

Manufacturer

Comnovo GmbH Emil-Figge-Str. 76 44227 Dortmund / GERMANY

Test standard/s

FCC - Title 47 CFR Part 15	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 220 Issue 1,	Spectrum Management and Telecommunications Radio Standards
amendment 1	Specification - Devices Using Ultra-Wideband (UWB) Technology
For further applied test standa	ards please refer to section 3 of this test report.

Test Item

Kind of test item:	Infrastructure component
Model name:	Zone Marker
FCC ID:	2AYVBD2S0009469009
IC:	26947-D2S9469009
Frequency:	3100 MHz to 10600 MHz
Technology tested:	UWB
Antenna:	Integrated antenna
Power supply:	12 V DC by external power supply
Temperature range:	-40°C to +85°C

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate

starting with the registration number: D-PL-12076-01.

Deutsche Akkreditierungsstelle GmbH (DAkkS)

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Thomas Vogler Lab Manager Radio Communications & EMC

Test performed:

p.o.

Sebastian Janoschka Lab Manager Radio Communications & EMC

Table of contents 1

1	Table of contents	2
2	General information	3
	 2.1 Notes and disclaimer 2.2 Application details 2.3 Test laboratories sub-contracted 	3
3	Test standard/s, references and accreditations	4
4	Reporting statements of conformity – decision rule	5
5	Test environment	6
6	Test item	6
	6.1 General description6.2 Additional information	
7	Description of the test setup	7
	 7.1 Shielded semi anechoic chamber 7.2 Shielded fully anechoic chamber 7.3 Radiated measurements > 18 GHz 7.4 Efficient use of spectrum 	10 12
8	Sequence of testing	15
	 8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz 8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz 8.4 Sequence of testing radiated spurious above 18 GHz 8.5 Sequence of testing efficient use of spectrum 	16 17
9	Measurement uncertainty	20
10 11		
12		
12	12.110 dB - Bandwidth12.2TX Radiated Emissions12.3Efficient use of spectrum acc. to §15.517(a)(5)12.4Antenna requirements12.5Conducted emissions < 30MHz	22 25
13	Glossary	45
14	Document history	46
15	Accreditation Certificate – D-PL-12076-01-04	46
16	Accreditation Certificate – D-PL-12076-01-05	47

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-0495/20-01-02 and dated 2021-05-25.

2.2 Application details

Date of receipt of order:	2021-02-04
Date of receipt of test item:	2021-02-16
Start of test:*	2021-02-17
End of test:*	2021-03-08
Person(s) present during the test	_/_

Person(s) present during the test:

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

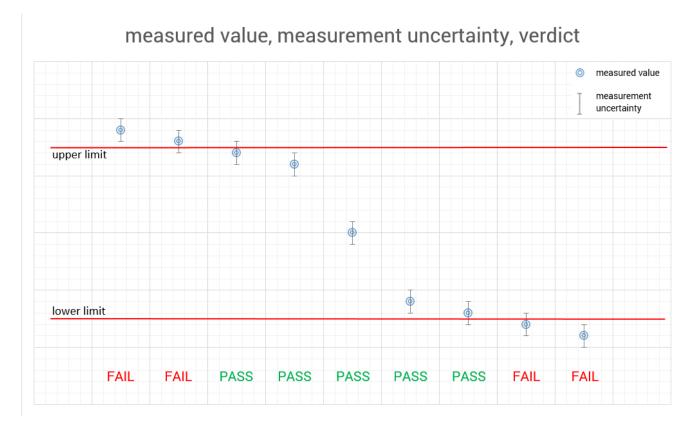
2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 220 Issue 1, amendment 1	July 2018	Spectrum Management and Telecommunications Radio Standards Specification - Devices Using Ultra-Wideband (UWB) Technology
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
		American National Standard for Methods of Measurement of
ANSI C63.4-2014	-/-	Radio-Noise Emissions from Low-Voltage Electrical and
		Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance
ANSI 603.10-2013	-/-	Testing of Unlicensed Wireless Devices


Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	DALKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	DAKKS Deutsche Akreditierungsstelle D-PL-12076-01-05

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

5 **Test environment**

		T_{nom}	+22 °C during room temperature tests			
Temperature	:	T_{max}	 -/- °C during high temperature tests 			
		T_{min}	 -/- °C during low temperature tests 			
Relative humidity content	:		55 %			
Barometric pressure	:		990 hPa to 1010 hPa			
		V _{nom}	12 V DC by external power supply			
Power supply	:	V_{max}	-/- V			
		V_{min}	-/- V			

6 **Test item**

General description 6.1

Kind of test item :	Infrastructure component
Model name :	Zone Marker
HMN :	-/-
PMN :	Zone Marker
HVIN :	Zone Marker
FVIN :	-/-
S/N serial number :	Engineering sample
Power setting	19 dB Image
Hardware status :	-/-
Software status :	-/-
Firmware status :	-/-
Frequency band :	3100 MHz to 10600 MHz
Type of radio transmission :	Pulse
Use of frequency spectrum :	
Type of modulation :	BPSK / BPM
Number of channels :	1
Antenna :	Integrated antenna
Power supply :	12 V DC by external power supply
Temperature range :	-40°C to +85°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

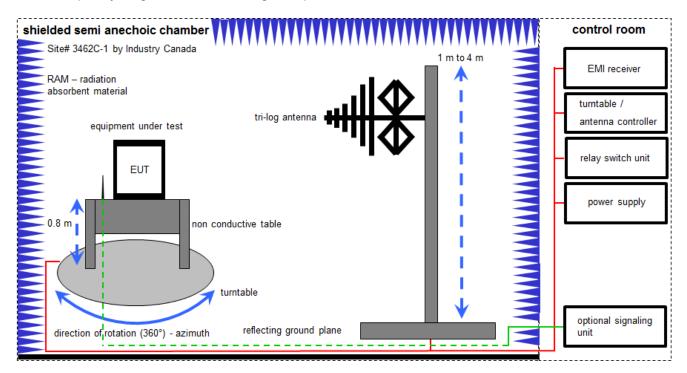
1-0495/20-01-01_AnnexA 1-0495/20-01-01_AnnexB 1-0495/20-01-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


- calibration / calibrated k
- not required (k, ev, izw, zw not required) ne
- periodic self verification ev
- Ve long-term stability recognized
- Attention: extended calibration interval vlkl!
- Attention: not calibrated NK!

