

TEST REPORT

Test report no.: 1-3606_21-01-06

Testing laboratory

CTC advanced GmbH

BNetzA-CAB-02/21-102

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: <u>https://www.ctcadvanced.com</u> e-mail: <u>mail@ctcadvanced.com</u>

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Linde Material Handling GmbH Carl-von-Linde-Platz 63743 Aschaffenburg / GERMANY Phone: +49-231-700996-12 Contact: Volker Koester e-mail: <u>koester@comnovo.de</u>

Manufacturer

Comnovo GmbH Emil-Figge-Str. 76 44227 Dortmund / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:	Safety Guard
Model name:	Truck Unit Small 2
FCC ID:	2AYVBD2S0009469036
Frequency:	3100 MHz to 10600 MHz
Technology tested:	UWB
Antenna:	Integrated antenna
Power supply:	12 V / 24 V DC by external power supply
Temperature range:	-40°C to +85°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Frank Heussner	
Lab Manager	
Radio Labs	

Test performed:

Stephan Thiel Testing Manager Radio Labs

Test report no.: 1-3606_21-01-06

1 Table of contents

1	Table of contents						
2	Genera	l information	3				
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3				
3	Test st	andard/s, references and accreditations	4				
4	Report	ing statements of conformity – decision rule	5				
5	Test er	nvironment	6				
6	Test ite	em	6				
	6.1 6.2	General description Additional information					
7	Descrip	otion of the test setup	7				
	7.1	Shielded semi anechoic chamber	8				
	7.2	Shielded fully anechoic chamber					
	7.3	Radiated measurements > 18 GHz					
8	Seque	nce of testing	13				
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz					
	8.2 8.3	Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 18 GHz					
	8.4	Sequence of testing radiated spurious above 18 GHz					
	8.5	Sequence of testing efficient use of spectrum					
9	Measu	rement uncertainty	18				
10	Sun	nmary of measurement results	19				
11	Add	itional comments	19				
12	Mea	asurement results	21				
	12.1	10 dB - Bandwidth	21				
	12.2	TX Radiated Emissions					
	12.2.1	TX Radiated Emissions for UWB channel 1					
	12.2.2 12.2.3	TX Radiated Emissions for UWB channel 2 TX Radiated Emissions for UWB channel 5					
	12.2.3 12.3	Efficient use of spectrum acc. to §15.519(a)(1)					
	12.4	Antenna requirements					
	12.5	Conducted emissions < 30MHz	62				
13	Glos	ssary	65				
14	Doc	ument history	66				
15	Acc	reditation Certificate – D-PL-12076-01-05	66				

General information 2

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2021-12-11
Date of receipt of test item:	2022-06-23
•	
Start of test:*	2022-07-05
End of test:*	2023-03-15
Person(s) present during the test:	-/-

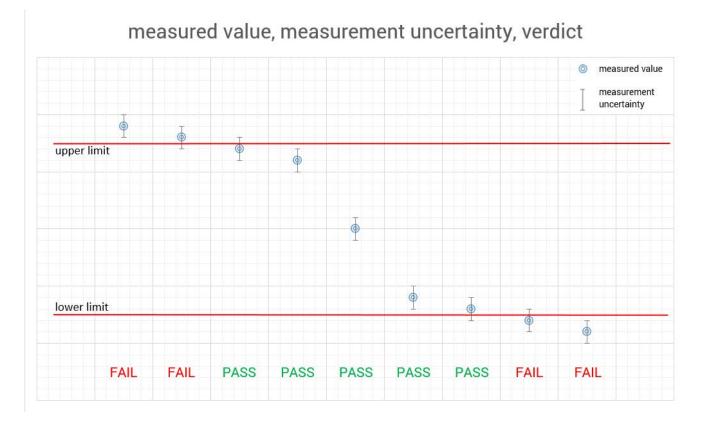
Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations


Test standard	Date	Description					
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices					
Guidance	Version	Description					
ANSI C63.4-2014 ANSI C63.10-2013 UWB KDB	-/- -/- v02r01	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices 393764 D01 UWB FAQ v02r01: ULTRA-WIDEBAND (UWB) DEVICES FREQUENTLY ASKED QUESTIONS					
Accreditation	Description	n					
D-PL-12076-01-05		unication FCC requirements .dakks.de/files/data/as/pdf/D-PL-12076-					

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

5 Test environment

		т	122 °C during room tomporature toot		
		T_{nom}	+22 °C during room temperature test		
Temperature	:	T _{max}	 -/- °C during high temperature tests 		
		T_{min}	-/- °C during low temperature tests		
Relative humidity content	:		40 - 60 %		
Barometric pressure	:		990 hPa to 1010 hPa		
		V_{nom}	12 V DC by external power supply		
Power supply	:	V_{max}	-/- V		
		V_{min}	-/- V		

6 Test item

6.1 General description

Kind of test item :	Safety Guard			
Model name :	Truck Unit Small 2			
Model hame .				
	EUT 1: T5-011236-22/22 (TM: Test mode)			
S/N serial number :	EUT 2: T5-011235-22/22 (spare)			
	EUT 3: T5-011234-22/22 (NM: Normal mode)			
	UWB Channel 1: 22dB Image			
Power setting	UWB Channel 2: 22dB Image			
	UWB Channel 5: 12dB Image			
Hardware status :	3.0			
Software status :	-/-			
Firmware status :	2.3			
Frequency band :	3100 MHz to 10600 MHz			
Type of radio transmission :	Dulas			
Use of frequency spectrum :	Pulse			
Type of modulation :	BPSK / BPM			
Number of channels :	3 (UWB Channel 1,2 & 5)			
Antenna :	Integrated antenna			
Power supply :	12 V / 24 V DC by external power supply			
Temperature range :	-40°C to +85°C			

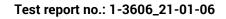
6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-3606/21-01-01_AnnexA 1-3606/21-01-01_AnnexB 1-3606/21-01-01_AnnexD

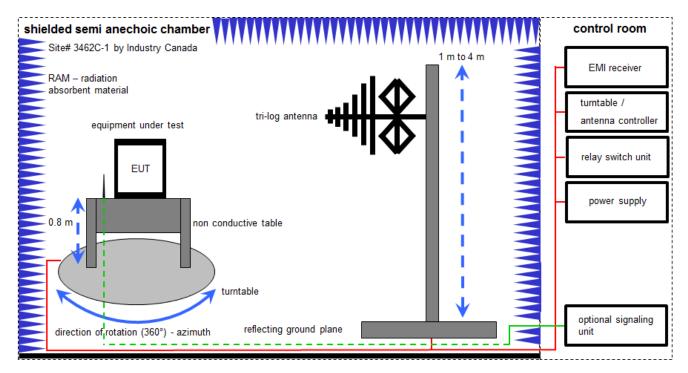
7 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

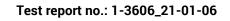

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

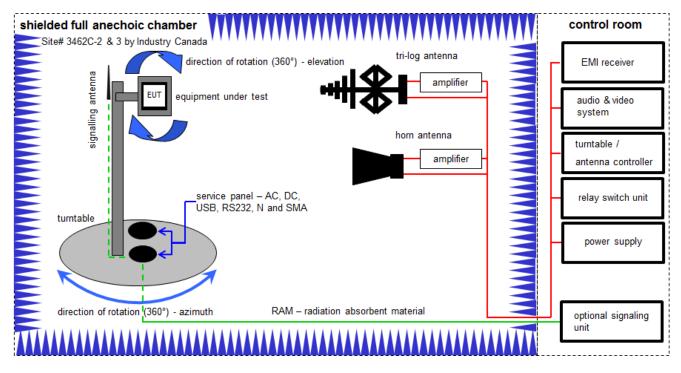
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
2	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
3	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
4	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	n.a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	viKi!	18.08.2021	30.08.2023
7	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	09.12.2022	31.12.2023

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter;

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m$)

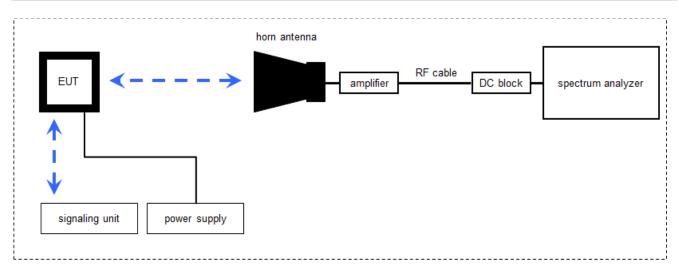
OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW)

Equipment table: Chamber C


No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio	2818A03450	300004682	ne	-/-	-/-
2	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKl!	09.12.2020	08.12.2023
3	n.a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	n.a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	90	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	vlKl!	17.06.2021	30.06.2023
6	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	07.12.2022	31.12.2023

Equipment table: OTA

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Power supply GPIB dc power supply, 0- 50 Vdc, 0-2 A	6633A	HP	2851A01222	300001530	vIKI!	15.12.2022	31.12.2025
2	n. a.	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland	2719A14505	300003327	ne	-/-	-/-
3	n. a.	CTIA-Chamber - Positioning Equipment	CTIA-Chamber - Positioning Equipment	EMCO/2	2920A04466	300003328	ne	-/-	-/-
4	n. a.	RF Amplifier	AMF-7D-01001800- 22-10P	NARDA-MITEQ Inc	2089864	300005633	ev	-/-	-/-
5	n. a.	Lowpass Filter (Chebyshev)	WLKX14-4700- 4900-21000-30SS	Wainwright Instruments GmbH	1	300005655	ev	-/-	-/-
6	n. a.	High Pass Filter (Chebyshev)	WHNX6-8374- 10600-26500-40CC	Wainwright Instruments GmbH	1	300005656	ev	-/-	-/-
7	n. a.	Signal analyzer	FSW26	Rohde&Schwarz	101371	300005697	k	08.12.2022	31.12.2023
8	n. a.	Software	EMC32-MEB	Rohde & Schwarz	2818A03450	300005477	ne	-/-	-/-
9	135	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	viKi!	26.07.2022	25.07.2024
10	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	ne	-/-	-/-
11	A039	Std. Gain Horn Antenna 11.90- 18.00 GHz	1824-20	Flann	263	300002471	ne	-/-	-/-
12	n. a.	MXG Microwave Analog Signal Generator	N5183A	Agilent Technologies	MY47420220	300003813	viKi!	07.12.2022	31.12.2025

7.3 Radiated measurements > 18 GHz

Measurement distance: horn antenna e.g. 75 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

<u>Example calculation:</u> FS [dBµV/m] = 40.0 [dBµV/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dBµV/m] (6.79 µV/m)

OP = AV + D - G + CA (OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 µW)

Note: conversion loss of mixer is already included in analyzer value.

