| Swept |                      |                                                 | Spectrum Ana<br>Swept SA   | ilyzer 2                       | +                                      |                                                                |                       |             |                                |
|-------|----------------------|-------------------------------------------------|----------------------------|--------------------------------|----------------------------------------|----------------------------------------------------------------|-----------------------|-------------|--------------------------------|
| KEYS  |                      | Input Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal |                                | PNO: Fast<br>Gate: Off<br>IF Gain: Low | Avg Type: Log-Powe<br>Avg Hold>1/1<br>Trig: Free Run           | 1 2 3 4 5 6<br>MWWWWW |             |                                |
| UN    | Ŧ                    | Align: Auto                                     |                            |                                | Sig Track: Off                         | ing: Free Kun                                                  | PNNNP                 |             |                                |
|       | trum<br>Div 10 d     | r<br>B                                          |                            |                                | ef Lvi Offset 3<br>ef Level 159.0      |                                                                |                       |             | 345.00 GH<br>19 dBµV/r         |
| Log   |                      |                                                 |                            |                                | Ţ                                      |                                                                |                       |             | DL1 154.84 dBy//               |
| 149   |                      |                                                 | _                          |                                |                                        |                                                                |                       |             |                                |
| 139 - |                      |                                                 |                            |                                |                                        |                                                                |                       |             |                                |
| 129   |                      |                                                 |                            |                                |                                        |                                                                |                       |             |                                |
| 119   |                      |                                                 |                            |                                |                                        | 1                                                              |                       |             |                                |
| 109   |                      | entergraderies and                              |                            | والم المنصورة المناطقة المراجع | and with more thank                    | איזיני אלא פרייניע אפריינער אייייינייע.<br>אוזיני אייניייייייי | minuthermore          | enen seeren |                                |
| 0.0   |                      |                                                 | _                          |                                |                                        |                                                                |                       |             |                                |
| 39.0  |                      |                                                 |                            |                                |                                        |                                                                |                       |             |                                |
| 79.0  |                      |                                                 |                            |                                |                                        |                                                                |                       |             |                                |
| 69.0  |                      |                                                 | _                          |                                |                                        |                                                                |                       |             |                                |
|       | 40.000 (<br>BW 1.0 N |                                                 |                            |                                | #Video BW 3                            | .0 MHz                                                         |                       |             | op 350.000 GH<br>0 ms (1001 pt |
| 4     | 5                    | 례∎?                                             | Nov 21, 2022               |                                |                                        |                                                                |                       | .:: 🖎       |                                |

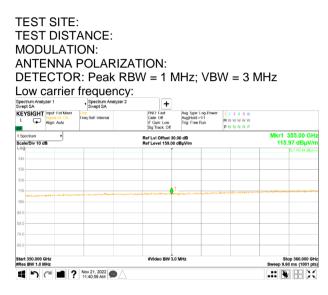
#### High carrier frequency:


| Spectr<br>Swept | um Analy<br>SA    | zer 1                                                                                                           | Spectrum And<br>Swept SA                | alyzer 2                         | +                                                 |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| L               | 0                 | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto                                                                | Corr<br>Freq Ref: Internal              | G                                | NC: Fast<br>ate: Off<br>Gain: Low<br>g Track: Off | Avg Type: Log-Power<br>Avg[Hold:>1/1<br>Trig: Free Run                                                          | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N P                                                                       |                                                                                                                 |                        |
|                 | trum<br>'Div 10 d | B                                                                                                               |                                         | Ref                              | Lvi Offset 30.0<br>Level 159.00 d                 |                                                                                                                 |                                                                                                                 |                                                                                                                 | 345.00 GH<br>99 dBµV/r |
| .og             |                   |                                                                                                                 |                                         |                                  | Ť                                                 |                                                                                                                 |                                                                                                                 |                                                                                                                 | DL1 154.84 dByV/r      |
| 149             |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 139             |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 129             |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 119             |                   |                                                                                                                 |                                         |                                  | 1                                                 |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 109             | nerelandeter.     | and the stand of the | ann an | and a second and a second second | and a start                                       | and an and a support of the second | hattan and a start and a start and a start a st | and the state of the | العلاسيه معادلهم       |
| 9.0             |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 89.0            |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 79.0            |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| 69.0            |                   |                                                                                                                 |                                         |                                  |                                                   |                                                                                                                 |                                                                                                                 |                                                                                                                 |                        |
| Start 1         | 40.000 0          | 247                                                                                                             |                                         |                                  | Video BW 3.0                                      |                                                                                                                 |                                                                                                                 | St/                                                                                                             | p 350.000 GH           |
|                 | BW 1.0 N          |                                                                                                                 |                                         | -                                | 1000 244 3.0                                      | 1411 M.                                                                                                         |                                                                                                                 | Sweep 9.60                                                                                                      | ) ms (1001 pts         |
| 4               | 5                 | ? 🔳 🗠                                                                                                           | Nov 21, 2022<br>11:17:05 AM             |                                  |                                                   |                                                                                                                 |                                                                                                                 | .:: 🖎                                                                                                           |                        |

OATS 0.01 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz Sector Analyzer 1 Sector Analyzer 2 +



#### 121000 MHz


Spectrum Analyzer 1 Swept SA KEYSIGHT Input: Ext Mover L Signal ID: On Align: Auto Spectrum Analyzer 2 Swept SA + IO: Fast ste: Off Avg Type: Pow Avg|Hold>1/1 Trig: Free Run Corr Freq Ref: Internal 1 2 3 4 5 6 MWWWWW ANNNN 1 Spectrum Scale/Div 10 dB IF Gain: Low Sin Track: Of • Mkr1 345.37 GH 108.72 dBµV/n Ref LvI Offset 30.00 dB Ref Level 159.00 dBµV/m 139 ١ #Video BW 3.0 MHz\* Start 340.000 GHz #Res BW 1.0 MHz Stop 350.000 GHz sep 12.4 ms (1001 pts) ■ ? Nov 21, 2022 .# 🖲 🗄 🔀





| Test specification: | Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                        |              |  |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|------------------------|--------------|--|--|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.12                                                    | 2                      |              |  |  |  |  |  |
| Test mode:          | Compliance                                                                         | Verdict:               | PASS         |  |  |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                              | verdict.               | PASS         |  |  |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                            | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |  |
| Remarks:            |                                                                                    |                        |              |  |  |  |  |  |