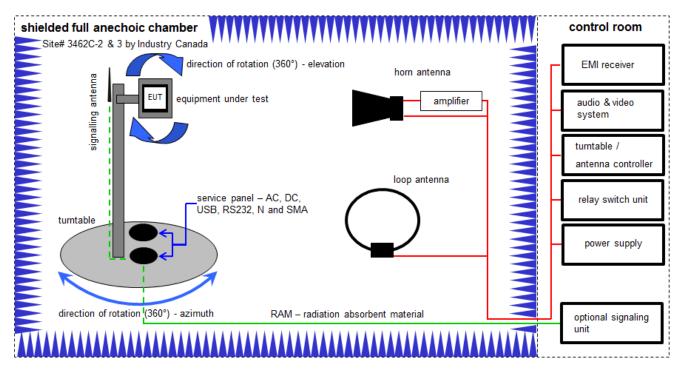
- limited calibration EΚ
- cyclical maintenance (external cyclical zw maintenance)
- izw internal cyclical maintenance
- blocked for accredited testing g
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF (FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)


<u>Example calculation</u>: FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	n. a.	Semi anechoic chamber	300023	MWB AG	-/-	300000551	ne	-/-	-/-
3	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vlKl!	04.09.2019	03.09.2021
7	n. a.	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022
8	n. a.	PC	TecLine	F+W		300004388	ne	-/-	-/-

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

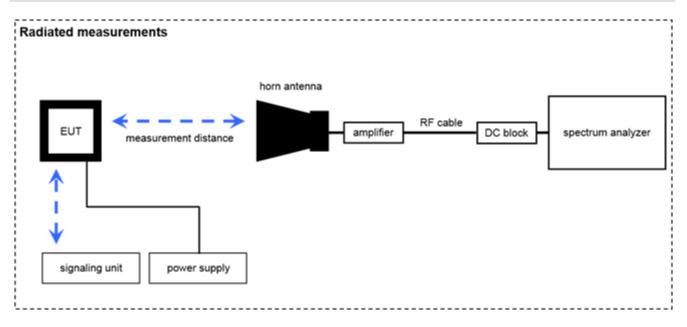
<u>Example calculation:</u> FS [dBµV/m] = 40.0 [dBµV/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dBµV/m] (71.61 µV/m)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation</u>: OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 µW) CTC | advanced

member of RWTÜV group


Equipment table (Chamber C):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vlKl!	09.12.2020	08.12.2023
2	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
4	A,B,C	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
5	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
6	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
7	A,B,C	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
8	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-
9	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKl!	13.06.2019	12.06.2021

Equipment table (OTA):

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	Power supply GPIB dc power supply, 0- 50 Vdc, 0-2 A	6633A	HP	2851A01222	300001530	vlKl!	10.12.2019	09.12.2022
2	A,B,C	CTIA-Chamber	CTIA-Chamber AMS 8500	ETS-Lindgren Finnland		300003327	ne	-/-	-/-
3	A,B,C	CTIA-Chamber - Positioning Equipment	CTIA-Chamber - Positioning Equipment	EMCO/2		300003328	ne	-/-	-/-
4	A,B,C	Signal- and Spectrum Analyzer	FSW26	R&S	101371	300005697	k	09.12.2020	08.12.2021
5	A,B,C	PC	Precision M4800	DELL	19414201934	300004957	-/-	-/-	-/-
6	A,B,C	EMC Software Chamber A	EMC32-MEB	R&S	n.a.	300005477	-/-	-/-	-/-
7	A,B,C	RF Amplifier	AMF-7D-01001800- 22-10P	NARDA-MITEQ Inc	2089864	300005633	ev	-/-	-/-
8	А	Std. Gain Horn Antenna 11.90- 18.00 GHz	1824-20	Flann	263	300002471	ev	-/-	-/-
9	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9709-5290	300000212	ev	-/-	-/-
10	n. a.	Lowpass Filter (Chebyshev)	WLKX14-4700-4900- 21000-30SS	Wainwright Instruments GmbH	1	300005655	ev	-/-	-/-
11	n. a.	High Pass Filter (Chebyshev)	WHNX6-8374- 10600-26500-40CC	Wainwright Instruments GmbH	1	300005656	ev	-/-	-/-

7.3 Radiated measurements > 18 GHz

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \mu V/m)$

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -59.0 [dBm] + 44.0 [dB] - 20.0 [dBi] + 5.0 [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No CTC	Kind of Calibration	Last Calibration	Next Calibration
1	A	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ev	-/-	-/-
2	A	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000487	ev	-/-	-/-
3	A	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	17.06.2020	16.06.2021
4	А	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
5	A	DC Power Supply, 60V, 10A	6038A	HP	2933A08295	300001519	vlKl!	08.12.2020	07.12.2023

7.4 Efficient use of spectrum

CTC I advanced

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Spectrum Analyzer 2 Hz - 85 GHz	FSW85	R&S	101333	300005568	k	17.06.2020	16.06.2021
2	n.a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3117	EMCO	143041	300004475	vlKl!	31.01.2019	30.01.2022
3	n. a.	DC Power Supply, 60V, 10A	6038A	HP	2933A08295	300001519	vlKI!	08.12.2020	07.12.2023

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

8.5 Sequence of testing efficient use of spectrum

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- The EUT positioned at a distance of approx. 0.5m to the horn antenna used for the measurement.
- The associated receiver is positioned between the EUT the horn antenna to assure that the received signal level of the associated receiver at the spectrum analyzer is higher than the level of the EUT.