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	viKi!	17.01.2022	31.01.2024
2	n. a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	09.03.2022	08.03.2024
3	A031	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	82-16	300000510	viKi!	17.01.2022	31.01.2024
4	A039	Std. Gain Horn Antenna 11.90- 18.00 GHz	1824-20	Flann	263	300002471	ne	-/-	-/-
5	5	DC Power Supply, 60V, 10A	6038A	HP	2848A07027	300001174	viKi!	08.12.2020	07.12.2023
6	n.a.	Signal- and Spectrum Analyzer 2 Hz - 50 GHz	FSW50	Rohde&Schwarz	101560	300006179	k	07.03.2022	31.03.2023
7	135	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5289	300000213	vIKI!	26.07.2022	25.07.2024

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing efficient use of spectrum

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- The EUT positioned at a distance of approx. 0.5m to the horn antenna used for the measurement.
- The associated receiver is positioned between the EUT the horn antenna to assure that the received signal level of the associated receiver at the spectrum analyzer is higher than the level of the EUT.

Measurement:

- Switch on EUT and associated receiver and wait until the connection is established.
- Start Analyzer sweep in Zerospan with a sweep time of 15 s.
- Switch of the associated receiver.
- When switching of the associated receiver, a drop in the received signal level at the spectrum analyzer can be observed. → position marker 1
- Position marker two at the point where the transmission of the EUT stops.
- Measure time difference between marker 1 and marker 2.

9 Measurement uncertainty

Test case	Uncertainty			
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB			
Permitted range of operating frequencies	± 100 kHz			
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB			
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB			
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB			
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB			
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB			
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB			
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB			
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB			
DC and low frequency voltages	± 3 %			
Temperature	± 1 °C			
Humidity	± 3 %			

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR47 §15.207, §15.209, §15.503, §15.519, §15.521	see table	2023-04-05	-/-

Test specification clause	Test case	Temperature conditions	Power source	Pass	Fail	NA	NP	Remark
§15.503 §15.519(b)	10 dB Bandwidth	Nominal	Nominal	\boxtimes				complies
§15.209 §15.519 §15.521	TX Radiated Emissions	Nominal	Nominal	\boxtimes				complies
§15.519(a)(1)	Efficient use of spectrum	Nominal	Nominal	\boxtimes				complies
§15.519(a)(2) §15.521 (b) §§15.203 & 15.204	Antenna requirement	-/-	-/-	\boxtimes				complies
§15.521(j) §15.207	Conducted emissions < 30 MHz	Nominal	Nominal	\boxtimes				complies

Note: NA = Not Applicable; NP = Not Performed

11 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

Test report no.:	1-3606	21-01-06
------------------	--------	----------

 \square

Test mode:

No test mode available.

Special test mode/software is used.

Test device (EUT):

- EUT 1: UWB emissions are turned on and the test mode described below is used. Bootloader FW is labeled as "tuszi.bin". FW file is labeled as "XX_DB_TUSZI_WFL.bin". (XX depends on power settings)
- EUT 2: spare
- EUT 3: UWB emissions are turned on and the normal mode (intended use) is used. Bootloader FW is labeled as "tuszi.bin". FW file is labeled as "TUSZI_wfl.bin".

Description of test modes as declared by customer:

- UWB test mode (Test mode 1):
 - Cycle time 1 ms.
 - o Remaining transmission parameters as in case of normal operation mode
 - Parameters (e.g. payload) selected so that the maximum average and peak output power is obtained

12 Measurement results

12.1 10 dB - Bandwidth

Description:

Measurement of the -10 dB bandwidth of the wanted signal.

§15.503(a)

UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_{H} and the lower boundary is designated f_{L} . The frequency at which the highest radiated emission occurs is designated f_{M} .

§15.503(b)

Center frequency. The center frequency, f_C , equals $(f_H + f_L)/2$.

§15.503(c)

Fractional bandwidth. The fractional bandwidth equals $2(f_H-f_L)/(f_H+f_L)$.

where:

f_M is the frequency of maximum UWB transmission;

 $f_{\rm H}$ is the highest frequency at which the power spectral density of the UWB transmission is -10 dB relative to $f_{\rm M};$

 f_L is the lowest frequency at which the power spectral density of the UWB transmission is -10 dB relative to f_M ; $f_C = (f_H + f_L)/2$ is the centre frequency of the -10 dB bandwidth.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

<u>Limits:</u>

§15.503(d)

Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

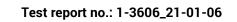
§15.519(b)

The UWB bandwidth of a device operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

Lower -10 dB point > 3.1 GHz Upper -10 dB point < 10.6 GHz
-10 dB bandwidth ≥ 500 MHz
or
-10 dB fractional bandwidth > 0.2

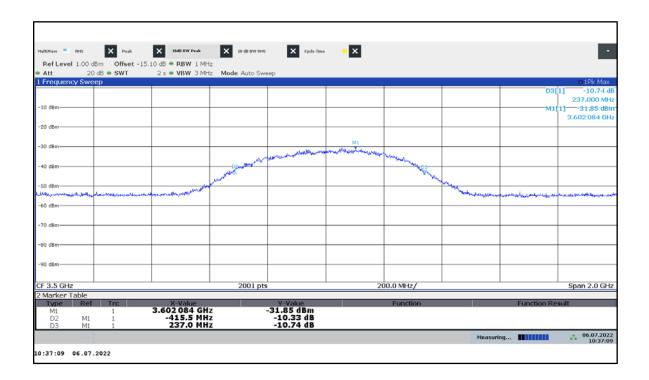
Results: UWB Channel 1

EUT	Lower -10 dB point [GHz]	Higher -10 dB point [GHz]	UWB bandwidth [MHz]	Plot
1	3.186	3.839	653	Plot 1

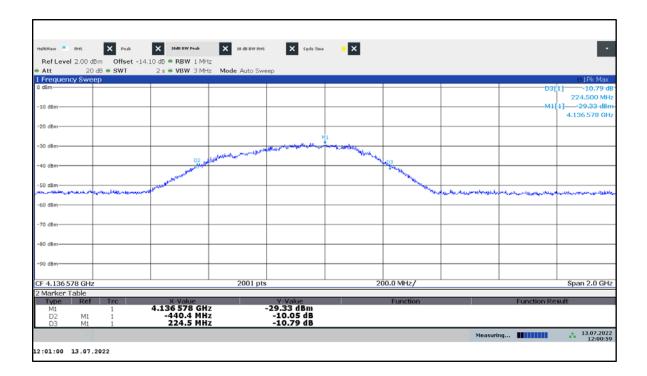

Results: UWB Channel 2

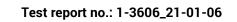
EUT	Lower -10 dB point [GHz]	Higher -10 dB point [GHz]	UWB bandwidth [MHz]	Plot
1	3.697	4.362	665	Plot 2

Results: UWB Channel 5

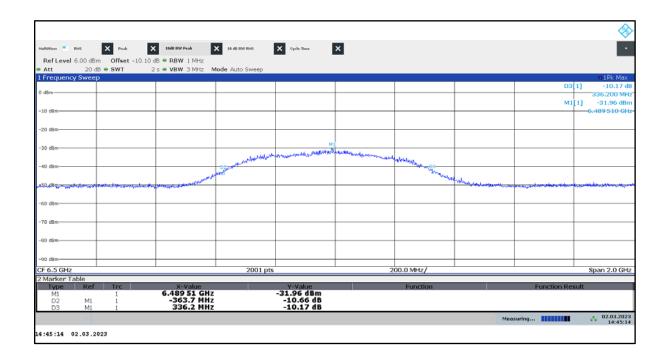

EUT	Lower -10 dB point [GHz]	Higher -10 dB point [GHz]	UWB bandwidth [MHz]	Plot
1	6.126	6.826	700	Plot 3

Verdict: Compliant





Plot 1: 10 dB bandwidth, UWB test mode channel 1


Plot 2: 10 dB bandwidth, UWB test mode channel 2

Plot 3: 10 dB bandwidth, UWB test mode channel 5

12.2 TX Radiated Emissions

Description:

Measurement of the radiated emissions in transmit mode.

Measurement:

§15.209

Measurement parameter		
Detector:	Peak/QPeak	
Sweep time:	1 s	
Resolution bandwidth:	120kHz	
Video bandwidth:	≥ RBW	
Trace-Mode:	Max Hold	

§15.519(c)

Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

§15.519(d)

Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Resolution bandwidth:	30 kHz / 1 kHz	
Video bandwidth:	300 kHz / 3 kHz	
Trace-Mode:	Max Hold	

§15.519(e)

Measurement parameter		
Detector:	Pos-Peak	
Resolution bandwidth:	50 MHz	
Video bandwidth:	80 MHz	
Span:	Zero span	
Trace-Mode:	Max Hold	

<u>Limits:</u>

Radiated emissions at or below 960 MHz §15.209:

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dBµV/m)	30
30 - 88	100 (40 dBµv/m)	3
88 - 216	150 (43.5 dBµV/m)	3
216 - 960	200 (46 dBµV/m)	3
> 960	500 (54 dBµV/m)	3

§15.519 (c)

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209.

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits based on measurements using a resolution bandwidth of 1 MHz:

Frequency in MHz	EIRP in dBm
960 to 1610	-75.3
1610 to 1990	-63.3
1990 to 3100	-61.3
3100 to 10600	-41.3
Above 10600	-61.3

§15.519 (d)

In addition to the radiated emission limits specified in the table in paragraph of §15.519 (c), UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

§15.519 (e)

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_{M} . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

Further provisions of CFR 47 Part 15 Subpart F:

§15.521 (c)

Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in §15.209, rather than the limits specified in this subpart, provided it can be clearly demonstrated that those emissions from the UWB device are due solely to emissions from digital circuitry contained within the transmitter and that the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in §15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the UWB transmission, are subject to the limits contained in Subpart B of this part.

§15.521 (d)

Within the tables in §§15.509, 15.511, 15.513, 15.515, 15.517, and 15.519, the tighter emission limit applies at the band edges. Radiated emission levels at and below 960 MHz are based on measurements employing a CISPR quasi-peak detector. Radiated emission levels above 960 MHz are based on RMS average measurements over a 1 MHz resolution bandwidth. The RMS average measurement is based on the use of a spectrum analyzer with a resolution bandwidth of 1 MHz, an RMS detector, and a 1 millisecond or less averaging time. Unless otherwise stated, if pulse gating is employed where the transmitter is quiescent for intervals that are long compared to the nominal pulse repetition interval, measurements shall be made with the pulse train gated on. Alternative measurement procedures may be considered by the Commission.

§15.521(e)

The frequency at which the highest radiated emission occurs, f_M , must be contained within the UWB bandwidth.

§15.521(g)

When a peak measurement is required, it is acceptable to use a resolution bandwidth other than the 50 MHz specified in this subpart. This resolution bandwidth shall not be lower than 1 MHz or greater than 50 MHz, and the measurement shall be centered on the frequency at which the highest radiated emission occurs, f_M . If a resolution bandwidth other than 50 MHz is employed, the peak EIRP limit shall be 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed. This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2. If RBW is greater than 3 MHz, the application for certification filed with the Commission must contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

§15.521(h)

The highest frequency employed in §15.33 to determine the frequency range over which radiated measurements are made shall be based on the center frequency, f_c , unless a higher frequency is generated within the UWB device. For measuring emission levels, the spectrum shall be investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the frequency range shown in §15.33(a) or up to f_c + 3/(pulse width in seconds), whichever is higher. There is no requirement to measure emissions beyond 40 GHz provided f_c is less than 10 GHz; beyond 100 GHz if f_c is at or above 10 GHz and below 30 GHz; or beyond 200 GHz if f_c is at or above 30 GHz.

Results:

Measurements of the fundamental emission:

UWB channel 1:

EUT	Frequency [GHz]	Max e.i.r.p. [dBm/MHz] average value	Applicable limit [dBm/MHz]	Margin [dB]	Plot
1	3.602	-45.0	-41.3	3.7	Plot 4

EUT	Frequency [GHz]	Max e.i.r.p. [dBm/50 MHz] peak value	Applicable limit [dBm/50 MHz]	Margin [dB]	Plot
1	3.602	-5.7	0.0	5.7	Plot 5

<u>UWB channel 2:</u>

EUT	Frequency [GHz]	Max e.i.r.p. [dBm/MHz] average value	Applicable limit [dBm/MHz]	Margin [dB]	Plot
1	4.136	-42.5	-41.3	1.2	Plot 15

EUT	Frequency [GHz]	Max e.i.r.p. [dBm/50 MHz] peak value	Applicable limit [dBm/50 MHz]	Margin [dB]	Plot
1	4.136	-1.4	0.0	1.4	Plot 16

UWB channel 5:

EUT	Frequency [GHz]	Max e.i.r.p. [dBm/MHz] average value	Applicable limit [dBm/MHz]	Margin [dB]	Plot
1	6.489	-43.7	-41.3	2.4	Plot 26

EUT	Frequency [GHz]	Max e.i.r.p. [dBm/50 MHz] peak value	Applicable limit [dBm/50 MHz]	Margin [dB]	Plot
1	6.489	-5.7	0.0	5.7	Plot 27

Emissions outside the band:

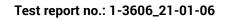
UWB channel 1:

Frequency f [MHz]	Detector	Measured level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	
Please refer to the following plots for more information on the level of spurious emissions					
-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	

Frequency f [MHz]	Detector	Measured level [dBm]	Limit [dBm]	Margin [dB]
Please refer to the following plots for more information on the level of spurious emissions.				
-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-

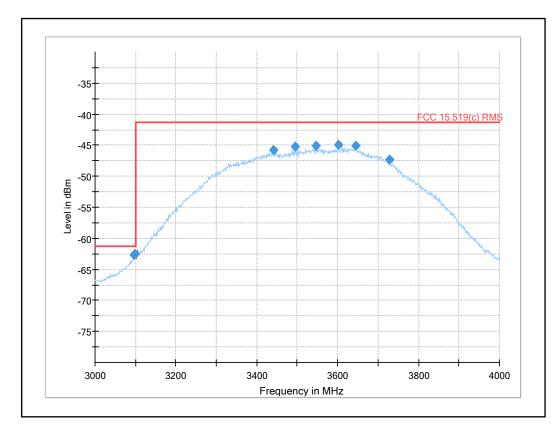
UWB channel 2:

Frequency f [MHz]	Detector	Measured level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Pleas	se refer to the follo	owing plots for more information on the	level of spuriou	s emissions
-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-

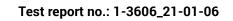

Frequency f [MHz]	Detector	Measured level [dBm]	Limit [dBm]	Margin [dB]	
Please refer to the following plots for more information on the level of spurious emissions.					
-/-	-/-	-/-	-/-	-/-	
-/-	-/-	-/-	-/-	-/-	

UWB channel 5:

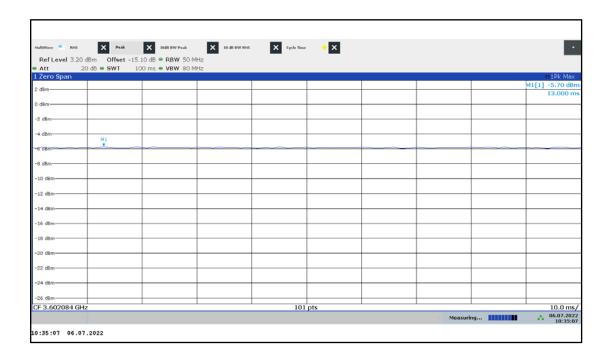
Frequency f [MHz]	Detector	Measured level [dBµV/m]	Limit [dBµV/m]	Margin [dB]
Pleas	se refer to the follo	owing plots for more information on the	level of spurious	s emissions
-/-	-/-	-/-	-/-	-/-
-/-	-/-	-/-	-/-	-/-


Frequency f [MHz]	Detector	Measured level [dBm]	Limit [dBm]	Margin [dB]		
Pleas	se refer to the follo	wing plots for more information on the level of spurious emissions				
-/-	-/-	-/-	-/-	-/-		
-/-	-/-	-/-	-/-	-/-		

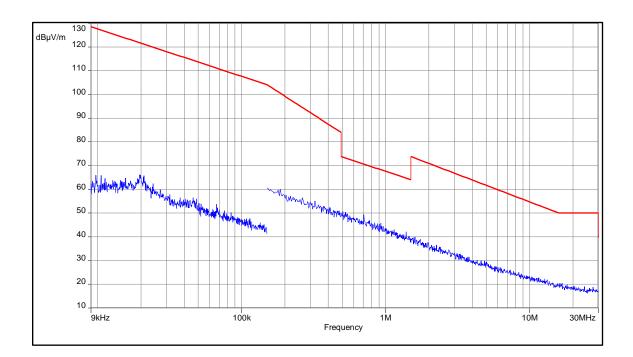
Verdict: Compliant

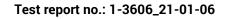


12.2.1 TX Radiated Emissions for UWB channel 1

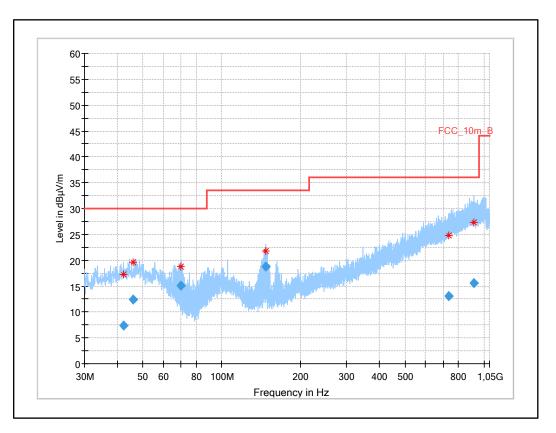

Plot 4: Fundamental emission (UWB test mode): RMS

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
3095.798000	-62.75	-61.30	1.45	1000.000	Н	133.0	157.0	-122.4
3098.715000	-62.61	-61.30	1.31	1000.000	Н	135.0	157.0	-122.3
3098.757000	-62.60	-61.30	1.30	1000.000	Н	133.0	157.0	-122.3
3098.941000	-62.58	-61.30	1.28	1000.000	Н	134.0	156.0	-122.3
3441.998000	-45.74	-41.30	4.44	1000.000	V	90.0	114.0	-122.6
3494.383000	-45.21	-41.30	3.91	1000.000	V	92.0	116.0	-121.9
3545.683000	-45.14	-41.30	3.84	1000.000	V	74.0	120.0	-122.0
3602.084000	-45.01	-41.30	3.71	1000.000	V	82.0	122.0	-122.1
3644.423000	-45.08	-41.30	3.78	1000.000	V	58.0	119.0	-121.4
3728.994000	-47.34	-41.30	6.04	1000.000	V	97.0	123.0	-121.0