#### Plot 7.4.44 Spurious emission measurements in 350 - 360 GHz range



#### Mid carrier frequency:

| Swept |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spectrum Analyze<br>Swept SA |                                                                                                                  |                                                                                                                  |                                                |                                           |
|-------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------|
| L     | -                     | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Corr<br>Freq Ref: Internal   | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off                                                         | Avg Type: Log-Power<br>Avg[Hold:>1/1<br>Trig: Free Run                                                           | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N P      |                                           |
| Scale | ctrum<br>J/Div 10 d   | - <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Ref LvI Offset 30<br>Ref Level 159.00                                                                            |                                                                                                                  |                                                | Mkr1 355.00 GH<br>116.17 dBµV/r           |
| Log   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                | DL1 154.84 dByV                           |
| 149   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 139   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 129   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 119   |                       | المرجعة والمحافظة والمحاف | an and a state of the second | and the second | and the second | والمتلكمة ومراجع والمعر والمعرف والمعاول والمع | Contraction of the contraction            |
| 109   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 99.D  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 39.0  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 79.0  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
| 69.D  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                                                                  |                                                                                                                  |                                                |                                           |
|       | 350.000 C<br>BW 1.0 N |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | #Video BW 3.0                                                                                                    | MHz                                                                                                              |                                                | Stop 360.000 GH<br>Sweep 9.60 ms (1001 pt |
| -     | 5                     | < ∎ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Nov 21, 2022                 |                                                                                                                  |                                                                                                                  |                                                |                                           |

#### High carrier frequency:

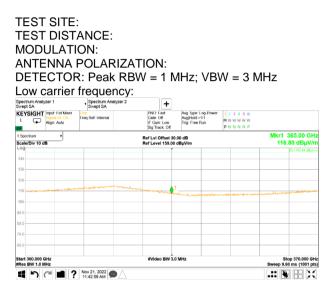
| Spect | rum Analy<br>t SA     | zer 1                                            | <ul> <li>Spectrum Ana<br/>Swept SA</li> </ul> | lyzer 2                     |                                         | +                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
|-------|-----------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------|-----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| L     | -                     | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal                    |                             | PNO: F<br>Gate: C<br>IF Gain<br>Sig Tra | Low                   | Avg Type: Log-Power<br>Avg[Hold>1/1<br>Trig: Free Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N P                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
|       | ctrum<br>#/Div 10 d   | ,<br>B                                           |                                               |                             |                                         | offset 30<br>I 159.00 | .00 dB<br>dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 355.00 GH<br>.11 dBµV/         |
| Log   |                       |                                                  |                                               |                             |                                         | Ţ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DL1 154.84 dBy/                |
| 149   |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 139   |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 129   |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 119   |                       |                                                  |                                               |                             |                                         |                       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | and the second se |                                |
| 109   | 40-096-9h             | ومواجوا جداف بعريماتها                           |                                               | Array and the second second |                                         | man                   | and the state of t | - All and a second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 109   |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 99.0  |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 69.0  |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 79.0  |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
| 69.0  |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
|       |                       |                                                  |                                               |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |
|       | 350.000 C<br>BW 1.0 N |                                                  |                                               |                             | #Vide                                   | 5 BW 3.0              | MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | op 360.000 GH<br>0 ms (1001 pt |
| 4     | 5                     | ി 🔳 ?                                            | Nov 21, 2022                                  |                             |                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |

OATS 0.01 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz · +

| Swept SA                        |                                                  | Swept SA                   | .,  | · • •                                                 |                           |       |                                     |            |                                |
|---------------------------------|--------------------------------------------------|----------------------------|-----|-------------------------------------------------------|---------------------------|-------|-------------------------------------|------------|--------------------------------|
| Keysight<br>L GD                | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal | 0   | PNO: Fast<br>Gate: Off<br>F Gain: Lov<br>Sig Track: C | Avg Hold><br>Trig: Free F | tun M | 2 3 4 5 6<br>W W W W W<br>N N N N P |            |                                |
| 1 Spectrum                      | •                                                |                            |     |                                                       | t 30.00 dB                |       |                                     |            | 359.81 GH                      |
| Scale/Div 10 d                  | В                                                |                            | Rel | f Level 15                                            | 0.00 dBµV/m               |       |                                     | 112        | 12 dBµV/r                      |
| 149                             |                                                  |                            |     |                                                       |                           |       |                                     |            |                                |
| 139                             |                                                  |                            |     |                                                       |                           |       |                                     |            | DL1 134.84 dByV/               |
| 129                             |                                                  |                            |     |                                                       |                           |       |                                     |            |                                |
| 119                             |                                                  |                            |     |                                                       |                           |       |                                     |            |                                |
| 109                             | محودين ويوجدونه                                  |                            |     |                                                       |                           |       |                                     | مرسميونيون |                                |
| 99.0                            |                                                  |                            |     |                                                       |                           |       |                                     |            |                                |
| 89.0                            | _                                                |                            |     |                                                       |                           |       |                                     |            |                                |
| 79.0                            |                                                  |                            |     |                                                       |                           |       | -                                   |            | +                              |
| 69.D                            |                                                  |                            |     |                                                       |                           |       |                                     |            |                                |
| Start 350.000 (<br>Res BW 1.0 M |                                                  |                            |     | Video BV                                              | 3.0 MHz*                  |       |                                     |            | op 360.000 GH<br>4 ms (1001 pt |
| 1                               | ? 🔳                                              | Nov 21, 2022               |     |                                                       |                           |       |                                     |            |                                |

121000 MHz

| Swept SA                         | (2)81                                            | Swept SA                   | • +                                                      |                                                     |                                                |     |                 |
|----------------------------------|--------------------------------------------------|----------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-----|-----------------|
| KEYSIGHT                         | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off | Avg Type: Power (<br>Avg Hold>1/1<br>Trig: Free Run | RMS) 1 2 3 4 5 6<br>M W W W W W<br>A N N N N P |     |                 |
| 1 Spectrum                       |                                                  |                            | Ref Lvi Offset 30                                        | .00 dB                                              |                                                |     | 359.93 GH       |
| Scale/Div 10 d                   | в                                                |                            | Ref Level 159.00                                         |                                                     |                                                | 112 | .48 dBµV/       |
| Log                              |                                                  |                            | Ť                                                        |                                                     |                                                | 1   |                 |
| 149                              |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 139                              |                                                  |                            |                                                          |                                                     |                                                |     | DL1 134.84 dBu/ |
| 129                              |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 119                              |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 109                              |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 99.0                             |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 69.0                             |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 79.0                             |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| 69.D                             |                                                  |                            |                                                          |                                                     |                                                |     |                 |
| Start 350.000 C<br>#Res BW 1.0 N |                                                  |                            | #Video BW 3.0                                            | MHz"                                                |                                                |     | top 360.000 G   |
| <b>1</b> )                       | 례∎?                                              | Nov 21, 2022               |                                                          |                                                     |                                                | .:: |                 |


| Spectrum Analyzer 1<br>Swept SA                             | Spectrum Analyzer 2<br>Swept SA | • +                                 |                                           |                               |
|-------------------------------------------------------------|---------------------------------|-------------------------------------|-------------------------------------------|-------------------------------|
| KEYSIGHT Input: Ext Mixer<br>L Signal ID: On<br>Align: Auto | eq Ref: Internal Gate           |                                     | 1 2 3 4 5 6<br>M W W W W W<br>A N N N N P |                               |
| 1 Spectrum v<br>Scale/Div 10 dB                             |                                 | Offset 30.00 dB<br>el 159.00 dBµV/m |                                           | r1 358.90 GH<br>112.43 dBµV/n |
| Log                                                         |                                 | T                                   |                                           |                               |
| 149                                                         |                                 |                                     |                                           |                               |
| 139                                                         |                                 |                                     |                                           | DL1 134,84 dByV/              |
| 129                                                         |                                 |                                     |                                           |                               |
| 119                                                         |                                 |                                     |                                           |                               |
| 109                                                         |                                 |                                     |                                           | a financiana                  |
|                                                             |                                 |                                     |                                           |                               |
| 99.0                                                        |                                 |                                     |                                           |                               |
| 89.0                                                        |                                 |                                     |                                           |                               |
| 79.0                                                        |                                 |                                     |                                           |                               |
| 69.D                                                        |                                 |                                     |                                           |                               |
| Start 350.000 GHz<br>Res BW 1.0 MHz                         | #Vid                            | o BW 3.0 MHz*                       | Sweet                                     | Stop 360.000 GH               |
| 4 5 C <b>1</b> ? 1                                          | ov 21, 2022 👝 🛆                 |                                     |                                           |                               |