Measurement:

- Switch on EUT and associated receiver and wait until the connection is established.
- Start Analyzer sweep in Zerospan with a sweep time of 15 s.
- Switch of the associated receiver.
- When switching of the associated receiver, a drop in the received signal level at the spectrum analyzer can be observed. → position marker 1
- Position marker two at the point where the transmission of the EUT stops.
- Measure time difference between marker 1 and marker 2.

9 Measurement uncertainty

Test case	Uncertainty
Equivalent isotropically radiated power (e.i.r.p.)	Conducted value ± 1 dB Radiated value ± 3 dB
Permitted range of operating frequencies	± 100 kHz
Conducted unwanted emissions in the spurious domain (up to 18 GHz)	± 1 dB
Radiated unwanted emissions in the spurious domain (up to 18 GHz)	± 3 dB
Conducted unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Radiated unwanted emissions in the spurious domain (18 to 40 GHz)	± 4 dB
Conducted unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Radiated unwanted emissions in the spurious domain (40 to 50 GHz)	± 4.5 dB
Conducted unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
Radiated unwanted emissions in the spurious domain (above 50 GHz)	± 5 dB
DC and low frequency voltages	± 3 %
Temperature	±1 °C
Humidity	± 3 %

10 Summary of measurement results

No deviations from the technical specifications were ascertained	
There were deviations from the technical specifications ascertained	
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.	

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR47 §15.207, §15.209, §15.503, §15.517, §15.521	see table	2021-06-02	-/-
	RSS-220, RSS-Gen			

Test specification clause	Test case	Temperature conditions	Power source	Pass	Fail	NA	NP	Remark
§15.503 §15.517(b) RSS-220 2 RSS-220 5.1(a)	10 dB Bandwidth	Nominal	Nominal	X				complies
§15.209 §15.517 §15.521 RSS-220 3.4 RSS-220 5.2.1 RSS-220 Annex	TX Radiated Emissions	Nominal	Nominal					complies
§15.517(a)(5)	Efficient use of spectrum	Nominal	Nominal					-/-
§15.517(a)(3) §15.521(b) §§15.203 & 15.204 RSS-220 5.1(b)	Antenna requirement	-/-	-/-					complies
§15.521(j) §15.207 RSS-220 5.2.1(b) RSS-Gen 8.8	Conducted emissions < 30 MHz	Nominal	Nominal			\boxtimes		-/-

Note: NA = Not Applicable; NP = Not Performed

11 Additional comments

Data port in the radio terminal: no

Reference documents:According to FCC response (Tracking Number 454339, response on
10/29/2020; tracking number 285069, response on 03/19/2019), a special
approach to satisfying the §15.519(a)(1) is valid.

Special test descriptions: None

Configuration descriptions: None

12 Measurement results

12.1 10 dB - Bandwidth

Description:

Measurement of the -10 dB bandwidth of the wanted signal.

§15.503(a)

UWB bandwidth. For the purpose of this subpart, the UWB bandwidth is the frequency band bounded by the points that are 10 dB below the highest radiated emission, as based on the complete transmission system including the antenna. The upper boundary is designated f_{H} and the lower boundary is designated f_{L} . The frequency at which the highest radiated emission occurs is designated f_{M} .

§15.503(b)

Center frequency. The center frequency, f_C , equals $(f_H + f_L)/2$.

§15.503(c)

Fractional bandwidth. The fractional bandwidth equals $2(f_H-f_L)/(f_H+f_L)$.

RSS-220 Annex 2

"-10 dB bandwidth B_{-10} " and "-10 dB fractional bandwidth μ_{-10} " are defined as follows:

 $B_{-10} = f_H - f_L$ $\mu_{-10} = B_{-10}/f_C$

where:

 f_M is the frequency of maximum UWB transmission;

 f_H is the highest frequency at which the power spectral density of the UWB transmission is -10 dB relative to f_M ;

 f_L is the lowest frequency at which the power spectral density of the UWB transmission is -10 dB relative to f_M ; $f_C = (f_H + f_L)/2$ is the centre frequency of the -10 dB bandwidth.

Measurement:

Measurement parameter		
Detector:	Pos-Peak	
Video bandwidth:	1 MHz	
Resolution bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

Limits:

§15.503(d)

Ultra-wideband (UWB) transmitter. An intentional radiator that, at any point in time, has a fractional bandwidth equal to or greater than 0.20 or has a UWB bandwidth equal to or greater than 500 MHz, regardless of the fractional bandwidth.

§15.517(b)

The UWB bandwidth of a device operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz.

RSS-220 2

A UWB device is an intentional radiator that has either a -10 dB bandwidth of at least 500 MHz or a -10 dB fractional bandwidth greater than 0.2.

RSS-220 5.1(a)

The -10 dB bandwidth of the device shall be totally contained in the band 3.1-10.6 GHz.

Results:

Lower -10 dB point [MHz]	Higher -10 dB point [MHz]	UWB bandwidth [MHz]	Plot
6158.2	6804.8	646.7	1

Verdict: Compliant

Plot 1: 10 dB bandwidth

MultiView Spectrum					
Ref Level 0.00 dBm Offset	-11 10 dB • PBW 1 MHz				
Att 20 dB • SWT	2 s • VBW 3 MHz Mode Auto	Sweep			
Frequency Sweep				1	o 1Pk Max
					M1[1] -28.64 dB
10 dBm					6,467000 Gł
20 dBm					
		M1			
30 dBm		MI . North Martin Martin and Martin Martin	manufactor and when the the		
	T1 Video	sof all and a second	T2		
40 dBm	1 more and 1		and the second sec		
	a manufacture		when	all and a second se	
SQ. demandant and a second second second second	and the second			May and stranger way way would with	and the second
50 dBm					
70 dBm					
/u ubm					
80 dBm					
90 d8m					
F 6.5 GHz		2001 pts	200.0 MHz/		Span 2.0 GH
Marker Table		2001 pts	200:0 MH27		Span 2.0 Gr
Type Ref Trc	X-Value	Y-Value	Function		Function Result
M1 1	6.467 GHz	-28.64 dBm	ndB		10.0 dB 646.70 MHz
T1 1 T2 1	6.1582 GHz 6.8048 GHz	-38.65 dBm -38.97 dBm	ndB down BW Q Factor		10.0
				Measuring	18.02.202
				Medsaning	. 16:06:4

16:06:45 18.02.2021

12.2 TX Radiated Emissions

Description:

Measurement of the radiated emissions in transmit mode.

