FCC Part 15C Test Report FCC ID: 2AYSI-T108

Prepared (Test Engineer):

Pxing Huang

Reviewer (Supervisor):
Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of abpyeveentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Table of Contents

1. SUMMARY OF TEST RESULTS 4
1.1 MEASUREMENT UNCERTAINTY 4
2. GENERAL INFORMATION 5
2.1 GENERAL DESCRIPTION OF EUT 5
2.2 DESCRIPTION OF TEST MODES 6
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 6
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 7
2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 7
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS 8
3. EMC EMISSION TEST 9
3.1 CONDUCTED EMISSION MEASUREMENT 9
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS 9
3.1.2 TEST PROCEDURE 9
3.1.3 DEVIATION FROM TEST STANDARD 9
3.1.4 TEST SETUP 10
3.1.5 EUT OPERATING CONDITIONS 10
3.1.6 TEST RESULTS 10
3.2 RADIATED EMISSION MEASUREMENT 11
3.2.1 RADIATED EMISSION LIMITS 11
3.2.2 TEST PROCEDURE 12
3.2.3 DEVIATION FROM TEST STANDARD 12
3.2.4 TEST SETUP 12
3.2.5 EUT OPERATING CONDITIONS 13
3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ) 14
3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ) 15
3.2.8 TEST RESULTS (1GHZ~25GHZ) 17
3.3 RADIATED BAND EMISSION MEASUREMENT 18
3.3.1 TEST REQUIREMENT: 18
3.3.2 TEST PROCEDURE 18
3.3.3 DEVIATION FROM TEST STANDARD 18
3.3.4 TEST SETUP 19
3.3.5 EUT OPERATING CONDITIONS 19
4 . BANDWIDTH TEST 21
4.1 APPLIED PROCEDURES / LIMIT 21
4.1.1 TEST PROCEDURE 21
4.1.2 DEVIATION FROM STANDARD 21
4.1.3 TEST SETUP 21
4.1.4 EUT OPERATION CONDITIONS 21
4.1.5 TEST RESULTS 22
4. ANTENNA REQUIREMENT 23
5.1 STANDARD REQUIREMENT 23
5.2 EUT ANTENNA 23
6 . TEST SEUUP PHOTO 24
7 . EUT PHOTO 25

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.249), Subpart C

Standard Section	Test Item	Judgment	Remark
15.207	Conducted Emission	N/A	
$15.249(\mathrm{c})$	Fundamental \&Radiated Spurious Emission Measurement	PASS	
15.205	Band Edge Emission	PASS	
15.215	20dB Bandwidth	PASS	
15.203	Antenna Requirement	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k}=2$, providing a level of confidence of approximately 95%.

No.	Item	Uncertainty
1	Conducted Emission Test	$\pm 2.56 \mathrm{~dB}$
2	RF power,conducted	$\pm 0.42 \mathrm{~dB}$
3	Spurious emissions,conducted	$\pm 2.76 \mathrm{~dB}$
4	All emissions,radiated $(<1 \mathrm{G})$	$\pm 3.65 \mathrm{~dB}$
5	All emissions,radiated $(>1 \mathrm{G})$	$\pm 4.89 \mathrm{~dB}$
6	Temperature	$\pm 0.5^{\circ} \mathrm{C}$
7	Humidity	$\pm 2 \%$

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	HEALTH GAIN SCALE
Trademark	N/A
Model No.:	T108 T109, T110, T111
Model Difference	All samples are the same except the model name, so we prepare "T108" for test only.
Operation Frequency:	$2402 \sim 2480 \mathrm{MHz}$
Channel numbers:	40 Channels
Channel separation:	2 M
Modulation technology:	GFSK
Antenna Type:	Internal Antenna
Antenna gain:	0 dBi
Power supply:	DC 4.5 V from battery

Note:

1.For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
2.The EUT's all information provided by client.
3.