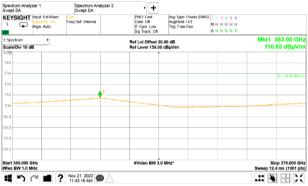


| Test specification: | Section 15.258(c)(3), Out of band radiated emissions above<br>40 GHz up to 370 GHz |                        |              |  |  |  |  |
|---------------------|------------------------------------------------------------------------------------|------------------------|--------------|--|--|--|--|
| Test procedure:     | ANSI C63.10, Sections 9.9, 9.12                                                    |                        |              |  |  |  |  |
| Test mode:          | Compliance                                                                         | Verdict:               | PASS         |  |  |  |  |
| Date(s):            | 31-Oct-22 - 21-Nov-22                                                              | verdict.               | PASS         |  |  |  |  |
| Temperature: 27 °C  | Relative Humidity: 50 %                                                            | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |
| Remarks:            |                                                                                    |                        |              |  |  |  |  |

#### Plot 7.4.45 Spurious emission measurements in 360 - 370 GHz range

OATS




#### Mid carrier frequency:

| Swep        |                       |                                                  | Spectrum And<br>Swept SA                 | alyzer 2                  | +                                                        |                                                        |                                           |                   |                                |
|-------------|-----------------------|--------------------------------------------------|------------------------------------------|---------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------|--------------------------------|
| L           | -                     | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal               |                           | PNO: Fast<br>Gate: Off<br>IF Gain: Low<br>Sig Track: Off | Avg Type: Log-Power<br>Avg Hold:>1/1<br>Trig: Free Run | 1 2 3 4 5 6<br>M W W W W W<br>P N N N N P |                   |                                |
|             | ctrum<br>/Div 10 d    | ,<br>B                                           |                                          |                           | Ref Lvi Offset 30.<br>Ref Level 159.00                   |                                                        | PRANAP                                    |                   | 365.00 GH<br>71 dBµV/r         |
| Log         |                       | _                                                |                                          |                           | Ť                                                        |                                                        |                                           |                   | DL1 154.84 dByV                |
| 149         |                       |                                                  |                                          |                           |                                                          |                                                        |                                           |                   |                                |
| 139         |                       |                                                  |                                          |                           |                                                          |                                                        |                                           |                   |                                |
| 129<br>119  | ومعتوه مراسوم         | nana), ayanda (i Marti                           | الماد معرف فيرويون <sub>الا</sub> رون ال | n an amh a dhan bhair bha | the new methods                                          | anghalanga kalanan ke                                  | f.seconomeron deserve                     | gran and          | الموالية المحاجرين             |
| 109<br>99.0 |                       |                                                  |                                          |                           |                                                          |                                                        |                                           |                   |                                |
| 9.0         |                       |                                                  |                                          |                           |                                                          |                                                        |                                           |                   |                                |
| 79.0        |                       |                                                  |                                          |                           |                                                          |                                                        |                                           |                   |                                |
| 69.D        |                       |                                                  |                                          |                           |                                                          |                                                        |                                           |                   |                                |
|             | 360.000 C<br>BW 1.0 N |                                                  |                                          |                           | #Video BW 3.0                                            | MHz                                                    |                                           | Sto<br>Sweep 9.66 | op 370.000 GH<br>0 ms (1001 pt |
|             | 5                     | ? 🔳                                              | Nov 21, 2022<br>11:26:19 AM              |                           |                                                          |                                                        |                                           |                   |                                |

#### High carrier frequency:

| Spect | trum Analy<br>t SA    | zer 1                                            | Spectrum Analyzo<br>Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +                          |                                                        |                            |     |                               |
|-------|-----------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|----------------------------|-----|-------------------------------|
|       | 0                     | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Corr<br>Freq Ref: Internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PNO:<br>Gate:<br>IF Gai<br>Sig Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Off                        | Avg Type: Log-Power<br>Avg Hold:>1/1<br>Trig: Free Run | 123456<br>MWWWWW<br>PNNNNP |     |                               |
| Scale | sctrum<br>e/Div 10 d  | 8                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Offset 30.0<br>el 159.00 d |                                                        |                            |     | 365.00 GH<br>.43 dBµV/        |
| Log   |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť                          |                                                        |                            |     | DL1 154.84 dBu                |
| 149   |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
| 139   |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            | _   |                               |
| 129   |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
| 119   | المعروفانين           | يناوران المالي مرارعون                           | and the second sec | and the second state of th | man 1                      | Materian Marca                                         | Concerning Concerning      |     | and the second                |
| 109   |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
| 99.D  |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
| 39.0  |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
| 79.D  |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
| 69.0  |                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                        |                            |     |                               |
|       | 360.000 C<br>BW 1.0 N |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ≇Vide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o BW 3.0 f                 | MHz                                                    |                            |     | op 370.000 G<br>50 ms (1001 p |
| 1     | 5                     | ? 🖿                                              | Nov 21, 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                        |                            | .:: |                               |

0.01 m CW Vertical and Horizontal DETECTOR: Average (RMS) RBW = 1 MHz; VBW = 3MHz 119000 MHz



#### 121000 MHz

Spectrum Analyzer 1 Swept SA KEYSIGHT Input: Ext Mixer L Signal ID: On Align: Auto Spectrum Analyzer 2 Swept SA + O: Fast te: Off Corr Freq Ref: Internal Avg Type: Pow Avg|Hold>1/1 Trig: Free Run 1 2 3 4 5 6 MWWWWW ANNNP 1 Spectrum Scale/Div 10 dB IF Gain: Low Sin Track: Of • Mkr1 363.16 GH Ref LvI Offset 30.00 dB Ref Level 159.00 dBµV/m 139 129 ♦1 #Video BW 3.0 MHz\* Start 360.000 GHz #Res BW 1.0 MHz Stop 370.000 GHz eep 12.4 ms (1001 pts) 11:27:00 AM .:: 🖹 🗄 🔀