Measurement:

§15.209, RSS-220 3.4:

Measurement parameter		
Detector:	Peak/QPeak	
Sweep time:	1 s	
Number of points	8001	
Resolution bandwidth:	120kHz	
Video bandwidth:	≥ RBW	
Trace-Mode:	Max Hold	

§15.517(c), RSS-220 5.2.1(d):

Measurement parameter		
Detector:	RMS	
Sweep time:	1 ms/pt	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Trace-Mode:	Max Hold	

§15.517(d), RSS-220 5.2.1(e):

Measurement parameter			
Detector:	RMS		
Sweep time:	1 ms/pt		
Resolution bandwidth:	30 kHz / 1 kHz		
Video bandwidth:	300 kHz / 3 kHz		
Trace-Mode:	Max Hold		

§15.517(e), RSS-220 Annex 4(c):

Measurement parameter					
Detector:	Pos-Peak				
Resolution bandwidth:	50 MHz				
Video bandwidth:	80 MHz				
Span:	Zero span				
Trace-Mode:	Max Hold				

Limits:

Radiated emissions at or below 960 MHz (§15.209, RSS-220 3.4, RSS-Gen 8.9):

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30	30 (29.5 dBµV/m)	30
30 - 88	100 (40 dBµv/m)	3
88 - 216	150 (43.5 dBµV/m)	3
216 - 960	200 (46 dBµV/m)	3
> 960	500 (54 dBµV/m)	3

§15.517 (c)

The radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in §15.209.

The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits based on measurements using a resolution bandwidth of 1 MHz:

Frequency in MHz	EIRP in dBm
960 to 1610	-75.3
1610 to 1990	-53.3
1990 to 3100	-51.3
3100 to 10600	-41.3
Above 10600	-51.3

§15.517 (d)

In addition to the radiated emission limits specified in the table in paragraph of §15.519 (c), UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz:

Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

§15.517 (e)

There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, f_{M} . That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in §15.521.

Further provisions of CFR 47 Part 15 Subpart F:

§15.521 (c)

Emissions from digital circuitry used to enable the operation of the UWB transmitter shall comply with the limits in §15.209, rather than the limits specified in this subpart, provided it can be clearly demonstrated that those emissions from the UWB device are due solely to emissions from digital circuitry contained within the transmitter and that the emissions are not intended to be radiated from the transmitter's antenna. Emissions from associated digital devices, as defined in §15.3(k), e.g., emissions from digital circuitry used to control additional functions or capabilities other than the UWB transmission, are subject to the limits contained in Subpart B of this part.

§15.521 (d)

Within the tables in §§15.509, 15.511, 15.513, 15.515, 15.517, and 15.519, the tighter emission limit applies at the band edges. Radiated emission levels at and below 960 MHz are based on measurements employing a CISPR quasi-peak detector. Radiated emission levels above 960 MHz are based on RMS average measurements over a 1 MHz resolution bandwidth. The RMS average measurement is based on the use of a spectrum analyzer with a resolution bandwidth of 1 MHz, an RMS detector, and a 1 millisecond or less averaging time. Unless otherwise stated, if pulse gating is employed where the transmitter is quiescent for intervals that are long compared to the nominal pulse repetition interval, measurements shall be made with the pulse train gated on. Alternative measurement procedures may be considered by the Commission.

§15.521(e)

The frequency at which the highest radiated emission occurs, f_M , must be contained within the UWB bandwidth.

§15.521(g)

When a peak measurement is required, it is acceptable to use a resolution bandwidth other than the 50 MHz specified in this subpart. This resolution bandwidth shall not be lower than 1 MHz or greater than 50 MHz, and the measurement shall be centered on the frequency at which the highest radiated emission occurs, f_M . If a resolution bandwidth other than 50 MHz is employed, the peak EIRP limit shall be 20 log (RBW/50) dBm where RBW is the resolution bandwidth in megahertz that is employed. This may be converted to a peak field strength level at 3 meters using E(dBuV/m) = P(dBm EIRP) + 95.2. If RBW is greater than 3 MHz, the application for certification filed with the Commission must contain a detailed description of the test procedure, calibration of the test setup, and the instrumentation employed in the testing.

§15.521(h)

The highest frequency employed in §15.33 to determine the frequency range over which radiated measurements are made shall be based on the center frequency, f_c , unless a higher frequency is generated within the UWB device. For measuring emission levels, the spectrum shall be investigated from the lowest frequency generated in the UWB transmitter, without going below 9 kHz, up to the frequency range shown in §15.33(a) or up to f_c + 3/(pulse width in seconds), whichever is higher. There is no requirement to measure emissions beyond 40 GHz provided f_c is less than 10 GHz; beyond 100 GHz if f_c is at or above 10 GHz and below 30 GHz; or beyond 200 GHz if f_c is at or above 30 GHz.

Further provisions of RSS-220:

RSS-220 5.2.1(d)

Radiated emissions above 960 MHz from a device shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz.

Frequency in MHz	EIRP in dBm
960 to 1610	-75.3
1610 to 4750	-70.0
4750 to 10600	-41.3
Above 10600	-51.3

RSS-220 5.2.1(e)

In addition to the limits specified in paragraph (d) of this section, radiated emissions shall not exceed the following average limits when measured using a resolution bandwidth greater than or equal to 1 kHz. The measurements shall demonstrate compliance with the stated limits at whatever resolution bandwidth is used.

