

COMPLIANCE WORLDWIDE INC. TEST REPORT 350-20R1

In Accordance with the Requirements of Federal Communications Commission CFR Title 47 Part 15.225, Subpart C

> Innovation, Science and Economic Development Canada RSS 210, Issue 10

Low Power License-Exempt Radio Communication Devices Intentional Radiators

Issued to

Alert Innovation 101 Billerica Ave - Bldg 5 North Billerica, MA 01862

for the

AlphaBot 13.56 MHz RFID Reader Module

FCC ID: 2AYRD-ALPHABOT IC: 26910-ALPHABOT

Report Issued on March 31, 2021 Revision R1 Issued on August 30, 2021

Prepared by

Suzanne M. Hayden

Reviewed By

Larry K. Stillings

This test report shall not be reproduced, except in full, without written permission from Compliance Worldwide, Inc.

Table of Contents

1 Scope	3
2 Product Details	3
2.1. Manufacturer	3
2.2. Model Number	3
2.3. Serial Number	3
2.4. Description	3
2.5. Power Source	3
2.6. Hardware Revision	3
2.7. Software Revision	3
2.8. Modulation Type	3
2.9. Operating Frequencies	3
2.10. EMC Modifications	3
3. Product Configuration	3
3.1. Operational Characteristics & Software	3
3.2. EUT Hardware	4
3.3. Host Hardware	4
3.4. EUT Cables/Transducers	4
3.5. Support Equipment	4
3.6. Block Diagram	4
4. Measurements Parameters	5
4.1. Measurement Equipment Used to Perform Test	5
4.2. Measurement & Equipment Setup	5
4.3. Measurement Procedure	6
5. Choice of Equipment for Test Suits	6
5.1. Choice of Model	6
5.2. Presentation	6
5.3. Choice of Operating Frequencies	6
6. Measurement Summary	7
7. Measurement Data	7
7.1. Antenna Requirement	7
7.2. Operation within the Band 13.110 MHz – 14.010 MHz	8
7.3. Transmitter Spurious Radiated Emissions	11
7.4. Frequency Stability	17
7.5. Occupied Bandwidth	18
7.6. 99% Power Bandwidth	19
7.7. Power Line Conducted Emissions	20
7.8. Public Exposure to Radio Frequency Fields	21
8. Test Site Description	23
9. Test Setup Photographs	24

1. Scope

This test report certifies that the AlphaBot 13.56 MHz RFID Reader, as tested, meets the FCC Part 15.225 Subpart C, and ISED Canada RSS 210 requirements. The scope of this test report is limited to the test samples provided by the client, only in as much as those samples represent other production units. If any significant changes are made to the units, the changes shall be evaluated, and a retest may be required. Revision R1 adds the firmware revision to this page in the report and updated the RF Exposure for simultaneous transmission of the RFID and WLAN radios within the host product.

2. Product Details

- 2.1. Manufacturer:
- 2.2. Model Number:
- 2.3. Serial Numbers:
- 2.4. Description:
- 2.5. Power Source:

Alert Innovation AlphaBot RFID Reader Module

B01-000-021X

Robot cart for micro fulfillment.

Pulse Modulation

13.56 MHz

N/A

None

208 VAC ±10%, 60 Hz External Power or 30-70V through maintenance port, typically super-capacitor powered

- 2.6. Hardware Revision:
- 2.7. Software/Firmware Revision: 0.18.5.1
- 2.8. Modulation Type:
- 2.9. Operating Frequency:

2.10. EMC Modifications:

3. Product Configuration

3.1. Operational Characteristics & Software

The AlphaBot with Dual RFID Readers was configured to continuously transmit its 13.56 MHz RFID signal upon completion of its self-initialization routine.