| Spectrur<br>Swept S  | m Analy<br>SA | zer 1                                            |       | Spectrum Ana<br>Swept SA                                                                                         | alyzer 2              | •                                       | +                      |                                          |     |                                                                                                                  |                         |                                  |
|----------------------|---------------|--------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------------|------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------|
| L                    | 0             | Input: Ext Mixer<br>Signal ID: On<br>Align: Auto | Freq  | Ref: Internal                                                                                                    |                       | PNO: F<br>Gate: 0<br>IF Gair<br>Sig Tra | off<br>: Low           | Avg Type: F<br>Avg Hold><br>Trig: Free F | 1/1 | 1 2 3 4 5 6<br>M W W W W W<br>A N N N N P                                                                        |                         |                                  |
| 1 Spectri<br>Scale/D |               | - <b>-</b>                                       |       |                                                                                                                  |                       |                                         | Offset 30.<br>1 159.00 |                                          |     |                                                                                                                  |                         | 362.85 GH<br>.32 dBµV/r          |
| Log                  |               |                                                  |       |                                                                                                                  |                       |                                         | Ĭ                      |                                          |     |                                                                                                                  |                         |                                  |
| 149                  |               |                                                  |       |                                                                                                                  |                       |                                         |                        |                                          |     |                                                                                                                  |                         |                                  |
| 139                  |               |                                                  |       |                                                                                                                  |                       |                                         |                        |                                          |     |                                                                                                                  |                         | DL1 134.84 dByV                  |
| 129                  |               |                                                  |       | A1                                                                                                               |                       |                                         |                        |                                          |     |                                                                                                                  |                         |                                  |
| 119                  | متعيرين       |                                                  |       | and a second s | - Alamana and a large |                                         |                        |                                          |     |                                                                                                                  | 1. 9. R.J. L            |                                  |
| 109                  |               |                                                  |       |                                                                                                                  |                       |                                         |                        |                                          | *-1 | and the second | Li e Lipita - andre and |                                  |
| 99.D                 |               |                                                  | _     |                                                                                                                  |                       |                                         |                        |                                          |     | _                                                                                                                |                         |                                  |
| 89.0                 |               |                                                  | _     |                                                                                                                  |                       |                                         |                        |                                          |     |                                                                                                                  |                         |                                  |
| 79.0                 |               |                                                  | _     |                                                                                                                  |                       |                                         |                        |                                          |     | _                                                                                                                |                         |                                  |
| 69.0                 |               |                                                  | -     |                                                                                                                  |                       |                                         |                        |                                          |     |                                                                                                                  |                         |                                  |
| Center 3<br>#Res B\  |               |                                                  |       |                                                                                                                  |                       | #Video                                  | BW 3.0                 | MHz'                                     |     |                                                                                                                  | Sweep 12                | Span 10.00 GH<br>2.4 ms (1001 pt |
|                      | 5             |                                                  | a Mar | / 21, 2022<br>23:03 AM                                                                                           |                       |                                         |                        |                                          |     |                                                                                                                  | .:: 3                   |                                  |

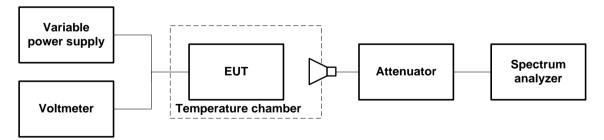


| Test specification: | Section 15.258(d), Frequency stability |                        |              |  |  |  |  |
|---------------------|----------------------------------------|------------------------|--------------|--|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4             |                        |              |  |  |  |  |
| Test mode:          | Compliance                             | Verdict:               | PASS         |  |  |  |  |
| Date(s):            | 17-Nov-22 - 27-Nov-22                  | verdict:               | PA33         |  |  |  |  |
| Temperature: 25 °C  | Relative Humidity: 51 %                | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |
| Remarks:            |                                        |                        |              |  |  |  |  |

# 7.5 Frequency stability test

#### 7.5.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.5.1.


#### Table 7.5.1 Frequency stability limits

| Assigned frequency, MHz | Maximum allowed frequency displacement |
|-------------------------|----------------------------------------|
| 119000                  |                                        |
| 121000                  | NA                                     |
| 122980                  |                                        |

#### 7.5.2 Test procedure

- 7.5.2.1 The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- **7.5.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.5.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- 7.5.2.4 The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.5.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- **7.5.2.6** Frequency displacement was calculated and compared with the limit as provided in Table 7.5.2.

#### Figure 7.5.1 Frequency stability test setup





| Test specification: | Section 15.258(d), Frequency stability |                        |              |  |  |  |  |
|---------------------|----------------------------------------|------------------------|--------------|--|--|--|--|
| Test procedure:     | ANSI C63.4, Section 13.1.4             |                        |              |  |  |  |  |
| Test mode:          | Compliance                             | Verdict:               | PASS         |  |  |  |  |
| Date(s):            | 17-Nov-22 - 27-Nov-22                  | verdict.               | FA33         |  |  |  |  |
| Temperature: 25 °C  | Relative Humidity: 51 %                | Air Pressure: 1010 hPa | Power: 5 VDC |  |  |  |  |
| Remarks:            |                                        |                        |              |  |  |  |  |