Frequency in MHz	EIRP in dBm
1164 to 1240	-85.3
1559 to 1610	-85.3

RSS-220 5.2.1(f)

Within the tables in paragraphs (d) and (e) above, the tighter emission limit applies at the band edges.

RSS-220 5.2.1(g)

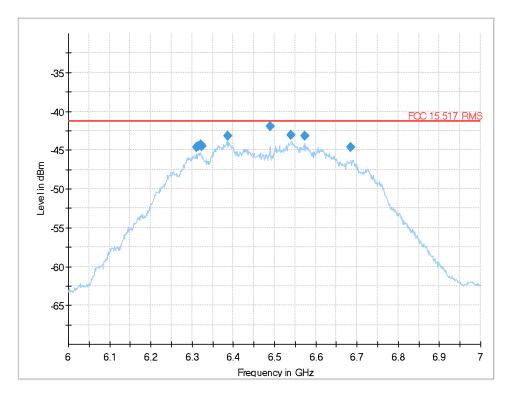
The peak level of the transmissions shall not exceed the peak equivalent of the average limit contained within any 50 MHz bandwidth, as defined in section 4 of the Annex.

RSS-220 Annex 4(c)

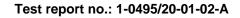
Peak measurements shall be made in addition to average measurements. Transmissions shall not exceed 0 dBm e.i.r.p. in any 50 MHz bandwidth when the average limit is -41.3 dBm/MHz. This is the equivalent peak limit as calculated by combining the 6 dB peak-to-average conversion with a resolution bandwidth (RBW) scaling factor of 20 log (1 MHz/50 MHz). Only the 50 MHz bandwidth, centred on the frequency fM where the highest power occurs, needs to be measured to satisfy the peak requirements for all frequencies. A different resolution bandwidth and a correspondingly different peak limit may also be used, in which case the RBW may be set anywhere between 1 MHz and 50 MHz. The peak e.i.r.p. limit is then calculated as 20 log(RBW/50) dBm where the RBW is in MHz. This may be converted to a peak field strength level at 3 metres using E(dBuV/m) = P(e.i.r.p.(dBm)) + 95.2. If the RBW is greater than 3 MHz, the application for certification shall contain a detailed description of the test procedure, the calibration of the test set-up and the instrumentation used in the testing.

RSS-220 Annex 4(m)

Emissions from digital circuitry (used only to enable the operation of the UWB transmitter and that does not control additional functions or capabilities) shall comply with the average and peak power limits applicable to the UWB transmitter. If it can be clearly demonstrated that an emission from a UWB transmitter is due solely to emissions from digital circuitry contained within the transmitter, and that the emission is not intended to be radiated from the transmitter's antenna, the limits for emissions from digital circuitry prescribed in RSS-Gen apply to that emission rather than the UWB limits.


Results:

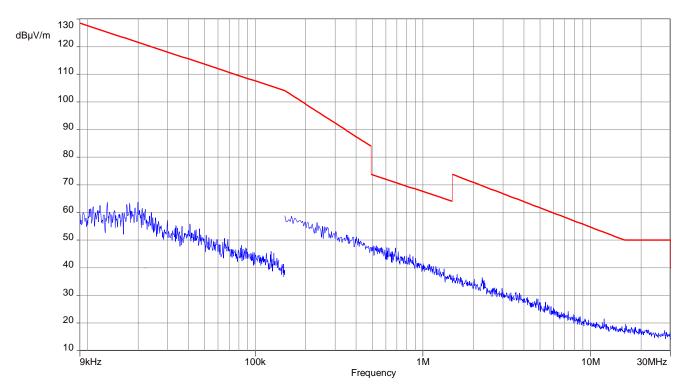
Measurements of the fundamental emission:


Frequency /MHz	Max RMS power in dBm/MHz	Max Peak power in dBm/50 MHz	Plot
6489.518	-41.90	-3.02	2, 3

Verdict: Compliant

Plot 2: Fundamental emission

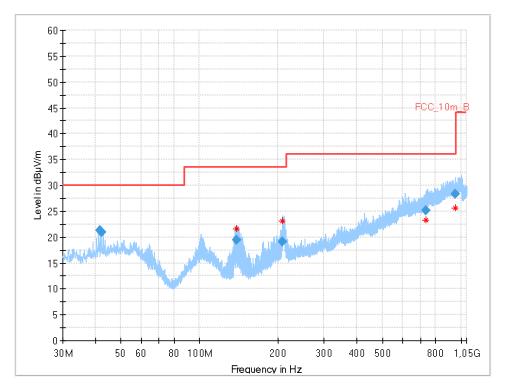
Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
6310.392000	-44.66	-41.30	3.36	1000.000	V	69.0	1.0	-118.2
6315.452000	-44.50	-41.30	3.20	1000.000	V	69.0	1.0	-118.2
6320.474000	-44.32	-41.30	3.02	1000.000	V	69.0	2.0	-118.1
6322.628000	-44.47	-41.30	3.17	1000.000	V	69.0	2.0	-118.1
6386.949000	-43.17	-41.30	1.87	1000.000	V	273.0	0.0	-118.0
6489.518000	-41.90	-41.30	0.60	1000.000	V	273.0	0.0	-118.1
6539.889000	-43.09	-41.30	1.79	1000.000	V	270.0	0.0	-118.1
6574.072000	-43.20	-41.30	1.90	1000.000	V	268.0	0.0	-118.0
6684.828000	-44.66	-41.30	3.36	1000.000	٧	273.0	0.0	-117.6