3. Product Configuration (continued)

3.2. EUT Hardware

Manufacturer Model/Part # / Options		Serial Number	Volts	Freq (Hz)	Description/Function
Alert Innovation	AlphaBot 1000995-01-01	B01-000-021X	208	60	Robot Cart for micro fulfillment

3.3. Host Hardware

Manufacturer	Model/Part # / Options	Serial Number	Input Voltage	Freq (Hz)	Description/Function	
Siemens AG	WI AN Access Point				FCC ID: LYHMSN1V1	
					IC: 267AA-MSN1V1	

3.4. EUT Cables/Transducers

Cable Type	Length	Shield	From	То
Power	2 Meter + 1 Meter	Yes	EUT	120 VAC, 60 Hz

3.5. Support Equipment

Manufacturer	Model/Part # / Options	Serial Number	Input Voltage	Freq (Hz)	Description/Function
Meanwell	HEP-185		120	60	Power Supply to facilitate testing, not sold or used with the product

3.6. Block Diagram

Page 4 of 28

4. Measurements Parameters

4.1. Measurement Equipment and Software Used to Perform Test

Device	Manufacturer	Model No.	Serial No.	Cal Due	Interval
EMI Test Receiver, 9kHz - 7GHz ¹	Rohde & Schwarz	ESR7	101156	10/16/2022	2 Years
EMI Test Receiver, 10 Hz - 7GHz ¹	Rohde & Schwarz	ESR7	101770	7/17/2022	2 Years
Spectrum Analyzer, 2 Hz to 26.5 GHz^2	Rohde & Schwarz	FSW26	102057	9/13/2021	3 Years
Spectrum Analyzer, 9 kHz to 40 GHz ³	Rohde & Schwarz	FSV40	100899	8/12/2022	2 Years
Spectrum Analyzer, 9 kHz to 40 GHz ⁴	Rohde & Schwarz	FSVR40	100909	9/18/2022	2 Years
Loop Antenna 9 kHz - 30 MHz	EMCO	6512	9309-1139	1/28/2022	3 Years
Biconilog Antenna, 30 MHz - 2 GHz	Sunol Sciences	JB1	A050913	6/5/2022	2 Years
Horn Antenna, 960 MHz to 18 GHz	Electro-Metrics	EM-6961	6337	10/3/2021	3 Years
Horn Antenna, 18 to 40 GHz	Com-Power	AH-840	101032	9/28/2021	3 Years
Preamplifier, 1 GHz to 26.5 GHz	Hewlett Packard	8449B	3008A01323	9/11/2021	3 Years
Digital Barometer	Control Company	4195	ID236	4/3/2021	3 Years
Temperature Chamber⁵	Associated Environmental	SD-308	10782	CNR	

¹ ESR7 Firmware revision: V3.48 SP3, Date installed: 9/30/2020 ² FSW26 Firmware revision: V4.71 SP1, Date installed: 11/16/2020

³ FSV40 Firmware revision: V2.30 SP4, Date installed: 05/04/2016

⁴ FSVR40 Firmware revision: V2.23 SP1, Date installed: 08/19/2016

⁵ Used with calibrated measurement equipment.

 Previous V3.48 SP2, installed 7/23/2020.

 Previous V4.61, installed 8/11/2020.

 Previous V2.30 SP1, installed 10/22/2014.

 Previous V2.23 installed 10/20/2014.

Manufacturer	Software Description	Title or Model #	Rev.	Report Sections
Compliance Worldwide	Test Report Generation Software	Test Report Generator	1.0	Used to process conducted emissions data

4.2. Measurement & Equipment Setup

Test Dates:	12/22/2020, 12/23/2020, 1/4/2021
Test Engineers:	Brian Breault, Sean Defelice
Normal Site Temperature (15 - 35°C):	19.5
Relative Humidity (20 -75%RH):	32%
Frequency Range:	.03 MHz to 1 GHz
Measurement Distance:	3 & 10 Meters
EMI Receiver IF Bandwidth:	200 Hz – 9 kHz to 30 MHz 9 kHz – 150 kHz to 30 MHz 120 kHz - 30 MHz to 1 GHz 1 MHz – Above 1 GHz
EMI Receiver Avg Bandwidth:	>= 3 * IF (BW) RBW
Detector Function:	Peak, QP - 30 MHz to 1 GHz Peak, Avg - Above 1 GHz Unless otherwise specified.