Channel List					
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	27	2456
01	2404	15	2432	28	2458
02	2406	16	2434	29	2460
03	2408	17	2436	30	2462
04	2410	18	2438	31	2464
05	2412	19	2440	32	2466
06	2414	20	2442	33	2468
07	2416	21	2444	34	2470
08	2418	22	2446	35	2472
09	2420	23	2448	36	2474
10	2422	24	2450	37	2476
11	2424	25	2452	38	2478
12	2426	26	2454	39	2480
13	2428	1	1	1	1

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
GFSK		
	CH00	
	CH 19	
Mode 3	CH 39	
Mode 4	Link Mode	
For Conducted \& Radiated Emission		
GFSK		
	CH 00	
Mode 1	CH 19	
Mode 2	CH 39	
Mode 3	Link Mode	

Note:
(1) The measurements are performed at the highest, middle, lowest available channels.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

```
E-1
EUT
```


2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	ModelType No.	Series No.	Note
E-1	HEALTH GAIN SCALE	T108	N/A	EUT

Item	Shielded Type	Ferrite Core	Length	Note

Note:
(1) For detachable type I/O cable should be specified the length in cm in Length column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel \& power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

Test software Version	Test program: AXDN-0002.0		
Frequency	2402 MHz	2440 MHz	2480 MHz
Power Setting of Softwave	10	10	10

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 20db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Dec. 07, 2021	Dec. 06, 2022
2	Test Receiver (9kHz-7GHz)	R\&S	ESRP7	101393	Dec. 07, 2021	Dec. 06, 2022
3	Bilog Antenna (30MHz-1GHz)	R\&S	VULB9162	00306	Dec. 07, 2021	Dec. 06, 2022
4	Horn Antenna ($1 \mathrm{GHz}-18 \mathrm{GHz}$)	Schwarzbeck	BBHA9120D	02139	Dec. 07, 2021	Dec. 06, 2022
5	$\begin{gathered} \text { Horn Antenna } \\ (18 \mathrm{GHz}-40 \mathrm{GHz}) \end{gathered}$	A.H. Systems	SAS-574	588	Dec. 07, 2021	Dec. 06, 2022
6	$\begin{gathered} \text { Amplifier } \\ (9 \mathrm{KHz}-6 \mathrm{GHz}) \end{gathered}$	Schwarzbeck	BBV9743B	00153	Dec. 07, 2021	Dec. 06, 2022
7	$\begin{gathered} \text { Amplifier } \\ (1 \mathrm{GHz}-18 \mathrm{GHz}) \end{gathered}$	EMEC	EM01G8GA	00270	Dec. 07, 2021	Dec. 06, 2022
8	$\begin{gathered} \text { Amplifier } \\ (18 \mathrm{GHz}-40 \mathrm{GHz}) \end{gathered}$	Quanjuda	DLE-161	97	Dec. 07, 2021	Dec. 06, 2022
9	$\begin{aligned} & \text { Loop Antenna } \\ & \text { (9KHz-30MHz) } \end{aligned}$	Schwarzbeck	FMZB1519B	00014	Dec. 07, 2021	Dec. 06, 2022
10	RF cables 1 ($9 \mathrm{kHz}-1 \mathrm{GHz}$)	ChengYu	966	004	Dec. 07, 2021	Dec. 06, 2022
11	$\begin{gathered} \text { RF cables2 } \\ (1 \mathrm{GHz}-40 \mathrm{GHz}) \end{gathered}$	ChengYu	966	003	Dec. 07, 2021	Dec. 06, 2022
12	Antenna connector	Florida RF Labs	N/A	RF 01\#	Dec. 07, 2021	Dec. 06, 2022
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Dec. 07, 2021	Dec. 06, 2022
14	Signal Analyzer $9 \mathrm{kHz}-26.5 \mathrm{GHz}$	Agilent	N9020A	MY55370280	Dec. 07, 2021	Dec. 06, 2022
15	Test Receiver $20 \mathrm{kHz}-40 \mathrm{GHz}$	R\&S	ESU 40	100376	Dec. 07, 2021	Dec. 06, 2022
16	D.C. Power Supply	LongWei	PS-305D	010964729	Dec. 07, 2021	Dec. 06, 2022

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	843 Shielded Room	ChengYu	843 Room	843	Nov. 25, 2019	Nov. 24, 2022
2	EMI Receiver	R\&S	ESR	101421	Dec. 07, 2021	Dec. 06, 2022
3	LISN	R\&S	ENV216	102417	Dec. 07, 2021	Dec. 06, 2022
4	843 Cable 1\#	ChengYu	CE Cable	001	Dec. 07, 2021	Dec. 06, 2022

Other

Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0 .0 .0
4	RF communication test system	MAIWEI	MTS8200	2.0 .0 .0

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits

(Frequency Range $150 \mathrm{KHz}-30 \mathrm{MHz}$)

FREQUENCY (MHz)	Limit (dBuV)		Standard
	Quasi-peak	Average	
$0.15-0.5$	$66-56{ }^{*}$	$56-46{ }^{*}$	FCC
$0.50-5.0$	56.00	46.00	FCC
$5.0-30.0$	60.00	50.00	FCC

Note:
(1) The tighter limit applies at the band edges.
(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide $50 \mathrm{Ohm} / 50 \mathrm{uH}$ of coupling impedance for the measuring instrument.
b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m .
d. LISN at least 80 cm from nearest part of EUT chassis.
e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

The EUT is powered by Battery, no requirements for this item.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range $9 \mathrm{kHz}-1000 \mathrm{MHz}$)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{KHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{KHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
$902-928 \mathrm{MHz}$	50	500
$2400-2483.5 \mathrm{MHz}$	50	500
$5725-5875 \mathrm{MHz}$	50	500
$24.0-24.25 \mathrm{GHz}$	250	2500

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:
(1) The limit for radiated test was performed according to FCC PART 15C.
(2) The tighter limit applies at the band edges.
(3) Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(\mathrm{uV} / \mathrm{m})$.

Receiver setup:

Frequency	Detector	RBW	VBW	Value
$9 \mathrm{KHz}-150 \mathrm{KHz}$	Quasi-peak	200 Hz	600 Hz	Quasi-peak
$150 \mathrm{KHz}-30 \mathrm{MHz}$	Quasi-peak	9 KHz	30 KHz	Quasi-peak
$30 \mathrm{MHz}-1 \mathrm{GHz}$	Quasi-peak	100 KHz	300 KHz	Quasi-peak
Above 1 GHz	Peak	1 MHz	3 MHz	Peak
	Peak	1 MHz	10 Hz	Average

3.2.2 TEST PROCEDURE

Below 1 GHz test procedure as below:
a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30 MHz , the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Above 1 GHz test procedure as below:
g . The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. (Above 18 GHz the distance is 3 meter and table is 1.5 metre).
h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

Note:
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency $30 \mathrm{MHz} \sim 1 \mathrm{GHz}$

(C) Radiated Emission Test-Up Frequency Above 1 GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	$20^{\circ} \mathrm{C}$	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 4.5 V
Test Mode :	Mode 4	Polarization :	--

Freq.	Reading	Limit	Margin	State
(MHz)	$(\mathrm{dBuV} / \mathrm{m})$	$(\mathrm{dBuV} / \mathrm{m})$	(dB)	P/F
-	--	--	--	PASS
--	--	--	--	PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
Distance extrapolation factor $=40 \log$ (specific distance/test distance)(dB);
Limit line $=$ specific limits(dBuv) + distance extrapolation factor.

3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

Temperature:	$26^{\circ} \mathrm{C}$	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization:	Horizontal
Test Voltage:	DC 4.5 V		
Test Mode :	Mode 4		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	$\mathrm{dBuV/m}$	$\mathrm{~dB} / \mathrm{m}$	dB	Detector
1	54.4516	34.94	-13.69	21.25	40.00	18.75	QP
2	94.0979	33.82	-17.37	16.45	43.50	27.05	QP
3	202.8104	35.28	-15.87	19.41	43.50	24.09	QP
4	294.1137	35.32	-12.66	22.66	46.00	23.34	QP
5	462.3455	35.79	-9.12	26.67	46.00	19.33	QP
6	\star	845.0878	35.60	-2.30	33.30	46.00	12.70

Remark:
Correct Factor = Cable loss + Antenna factor - Preamplifier;
Level $=$ Reading Level + Correct Factor; Margin = Limit - Level;

Temperature:	$26^{\circ} \mathrm{C}$	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage:	DC 4.5 V		
Test Mode :	Mode 4		

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	$\mathrm{dBuV/m}$	$\mathrm{~dB} / \mathrm{m}$	dB	Detector
1	37.4165	34.81	-14.74	20.07	40.00	19.93	QP
2	47.9940	35.17	-13.50	21.67	40.00	18.33	QP
3	90.5374	34.25	-17.24	17.01	43.50	26.49	QP
4	162.6106	36.14	-18.38	17.76	43.50	25.74	QP
5	370.7023	35.42	-11.37	24.05	46.00	21.95	QP
$6{ }^{\star}$	721.7259	34.43	-4.17	30.26	46.00	15.74	QP

Remark:
Correct Factor $=$ Cable loss + Antenna factor - Preamplifier;
Level $=$ Reading Level + Correct Factor; Margin $=$ Limit - Level;

3.2.8 TEST RESULTS (1GHZ~25GHZ)

GFSK

Polar (H / V)	Frequency	Meter Reading	Preamplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2402									
V	2402.00	113.05	52.16	2.78	27.41	91.08	114	-22.92	PK
V	2402.00	103.47	52.16	2.78	27.41	81.5	94	-12.5	AV
V	4804.00	77.56	51.74	3.08	31.25	60.15	74	-13.85	PK
V	4804.00	60.25	51.74	3.08	31.25	42.84	54	-11.16	AV
V	16132.00	58.16	51.56	7.36	41.57	55.53	74	-18.47	PK
H	2402.00	112.33	52.16	2.78	27.41	90.36	114	-23.64	PK
H	2402.00	105.85	52.16	2.78	27.41	83.88	94	-10.12	AV
H	4804.00	76.63	51.74	3.08	31.25	59.22	74	-14.78	PK
H	4804.00	59.57	51.74	3.08	31.25	42.16	54	-11.84	AV
H	16132.00	58.32	51.56	7.36	41.57	55.69	74	-18.31	PK
operation frequency:2440									
V	2440.00	112.08	52.11	2.82	27.47	90.26	114	-23.74	PK
V	2440.00	105.25	52.11	2.82	27.47	83.43	94	-10.57	AV
V	4880.00	77.65	51.77	3.03	31.34	60.25	74	-13.75	PK
V	4880.00	60.64	51.77	3.03	31.34	43.24	54	-10.76	AV
V	16132.00	58.31	51.56	7.36	41.57	55.68	74	-18.32	PK
H	2440.00	112.37	52.11	2.82	27.47	90.55	114	-23.45	PK
H	2440.00	104.55	52.11	2.82	27.47	82.73	94	-11.27	AV
H	4880.00	76.18	51.77	3.03	31.34	58.78	74	-15.22	PK
H	4880.00	59.95	51.77	3.03	31.34	42.55	54	-11.45	AV
H	16132.00	58.56	51.56	7.36	41.57	55.93	74	-18.07	PK
operation frequency:2480									
V	2480.00	113.37	52.23	2.86	27.44	91.44	114	-22.56	PK
V	2480.00	106.56	52.23	2.86	27.44	84.63	94	-9.37	AV
V	4960.00	78.43	51.69	3.05	31.39	61.18	74	-12.82	PK
V	4960.00	60.24	51.69	3.05	31.39	42.99	54	-11.01	AV
V	16132.00	59.43	51.56	7.36	41.57	56.8	74	-17.2	PK
H	2480.00	113.52	52.23	2.86	27.44	91.59	114	-22.41	PK
H	2480.00	105.05	52.23	2.86	27.44	83.12	94	-10.88	AV
H	4960.00	77.66	51.69	3.05	31.39	60.41	74	-13.59	PK
H	4960.00	59.47	51.69	3.05	31.39	42.22	54	-11.78	AV
H	16132.00	59.33	51.56	7.36	41.57	56.7	74	-17.3	PK

Remark:

1. Emission Level $=$ Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.3 RADIATED BAND EMISSION MEASUREMENT

3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:
(1) The limit for radiated test was performed according to FCC PART 15C.
(2) The tighter limit applies at the band edges.
(3) Emission level $(\mathrm{dBuV} / \mathrm{m})=20 \log$ Emission level $(\mathrm{uV} / \mathrm{m})$.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300 MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	$1 \mathrm{MHz} / 1 \mathrm{MHz}$ for Peak, $1 \mathrm{MHz} / 10 \mathrm{~Hz}$ for Average

3.3.2 TEST PROCEDURE

Above 1 GHz test procedure as below:
a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
g. Test the EUT in the lowest channel,the Highest channel

Note:
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.3.3 DEVIATION FROM TEST STANDARD
 No deviation

3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1 GHz

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.6 TEST RESULT

GFSK

Polar (H/V)	Frequency	Meter Reading	Preamplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
operation frequency:2402									
V	2390.00	76.43	52.12	2.73	27.38	54.42	74	-19.58	PK
V	2390.00	65.25	52.12	2.73	27.38	43.24	54	-10.76	AV
V	2400.00	76.12	52.16	2.78	27.41	54.15	74	-19.85	PK
V	2400.00	64.37	52.16	2.78	27.41	42.4	54	-11.6	AV
H	2390.00	76.63	52.12	2.73	27.38	54.62	74	-19.38	PK
H	2390.00	65.29	52.12	2.73	27.38	43.28	54	-10.72	AV
H	2400.00	76.24	52.16	2.78	27.41	54.27	74	-19.73	PK
H	2400.00	65.36	52.16	2.78	27.41	43.39	54	-10.61	AV

Polar (H/V)	Frequency (MHz)	Meter Reading (dBuV)	$\begin{array}{c\|} \hline \begin{array}{c} \text { Pre- } \\ \text { amplifier } \end{array} \\ \hline(\mathrm{dB}) \end{array}$	$\begin{aligned} & \hline \text { Cable } \\ & \text { Loss } \end{aligned}$ (dB)	Antenna Factor (dB/m)	$\begin{gathered} \begin{array}{c} \text { Emission } \\ \text { Level } \end{array} \\ \hline(\mathrm{dBuV} / \mathrm{m}) \end{gathered}$	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB / m)	(dBuV/m)	($\mathrm{dBuV} / \mathrm{m}$)	(dB)	
operation frequency:2480									
V	2483.50	76.43	52.23	2.86	27.44	54.5	74	-19.5	PK
V	2483.50	65.35	52.23	2.86	27.44	43.42	54	-10.58	AV
V	2500.00	76.56	52.26	2.88	27.49	54.67	74	-19.33	PK
V	2500.00	64.97	52.26	2.88	27.49	43.08	54	-10.92	AV
H	2483.50	76.75	52.23	2.86	27.44	54.82	74	-19.18	PK
H	2483.50	65.46	52.23	2.86	27.44	43.53	54	-10.47	AV
H	2500.00	76.53	52.26	2.88	27.49	54.64	74	-19.36	PK
H	2500.00	65.24	52.26	2.88	27.49	43.35	54	-10.65	AV

Remark:

1. Emission Level $=$ Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit
2. If peak below the average limit, the average emission was no test.
3. The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.215), Subpart C	
Section	Test Item
15.215	Bandwidth

4.1.1 TEST PROCEDURE

1. Set RBW $=30 \mathrm{kHz}$.
2. Set the video bandwidth (VBW) \geq RBW.
3. Detector $=$ Peak.
4. Trace mode = max hold .
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

Temperature:	$25^{\circ} \mathrm{C}$	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 4.5 V
Test Mode:	TX Mode $/ \mathrm{CH} 00, \mathrm{CH} 19, \mathrm{CH} 39$		

	Frequency $(\mathbf{M H z})$	20dB Bandwidth $(\mathbf{M H z})$	Result
	2402	1.169	Pass
	2440	1.172	Pass
	2480	1.178	Pass

5. ANTENNA REQUIREMENT

5.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shal be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2 EUT ANTENNA

The EUT antenna is internal antenna, It comply with the standard requirement.

6. TEST SEUUP PHOTO

Radiated Measurement Photos

7. EUT PHOTO

※※※※※ END OF REPORT ※※※※※