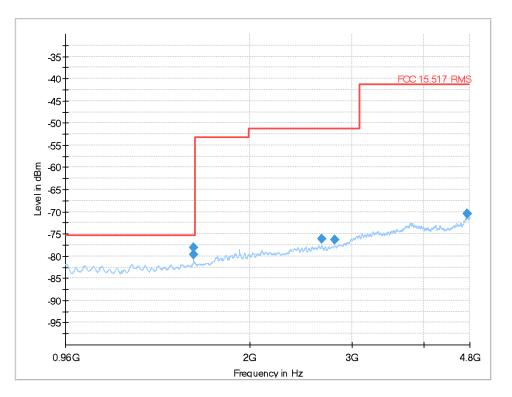
Plot 3: Peak fundamental emission

ultiView 📒	Spectrum							
Ref Level 8.90 dE	3m Offset -11.10	dB 🖷 RBW 50 MHz						
	dB 👄 SWT 100 r	ms 👄 VBW 80 MHz						
Zero Span				1				• 1Pk Ma M1[1] -3.02 d
								79.000
lBm							M1 ▼	
								1
D dBm								
								1
D dBm								
								1
D dBm								
								1
0 dBm								
								1
0 dBm								
								1
0 dBm								u
u ubin								
								1
0 dBm								
								1
0 dBm		1	1					
								1
0 dBm 6.489518 GHz				101	nto			10.0 m

16:00:49 18.02.2021

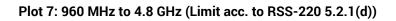

Plot 4: 9 kHz to 30 MHz

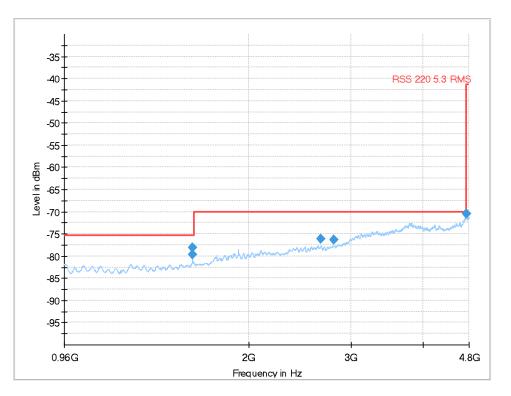
Plot 5: 30 MHz to 1 GHz



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.745	21.29	30.0	8.7	1000	120.0	98.0	V	-17	14
42.370	20.89	30.0	9.1	1000	120.0	107.0	V	157	14
138.259	19.43	33.5	14.1	1000	120.0	126.0	V	-22	9
207.939	19.11	33.5	14.4	1000	120.0	170.0	V	258	11
733.511	25.20	36.0	10.8	1000	120.0	170.0	V	157	22
953.295	28.32	36.0	7.7	1000	120.0	170.0	V	-22	24

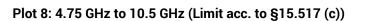
Test report no.: 1-0495/20-01-02-A

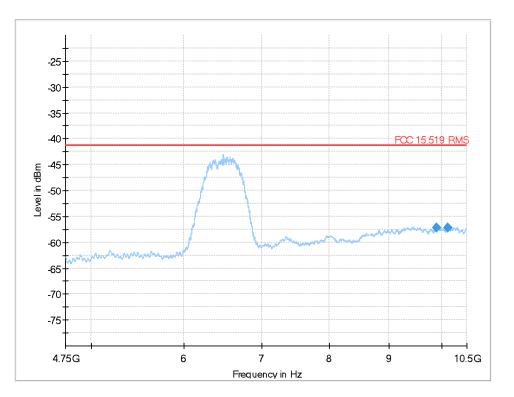

Plot 6: 960 MHz to 4.8 GHz (Limit acc. to §15.517 (c))



Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1600.139000	-78.15	-75.30	2.85	1000.000	V	335.0	19.0	-137.6
1600.567000	-79.73	-75.30	4.43	1000.000	Н	165.0	37.0	-137.6
2661.686000	-76.22	-51.30	24.92	1000.000	Н	110.0	116.0	-133.7
2804.036000	-76.35	-51.30	25.05	1000.000	н	275.0	93.0	-133.4
4749.474000	-70.48	-41.30	29.18	1000.000	V	65.0	12.0	-126.1
4754.519000	-70.55	-41.30	29.25	1000.000	Н	50.0	12.0	-126.2

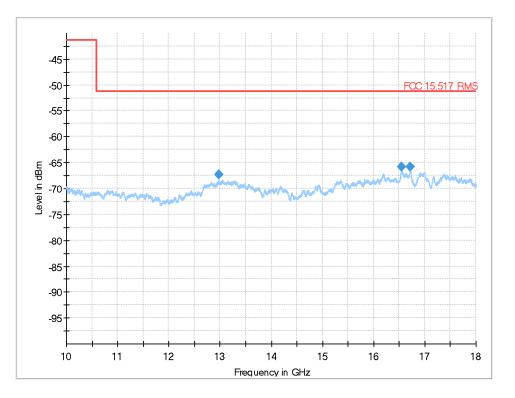
Test report no.: 1-0495/20-01-02-A





Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1600.139000	-78.15	-75.30	2.85	1000.000	V	335.0	19.0	-137.6
1600.567000	-79.73	-75.30	4.43	1000.000	Н	165.0	37.0	-137.6
2661.686000	-76.22	-70.00	6.22	1000.000	Н	110.0	116.0	-133.7
2804.036000	-76.35	-70.00	6.35	1000.000	Н	275.0	93.0	-133.4
4749.474000	-70.48	-70.00	0.48	1000.000	V	65.0	12.0	-126.1
4754.519000	-70.55	-41.30	29.25	1000.000	Н	50.0	12.0	-126.2

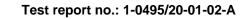
Test report no.: 1-0495/20-01-02-A



Final	Result

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
9884.733429	-57.20	-41.30	15.90	1000.000	Н	22.0	133.0	-114.1
10113.390000	-57.20	-41.30	15.90	1000.000	Н	227.0	133.0	-114.4