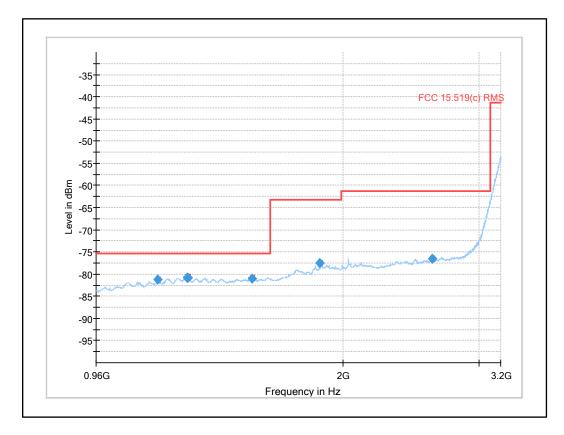




Plot 5: Fundamental emission (UWB test mode): Max Peak

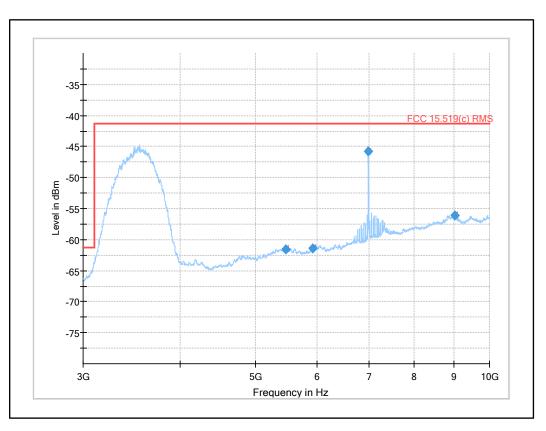


Plot 6: 9 kHz to 30 MHz, UWB test mode

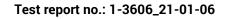

Plot 7: 30 MHz to 1 GHz, UWB test mode

Frequency	QuasiPea	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimut	Corr.
(MHz)	k	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		h	(dB/m
	(dBuV/m)							(dea)	
42.149	7.41	30.0	22.6	1000	120.0	391.0	V	270	16
46.005	12.39	30.0	17.6	1000	120.0	200.0	V	239	16
69.625	15.06	30.0	14.9	1000	120.0	186.0	V	174	10
147.485	18.81	33.5	14.7	1000	120.0	100.0	V	180	10
732.096	13.01	36.0	23.0	1000	120.0	200.0	Н	117	23
917.576	15.55	36.0	20.5	1000	120.0	200.0	Н	225	26

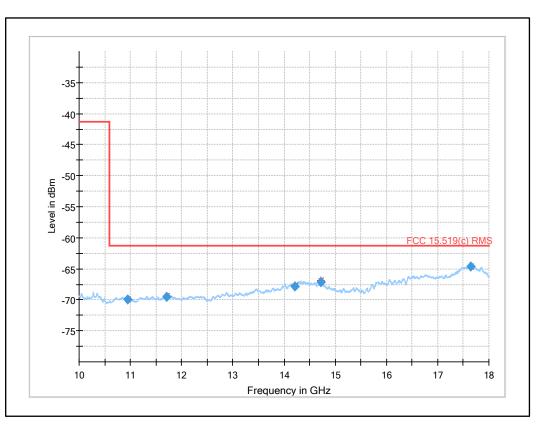
Test report no.: 1-3606_21-01-06



Plot 8: 960 MHz to 3.2 GHz (Limit acc. to §15.519 (c)), UWB test mode

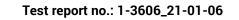

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1152.296000	-81.32	-75.30	6.02	1000.000	Н	147.0	90.0	-139.4
1258.354600	-80.83	-75.30	5.53	1000.000	V	179.0	134.0	-137.7
1260.182200	-80.90	-75.30	5.60	1000.000	V	174.0	150.0	-137.8
1526.880800	-81.01	-75.30	5.71	1000.000	Н	221.0	39.0	-137.5
1866.726200	-77.58	-63.30	14.28	1000.000	Н	81.0	180.0	-135.6
2611.014400	-76.56	-61.30	15.26	1000.000	Н	162.0	105.0	-133.0

Plot 9: 3.2 GHz to 10.5 GHz, UWB test mode



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
5467.909714	-61.53	-41.30	20.23	1000.000	Н	351.0	11.0	-117.3
5924.503714	-61.49	-41.30	20.19	1000.000	Н	249.0	140.0	-117.7
6988.726143	-45.75	-41.30	4.45	1000.000	Н	210.0	0.0	-116.4
9022.049714	-56.07	-41.30	14.77	1000.000	Н	19.0	101.0	-111.8

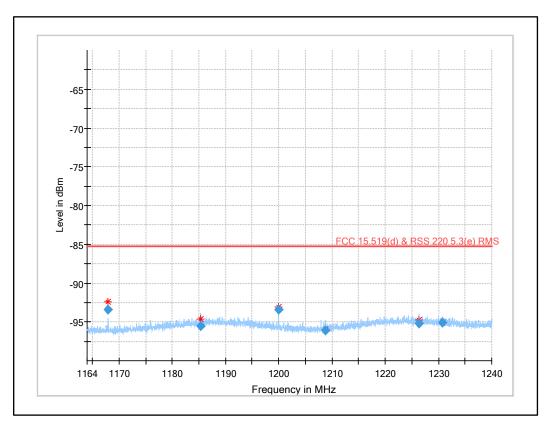
C cetecom


Plot 10: 10 GHz to 18 GHz, UWB test mode

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
10955.087000	-69.95	-61.30	8.65	1000.000	V	2.0	14.0	-126.2
11713.081000	-69.54	-61.30	8.24	1000.000	V	86.0	50.0	-126.2
14208.175000	-67.82	-61.30	6.52	1000.000	V	185.0	25.0	-122.3
14725.176000	-67.13	-61.30	5.83	1000.000	V	245.0	4.0	-121.3
17639.780000	-64.64	-61.30	3.34	1000.000	V	37.0	11.0	-116.5

cetecom advanced

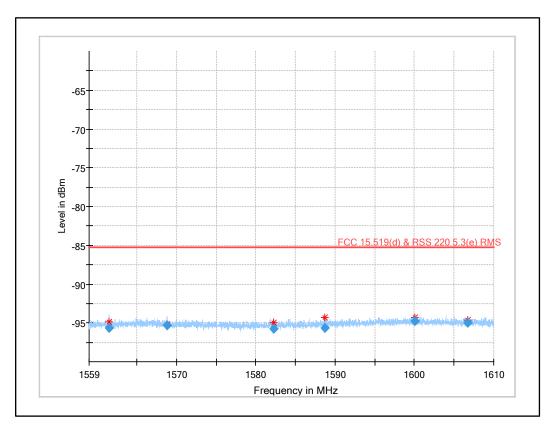
6

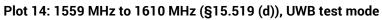

Plot 11: 18 GHz to 26.5 GHz, UWB test mode

MultiView	Spectrum	2 X S	pectrum	×					
RefLevel -40. Att	0 dB 🖷 SWT	8.5 s 🖷 VBW	3 MHz Mode A	_					
TDF "NARDA638_ 1 Frequency Sw		1_18-26_5G_50	ICM_DBM"						o1Rm Max
								M1[1]	-70.98 dBn 5.250 600 GH
-45 dBm									
-50 dBm									
-55 dBm									
-60 dBm									
JW8 FCC 15_519									
-65 dBm									
-70 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm		MI	mm
-75 dBm				~~~			••••		~
-80 dBm									
-85 dBm									
CF 22.25 GHz	~		8501 pt	8	85	0.0 MHz/	Measuring		Span 8.5 GHz 18.07.2022 03:40:12

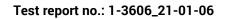
Plot 12: 26.5 GHz to 40.0 GHz, UWB test mode

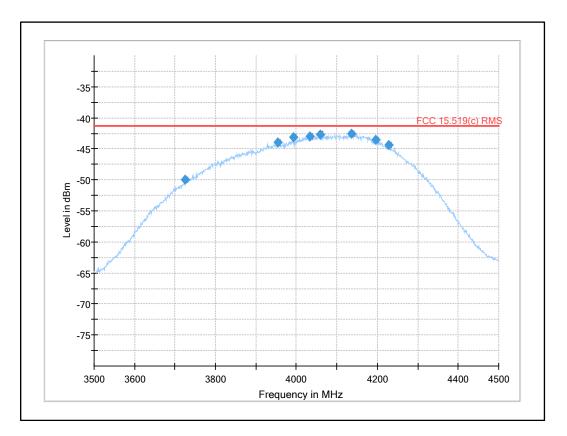
MultiView - Spectrum 2	2 X Spectrum	×			
Ref Level -45.00 dBm	RBW 1 MHz				
	13.5 s = VBW 3 MHz Mode	Auto Sweep			
TDF "NARDA637_CABLE503_CBL1	_26_5-40G_50CM_DBM"				
1 Frequency Sweep					O 1Rm Max
					M1[1] -66.57 dBm 39.903 500 GHz
					39,903,500,602
-50 dBm					
-SS dBm					
-60 dBm					
UWB FCC 15_519					
-65 dBm					M
					and the second s
	- un manun		And the L	~~~~ r	
-70 BBM			++		
-75 dBm-					
-80 dBm					
CF 33.25 GHz	13501 pt	S	1.35 GHz/		Span 13.5 GHz
				Measuring 📕	18.07.2022
					04:00:04
04:36:35 18.07.2022					

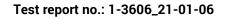




Plot 13: 1164 MHz to 1240 MHz (§15.519 (d)), UWB test mode


Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1167.979373	-93.41	-85.30	8.11	30.000	V	172.0	1.0	-140.5
1185.296680	-95.49	-85.30	10.19	30.000	Н	191.0	121.0	-138.1
1199.996777	-93.39	-85.30	8.09	30.000	V	227.0	147.0	-139.5
1208.675983	-96.04	-85.30	10.74	30.000	Н	263.0	15.0	-139.6
1226.271867	-95.22	-85.30	9.92	30.000	Н	305.0	53.0	-137.9
1230.768197	-95.08	-85.30	9.78	30.000	V	53.0	31.0	-138.6

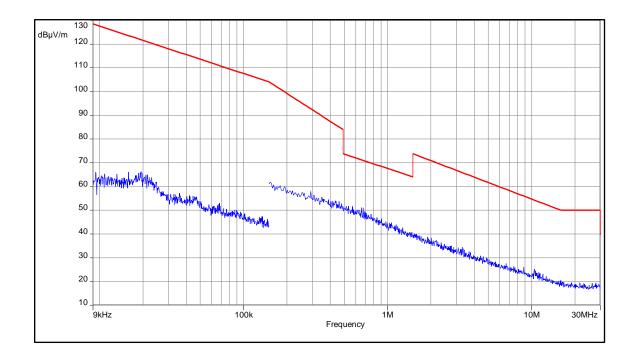

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1561.471530	-95.59	-85.30	10.29	30.000	V	44.0	129.0	-138.3
1568.833160	-95.33	-85.30	10.03	30.000	V	180.0	5.0	-138.4
1582.221610	-95.70	-85.30	10.40	30.000	Н	109.0	150.0	-138.7
1588.724850	-95.66	-85.30	10.36	30.000	Н	33.0	64.0	-138.4
1600.056590	-94.79	-85.30	9.49	30.000	Н	285.0	110.0	-137.8
1606.744420	-94.99	-85.30	9.69	30.000	Н	95.0	20.0	-138.1

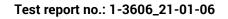


12.2.2 TX Radiated Emissions for UWB channel 2

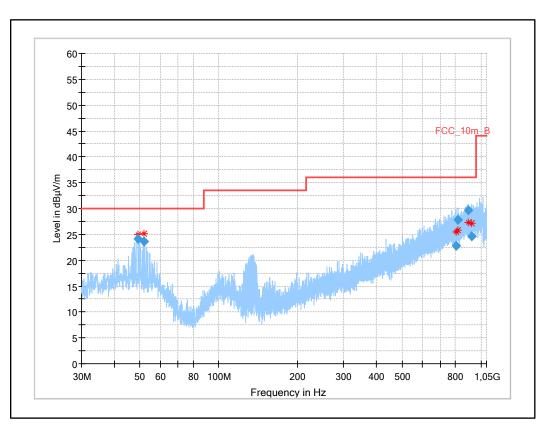
Plot 15: Fundamental emission (UWB test mode): RMS

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
3725.834000	-50.01	-41.30	8.71	1000.000	V	104.0	119.0	-120.9
3954.368000	-43.92	-41.30	2.62	1000.000	V	260.0	105.0	-120.6
3993.537000	-43.08	-41.30	1.78	1000.000	V	260.0	104.0	-120.8
4032.749000	-42.93	-41.30	1.63	1000.000	V	258.0	104.0	-120.5
4059.018000	-42.65	-41.30	1.35	1000.000	V	257.0	103.0	-120.8
4136.578000	-42.53	-41.30	1.23	1000.000	V	257.0	103.0	-121.1
4195.795000	-43.53	-41.30	2.23	1000.000	V	255.0	102.0	-120.0
4228.043000	-44.41	-41.30	3.11	1000.000	V	254.0	103.0	-120.9

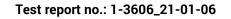




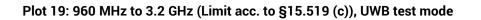
Plot 16: Fundamental emission (UWB test mode): Max Peak

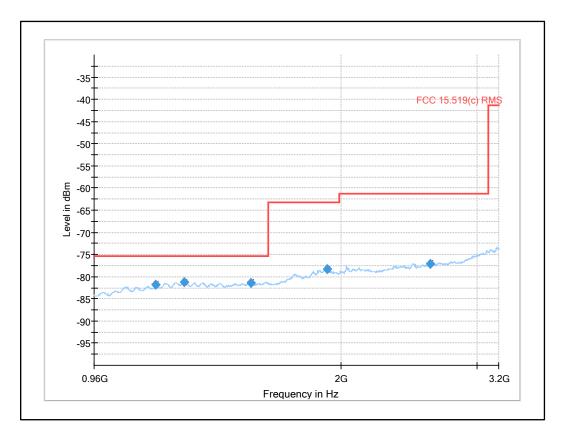


Plot 17: 9 kHz to 30 MHz, UWB test mode

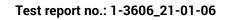


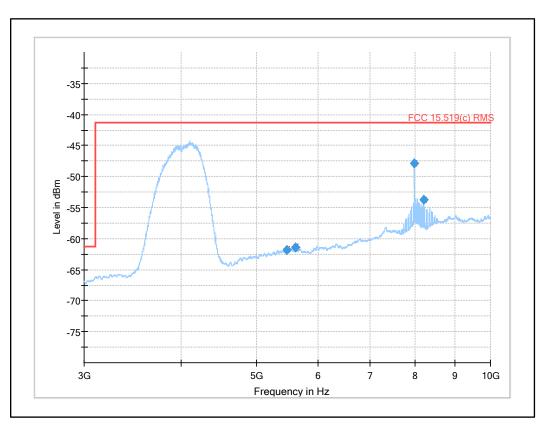
Plot 18: 30 MHz to 1 GHz, UWB test mode



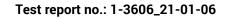

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
49.177	24.16	30.0	5.8	1000	120.0	151.0	V	288	16
51.734	23.55	30.0	6.5	1000	120.0	153.0	V	142	15
803.522	22.86	36.0	13.1	1000	120.0	195.0	V	232	24
814.227	27.86	36.0	8.1	1000	120.0	170.0	Н	-37	24
896.423	29.74	36.0	6.3	1000	120.0	173.0	Н	28	25
921.790	24.68	36.0	11.3	1000	120.0	172.0	Н	142	26

C cetecom

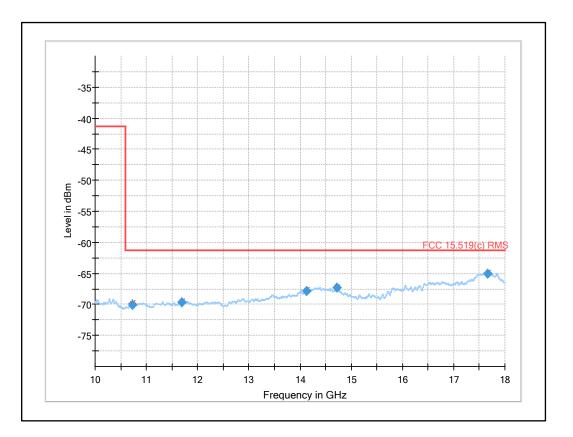




Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1152.036200	-81.85	-75.30	6.55	1000.000	Н	146.0	71.0	-139.4
1256.714000	-81.27	-75.30	5.97	1000.000	V	164.0	30.0	-137.7
1530.434000	-81.34	-75.30	6.04	1000.000	Н	87.0	100.0	-137.5
1920.038800	-78.39	-63.30	15.09	1000.000	Н	117.0	67.0	-136.2
2613.062800	-77.15	-61.30	15.85	1000.000	Н	97.0	107.0	-133.1

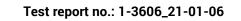


Plot 20: 3.2 GHz to 10.5 GHz, UWB test mode



Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
5466.659143	-61.87	-41.30	20.57	1000.000	Н	296.0	52.0	-117.2
5612.909857	-61.46	-41.30	20.16	1000.000	Н	247.0	93.0	-116.8
7987.111000	-47.88	-41.30	6.58	1000.000	V	75.0	86.0	-114.7
8205.588143	-53.81	-41.30	12.51	1000.000	V	72.0	43.0	-114.9

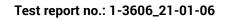
C cetecom



Plot 21: 10 GHz to 18 GHz, UWB test mode

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
10725.534000	-70.08	-61.30	8.78	1000.000	V	219.0	30.0	-125.6
11686.846000	-69.69	-61.30	8.39	1000.000	V	145.0	35.0	-126.0
14131.400000	-67.89	-61.30	6.59	1000.000	V	65.0	97.0	-121.5
14720.429000	-67.34	-61.30	6.04	1000.000	V	201.0	1.0	-121.2
17659.034000	-65.09	-61.30	3.79	1000.000	V	119.0	18.0	-116.4

C cetecom advanced

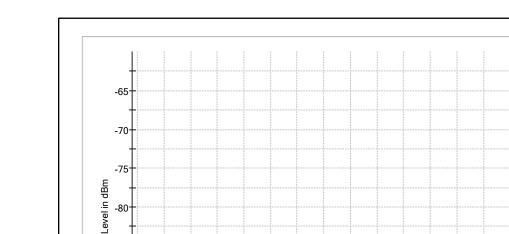


Plot 22: 18 GHz to 26.5 GHz, UWB test mode

MultiView	Spectrum	2 X S	pectrum	××					•
Ref Level -40.0 Att TDF "NARDA638_0	0 dB - SWT	8.5 s = VBW	3 MHz Mode A	uto Sweep					
1 Frequency Sw									O1Rm Max
Limit Check Line UWB Fi			РА РА					M1[1]	-70.98 dBm 4.886 700 GHz
-45 dBm									
-50 dBm									
-55 dBm									
-60 dBm									
UWB FCC 15_519									
-65 dBm									
-70 dBm					man	mm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M1	
-75 dBm									
-80 dBm									
-85 dBm									
18.0 GHz			8501 pt		0.5	0.0 MHz/			26.5 GHz
10:0 002			6501 pt	<u> </u>	85		Measuring		20.5 GHz 22.08.2022 14:11:47
14:11:48 22.08	3.2022								

Plot 23: 26.5 GHz to 40.0 GHz, UWB test mode

									I
MultiView	Spectrum	2 X S	Spectrum	×					•
Ref Level -4	5.00 dBm	BBW	1 MHz						
Att		13.5 s 👄 VBW		Auto Sweep					
	_CABLE503_CBL	1_26_5-40G_50	CM_DBM"						
1 Frequency S	weep								IRm Max
Limit Che			PA					M1[1]	-66.62 dBm
Line UWB	FCC 15_519		PA	ss				3	9.895 500 GHz
-50 dBm									
-55 dBm									
-60 dBm									
UWB FCC 15_519									
-65 dBm									M1
									and the second
k			m	Norman and the second s	$\sim \sim \sim$	han the second	~~~	$\sim\sim\sim\sim$	
-70 dBm	man man	~~~~~		~~~	~~~				
-									
-75 dBm-									
-80 dBm									
26.5 GHz			13501 pt	S	1.	.35 GHz/			40.0 GHz
							Measuring		22.08.2022 08:54:13
									50.04.20
08:54:14 22.	08.2022								


FCC 15.519(d) & RSS 220 5.3(e) RMS

Ť

the set

1240

1230

Plot 24: 1164 MHz to 1240 MHz (§15.519 (d)), UWB test mode

-80

-85

-90

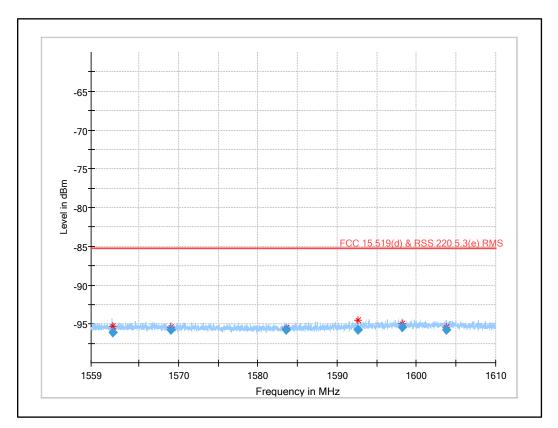
-95

1164 1170

1180

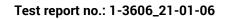
1190

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1173.530313	-96.60	-85.30	11.30	30.000	Н	105.0	143.0	-139.9
1186.410283	-95.63	-85.30	10.33	30.000	Н	33.0	8.0	-138.1
1200.000557	-92.03	-85.30	6.73	30.000	Н	158.0	2.0	-139.3
1211.891327	-96.50	-85.30	11.20	30.000	Н	226.0	3.0	-139.2
1225.492893	-95.50	-85.30	10.20	30.000	Н	280.0	16.0	-137.9
1231.973323	-93.18	-85.30	7.88	30.000	V	173.0	120.0	-138.9

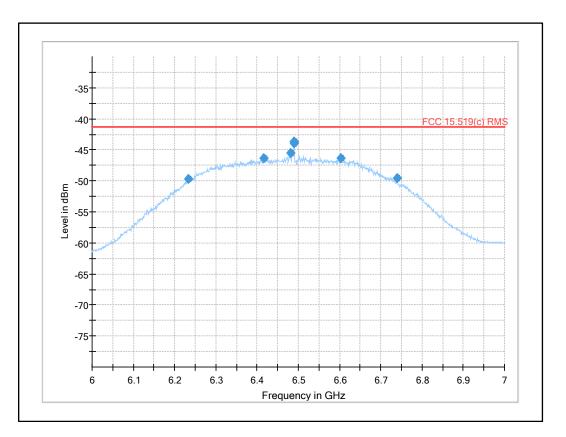

1200

Frequency in MHz

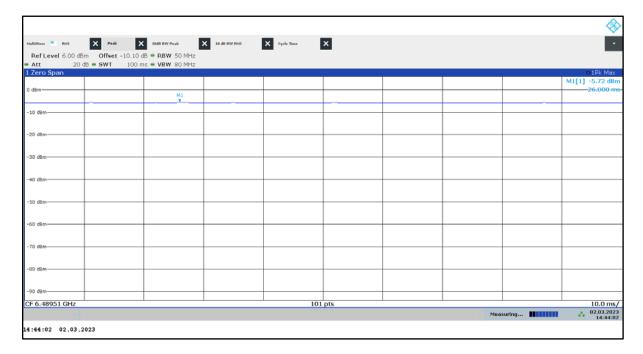
1210

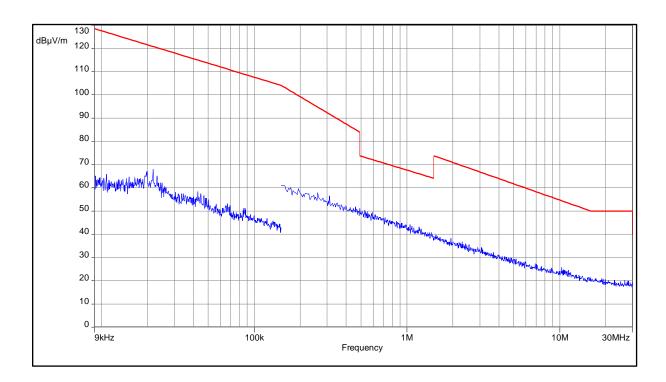

1220

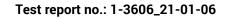
Plot 25: 1559 MHz to 1610 MHz (§15.519 (d)), UWB test mode

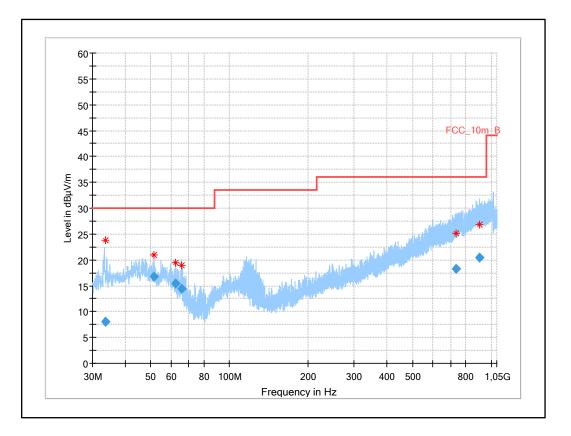

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1561.683490	-96.14	-85.30	10.84	30.000	Н	333.0	62.0	-138.2
1568.996060	-95.70	-85.30	10.40	30.000	V	68.0	87.0	-138.4
1583.569460	-95.74	-85.30	10.44	30.000	V	216.0	105.0	-138.9
1592.631040	-95.77	-85.30	10.47	30.000	Н	234.0	65.0	-138.1
1598.157660	-95.42	-85.30	10.12	30.000	Н	307.0	11.0	-137.8
1603.772280	-95.70	-85.30	10.40	30.000	V	269.0	45.0	-138.2

12.2.3 TX Radiated Emissions for UWB channel 5

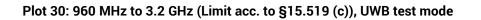

Plot 26: Fundamental emission (UWB test mode): RMS

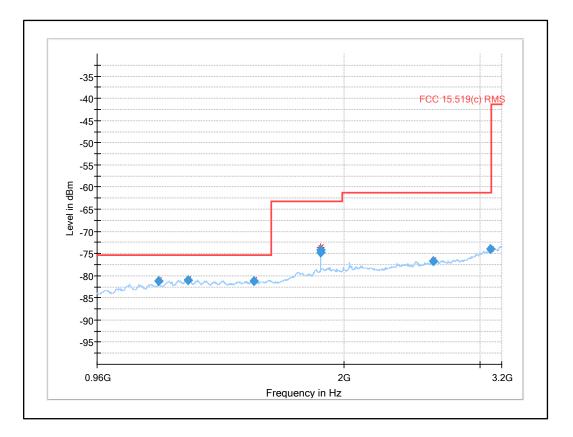

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
6233.902000	-49.72	-41.30	8.42	1000.000	Н	134.0	87.0	-117.2
6415.158000	-46.35	-41.30	5.05	1000.000	Н	132.0	92.0	-116.4
6480.426000	-45.54	-41.30	4.24	1000.000	Н	137.0	72.0	-117.0
6489.496000	-43.72	-41.30	2.42	1000.000	Н	137.0	73.0	-117.1
6489.512000	-43.68	-41.30	2.38	1000.000	Н	138.0	72.0	-117.1
6489.546000	-43.98	-41.30	2.68	1000.000	Н	130.0	71.0	-117.1
6489.547000	-43.74	-41.30	2.44	1000.000	Н	137.0	73.0	-117.1
6489.550000	-43.70	-41.30	2.40	1000.000	Н	137.0	73.0	-117.1
6489.584000	-43.71	-41.30	2.41	1000.000	Н	138.0	72.0	-117.1
6602.272000	-46.38	-41.30	5.08	1000.000	Н	137.0	76.0	-117.0
6739.240000	-49.50	-41.30	8.20	1000.000	Н	137.0	79.0	-116.3



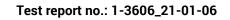


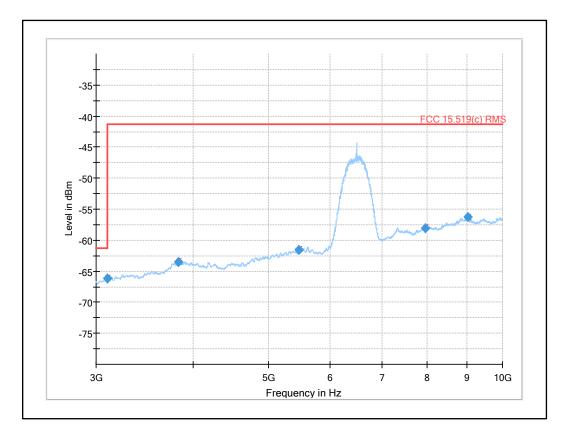
Plot 28: 9 kHz to 30 MHz, UWB test mode



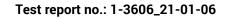


	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
ĺ	33.680	8.07	30.0	21.9	1000	120.0	124.0	V	124	14
	51.677	16.69	30.0	13.3	1000	120.0	100.0	V	314	15
	62.541	15.36	30.0	14.6	1000	120.0	283.0	V	262	13
	65.719	14.45	30.0	15.6	1000	120.0	352.0	V	180	12
	735.418	18.25	36.0	17.8	1000	120.0	302.0	V	270	23
	901.967	20.53	36.0	15.5	1000	120.0	285.0	Н	265	26

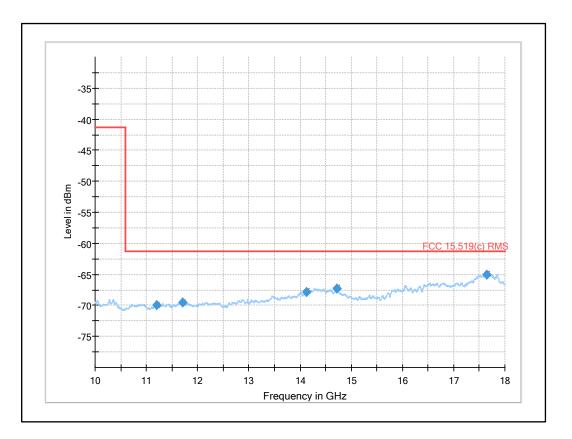




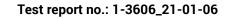
Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1152.085200	-81.16	-75.30	5.86	1000.000	Н	187.0	2.0	-139.4
1258.750400	-80.95	-75.30	5.65	1000.000	Н	-2.0	141.0	-137.4
1531.974400	-81.18	-75.30	5.88	1000.000	Н	297.0	33.0	-137.6
1866.750800	-74.69	-63.30	11.39	1000.000	Н	175.0	94.0	-135.6
1866.846800	-74.10	-63.30	10.80	1000.000	Н	166.0	120.0	-135.6
2611.149800	-76.75	-61.30	15.45	1000.000	Н	29.0	39.0	-133.0
3091.349800	-74.06	-61.30	12.76	1000.000	Н	271.0	15.0	-130.1



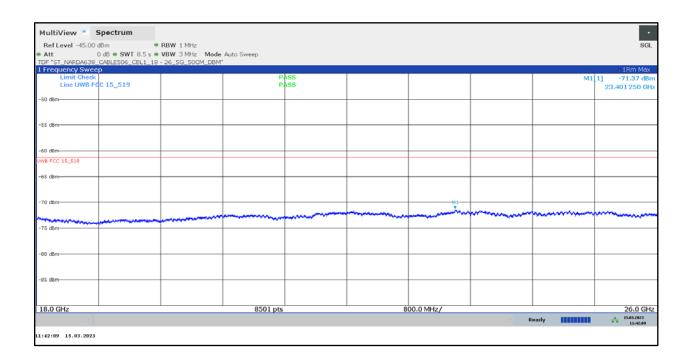
Plot 31: 3.2 GHz to 10.5 GHz, UWB test mode



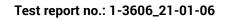
Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
3098.774571	-66.22	-61.30	4.92	1000.000	Н	308.0	180.0	-122.3
3833.084857	-63.56	-41.30	22.26	1000.000	Н	177.0	31.0	-119.5
5469.237571	-61.63	-41.30	20.33	1000.000	Н	302.0	161.0	-117.4
7960.562000	-58.04	-41.30	16.74	1000.000	Н	345.0	135.0	-114.6
9020.942714	-56.23	-41.30	14.93	1000.000	Н	320.0	116.0	-111.8


C cetecom

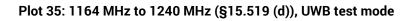
Plot 32: 10 GHz to 18 GHz, UWB test mode

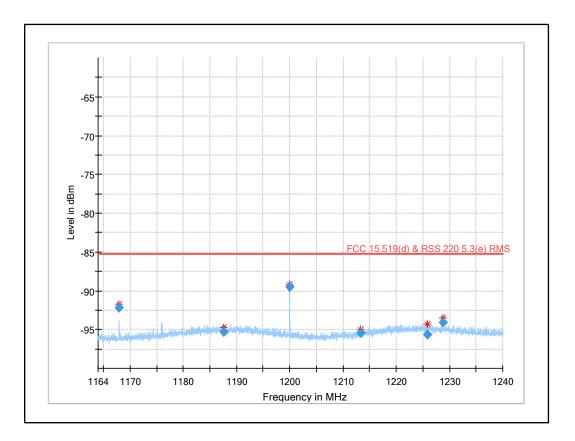


Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
11205.747000	-69.93	-61.30	8.63	1000.000	V	49.0	1.0	-125.7
11707.402000	-69.57	-61.30	8.27	1000.000	V	167.0	54.0	-126.2
14131.792000	-67.86	-61.30	6.56	1000.000	V	95.0	15.0	-121.5
14723.070000	-67.25	-61.30	5.95	1000.000	V	45.0	15.0	-121.2
17645.894000	-65.06	-61.30	3.76	1000.000	V	15.0	1.0	-116.4

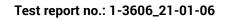


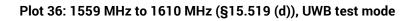
Plot 33: 18 GHz to 26.5 GHz, UWB test mode

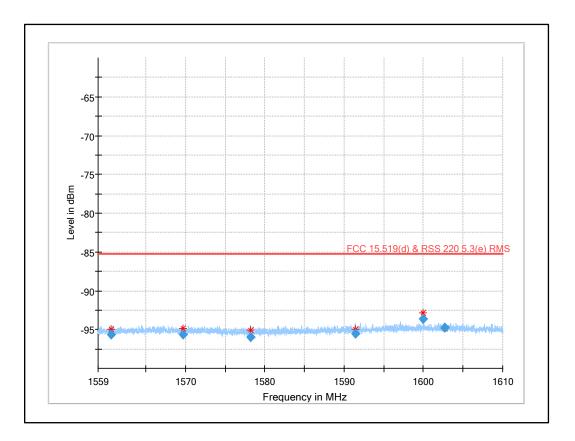



Plot 34: 26.5 GHz to 40.0 GHz, UWB test mode

MultiView	Spectrum								•
Ref Level -45.0	dBm .								SGL
 Att 	0 dB 🖷 SWT 13.5 s (
1 Frequency Swe	CABLE506_CBL1_26	_5 - 40G_50CM_DBM"							o 1Rm Max
Limit Chec			P	ASS				M1	
	CC 15_519		P	ASS					38.979 600 GHz
-50 dBm-									
-SU dBm									
-55 dBm									
-60 dBm									
-50 dam UWB FCC 15_519									
UWB FCC 15_519									M1
-65 dBm									MI
Woyden when which when	and	man warm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	and the second s			
YOUGBONT									
-75 dBm-									
-80 dBm									
-85 dBm-									
26.5 GHz			13501 pts			1.35 GHz/			40.0 GHz
							e R	eady	15.03.2023
									11155.000
1:55:00 15.03.202	1								







Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1167.978293	-92.22	-85.30	6.92	30.000	V	177.0	176.0	-140.5
1187.650537	-95.32	-85.30	10.02	30.000	Н	348.0	27.0	-138.0
1199.998337	-89.47	-85.30	4.17	30.000	V	228.0	63.0	-139.5
1213.259697	-95.47	-85.30	10.17	30.000	Н	166.0	30.0	-138.9
1225.920067	-95.62	-85.30	10.32	30.000	Н	60.0	60.0	-137.9
1228.796187	-94.11	-85.30	8.81	30.000	Н	351.0	29.0	-138.2

Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1560.622930	-95.59	-85.30	10.29	30.000	Н	281.0	75.0	-138.3
1569.752190	-95.62	-85.30	10.32	30.000	Н	314.0	172.0	-138.3
1578.204850	-95.98	-85.30	10.68	30.000	Н	212.0	163.0	-138.7
1591.401920	-95.49	-85.30	10.19	30.000	Н	187.0	87.0	-138.2
1600.005410	-93.61	-85.30	8.31	30.000	V	32.0	9.0	-138.1
1602.730450	-94.79	-85.30	9.49	30.000	Н	15.0	135.0	-137.9

12.3 Efficient use of spectrum acc. to §15.519(a)(1)

Description:

§15.519(a)(1)

A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

KDB 393764 D01 UWB FAQ v02r01 Answer 4

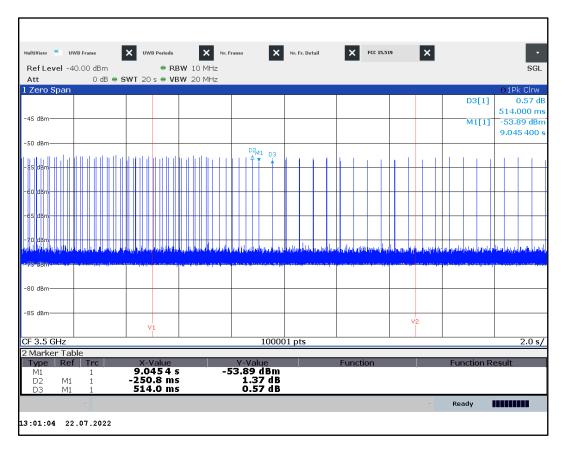
An acknowledgement of reception must continue to be received by the UWB device at least once every 10 seconds, or else the device shall cease transmission of any information other than periodic signals for use in the establishment or re-establishment of a communications link with an associated receiver.

Measurement:

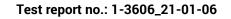
Measurement parameter						
Detector:	Pos-Peak					
Resolution bandwidth:	10 MHz					
Video bandwidth:	20 MHz					
Span	Zero					

<u>Limits:</u>

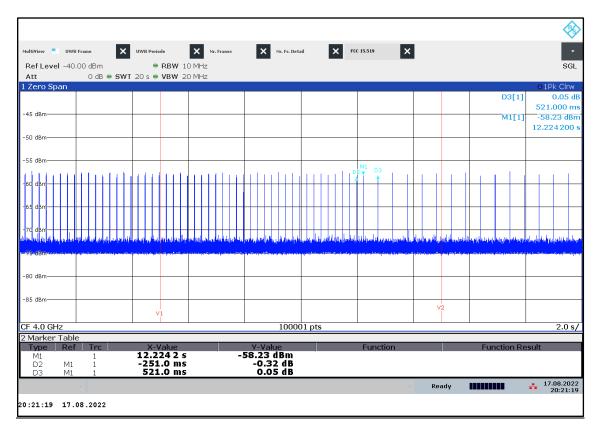
§15.519(a)(1), KDB 393764

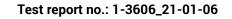

EUT shall cease transmission of information within 10 seconds unless it receives an acknowledgement from the associated receiver.

However, periodic signals used for the establishment or re-establishment of a communication link with an associated receiver may be transmitted.

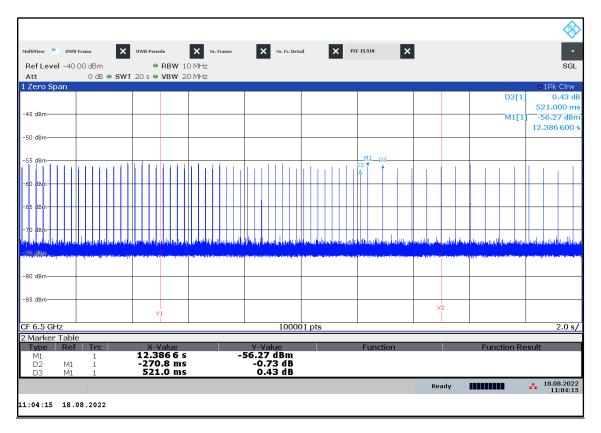

Results: UWB channel 1

Vertical line V1 indicates the time when the associated receiver is switched off. Vertical line V2 indicates 10 s after the associated receiver is switched off.


→ Approximately 4 seconds after the associated receiver is switched off, the EUT ceases transmission of information and only sends periodic signals used for the establishment or re-establishment of a communication link.


Results: UWB channel 2

Vertical line V1 indicates the time when the associated receiver is switched off. Vertical line V2 indicates 10 s after the associated receiver is switched off.


→ Approximately 7.2 seconds after the associated receiver is switched off, the EUT ceases transmission of information and only sends periodic signals used for the establishment or re-establishment of a communication link.

Results: UWB channel 5

Vertical line V1 indicates the time when the associated receiver is switched off. Vertical line V2 indicates 10 s after the associated receiver is switched off.

→ Approximately 7.4 seconds after the associated receiver is switched off, the EUT ceases transmission of information and only sends periodic signals used for the establishment or re-establishment of a communication link.

Verdict: Compliant

12.4 Antenna requirements

Description:

§15.519(a)(2)

The use of antennas mounted on outdoor structures, e.g., antennas mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.

§15.521(b)

Manufacturers and users are reminded of the provisions of §§15.203 and 15.204.

<u>Results:</u>

Integrated antenna.

Verdict: Compliant

12.5 Conducted emissions < 30MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Parameter								
Detector:	Peak - Quasi Peak / Average							
Sweep time:	Auto							
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz							
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz							
Span:	9 kHz to 30 MHz							
Trace-Mode:	Max Hold							

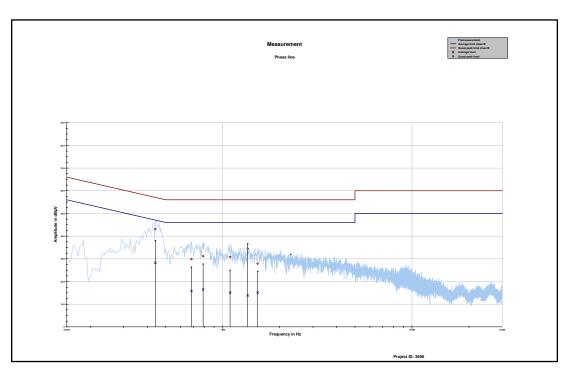
<u>Limits:</u>

FCC		IC		
CFR Part 15.207(a)		RSS-Gen 8.8		
	Conducted Spurious	Emissions < 30 MHz		
Frequency (MHz)	Quasi-Pe	ak (dBµV)	Average (dBµV)	
0.15 - 0.5	66 to	o 56*	56 to 46*	
0.5 - 5	5	6	46	
5 - 30.0	6	0	50	

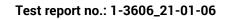
*Decreases with the logarithm of the frequency

§15.521(j)

Responsible parties are reminded of the other standards and requirements cross referenced in §15.505, such as a limit on emissions conducted onto the AC power lines.

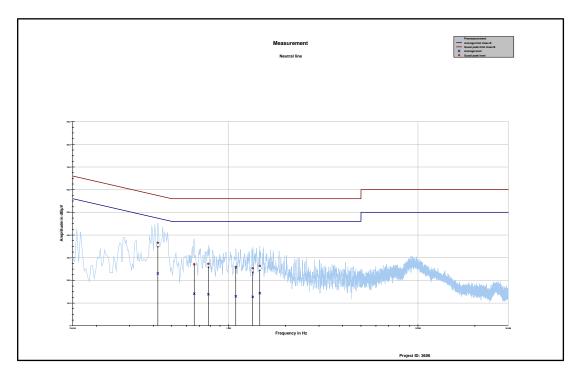


§15.207(c)


Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Results:

Plot 40: Phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.441038	43.12	13.93	57.042	28.22	19.46	47.685
0.683569	29.88	26.12	56.000	15.81	30.19	46.000
0.788044	31.18	24.82	56.000	16.47	29.53	46.000
1.094006	30.85	25.15	56.000	15.07	30.93	46.000
1.355194	34.49	21.51	56.000	13.85	32.15	46.000
1.530563	27.89	28.11	56.000	15.12	30.88	46.000

Plot 41: Neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin Average	Limit AV
MHz	dBµV	dB	dBµV	dBµV	dB	dBµV
0.422381	36.56	20.84	57.401	23.04	25.18	48.218
0.657450	27.17	28.83	56.000	14.11	31.89	46.000
0.780581	27.28	28.72	56.000	13.85	32.15	46.000
1.090275	25.95	30.05	56.000	12.96	33.04	46.000
1.340269	25.37	30.63	56.000	12.71	33.29	46.000
1.459669	26.36	29.64	56.000	14.37	31.63	46.000

Verdict: Compliant

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2023-04-05

15 Accreditation Certificate – D-PL-12076-01-05

first page last page	
<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	of ing S is

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf or https://cetecomadvanced.com/files/pdfs/d-pl-12076-01-05_tcb_usa.pdf