4. Measurements Parameters (continued)

4.3 Measurement Procedure

The test measurements contained in this report are based on the requirements detailed in FCC Part 15, Subpart C - Intentional Radiators, notably Section 15.225, Operation within the band 13.110 - 14.010 MHz. The test procedures for these measurements are detailed in ANSI C63.10-2013.

5. Choice of Equipment for Test Suits

5.1. Choice of Model

This test report is based on the test samples supplied by the manufacturer and are reported by the manufacturer to be equivalent to the production units.

5.2. Presentation

The test sample was tested complete with all required ancillary equipment. Refer to Section 3 of this report for the product equipment configuration.

5.3. Choice of Operating Frequencies

The transmitter in the unit under test utilizes a single operating frequency at approximately 13.56 MHz

Test Requirement	FCC Part 15 Reference	RSS Reference	Test Report Section	Result	Comment
Antenna Requirement	15.203	RSS-GEN Section 7.1.2	7.1	Compliant	
Operation within the Band 13.110 MHz – 14.010 MHz (Radiated Field Strength)	15.225 (a), (b), (c)	RSS-210 Section B6	7.2	Compliant	
Spurious Radiated Emissions	15.209		7.3	Compliant	
Operation within the Band 13.110 MHz – 14.010 MHz (Frequency Stability)	15.225 (e)	RSS-210 Section B6	7.4	Compliant	
Occupied Bandwidth/ Lower and Upper Band Edges	15.215(c) C63.10	N/A	7.5	Compliant	
99% Power Bandwidth	N/A	RSS-GEN Section 4.6.1	7.6	Compliant	
Power Line Conducted Emissions	15.207	RSS-GEN Section 7.2.4	7.7	Compliant	
Public Exposure to Radio Frequency Energy Levels.	1.1307 (b)(1)	RSS 102, Issue 5	7.8	Compliant	

6. Measurement Summary

7. Measurement Data

7.1. Antenna Requirement (Section 15.203, RSS-GEN 7.1.2)

Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

Result: Compliant - The RFID antenna utilized by the device under test is a PCB antenna contained inside a non-user accessible enclosure.

- 7.2. Operation within the Band 13.110 MHz 14.010 MHz (15.225 (a), (b) and (c)) Radiated Field Strength of Fundamental (15.225 (a), (b) and (c))
 - Requirement: (a) The field strength of any emissions within the band 13.553 13.567 MHz shall not exceed 15,848 microvolts/meter (84 dBµV/m) at 30 meters.
 - (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter (50.5 dBµV/m) at 30 meters.
 - (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter (40.5 dBµV/m) at 30 meters.
 - Test Note: Reference ANSI C63.10-2013 sections 5.3.2 and 6.4.4.2. The following formula was used to extrapolate the measurement distance to the limit distance:

Equation 1
$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

FS_{limit} is the calculation of field strength at the limit distance (dB $\mu\text{V/m})$	64.08
FS_{max} is the measured field strength, expressed in (dBµV/m QP @ 10M)	73.62
$d_{near field}$ is the λ / 2p distance (Meters)	10.00
d _{limit} is the reference limit distance (Meters)	30.00

The screen captures on the following pages display the value measured at a distance of 10 meters. This distance value was adjusted to the limit distance using the formula detailed in Equation 1.

Result: Compliant - The fundamental frequency radiated field strength of the device under test complies with the requirements detailed in FCC Part 15.225, Section (a).

Freq. (MHz)	Ampl. ¹ (dBµV/m) Peak	Corr. Ampl. ² (dBµV/m) (10M) QP	Corr. Ampl. ² (dBµV/m) (10M) QP	FCC 15.225 Limit (dBµV/m) QP 30M	Margin (dB)	Ant Pos. Par/Per Gnd Par	Ant Height (cm)	Turntable Azimuth (Deg)	Result
13.56	74.66	73.62	73.62	84.00	-10.38	Per	100	184	Compliant

¹ Measurement has been extrapolated from 10 meters to 30 meters using Equation 1 on this page.