CTC I advanced


Plot 9: 10 GHz to 18 GHz

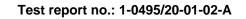
Final	Res	ult

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Bandwidth (kHz)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)
12979.231250	-67.39	-51.30	16.09	1000.000	V	1.0	139.0	-125.0
16546.653750	-65.83	-51.30	14.53	1000.000	Н	107.0	105.0	-121.6
16718.698750	-65.76	-51.30	14.46	1000.000	Н	77.0	163.0	-122.3

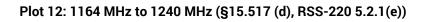
CTC I advanced

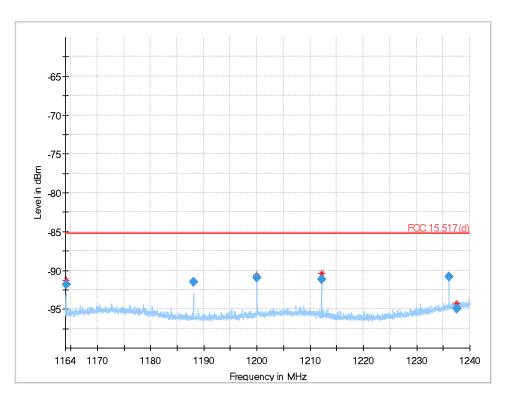
Plot 10: 18 GHz to 26.5 GHz

MultiView 📒	SER1	× SER2	× SER1b	× SER2b	×				•
Ref Level -3	5.00 dBm	• RB	₩ 1 MHz	_					
🖷 Att			N 3 MHz Mode	Auto Sweep					
TDF "NARDA638 1 Frequency S		02-18G-26_5G	-0_5M-DBM"						o 1Rm Max
	weep							M1[1]	-71.11 dBm
									4.409 700 GHz
-40 dBm									
-45 dBm									
-50 dBm									
-55 dBm									
-60 dBm									
00 0011	H1 -61.300	dBm							
-65 dBm									
-05 UBIN									
							M1		
-70 dBm							T	mm	
	m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ywww.		a manual	provinsi se		fvvvvv	m
-75 dBm									
-80 dBm									
18.0 GHz			8501 pt		85	0.0 MHz/			26.5 GHz
1010 0112	~		0501 p				Measuring		• 05.03.2021
									08:10:57

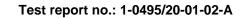

08:10:58 05.03.2021

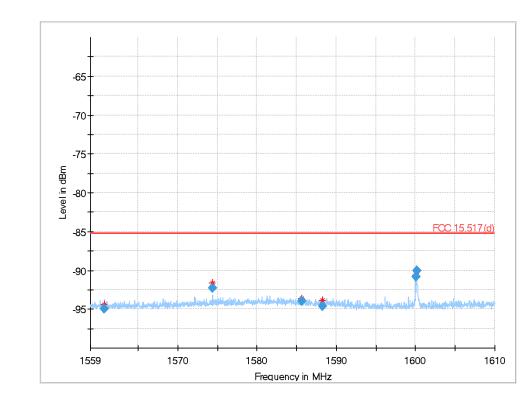
Plot 11: 26.5 GHz to 40.0 GHz


MultiView	SER1 ×	SER2	× SER1b	× SER2b	×				-
Ref Level -:	35.00 dBm	- • RBW	/ 1 MHz						
Att	0 dB 🖷 SW	T 13.5 s 👄 VBW	/ 3 MHz Mode	Auto Sweep					
	7-CBL1-CABLE502	2-26_5G-40G-0	_5M-DBM"						
1 Frequency	Sweep	1							●1Rm Max
								M1[1]	-67.18 dBm
								2	8.535 600 GHz
-40 dBm									
-45 dBm									
-50 dBm									
-50 uBm									
-55 dBm									
-60 dBm									
	H1 -61.300 de	sm							
-65 dBm								M	
						and the second sec	mana 1	man	mm
Yordem		mm	mm						
-75 dBm									
-80 dBm									
26.5 GHz			13501 p	ts	1.	35 GHz/			40.0 GHz
							Measuring		05.03.2021 08:03:29
									00.00.20


08:03:29 05.03.2021

Δ





Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1164.102143	-91.87	-85.30	6.57	30.000	Н	313.0	0.0	-139.7
1188.105260	-91.46	-85.30	6.16	30.000	Н	356.0	162.0	-139.3
1200.000377	-90.90	-85.30	5.60	30.000	V	133.0	3.0	-139.5
1212.107130	-91.16	-85.30	5.86	30.000	Н	5.0	150.0	-139.4
1236.106720	-90.81	-85.30	5.51	30.000	Н	29.0	140.0	-138.8
1237.584440	-94.98	-85.30	9.68	30.000	V	-5.0	129.0	-138.8

Plot 13: 1559 MHz to 1610 MHz (§15.517 (d), RSS-220 5.2.1(e))

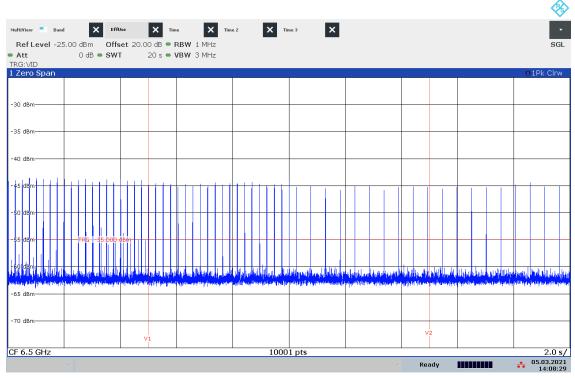
Frequency	RMS	Limit	Margin	Bandwidth	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(kHz)		(deg)	(deg)	(dB)
1560.764765	-94.93	-85.30	9.63	30.000	V	5.0	135.0	-137.9
1574.391125	-92.32	-85.30	7.02	30.000	V	5.0	1.0	-137.8
1585.632170	-93.94	-85.30	8.64	30.000	Н	5.0	93.0	-137.7
1588.232840	-94.67	-85.30	9.37	30.000	Н	-4.0	45.0	-137.8
1600.011170	-90.79	-85.30	5.49	30.000	Н	349.0	120.0	-137.9
1600.143185	-90.09	-85.30	4.79	30.000	V	123.0	1.0	-137.9