#### Table 7.5.2 Frequency stability test results

| OPERATING FREQUENCY:<br>NOMINAL POWER VOLTAGE:<br>TEMPERATURE STABILIZATION PERIOD:<br>POWER DURING TEMPERATURE TRANSITION:<br>SPECTRUM ANALYZER MODE:<br>RESOLUTION BANDWIDTH:<br>VIDEO BANDWIDTH:<br>MODULATION: |                            |            |                     | 116000 –<br>5 V<br>20 min<br>Off<br>Counter<br>3 kHz<br>10 kHz<br>Unmodula | 123000 M⊦<br>ated   | lz                  |                     |                      |             |                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------|---------------------|----------------------------------------------------------------------------|---------------------|---------------------|---------------------|----------------------|-------------|--------------------------|--|
| т, ⁰С                                                                                                                                                                                                              | Voltage,<br>V              |            |                     | F                                                                          | requency, M         | Hz                  |                     |                      | Max frequen | Max frequency drift, kHz |  |
|                                                                                                                                                                                                                    | v                          | Start up   | 1 <sup>st</sup> min | 2 <sup>nd</sup> min                                                        | 3 <sup>rd</sup> min | 4 <sup>th</sup> min | 5 <sup>th</sup> min | 10 <sup>th</sup> min | Positive    | Negative                 |  |
| Low f                                                                                                                                                                                                              | requency 119               |            |                     |                                                                            |                     |                     |                     |                      |             |                          |  |
| -20                                                                                                                                                                                                                | nominal                    | 118998.895 | 118998.898          | 11998.901                                                                  | 118998.903          | 118.998.905         | 118998.907          | 118998.913           | 0.748       | 0.000                    |  |
| -10                                                                                                                                                                                                                | nominal                    | 118998.732 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 118998.762           | 0.597       | 0.000                    |  |
| 0                                                                                                                                                                                                                  | nominal                    | 118998.472 | 118998.480          | 118998.484                                                                 | 118998.486          | 118998.488          | 118.998.491         | 118998.499           | 0.334       | 0.000                    |  |
| 10                                                                                                                                                                                                                 | nominal                    | 118998.266 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 118998.303           | 0.138       | 0.000                    |  |
| 20                                                                                                                                                                                                                 | +15%                       | 118998.156 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 118998.165           | 0.000       | -0.009                   |  |
| 20                                                                                                                                                                                                                 | nominal                    | 118998.156 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 118998.165           | 0.000       | -0.009                   |  |
| 20                                                                                                                                                                                                                 | -15%                       | 118998.157 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 118998.164           | 0.000       | -0.008                   |  |
| 30                                                                                                                                                                                                                 | nominal                    | 118998.184 | 118998.184          | 118998.184                                                                 | 118998.184          | 118998.184          | 118998.184          | 118998.185           | 0.020       | 0.000                    |  |
| 40                                                                                                                                                                                                                 | nominal                    | 119998.287 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 119998.339           | 0.174       | 0.000                    |  |
| 50                                                                                                                                                                                                                 | nominal                    | 118998.654 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 118998.777           | 0.612       | 0.000                    |  |
| Mid fr                                                                                                                                                                                                             | equency 121                | .000 GHz   |                     |                                                                            | -                   |                     | -                   |                      |             | -                        |  |
| -20                                                                                                                                                                                                                | nominal                    | 121000.004 | 121000.002          | 121000.001                                                                 | 121000.000          | 121000.000          | 121000.000          | 121000.005           | 0.337       | 0.000                    |  |
| -10                                                                                                                                                                                                                | nominal                    | 120999.757 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 121000.000           | 0.332       | 0.000                    |  |
| 0                                                                                                                                                                                                                  | nominal                    | 120999.713 | 120999.719          | 120999.729                                                                 | 120999.690          | 120999.736          | 120999.723          | 120999.660           | 0.068       | -0.008                   |  |
| 10                                                                                                                                                                                                                 | nominal                    | 120999.699 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 120999.755           | 0.087       | 0.000                    |  |
| 20                                                                                                                                                                                                                 | +15%                       | 120999.673 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 120999.668           | 0.005       | 0.000                    |  |
| 20                                                                                                                                                                                                                 | nominal                    | 120999.674 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 120999.668           | 0.006       | 0.000                    |  |
| 20                                                                                                                                                                                                                 | -15%                       | 120999.673 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 120999.669           | 0.005       | 0.000                    |  |
| 30                                                                                                                                                                                                                 | nominal                    | 120999.609 | 120999.609          | 120999.609                                                                 | 120999.609          | 120999.608          | 120999.608          | 120999.608           | 0.000       | -0.060                   |  |
| 40                                                                                                                                                                                                                 | nominal                    | 120999.624 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 120999.691           | 0.023       | -0.044                   |  |
| 50                                                                                                                                                                                                                 | nominal                    | 120999.870 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 121000.022           | 0.354       | 0.000                    |  |
|                                                                                                                                                                                                                    | High frequency 122.980 GHz |            |                     |                                                                            |                     |                     |                     |                      |             |                          |  |
| -20                                                                                                                                                                                                                | nominal                    | 122979.518 | 122979.514          | 122979.510                                                                 | 122979.508          | 122979.506          | 122979.505          | 122979.508           | 0.412       | 0.000                    |  |
| -10                                                                                                                                                                                                                | nominal                    | 122979.442 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.515           | 0.409       | 0.000                    |  |
| 0                                                                                                                                                                                                                  | nominal                    | 122979.262 | 122979.284          | 122979.303                                                                 | 122979.320          | 122979.332          | 122979.344          | 122979.382           | 0.276       | 0.000                    |  |
| 10                                                                                                                                                                                                                 | nominal                    | 122979.145 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.214           | 0.108       | 0.000                    |  |
| 20                                                                                                                                                                                                                 | +15%                       | 122979.106 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.104           | 0.000       | -0.002                   |  |
| 20                                                                                                                                                                                                                 | nominal                    | 122979.108 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.106           | 0.002       | 0.000                    |  |
| 20                                                                                                                                                                                                                 | -15%                       | 122979.104 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.104           | 0.000       | -0.002                   |  |
| 30                                                                                                                                                                                                                 | nominal                    | 122979.297 | 122979.222          | 122979.174                                                                 | 122979.134          | 122979.110          | 122979.098          | 122979.058           | 0.191       | -0.048                   |  |
| 40                                                                                                                                                                                                                 | nominal                    | 122979.060 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.116           | 0.010       | -0.046                   |  |
| 50                                                                                                                                                                                                                 | nominal                    | 122979.135 | NA                  | NA                                                                         | NA                  | NA                  | NA                  | 122979.344           | 0.238       | 0.000                    |  |

#### Reference numbers of test equipment used

|   | HL 0495                                   | HL 5373 | HL 3286 | HL 3536 | HL 5376 |  |  |  |
|---|-------------------------------------------|---------|---------|---------|---------|--|--|--|
| _ | di des substants la site si a Aserandia A |         |         |         |         |  |  |  |

Full description is given in Appendix A.



| Test specification: | Section 15.203, Antenna requirement      |                        |              |  |  |
|---------------------|------------------------------------------|------------------------|--------------|--|--|
| Test procedure:     | Visual inspection / supplier declaration |                        |              |  |  |
| Test mode:          | Compliance                               | Vardiet: DACC          |              |  |  |
| Date(s):            | 24-Nov-22                                | - Verdict: PASS        |              |  |  |
| Temperature: 25 °C  | Relative Humidity: 50 %                  | Air Pressure: 1008 hPa | Power: 5 VDC |  |  |
| Remarks:            |                                          |                        |              |  |  |

# 7.6 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.6.1.

#### Table 7.6.1 Antenna requirements

| Requirement                                        | Rationale         | Verdict |
|----------------------------------------------------|-------------------|---------|
| The transmitter antenna is permanently attached    | Visual inspection |         |
| The transmitter employs a unique antenna connector | NA                | Comply  |
| The transmitter requires professional installation | NA                |         |



| HL No | Description                                                                    | Manufacturer                 | Model                                | Ser. No.         | Last Cal./<br>Check | Due Cal./<br>Check |
|-------|--------------------------------------------------------------------------------|------------------------------|--------------------------------------|------------------|---------------------|--------------------|
| 0446  | Antenna, Loop, Active, 10 (9) kHz - 30<br>MHz                                  | EMCO                         | 6502                                 | 2857             | 28-Feb-22           | 28-Feb-23          |
| 0495  | Autotransformer 0-255V, 10A                                                    | Variac                       | EMPL01                               | 495              | 10-May-22           | 10-May-23          |
| 0770  | Antenna Standard Gain Horn, 40-60<br>GHz WR-19, U-band, 24 dB mid-band<br>gain | Quinstar<br>Technology       | QWH-<br>1900-AA                      | 118              | 11-Nov-21           | 11-Nov-22          |
| 0771  | Antenna Standard Gain Horn, 60-90<br>GHz, WR-12, 24 dB mid-band gain           | Quinstar<br>Technology       | QWH-<br>1200-AA                      | 111              | 15-Aug-22           | 15-Aug-23          |
| 1312  | Mixer Millimeter Wave Harmonic 140-<br>220 GHz                                 | Oleson<br>Microwave<br>Labs  | M05HWD                               | G91112-1         | 19-May-20           | 19-May-23          |
| 3235  | Harmonic mixer 40 to 60 GHz                                                    | Agilent<br>Technologies      | 11970U                               | MY300301<br>82   | 30-Jan-20           | 30-Jan-23          |
| 3286  | Temperature Chamber, (-50 to +170)<br>°C                                       | Thermotron                   | EL-8-CH-<br>1-1-CO2                  | 21-9048          | 12-Dec-21           | 12-Dec-22          |
| 3329  | Antenna Standard Gain Horn, 140-220<br>GHz, WR-5, 24 dB mid-band gain          | Quinstar<br>Technology       |                                      |                  | 11-Nov-21           | 11-Nov-22          |
| 3536  | Antenna Standard Gain Horn, 90-140<br>GHz, WR-8, 24 dB mid-band gain           | Quinstar<br>Technology       | QWH-<br>FPRR00                       | 11159004<br>001  | 11-Nov-21           | 11-Nov-22          |
| 3903  | Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA                             | Huber-Suhner                 | SUCOFL<br>EX 102A                    | 1226/2A          | 07-Apr-22           | 07-Apr-23          |
| 4023  | Diplexer for use OML mixers with<br>Agilent spectrum analyzer                  | Oleson<br>Microwave<br>Labs  | DPL.26                               | NA               | 28-Apr-22           | 28-Apr-23          |
| 4933  | Active Horn Antenna, 1 GHz to 18 GHz                                           | COM-POWER<br>CORPORATI<br>ON | AHA-118                              | 701046           | 13-Jan-22           | 13-Jan-23          |
| 4956  | Active horn antenna, 18 to 40 GHz                                              | COM-POWER<br>CORPORATI<br>ON | AHA-840                              | 105004           | 07-Mar-22           | 07-Mar-23          |
| 5112  | RF cable, 40 GHz, 5.5 m, K-type                                                | Huber-Suhner                 | SF102EA/<br>11SK/11S<br>K/5500M<br>M | 502494/2E<br>A   | 25-Apr-22           | 25-Apr-23          |
| 5286  | Band Pass Filter, 50 Ohm, 4.4 to 18<br>GHz, SMA/M-SMA/F                        | A-INFOMW                     | WBLB-T-<br>HP-4.4-<br>18-S           | J10800000<br>305 | 15-Jun-21           | 15-Jun-23          |
| 5288  | Trilog Antenna, 25 MHz - 8 GHz, 100W                                           | Frankonia                    | ALX-<br>8000E                        | 00809            | 24-Mar-22           | 24-Apr-25          |
| 5369  | Digital storage oscilloscope, 350<br>MHz                                       | Keysight<br>Technologies     | DSOX30<br>34T                        | MY58032<br>630   | 12-Oct-22           | 12-Oct-23          |
| 5371  | EXG Analog Signal Generator, 9 kHz -<br>40 GHz                                 | Keysight<br>Technologies     | N5173B                               | MY572805<br>40   | 28-Oct-21           | 28-Dec-22          |
| 5372  | MXE EMI receiver, 3 Hz to 44 GHz                                               | Keysight<br>Technologies     | N9038A                               | MY572901<br>55   | 16-Mar-22           | 16-Mar-23          |

# 8 APPENDIX A Test equipment and ancillaries used for tests



| HL No | Description                                                                  | Manufacturer                                           | Model                  | Ser. No.       | Last Cal./<br>Check | Due Cal./<br>Check |
|-------|------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|----------------|---------------------|--------------------|
| 5373  | Millimeter-wave Signal Generator<br>E8257DV08 WR8.0SGX<br>ATO64975 90-140GHz | Keysight<br>Technologies                               | E8257D<br>V08          | US53250<br>008 | 01-Jan-22           | 01-Jan-23          |
| 5376  | EXA Signal Analyzer, 10 Hz - 32 GHz                                          | Keysight<br>Technologies                               | N9010B                 | MY574704<br>04 | 01-Nov-21           | 01-Jan-23          |
| 5377  | USB Thermocouple Power Sensor, DC-120 GHz                                    | Keysight<br>Technologies                               | U8489A                 | US56430<br>158 | 19-Oct-22           | 19-Oct-23          |
| 5378  | Adapter, E-Band Waveguide to Coax<br>Panel Mount , WR-12 End Launch          | SaGE<br>Millimeter,<br>Incdan -<br>Insurance<br>agency | SWC-<br>121F-E1-<br>KS | 14427-09       | 30-May-22           | 30-May-23          |
| 5979  | Harmonic Mixer 220-325 GHz                                                   | OML Inc.                                               | M03HWD                 | 210216-1       | 16-Feb-21           | 16-Feb-24          |
| 5980  | Standard Horn Antenna 220-325 GHz,<br>WR-03, 24.5 dB mid-band gain           | Radar<br>Systems<br>Technology                         | HO3R<br>WR-03          | 01             | 07-Mar-21           | 07-Mar-23          |
| 5981  | RF detector 90 – 140 GHz.                                                    | Pacific<br>Millimeter<br>Products, Inc                 | FD                     | 155            | 25-Jan-21           | 25-Jan-23          |
| 6038  | Harmonic mixer 325 - 500 GHz, WR-<br>2.2                                     | Farran<br>Technology<br>Ltd                            | WHMB-<br>2.2-0001      | FTL13699       | 11-May-21           | 11-May-23          |
| 6039  | Standard Gain Horn antenna, 325-500<br>GHz, WR-2.2, 25 dB mid-band gain      | Farran<br>Technology<br>Ltd                            | SGH-2.2-<br>25         | FTL5631B       | 11-Nov-21           | 11-Nov-22          |
| 7585  | EMI Test Receiver, 1 Hz to 44 GHz                                            | Rohde &<br>Schwarz                                     | ESW44                  | 103130         | 19-May-22           | 19-May-23          |



# 9 APPENDIX B Test equipment correction factors

| Frequency, | Measured antenna<br>factor, dBS/m | Measurement<br>uncertainty, dB |
|------------|-----------------------------------|--------------------------------|
| 10         | -33.4                             | ±1.0                           |
| 20         | -37.8                             | ±1.0                           |
| 50         | -40.5                             | ±1.0                           |
| 75         | -41.0                             | ±1.0                           |
| 100        | -41.2                             | ±1.0                           |
| 150        | -41.2                             | ±1.0                           |
| 250        | -41.1                             | ±1.0                           |
| 500        | -41.2                             | ±1.0                           |
| 750        | -41.3                             | ±1.0                           |
| 1000       | -41.3                             | ±1.0                           |

| Frequency, | Measured antenna<br>factor, dBS/m | Measurement<br>uncertainty, dB |
|------------|-----------------------------------|--------------------------------|
| 2000       | -41.4                             | ±1.0                           |
| 3000       | -41.4                             | ±1.0                           |
| 4000       | -41.5                             | ±1.0                           |
| 5000       | -41.5                             | ±1.0                           |
| 10000      | -41.7                             | ±1.0                           |
| 15000      | -42.1                             | ±1.0                           |
| 20000      | -42.7                             | ±1.0                           |
| 25000      | -44.2                             | ±1.0                           |
| 30000      | -45.8                             | ±1.0                           |

#### HL 0446: Active Loop Antenna EMCO, model: 6502, s/n 2857

The antenna factor shall be added to receiver reading in  $dB\mu V$  to obtain field strength in  $dB\mu A/m$ .



#### HL 4933: Active Horn Antenna COM-POWER CORPORATION, model: AHA-118, s/n 701046

| Frequency, MHz | Measured antenna factor<br>(with preamplifier), dB/m |
|----------------|------------------------------------------------------|
| 1000           | -16.1                                                |
| 1500           | -15.1                                                |
| 2000           | -10.9                                                |
| 2500           | -11.9                                                |
| 3000           | -11.1                                                |
| 3500           | -10.6                                                |
| 4000           | -8.6                                                 |
| 4500           | -8.3                                                 |
| 5000           | -5.9                                                 |
| 5500           | -5.7                                                 |
| 6000           | -3.3                                                 |
| 6500           | -4.0                                                 |
| 7000           | -2.2                                                 |
| 7500           | -1.7                                                 |
| 8000           | 1.1                                                  |
| 8500           | -0.8                                                 |
| 9000           | -1.5                                                 |
| 9500           | -0.2                                                 |

| Frequency, MHz | Measured antenna factor<br>(with preamplifier), dB/m |
|----------------|------------------------------------------------------|
| 10000          | 1.8                                                  |
| 10500          | 1.0                                                  |
| 11000          | 0.3                                                  |
| 11500          | -0.5                                                 |
| 12000          | 3.1                                                  |
| 12500          | 1.4                                                  |
| 13000          | -0.3                                                 |
| 13500          | -0.4                                                 |
| 14000          | 2.5                                                  |
| 14500          | 2.2                                                  |
| 15000          | 1.9                                                  |
| 15500          | 0.5                                                  |
| 16000          | 2.1                                                  |
| 16500          | 1.2                                                  |
| 17000          | 0.6                                                  |
| 17500          | 3.1                                                  |
| 18000          | 4.2                                                  |

The antenna factor shall be added to receiver reading in dB<sub> $\mu$ </sub>V to obtain field strength in dB<sub> $\mu$ </sub>V/m.



|                |                                  | 1000EL ALIA-040, S/11 103004 |                                  |
|----------------|----------------------------------|------------------------------|----------------------------------|
| Frequency, MHz | Measured antenna factor,<br>dB/m | Frequency, MHz               | Measured antenna factor,<br>dB/m |
| 18000          | 5.1                              | 29500                        | 1.4                              |
| 18500          | 3.6                              | 30000                        | 2.9                              |
| 19000          | 2.2                              | 30500                        | 2.9                              |
| 19500          | 0.7                              | 31000                        | 2.9                              |
| 20000          | 0.7                              | 31500                        | 1.2                              |
| 20500          | 0.8                              | 32000                        | 0.7                              |
| 21000          | 0.5                              | 32500                        | 0.2                              |
| 21500          | -1.3                             | 33000                        | -1.7                             |
| 22000          | -2.1                             | 33500                        | -2.2                             |
| 22500          | -2.0                             | 34000                        | 2.3                              |
| 23000          | -1.6                             | 34500                        | -1.1                             |
| 23500          | -2.9                             | 35000                        | 0.7                              |
| 24000          | -2.3                             | 35500                        | -1.1                             |
| 24500          | -2.6                             | 36000                        | 0.1                              |
| 25000          | -1.8                             | 36500                        | 1.4                              |
| 25500          | -1.2                             | 37000                        | 3.7                              |
| 26000          | -0.5                             | 37500                        | 5.8                              |
| 26500          | -1.2                             | 38000                        | 6.6                              |
| 27000          | -0.1                             | 38500                        | 7.3                              |
| 27500          | -1.0                             | 39000                        | 6.5                              |
| 28000          | -0.7                             | 39500                        | 7.3                              |
| 28500          | 0.5                              | 40000                        | 7.1                              |

#### HL 4956: Active horn antenna COM-POWER Corp., model: AHA-840, s/n 105004

The antenna factor shall be added to receiver reading in  $dB\mu V$  to obtain field strength in  $dB\mu V/m$ .



# HL 5288: Trilog Antenna Frankonia, model: ALX-8000E, s/n: 00809 30-1000 MHz

| Frequency, MHz | Antenna factor, dB/m |
|----------------|----------------------|
| 30             | 14.96                |
| 35             | 15.33                |
| 40             | 16.37                |
| 45             | 17.56                |
| 50             | 17.95                |
| 60             | 16.87                |
| 70             | 13.22                |
| 80             | 10.56                |
| 90             | 13.61                |
| 100            | 15.46                |
| 120            | 14.03                |
| 140            | 12.23                |

| Frequency, MHz | Antenna factor, dB/m |  |
|----------------|----------------------|--|
| 160            | 12.67                |  |
| 180            | 13.34                |  |
| 200            | 15.40                |  |
| 250            | 16.42                |  |
| 300            | 17.28                |  |
| 400            | 19.98                |  |
| 500            | 21.11                |  |
| 600            | 22.90                |  |
| 700            | 24.13                |  |
| 800            | 25.25                |  |
| 900            | 26.35                |  |
| 1000           | 27.18                |  |

The antenna factor shall be added to receiver reading in  $dB_{\mu}V$  to obtain field strength in  $dB_{\mu}V/m$ . **above 1000** MHz

| abo            |                      |  |
|----------------|----------------------|--|
| Frequency, MHz | Antenna factor, dB/m |  |
| 1000           | 26.9                 |  |
| 1100           | 28.1                 |  |
| 1200           | 28.4                 |  |
| 1300           | 29.6                 |  |
| 1400           | 29.1                 |  |
| 1500           | 30.4                 |  |
| 1600           | 30.7                 |  |
| 1700           | 31.5                 |  |
| 1800           | 32.3                 |  |
| 1900           | 32.6                 |  |
| 2000           | 32.5                 |  |
| 2100           | 32.9                 |  |
| 2200           | 33.5                 |  |
| 2300           | 33.2                 |  |
| 2400           | 33.7                 |  |
| 2500           | 34.6                 |  |
| 2600           | 34.7                 |  |
| 2700           | 34.6                 |  |
| 2800           | 35.0                 |  |
| 2900           | 35.5                 |  |
| 3000           | 36.2                 |  |
| 3100           | 36.8                 |  |
| 3200           | 36.8                 |  |
| 3300           | 37.0                 |  |
| 3400           | 37.5                 |  |
| 3500           | 38.2                 |  |
| 3300           | 30.Z                 |  |

| Frequency, MHz | Antenna factor, dB/m |
|----------------|----------------------|
| 3600           | 38.9                 |
| 3700           | 39.4                 |
| 3800           | 39.4                 |
| 3900           | 39.6                 |
| 4000           | 39.7                 |
| 4100           | 39.8                 |
| 4200           | 40.5                 |
| 4300           | 40.9                 |
| 4400           | 41.1                 |
| 4500           | 41.4                 |
| 4600           | 41.3                 |
| 4700           | 41.6                 |
| 4800           | 41.9                 |
| 4900           | 42.3                 |
| 5000           | 42.7                 |
| 5100           | 43.0                 |
| 5200           | 42.9                 |
| 5300           | 43.5                 |
| 5400           | 43.6                 |
| 5500           | 44.3                 |
| 5600           | 44.7                 |
| 5700           | 45.0                 |
| 5800           | 45.0                 |
| 5900           | 45.3                 |
| 6000           | 45.9                 |

The antenna factor shall be added to receiver reading in dB $\mu$ V to obtain field strength in dB $\mu$ V/m.



# 10 APPENDIX C Measurement uncertainties

| Test description                              | Expanded uncertainty                     |
|-----------------------------------------------|------------------------------------------|
| Conducted emissions with LISN                 | 9 kHz to 150 kHz: ± 3.9 dB               |
|                                               | 150 kHz to 30 MHz: ± 3.8 dB              |
| Radiated emissions at 10 m measuring distance |                                          |
| Horizontal polarization                       | Biconilog antenna: ± 5.0 dB              |
|                                               | Biconical antenna: ± 5.0 dB              |
|                                               | Log periodic antenna: ± 5.1 dB           |
|                                               | Double ridged horn antenna: $\pm$ 5.3 dB |
| Vertical polarization                         | Biconilog antenna: ± 5.5 dB              |
|                                               | Biconical antenna: ± 5.5 dB              |
|                                               | Log periodic antenna: ± 5.6 dB           |
|                                               | Double ridged horn antenna: ± 5.8 dB     |
| Radiated emissions at 3 m measuring distance  |                                          |
| Horizontal polarization                       | Biconilog antenna: ± 5.3 dB              |
| Vertical polarization                         | Biconical antenna: ± 5.0 dB              |
|                                               | Log periodic antenna: $\pm$ 5.3 dB       |
|                                               | Double ridged horn antenna: ± 5.3 dB     |
|                                               | Biconilog antenna: ± 6.0 dB              |
|                                               | Biconical antenna: ± 5.7 dB              |
|                                               | Log periodic antenna: ± 6.0 dB           |
|                                               | Double ridged horn antenna: ± 6.0 dB     |
| Conducted emissions at RF antenna connector   | 9 kHz to 2.9 GHz: ± 2.6 dB               |
|                                               | 2.9 GHz to 6.46 GHz: ± 3.5 dB            |
|                                               | 6.46 GHz to 13.2 GHz: ± 4.3 dB           |
|                                               | 13.2 GHz to 22.0 GHz: ± 5.0 dB           |
|                                               | 22.0 GHz to 26.8 GHz: ± 5.5 dB           |
|                                               | 26.8 GHz to 40.0 GHz: ± 4.8 dB           |

#### Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.



# 11 APPENDIX D Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, Radio, Safety, Environmental and Telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for relevant parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; Recognized by Innovation, Science and Economic Development Canada for wireless and terminal testing (ISED), ISED #2186A, CAB identifier is IL1001; Certified by VCCI, Japan (the registration numbers for OATS are R-10808 for RE measurements below 1 GHz, G-20112 for RE measurements above 1 GHz, R-11082 for anechoic chamber for RE measurements below 1 GHz, G-10869 for RE measurements above 1 GHz, C-10845 for conducted emissions site and T-11606 for conducted emissions at telecommunication ports).

The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing, environmental simulation and calibration (for exact scope please refer to Certificate No. 839.01, 839.03 and 839.04).

Address:P.O. Box 23, Binyamina 3055001, Israel. Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Michael Nikishin, EMC&Radio group manager

## 12 APPENDIX E Specification references

FCC 47CFR part 15: 2020Radio Frequency DevicesANSI C63.10: 2013American National Standard of Procedures for Compliance Testing of Unlicemsed<br/>Wireless Devices



# 13 APPENDIX F Abbreviations and acronyms

| А         | ampere                                      |
|-----------|---------------------------------------------|
| AC        | alternating current                         |
| A/m       | ampere per meter                            |
| AM        | amplitude modulation                        |
| AVRG      | average (detector)                          |
| cm        | centimeter                                  |
| dB        | decibel                                     |
| dBm       | decibel referred to one milliwatt           |
| dB(μV)    | decibel referred to one microvolt           |
| dB(μV/m)  | decibel referred to one microvolt per meter |
| dB(μA)    | decibel referred to one microampere         |
| DC        | direct current                              |
| EIRP      | equivalent isotropically radiated power     |
| ERP       | effective radiated power                    |
| EUT       | equipment under test                        |
| F         | frequency                                   |
| GHz       | gigahertz                                   |
| GND       | ground                                      |
| Н         | height                                      |
| HL        | Hermon laboratories                         |
| Hz        | hertz                                       |
| k         | kilo                                        |
| kHz       | kilohertz                                   |
| LO        | local oscillator                            |
| m         | meter                                       |
| MHz       | megahertz                                   |
| min       | minute                                      |
| mm        | millimeter                                  |
| ms        | millisecond                                 |
| μS        | microsecond                                 |
| NA        | not applicable                              |
| NB        | narrow band                                 |
| OATS<br>Ω | open area test site                         |
| PM        | Ohm<br>pulse modulation                     |
| PS        | power supply                                |
| ppm       | part per million (10 <sup>-6</sup> )        |
| QP        | quasi-peak                                  |
| RE        | radiated emission                           |
| RF        | radio frequency                             |
| rms       | root mean square                            |
| Rx        | receive                                     |
| S         | second                                      |
| T         | temperature                                 |
| Tx        | transmit                                    |
| V         | volt                                        |
| WB        | wideband                                    |
|           |                                             |



14

### APPENDIX F Manufacturer's declaration



#### Declaration of identity between models: Neteera 130H-Plus/Neteera 131H-Plus

The Neteera devices, models 130H-Plus and 131H-Plus, are identical in components, assembly, technical specifications and performance operation principles, except the following distinctions:

1. Neteera 130H-Plus – uses a USB cable connected to a power supply and communicates witthe data display monitor via Wi-Fi

2. Neteera 131H-Plus - uses a USB cable connects to display monitor and communicates witthe data display monitor via wire connection

All the models can be powered by an AC/DC class II adapter (mode 1) or by connecting via USB connector (mode 2) to display monitor by receiving 5 VDC.

| Reviewed and Confirmed By |            |             |                                         |  |
|---------------------------|------------|-------------|-----------------------------------------|--|
| Name                      | Position   | Date        | Signature                               |  |
| Shahar Yaron              | VP Product | 20-Dec-2022 | Sold Sold Sold Sold Sold Sold Sold Sold |  |
| Rakefet Shohat            | VP QQ/RA   | 20-Dec-2022 | -101                                    |  |
| Shimon Steinberger        | CTO        | 20-Dec-2022 | - James -                               |  |

#### Neteera Technologies Ltd.

High-Tech Village 1.1 • The Hebrew University • Givat Ram • PO Box 39088 • Jerusalem 9139002 • Isræl Office: +972-2-5808733 • www.neteera.com

Neteera Confidential

# END OF DOCUMENT

1