7.2. Operation within the Band 13.110 MHz – 14.010 MHz (15.225 (a), (b) and (c))
 Radiated Field Strength of Fundamental (15.225 (a), (b) and (c)) (continued)
 7.2.1. Worst Case Field Strength of the Fundamental – Parallel Antenna

Date: 4.JAN.2021 14:20:13

7.2.2. Worst Case Field Strength of the Fundamental - Perpendicular Antenna

Page 9 of 28

7.2. Operation within the Band 13.110 MHz – 14.010 MHz (15.225 (a), (b) and (c)) Radiated Field Strength of Fundamental (15.225 (a), (b) and (c)) (continued)

7.2.4. Worst Case Field Strength of the Fundamental - Perpendicular Antenna QP

7.3. Transmitter Spurious Radiated Emissions (15.225 (d), 15.209)

Requirement: The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table (Reference FCC 15.209):

Frequency (MHz)	Field Strength (µV/m)	Meas. Dist. (meters)	Field Strength (dBµV/m)	Distance (Meters)
0.009–0.490	2400/F(kHz)	300	128.5 to 93.8	3
0.490–1.705	24000/F(kHz)	30	73.8 to 63.0	3
1.705–30.0	30	30	69.5	3
30-88	100	3	40	3
88-216	150	3	43.5	3
216-960	200	3	46	3
Above 960	500	3	54	3

¹Measurements in the 9 to 90 kHz, 110 to 490 kHz and above 1000 MHz ranges employ an average detector. Otherwise a quasi-peak detector is used. ² Extrapolation below 30 MHz is calculated at 40 dB/decade.

- Procedure: Test measurements were made in accordance with ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices, Section 6.5.
- Test Notes: 1. The marked emissions cursors in scans 7.3.2.1, 7.3.2.2 and 7.3.3.3 are the fundamental frequency for the device under test.
- Results: Compliant The transmitter installed in the unit under test meet the FCC Part 15.209 emissions requirements.

Note: The fundamental at 13.56 MHz falls under the FCC P15.225 Limit.

Sample Calculation: Final Result $(dB\mu V/m) =$ Measurement Value $(dB\mu V) +$ Antenna Factor (dB/m) + Cable Loss (dB) - Pre-amplifier Gain (dB) Internal or External.

Note: All correction factors are loaded into the measurement instrument prior to testing to determine the final result.

7.3. Spurious Radiated Emissions, 30 kHz to 1 GHz (15.225, § (d), 15.209) (cont'd)

7.3.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

7.3.1.1. Parallel Antenna

Receiver									
	RBW (CI	SPR) 200 Hz	MT	100 ms		100	02 0314 CBL	Chamber	Antenna (.01 - 1000
Input 1 DC	Att	10 dB	Preamp	OFF	Step TD S	can			
350-20 Alert	Innovatio	n Alphabot A	RFID Scan	⊜1Pk Ma	X				
_120 dBµV/m– FCC Part 15.2I	09 Below 3	30 MHz.LIN				M1[1] 0.000	s		63.72 dBµ∀/m 53.400 kHz
110 dBµV/m–			_						
100 dBµV/m-									
90 dBµV/m—									
80 dBµV/m—									
70 dBµV/m—	mmy	Matheward	M1						
60 dBµV/m—		- WAND	WV. H. J. HWA	Malanucro	maria	renn	method		
50 dBµV/m—								Mar Walker	mar hand hand hand hand hand hand hand hand
40 dBµV/m—									
30 dBµV/m—									
Start 30.0 k	Hz								Stop 150.0 kHz
	J					Measurin	g 🚺		12/23/2020 03:59:13 PM

Date: 23.DEC.2020 15:59:14

7.3.1.2. Perpendicular Antenna

	RBW (CISPR) 200 Hz	MT	100 ms			1002 0314 (CBL Chamber	Antenna (.01 - 1000
Input 1 DC	Att	10 dB	Preamp	OFF	Step TD	Scan			
350-20 Alert	Innovat	ion Alphabot R	FID Scan	⊜1Pk M	ах				
120 dBµV/m–		00 MU- 1 M				M1 0.0	[1] 100 s	1	62.92 dBµV/r 65.600 kH
110 dBµV/m-	DA Relow	30 MHZ.LIN				_			
100 dBu//m-									
90 dBµV/m—									
80 dBµV/m—									
70 dBµV/m—	me				M1				
60 dBµV/m—		and a strate of the second strategy of the second strategy of the second strategy of the second strategy of the	when	Manm	Man	mahan	hoh and a		
50 dBµV/m—								man she	man man man market
40 dBµV/m—									
30 dBµV/m—									
F	112								Stop 150 0 kHz
atart au.U K	212								atop 130.0 KH2

Date: 23.DEC.2020 16:02:17

Page 12 of 28

7.3. Spurious Radiated Emissions, 30 kHz to 1 GHz (15.225, § (d), 15.209) (cont'd)

7.3.1. Spurious Radiated Emissions, 30 kHz to 150 kHz Test Results

7.3.1.3. Ground Parallel Antenna

7.3.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results 7.3.2.1. Parallel Antenna

7.3. Spurious Radiated Emissions, 30 kHz to 1 GHz (15.225, § (d), 15.209) (cont'd)

7.3.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results

7.3.2.2. Perpendicular Antenna

7.3.2. Spurious Radiated Emissions, 150 kHz to 30 MHz Test Results 7.3.2.3. Ground Parallel Antenna

Page 14 of 28

7.3. Spurious Radiated Emissions, 30 kHz to 1 GHz (15.225, § (d), 15.209) (cont'd) 7.3.3. Horizontal Polarity

Frequency (MHz)	Pk Amp (dBµV/m)	QP Amp (dBµV/m)	QP Limit (dBµV/m)	Margin (dB)	Ant Ht (cm)	Table (Deg)	Comments
33.6800	32.10	17.11	40.00	-22.89	N/A	N/A	
50.0000	41.56	36.05	40.00	-3.95	N/A	N/A	
56.2400	35.91	30.45	40.00	-9.55	N/A	N/A	
71.8700	39.13	34.95	40.00	-5.05	N/A	N/A	
75.0000	42.11	38.79	40.00	-1.21	N/A	N/A	
109.3700	40.25	35.93	43.50	-7.57	N/A	N/A	
122.0300	36.70	34.25	43.50	-9.25	N/A	N/A	
140.6300	36.92	31.41	43.50	-12.09	N/A	N/A	
150.0000	40.06	36.45	43.50	-7.05	N/A	N/A	
176.2700	42.26	40.19	43.50	-3.31	N/A	N/A	
189.8398	44.29	41.83	43.50	-1.67	N/A	N/A	
206.2400	40.31	36.07	43.50	-7.43	N/A	N/A	
250.0000	38.97	34.98	46.00	-11.02	N/A	N/A	
271.8800	35.34	28.29	46.00	-17.71	N/A	N/A	
310.7300	39.30	34.00	46.00	-12.00	N/A	N/A	
352.5500	44.42	41.96	46.00	-4.04	N/A	N/A	
379.6700	40.86	35.44	46.00	-10.56	N/A	N/A	
406.7900	46.60	44.75	46.00	-1.25	N/A	N/A	
433.9100	41.83	39.75	46.00	-6.25	N/A	N/A	
461.0300	37.88	32.21	46.00	-13.79	N/A	N/A	
488.1500	36.43	32.14	46.00	-13.86	N/A	N/A	
515.2700	47.72	42.03	46.00	-3.97	N/A	N/A	
542.3900	39.63	36.48	46.00	-9.52	N/A	N/A	
569.5100	38.80	35.59	46.00	-10.41	N/A	N/A	
650.8700	41.38	38.55	46.00	-7.45	N/A	N/A	
678.0000	39.62	36.52	46.00	-9.48	N/A	N/A	
800.000	39.07	34.08	46.00	-11.92	N/A	N/A	
976.3100	41.80	37.69	54.00	-16.31	N/A	N/A	
1000.0000	38.63	31.44	54.00	-22.56	N/A	N/A	

7.3. Spurious Radiated Emissions, 30 kHz to 1 GHz (15.225, § (d), 15.209) (cont'd) 7.3.4. Vertical Polarity

Frequency (MHz)	Pk Amp (dBµV/m)	QP Amp (dBµV/m)	QP Limit (dBµV/m)	Margin (dB)	Ant Ht (cm)	Table (Deg)	Comments
30.0000	41.18	34.92	40.00	-5.08	N/A	N/A	
37.5400	38.97	29.46	40.00	-10.54	N/A	N/A	
62.5100	39.56	34.92	40.00	-5.08	N/A	N/A	
71.8700	43.03	39.01	40.00	-0.99	N/A	N/A	
81.2600	43.32	37.82	40.00	-2.18	N/A	N/A	
112.5000	34.77	30.80	43.50	-12.70	N/A	N/A	
118.7600	34.49	22.88	43.50	-20.62	N/A	N/A	
127.1900	33.40	16.15	43.50	-27.35	N/A	N/A	
131.2400	33.59	29.70	43.50	-13.80	N/A	N/A	
137.5100	33.56	29.15	43.50	-14.35	N/A	N/A	
143.7500	32.54	26.80	43.50	-16.70	N/A	N/A	
150.0000	39.77	29.04	43.50	-14.46	N/A	N/A	
176.2700	40.49	37.09	43.50	-6.41	N/A	N/A	
189.8300	44.30	40.17	43.50	-3.33	N/A	N/A	
206.2400	34.10	29.67	43.50	-13.83	N/A	N/A	
250.0000	34.21	29.68	46.00	-16.32	N/A	N/A	
278.1200	30.98	22.58	46.00	-23.42	N/A	N/A	
300.0000	36.18	31.74	46.00	-14.26	N/A	N/A	
325.4300	43.64	40.84	46.00	-5.16	N/A	N/A	
352.5500	39.37	36.29	46.00	-9.71	N/A	N/A	
384.0200	37.79	31.79	46.00	-14.21	N/A	N/A	
406.8000	44.06	42.24	46.00	-3.76	N/A	N/A	
433.9100	42.06	39.75	46.00	-6.25	N/A	N/A	
461.0300	35.99	31.65	46.00	-14.35	N/A	N/A	
488.1500	38.38	33.37	46.00	-12.63	N/A	N/A	
515.2700	45.68	40.55	46.00	-5.45	N/A	N/A	
569.5100	37.92	33.82	46.00	-12.18	N/A	N/A	
650.8700	38.08	34.19	46.00	-11.81	N/A	N/A	
667.3400	34.39	20.62	46.00	-25.38	N/A	N/A	
800.0000	38.12	33.06	46.00	-12.94	N/A	N/A	
976.3100	36.85	29.20	54.00	-24.80	N/A	N/A	
1000.0000	38.17	30.24	54.00	-23.76	N/A	N/A	

Page 16 of 28

7.4. Frequency Stability (§ 15.225 (e))

- Requirement: The frequency tolerance of the carrier signal shall be maintained within ±0.01% of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. The nominal power is 208 VAC, 60 Hz.
- Test Notes: The size of the host device that houses the device under test exceeds the volume of the site environmental chamber. In order to test the RFID transmitter and antenna assembly, it was necessary to remove the assembly from the host device and test it in the environmental chamber. In order to do this, a custom cable capable of carrying all power and signal lines to the DUT was constructed. By doing so, the DUT was subjected to the required temperature variations while maintaining operational communications with the host device.
- Result: Compliant The unit under test complies with the requirements detailed in FCC Part 15.225 (e).

Temp	Supply	Meas Freq.		Limit		Offset	Result
°C	Voltage	(MHz)	F _{MIN} (MHz)	F _{MAX} (MHz)	%	(%)	
Ambient (20.1°C)		13.5599867		N/A		N/A	
-20		13.5600208	13.558631	13.561343	±0.01	0.00025148	Compliant
-10		13.5600122	13.558631	13.561343	±0.01	0.00018805	Compliant
0		13.5600043	13.558631	13.561343	±0.01	0.00012979	Compliant
+10	208 VAC	13.5599947	13.558631	13.561343	±0.01	0.00005863	Compliant
+20		13.5599885	13.558631	13.561343	±0.01	0.00001327	Compliant
+30		13.5599854	13.558631	13.561343	±0.01	0.00000996	Compliant
+40		13.5599754	13.558631	13.561343	±0.01	0.00008370	Compliant
+50		13.5599766	13.558631	13.561343	±0.01	0.00007485	Compliant
120	177 VAC	13.5599703	13.558656	13.561368	±0.01	0.00030900	Compliant
+20	239 VAC	13.5599912	13.558656	13.561368	±0.01	0.00015524	Compliant

7.4.1. Temperature and Voltage Variation

7.5. Occupied Bandwidth (Section 15.215 (c) and ANSI C63.10, Section 6.9)

Requirement: Intentional radiators operating under the alternative provisions to the general emission limits, as contained in Sections 15.217 through 15.255 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW

Frequency Band: $F_{MIN} = 13.110 \text{ MHz}$

 $F_{MAX} = 14.010 \text{ MHz}$

Result:

-20 dB Fi Meas	-20 dB Frequency Lower & Upp Measured Edge		Upper Band Edge	Rosult	
(F _{LO} & F _{HI}) MHz		(Fmin	, & F _{Max})	. Kesuit	
		L	MHz		
F _{LO}	13.5585	F _{MIN} 13.11		Compliant ($F_{LO} > F_{MIN}$)	
F _{HI}	13.5613	F _{MAX} 14.01		Compliant (F _{HI} < F _{Max})	

7.5.1. Plot of 20 dB Bandwidth vs. Frequency Band

Compliant.

7.6. 99% Power Bandwidth (RSS-GEN Section 4.6.1)

Requirement: When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Where practical, a sampling detector shall be used given that a peak or peak hold may produce a wider bandwidth than actual.

Procedure: This test was performed utilizing the automated 99% bandwidth function of the spectrum analyzer.

Frequency (MHz)	99% Power Bandwidth (kHz)
13.5598	143.09

7.6.1. Plot of 99% Power Bandwidth

7.7. Power Line Conducted Emissions (FCC Part 15.207)

Requirement: For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

Frequency Range	Limits (dBµV)				
	Quasi-Peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5.0	56	46			
5.0 to 30.0	60	50			

Decreases with the logarithm of the frequency.

- Procedure: Test measurements were made in accordance with ANSI C63.10-2013, Section 6.2: Standard test method for ac power-line conducted emissions from unlicensed wireless devices.
- Results: The product operates on super-capacitors during its typical operation and doesn't connect to conventional connection to mains power within a warehouse.
- Sample Calculation: Final Result $(dB\mu V)$ = Measurement Value $(dB\mu V)$ + LISN Insertion Loss (dB) + Cable Loss (dB).

Note: All correction factors are loaded into the measurement instrument prior to testing to determine the final result.

7.8. Public Exposure to Radio Frequency Energy Levels ((FCC KDB 447498 D01 v06, 1.1307 (b)(1), 2.1091(b)) RSS-GEN, RSS 102, Issue 5

RF Exposure for a Portable Device

7.8.1 SAR Test Exclusion (FCC KDB 447498 D01 v06, Clause 4.3.1.c)2))

Frequency (MHz)	MPE DUT Output Distance Power (mm) (mW)		SAR Test Exclusion (mW)	Result
	(1)	(2)	(3)	
13.56	≤50	0.07674	442.9735	Compliant

- (1) FCC KDB 447498 D01 v06, Clause 4.3.1.(c)(2)
- (2) Converted from 10M field strength measurement (FS_(dBµV/m) 84.77) Reference Section 7.2, Measured Field Strength
- (3) ½ (1 + log(100/f(MHz)))
 Formula detailed in KDB 447498 D01 v06, Clause 4.3.1.(c)(2)

7.8.2 Exemption Limits for Routine Evaluation – SAR Evaluation (RSS-102 Clause 2.5.1)

Frequency (MHz)	MPE Distance (mm)	DUT Output Power (mW)	SAR Test Exclusion (mW)	Result
	(1)	(2)	(3)	
13.56	≤5 mm	0.07674	71	Compliant

- (1) RSS-102, Clause 2.5.1
- (2) Converted from 10M field strength measurement ($FS_{(dB\mu V/m)} 84.77$) Reference Section 7.2, Measured Field Strength
- (3) RSS-102, Clause 2.5.1, Table $1 \le 300$ MHz = 71 mW at ≤ 5 mm

- 7.8. Public Exposure to Radio Frequency Energy Levels ((FCC KDB 447498 D01 v06, 1.1307 (b)(1), 2.1091(b)) RSS-GEN, RSS 102, Issue 5 (continued)
- 7.8.3. Reference CFR 2.1091: For purposes of this section, a mobile device is defined as a transmitting device designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between the transmitter's radiating structure(s) and the body of the user or nearby persons.

RF Exposure of simultaneously operated radios within the host which is considered a Mobile Device.

WLAN Radio highest reported output power is in 802.11b mode of operation is 87 mW The RFID radios put out a power of 0.07674 mW

Fromueney	MPE	DUT Field Strength	DUT Output	DUT Antenna	DUT Output	Power Density	Limit	
(MHz)	(cm)	at 10M (dBµV/m)	Power (dBm)	Gain (dBi)	Power (mW)	(mW/cm²)	(mW/cm²)	Result
	(1)		(2)	(3)		(4)	(5)	
13.56	20	73.62	-11.15		0.07674	0.00001527	0.9789334	Compliant
2412	20		13.40	6	87	0.01732727	1.0	Compliant
					SUM	0.0173425		

Power Density Limit from 1.34 to 30 MHz is 180 / f² where f is in MHz Power Density Limit from 1500 to 100,000 MHz is 1.0

7.8.4. RSS-102 Issue 5 Requirements

Requirement: Requirement: RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1W (adjusted for tune-up tolerance)

at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $1.31 \times 10^{-2} \times f^{0.6834}$ W (adjusted for tune-up tolerance), where *f* is in MHz.

Frequency (MHz)	Separation Distance	Maximum Power	Maximum Power	RSS-102 Exemption Limit ²	Result
(MHz)	(cm)	(mW)	(W)	(W)	
13.56	≥ 20	0.07674	0.00007674	1.00	Compliant
2412	≥ 20	87.00	0.087	2.68	Compliant
		SUM	0.08707674		

8. Test Site Description

Compliance Worldwide is located at 357 Main Street in Sandown, New Hampshire. The test sites at Compliance Worldwide are used for conducted and radiated emissions testing in accordance with the Federal Communications Commission (FCC) and Industry Canada standards. Through our American Association for Laboratory Accreditation (A2LA) ISO Guide 17025 Accreditation our test sites are designated with the FCC (designation number **US1091**), Industry Canada (file number **IC 3023A-1)** and VCCI (Member number 3168) under registration number A-0274.

Compliance Worldwide is also designated as a Phase 1 CAB under APEC-MRA (US0132) for Australia/New Zealand AS/NZS CISPR 32, Chinese-Taipei (Taiwan) BSMI CNS 13438 and Korea (RRA) KN 11, KN 13, KN 14-1, KN 22, KN 32, KN 61000-6-3, KN 61000-6-4.

The radiated emissions test site is a 3 and 10 meter enclosed open area test site (OATS). Personnel, support equipment and test equipment are located in the basement beneath the OATS ground plane.

The conducted emissions site is part of a 16' x 20' x 12' ferrite tile chamber and uses one of the walls for the vertical ground plane. A second conducted emissions site is also located in the basement of the OATS site with a 2.3 x 2.5 meter ground plane and a 2.4 x 2.4 meter vertical wall.

The radiated emissions test site for measurements above 1GHz is a 3 Meter open area test site (OATS) with a 3.6 by 3.6 meter anechoic absorber floor patch to achieve a quasi-free space measurement environment per ANSI C63.4/C63.10 and CISPR 16-1-4 standards.

The sites are designed to test products or systems 1.5 meters W x 1.5 meters L x 2.0 meters H, floor standing or table top.

9.1. Radiated Emissions Front View

Page 24 of 28

9.2. Radiated Emissions Rear View – Fundamental & Spurious Emissions < 30 MHz

Page 25 of 28

9.3. Radiated Emissions Rear View Emissions > 30 MHz

Page 26 of 28

9.4. Frequency and Voltage Stability Setup

Page 27 of 28

9.5. Frequency Stability – Device Under Test (RFID Reader removed from system)

Page 28 of 28