12.3 Efficient use of spectrum acc. to §15.517(a)(5)

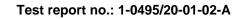
Description:

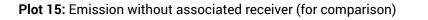
§15.517(a)(5)

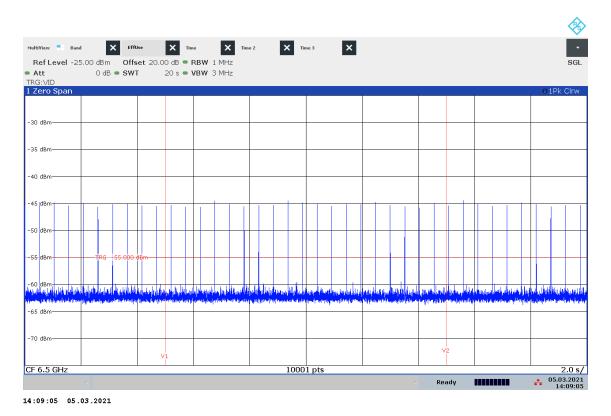
A communications system shall transmit only when the intentional radiator is sending information to an associated receiver.


Measurement:

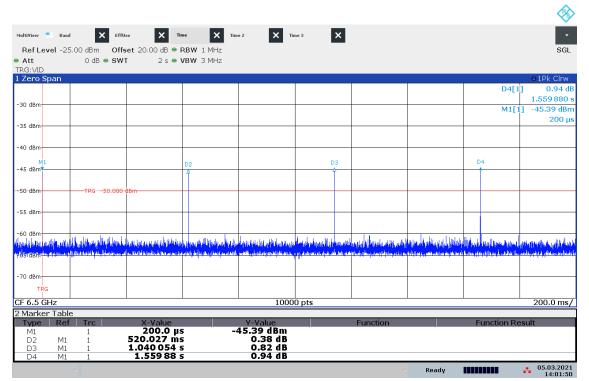
Measurement parameter				
Detector:	Pos-Peak			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 MHz			
Span	Zero			


Results:


Plot 14:



14:08:29 05.03.2021


Vertical line V1 indicates the time when the associated receiver is switched off. Vertical line V2 indicates 10 s after the associated receiver is switched off.

Plot 16: Emission without associated receiver (repetition period)

14:01:50 05.03.2021

12.4 Antenna requirements

Description:

§15.517(a)(3)

The use of outdoor mounted antennas, e.g., antennas mounted on the outside of a building or on a telephone pole, or any other outdoors infrastructure is prohibited.

§15.521(b)

Manufacturers and users are reminded of the provisions of §§15.203 and 15.204.

RSS-220 5.1(b)

The antenna of the UWB device shall be factory-installed and shall not be made modifiable by users.

<u>Results:</u>

Integrated antenna.

Verdict: Compliant

12.5 Conducted emissions < 30MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

Measurement:

Parameter						
Detector:	Peak - Quasi Peak / Average					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz: 200 Hz					
	F > 150 kHz: 9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz					
Resolution bandwidth.	F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					

Limits:

FCC			IC				
CFR Part 15.207(a)			RSS-Gen 8.8				
	Conducted Spurious Emissions < 30 MHz						
Frequency (MHz)	Quasi-Peak (dBµV)		Average (dBµV)				
0.15 - 0.5	66 to	o 56*	56 to 46*				
0.5 - 5	56		46				
5 - 30.0	6	0	50				

*Decreases with the logarithm of the frequency

§15.521(j)

Responsible parties are reminded of the other standards and requirements cross referenced in §15.505, such as a limit on emissions conducted onto the AC power lines.

§15.207(c)

Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

RSS-220 3.1

RSS-220 shall be used in conjunction with RSS-Gen, General Requirements and Information for the Certification of Radiocommunication Equipment, for general specifications and information relevant to the equipment for which this standard applies.

RSS-220 5.2.1(b)

AC line-conducted emissions from the device shall comply with the limits for AC line-conducted emissions set out in RSS-Gen.

Results:

DUT employs battery power for operation.

Verdict: Not applicable

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
ETSI	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	
	Electromagnetic Compatibility Hardware
HW	
SW	Software
Inv. No.	Inventory number Serial number
S/N or SN	
C	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
00	Operating channel
OCW OBW	Operating channel bandwidth Occupied bandwidth
OBW	Out of band
DFS	
CAC	Dynamic frequency selection Channel availability check
OP	
NOP	Occupancy period Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
U/110	טמווכר נט ווטופר טבוופונץ דמנוט, באטרפאטרע ווו עם־דוב

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-05-25
А	Information and limits updated: §15.517 & RSS-220 5.2	2021-06-02

15 Accreditation Certificate – D-PL-12076-01-04

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

16 Accreditation Certificate – D-PL-12076-01-05

first page	last page	
<image/> <image/> <section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Office Berlin Office Frankfurt am Main Spittelmarkt 10 Europa-Allee 52 03327 Frankfurt am Main Bundesallee 100 State Berlin State Berlin 0117 Berlin G327 Frankfurt am Main State Berlin State Berlin State Berlin State Berlin Distribution State Berlin Bundesallee 100 State Berlin Distribution State Berlin Distate Berlin	
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelled) of 31 JU27 2009 (Federal Law Gazette 1, 2-253) and the Regulation (EC) No 755/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Inton 128 of 9 July 2008, 330, DA&KS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA). International Accreditation formu (AF) and International Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.iancerditation.org ILAC: www.lac.org	
The certificate together with its some reflects the status at the time of the date of issue. The current status of the scope of accorditations can be found in the distubance of according backets of Doutsche Akkrediterungsstelle GmbH: http://www.dakks.dv/en/content/sccredited-backet-dakks investes south.		

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf