

Report No.: FR171418AA

RADIO TEST REPORT

FCC ID : 2AYRA-08330

Equipment : Velop AX3000 WiFi 6 System

Brand Name : LINKSYS

Model Name : MX2000, MX20EC, MX20MS, MX20WH

Applicant : Linksys USA, Inc.

12045 East Waterfront Drive

Playa Vista, CA 90094, United States.

Standard : 47 CFR FCC Part 15.247

The product was received on Jul. 13, 2021, and testing was started from Jul. 13, 2021 and completed on Sep. 09, 2021. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full.

Approved by: Sam Chen

Sporton International Inc. Hsinchu Laboratory

No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10 10 Ver1.3

Page Number : 1 of 35

Issued Date

: Nov. 23, 2021

Report Version : 06

Table of Contents

Histo	ory of this test report	3
Sumi	mary of Test Result	4
1	General Description	5
1.1	Information	5
1.2	Applicable Standards	9
1.3	Testing Location Information	9
1.4	Measurement Uncertainty	10
2	Test Configuration of EUT	11
2.1	Test Channel Mode	11
2.2	The Worst Case Measurement Configuration	12
2.3	EUT Operation during Test	14
2.4	Accessories	14
2.5	Support Equipment	15
2.6	Test Setup Diagram	16
3	Transmitter Test Result	20
3.1	AC Power-line Conducted Emissions	20
3.2	DTS Bandwidth	22
3.3	Maximum Conducted Output Power	23
3.4	Power Spectral Density	26
3.5	Emissions in Non-restricted Frequency Bands	28
3.6	Emissions in Restricted Frequency Bands	29
4	Test Equipment and Calibration Data	33
Appe	endix A. Test Results of AC Power-line Conducted Emissions	
Appe	endix B. Test Results of DTS Bandwidth	
Appe	endix C. Test Results of Maximum Conducted Output Power	
	endix D. Test Results of Power Spectral Density	
Appe	endix E. Test Results of Emissions in Non-restricted Frequency Bands	
Appe	endix F. Test Results of Emissions in Restricted Frequency Bands	
Appe	endix G. Test Results of Radiated Emission Co-location	
Appe	endix H. Test Photos	

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Photographs of EUT v01

Report Template No.: CB-A10_10 Ver1.3

Page Number : 2 of 35

Issued Date : Nov. 23, 2021

Report No. : FR171418AA

Report Version : 06

History of this test report

Report No.: FR171418AA

Report No.	Version	[Description	Issued Date
FR171418AA	01	Initial issue of report	Oct. 07, 2021
FR171418AA	02	Modifying typing error for Radiated Co-location test date.	Oct. 08, 2021
FR171418AA	03	Add the information of verifying the worst mode.	Nov. 01, 2021
FR171418AA	04	Revising antenna information.	Nov. 03, 2021
FR171418AA	05	Add the directional gain information to antenna information.	Nov. 19, 2021
FR171418AA	06	Add the directional gain information to antenna information.	Nov. 23, 2021
			•

TEL: 886-3-656-9065 Page Number : 3 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Summary of Test Result

Report No.: FR171418AA

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1.2	15.203	Antenna Requirement	PASS	-
3.1	15.207	AC Power-line Conducted Emissions	PASS	-
3.2	15.247(a)	DTS Bandwidth	PASS	-
3.3	15.247(b)	Maximum Conducted Output Power	PASS	-
3.4	15.247(e)	Power Spectral Density	PASS	-
3.5	15.247(d)	Emissions in Non-restricted Frequency Bands	PASS	-
3.6	15.247(d)	Emissions in Restricted Frequency Bands	PASS	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Sam Chen Report Producer: Wendy Pan

TEL: 886-3-656-9065 Page Number : 4 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	IEEE Std. 802.11	Ch. Frequency (MHz)	Channel Number
2400-2483.5	b, g, n (HT20), VHT20, ax (HEW20)	2412-2462	1-11 [11]
2400-2483.5	n (HT40), VHT40, ax (HEW40)	2422-2452	3-9 [7]

Report No.: FR171418AA

Band	Mode	BWch (MHz)	Nant
2.4-2.4835GHz	802.11b	20	2TX
2.4-2.4835GHz	802.11g	20	2TX
2.4-2.4835GHz	802.11n HT20	20	2TX
2.4-2.4835GHz	802.11n HT20-BF	20	2TX
2.4-2.4835GHz	VHT20	20	2TX
2.4-2.4835GHz	VHT20-BF	20	2TX
2.4-2.4835GHz	802.11ax HEW20	20	2TX
2.4-2.4835GHz	802.11ax HEW20-BF	20	2TX
2.4-2.4835GHz	802.11n HT40	40	2TX
2.4-2.4835GHz	802.11n HT40-BF	40	2TX
2.4-2.4835GHz	VHT40	40	2TX
2.4-2.4835GHz	VHT40-BF	40	2TX
2.4-2.4835GHz	802.11ax HEW40	40	2TX
2.4-2.4835GHz	802.11ax HEW40-BF	40	2TX

Note:

- 11b mode uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.
- ◆ 11g, HT20 and HT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.
- VHT20, VHT40 use a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM modulation.
- HEW20, HEW40 use a combination of OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM modulation.

BWch is the nominal channel bandwidth.

TEL: 886-3-656-9065 Page Number : 5 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

1.1.2 Antenna Information

Ant	Port		- Brand Model Name		Antenna	Connector	Cain (dBi)	
Ant.	2.4GHz	5GHz	Bluetooth	Biallu	Woder Name	Туре	Connector	Gain (dBi)
1	1	1	-	Galtronics	02102140-07575-1	PCB	I-PEX	
2	2	2	-	Galtronics	02102140-07575-2	PCB	I-PEX	Note1
3	-	-	1	Galtronics	02036073-07315	Metal	N/A	

Report No.: FR171418AA

Note1:

Ant.	Ant. Port			Antenna Gain (dBi)						
	2.4GHz	5GHz	Bluetooth	2.4GHz	5GHz UNII-1	5GHz UNII-2A	5GHz UNII-2C	5GHz UNII-3	5GHz UNII-4	Bluetooth
1	1	1	-	2.12	2.51	2.64	3.58	3.67	3.81	-
2	2	2	-	2.67	3.26	3.20	2.95	3.01	3.17	-
3	-	-	1	-	-	-	-	-		5.3

Note2: The above information was declared by manufacturer.

For 2.4GHz function:

For IEEE 802.11b/g/n/VHT/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11a/n/ac/ax (2TX/2RX):

Port 1 and Port 2 can be used as transmitting/receiving antenna.

Port 1 and Port 2 could transmit/receive simultaneously.

For Bluetooth Function:

For Bluetooth mode (1TX/1RX)

Only Port 1 can be use as transmit and receive antenna.

TEL: 886-3-656-9065 Page Number : 6 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Note3: Directional gain information

	Maximum Output Power	Power Spectral Density
Non-BF	Directional gain = Max.gain + array	$\begin{bmatrix} N_{SS} \\ \sum_{S} N_{ANT} \end{bmatrix}^2$
	gain. For power measurements on IEEE 802.11 devices Array Gain = 0 dB (i.e., no array gain) for N ANT ≤ 4	Directional Gain = $10 \cdot \log \left \frac{\sum_{j=1}^{N} \left\{ \sum_{k=1}^{N} g_{j,k} \right\}}{N_{ANT}} \right $
BF	$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$	$Directional Gain = 10 \cdot log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} \mathcal{Z}_{j,k} \right\}^{2}}{N_{ANT}} \right]$

Report No.: FR171418AA

Ex.

$$\begin{split} & \text{NSS1(g1,1) = } 10^{\text{G1/20}} \text{ ; NSS1(g1,2)= } 10^{\text{G2/20}} \text{ ; gj,k = } (\text{Nss1(g1,1) + Nss1(g1,2) })^2 \\ & \text{DG = } 10 \log[(\text{Nss1(g1,1) + Nss1(g1,2) })^2 \text{ / } N_{\text{ANT}}] \Rightarrow 10 \log[(10^{\text{G1/20}} + 10^{\text{G2/20}})^2 \text{ / } N_{\text{ANT}}] \end{split}$$

$$2.4 \text{GHz DG} = 10 \log[(10^{2.12/20} + 10^{2.67/20})^2 / N_{\text{ANT}}] = 5.41 \, \text{dBi}$$

$$5 \, \text{GHz Band1 DG} = 10 \log[(10^{2.51/20} + 10^{3.26/20})^2 / N_{\text{ANT}}] = 5.9 \, \text{dBi}$$

$$5 \, \text{GHz Band2 DG} = 10 \log[(10^{2.64/20} + 10^{3.2/20})^2 / N_{\text{ANT}}] = 5.93 \, \text{dBi}$$

$$5 \, \text{GHz Band3 DG} = 10 \log[(10^{3.58/20} + 10^{2.95/20})^2 / N_{\text{ANT}}] = 6.28 \, \text{dBi}$$

$$5 \, \text{GHz Band4 DG} = 10 \log[(10^{3.67/20} + 10^{3.01/20})^2 / N_{\text{ANT}}] = 6.36 \, \text{dBi}$$

$$5.9 \, \text{GHz DG} = 10 \log[(10^{3.81/20} + 10^{3.17/20})^2 / N_{\text{ANT}}] = 6.51 \, \text{dBi}$$

TEL: 886-3-656-9065 Page Number : 7 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
802.11b	0.931	0.31	8.629m	300
802.11g	0.932	0.31	1.434m	1k
802.11ax HEW20-BF	0.947	0.24	1.781m	1k
802.11ax HEW40-BF	0.92	0.36	1.781m	1k

Report No.: FR171418AA

N	\sim	tΔ	•

- DC is Duty Cycle.
- DCF is Duty Cycle Factor.

1.1.4 EUT Operational Condition

EUT Power Type	From Adapter				
Beamforming Function	The product has beamforming function for n/VHT/ax in 2.4GHz and n/ac/ax in 5GHz.				
Function					
Test Software Version	QSPR [Version 5.0-00199] \ DOS [ver 6.1.7601]				

Note: The above information was declared by manufacturer.

1.1.5 Table for Multiple Listing

Brand	Model Name	Description
	MX2000	
LINKSYS	MX20EC	All the models are identical, the difference model
	MX20MS	served as marketing strategy.
	MX20WH	

Note 1: From the above models, model: MX2000 was selected as representative model for the test and its data was recorded in this report.

Note 2: The above information was declared by manufacturer.

TEL: 886-3-656-9065 Page Number : 8 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

1.2 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR171418AA

- 47 CFR FCC Part 15.247
- ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of TAF.

- FCC KDB 558074 D01 v05r02
- FCC KDB 662911 D01 v02r01
- FCC KDB 414788 D01 v01r01

1.3 Testing Location Information

Testing Location Information

Test Lab.: Sporton International Inc. Hsinchu Laboratory

Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.)

(TAF: 3787) TEL: 886-3-656-9065 FAX: 886-3-656-9085

Test site Designation No. TW3787 with FCC.

Conformity Assessment Body Identifier (CABID) TW3787 with ISED.

Test Condition	Test Site No.	Test Engineer	Test Environment (°C / %)	Test Date
RF Conducted	TH03-CB	Serway Lee	22.1~23.4 / 59~60	Jul. 21, 2021~ Sep. 07, 2021
Radiated<1GHz	03CH03-CB	Ken Yeh	25.2-27.3 / 55-58	Sep. 09, 2021
Padiatods 1CHz	03CH02-CB	Eason Chen	25.8-28.2 / 56-59	Jul. 13, 2021 ~ Aug. 11, 2021
Radiated>1GHz	03CH03-CB	Eason Chen	23.5-24.6 / 55-59	Jul. 13, 2021 ~ Aug. 11, 2021
Radiated Co-location	03CH05-CB	Eason Chen	24.4-25.5 / 56-59	Sep. 03, 2021
AC Conduction	CO01-CB	Ryo Fan	23~24 / 56~57	Sep. 06, 2021

TEL: 886-3-656-9065 Page Number : 9 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Report No.: FR171418AA

Test Items	Uncertainty	Remark
Conducted Emission (150kHz ~ 30MHz)	2.0 dB	Confidence levels of 95%
Radiated Emission (9kHz ~ 30MHz)	4.2 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1,000MHz)	5.5 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	4.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	4.2 dB	Confidence levels of 95%
Conducted Emission	2.5 dB	Confidence levels of 95%
Output Power Measurement	1.3 dB	Confidence levels of 95%
Power Density Measurement	2.5 dB	Confidence levels of 95%
Bandwidth Measurement	0.9%	Confidence levels of 95%

TEL: 886-3-656-9065 Page Number : 10 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
802.11b_Nss1,(1Mbps)_2TX	-
2412MHz	21
2437MHz	23
2462MHz	21.5
802.11g_Nss1,(6Mbps)_2TX	-
2412MHz	18.5
2417MHz	20
2437MHz	21.5
2457MHz	19
2462MHz	17
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-
2412MHz	19
2417MHz	20
2437MHz	23
2457MHz	20
2462MHz	19
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-
2422MHz	18
2437MHz	19
2452MHz	18

Report No.: FR171418AA

Note1: There are two modes of EUT for n/VHT/ax in 2.4GHz and n/ac/ax in 5GHz. One is beamforming mode, and the other is non-beamforming mode, after evaluating, beamforming mode has been evaluated to be the worst case, so it was selected to test and record in this test report.

Note2: Evaluated HEW20/HEW40 mode only, due to similar modulation. The power setting of HT20/HT40/VHT20/VHT40 mode are the same or lower than HEW20/HEW40.

TEL: 886-3-656-9065 Page Number : 11 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests				
Tests Item	Tests Item AC power-line conducted emissions			
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz				
Operating Mode Normal Link				
1 EUT + Adapter 1 + US plug				
2 EUT + Adapter 2				
3 EUT + Adapter 3				
4 EUT + Adapter 4 + US plug				
For operating mode 1 is the worst case and it was record in this test report.				

Report No.: FR171418AA

The Worst Case Mode for Following Conformance Tests			
Tests Item	DTS Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in Non-restricted Frequency Bands		
Test Condition Conducted measurement at transmit chains			

TEL: 886-3-656-9065 Page Number : 12 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Th	The Worst Case Mode for Following Conformance Tests				
Tests Item	Emissions in Restricted Frequency Bands				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.				
Operating Mode < 1GHz	The EUT was performed at X axis, Y axis and Z axis position for Emissions in Restricted Frequency Bands above 1GHz test, and the worst case was found at Z axis. So the measurement will follow this same test configuration.				
	CTX				
1	EUT in Z axis CTX WLAN 2.4GHz + Adapter 1 + US plug				
2	EUT in Z axis CTX WLAN 2.4GHz + Adapter 2				
3	EUT in Z axis CTX WLAN 2.4GHz + Adapter 3				
4	EUT in Z axis CTX WLAN 2.4GHz + Adapter 4 + US plug				
Mode 2 has been evaluate follow this same test mode	ed to be the worst case among Mode 1~4, thus measurement for Mode 5 ~ 6 will				
5	EUT in Z axis CTX Bluetooth + Adapter 2				
6	EUT in Z axis CTX WLAN 5GHz + Adapter 2				
For operating mode 2 is the worst case and it was record in this test report.					
Operating Mode > 1GHz	The EUT was performed at X axis, Y axis and Z axis position, and the worst case was found at Z axis. So the measurement will follow this same test configuration.				
_	EUT in Z axis CTX				

Report No.: FR171418AA

The Worst Case Mode for Following Conformance Tests			
Tests Item	Simultaneous Transmission Analysis - Radiated Emission Co-location		
Test Condition	Radiated measurement		
Operating Mode	The EUT was performed at X axis, Y axis and Z axis position for Emissions in Restricted Frequency Bands above 1GHz test, and the worst case was found at Z axis. So the measurement will follow this same test configuration.		
Normal Link			
1	1 EUT in Z axis WLAN 2.4GHz + WLAN 5GHz		
Refer to Appendix G for Radiated Emission Co-location.			

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation			
Operating Mode			
1 WLAN 2.4GHz + WLAN 5GHz + Bluetooth			
Refer to Sporton Test Report No.: FA171418 for Co-location RF Exposure Evaluation.			

TEL: 886-3-656-9065 Page Number : 13 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

2.3 EUT Operation during Test

For CTX Mode:

non-beamforming mode:

The EUT was programmed to be in continuously transmitting mode.

beamforming mode:

During the test, the following programs under WIN 7 were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS [ver 6.1.7601].
- 3. Executed "Lantest.exe" to link with the remote workstation to transmit and receive packet by Wireless AP and transmit duty cycle no less than 98%.

Report No.: FR171418AA

For Normal Link:

During the test, the EUT operation to normal function.

2.4 Accessories

Accessories					
Equipment Name	Brand Name	Model Name	Rating		
Adapter 1 (Removable plug)	Ktec	KSA-18W-120150D5	INPUT: 100-240V~50/60Hz, 0.5A OUTPUT: 12.0V, 1.5A, 18.0W		
Adapter 2 (Fixed plug)	Ktec	KSA-18W-120150VU	INPUT: 100-240V~50/60Hz, 0.5A OUTPUT: 12V, 1.5A		
Adapter 3 (Fixed plug)	APD	WB-18Q12FU	INPUT: 100-240V~, 50-60Hz, 0.6A Max. OUTPUT: 12V, 1.5A		
Adapter 4 (Removable plug)	APD	WB-18Q12R	INPUT: 100-240V~, 50-60Hz, 0.6A, Max. OUTPUT: 12.0V, 1.5A, 18.0W		
Others					

US plug*2 (for adapter 1 and adapter 4 use)

RJ-45 cable*1: Non-shielded, 0.9m

TEL: 886-3-656-9065 Page Number : 14 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Support Equipment 2.5

For AC Conduction:

	Owner of Farriage and						
	Support Equipment						
No.	Equipment	Brand Name	Model Name	FCC ID			
Α	WAN NB	DELL	E6430	N/A			
В	LAN NB	DELL	E6430	N/A			
С	2.4G NB	DELL	E6430	N/A			
D	5G NB	DELL	E6430	N/A			
Е	iPad	Apple	A1430	N/A			

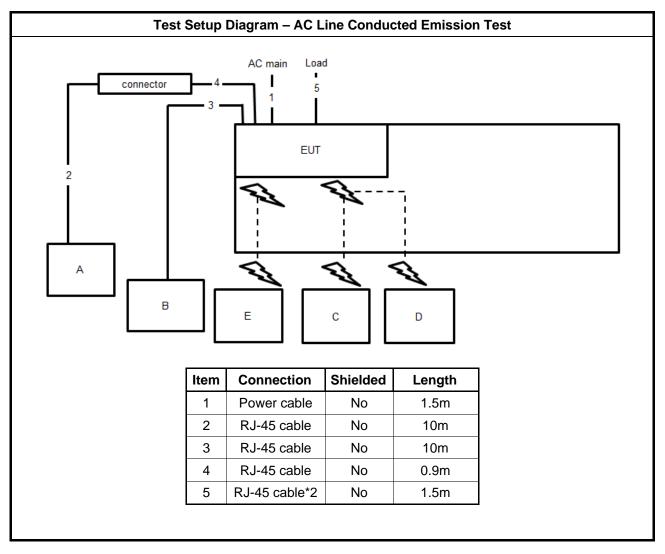
Report No.: FR171418AA

For Radiated (below 1GHz):

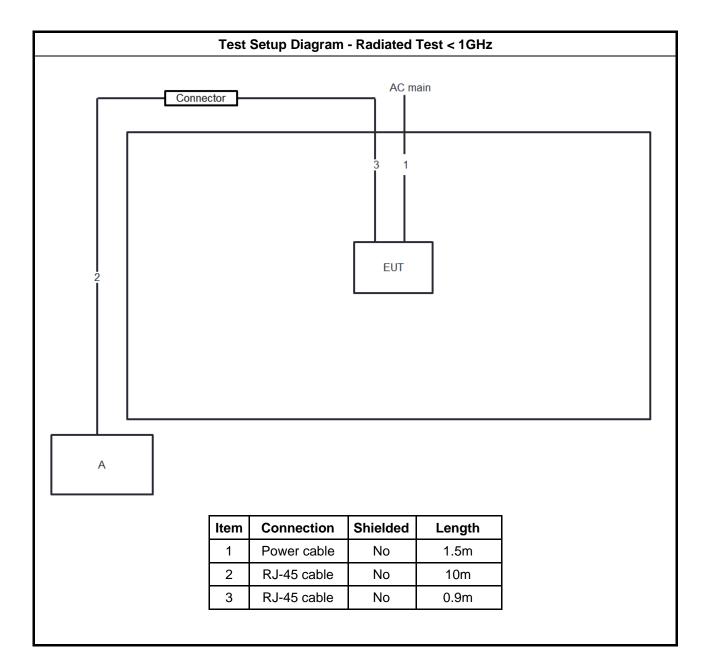
	Support Equipment				
No.	No. Equipment Brand Name Model Name FCC ID				
Α	Notebook	DELL	E4300	N/A	

For Radiated (above 1GHz) and RF Conducted: For Non-beamforming mode:

Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID					
Α	Notebook	DELL	E4300	N/A		


For Beamforming mode:

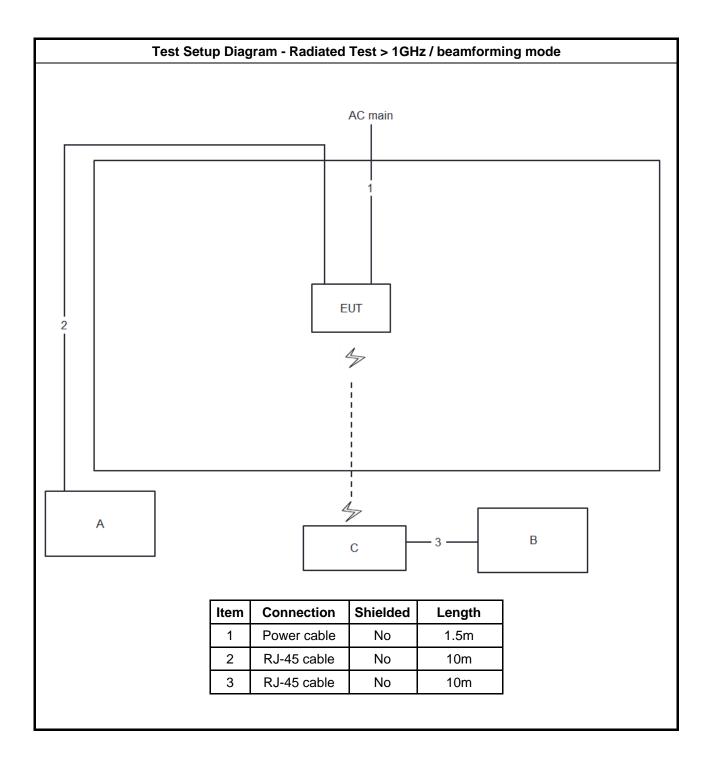
	Support Equipment						
No.	No. Equipment Brand Name Model Name FCC ID						
Α	Notebook	DELL	E4300	N/A			
В	Notebook	DELL	E4300	N/A			
С	RX Device	LINKSYS	MX2000	2AYRA-08330			


TEL: 886-3-656-9065 Page Number : 15 of 35 FAX: 886-3-656-9085 : Nov. 23, 2021 Issued Date

2.6 Test Setup Diagram

TEL: 886-3-656-9065 Page Number : 16 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Report No. : FR171418AA


Page Number TEL: 886-3-656-9065 : 17 of 35 FAX: 886-3-656-9085 : Nov. 23, 2021 Issued Date

Report No. : FR171418AA

TEL: 886-3-656-9065 Page Number : 18 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Report No.: FR171418AA

TEL: 886-3-656-9065 Page Number : 19 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

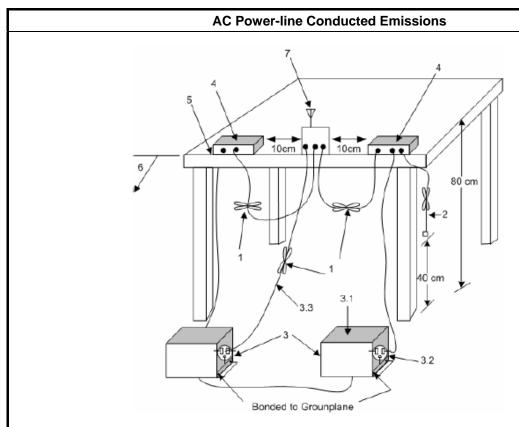
3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30	60	50			
Note 1: * Decreases with the logarithm of the frequency.					

Report No.: FR171418AA

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

 TEL: 886-3-656-9065
 Page Number : 20 of 35

 FAX: 886-3-656-9085
 Issued Date : Nov. 23, 2021

3.1.4 Test Setup

1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long.

Report No.: FR171418AA

- 2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane.
- 3.1—All other equipment powered from additional LISN(s).
- 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment.
- 3.3—LISN at least 80 cm from nearest part of EUT chassis.
- 4—Non-EUT components of EUT system being tested.
- 5—Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop.
- 6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.
- 7—Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test.

3.1.5 Measurement Results Calculation

The measured Level is calculated using:

- a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level
- b. Margin = -Limit + Level

3.1.6 Test Result of AC Power-line Conducted Emissions

Refer as Appendix A

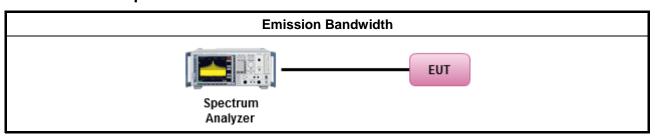
TEL: 886-3-656-9065 Page Number : 21 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.2 DTS Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit				
Systems using digital modulation techniques:				
■ 6 dB bandwidth ≥ 500 kHz.				

Report No.: FR171418AA


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method							
•	For the emission bandwidth shall be measured using one of the options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.1 Option 1 for 6 dB bandwidth measurement.						
		Refer as FCC KDB 558074, clause 8.2 & C63.10 clause 11.8.2 Option 2 for 6 dB bandwidth measurement.						
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.						

3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

Refer as Appendix B

TEL: 886-3-656-9065 Page Number : 22 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

Maximum Conducted Output Power Limit

- If G_{TX} ≤ 6 dBi, then P_{Out} ≤ 30 dBm (1 W)
- Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)$ dBm
- Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
- Smart antenna system (SAS):
 - Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3$ dBm
 - Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 (G_{TX} 6)/3 + 8$ dB dBm

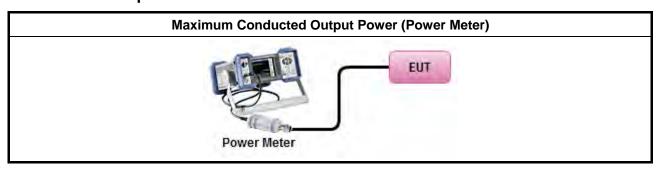
Report No.: FR171418AA

 \mathbf{P}_{Out} = maximum peak conducted output power or maximum conducted output power in dBm, \mathbf{G}_{TX} = the maximum transmitting antenna directional gain in dBi.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 23 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021


3.3.3 Test Procedures

	Test Method						
•	Max	imum Peak Conducted Output Power					
		Refer as FCC KDB 558074, clause 8.3.1.1 & C63.10 clause 11.9.1.1 (RBW ≥ EBW method).					
		Refer as FCC KDB 558074, clause 8.3.1.3 & C63.10 clause 11.9.1.3 (peak power meter).					
•	Max	imum Conducted Output Power					
	[duty	/ cycle ≥ 98% or external video / power trigger]					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.2 Method AVGSA-1.					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.3 Method AVGSA-1A. (alternative)					
	duty	cycle < 98% and average over on/off periods with duty factor					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.4 Method AVGSA-2.					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.5 Method AVGSA-2A (alternative)					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.6 Method AVGSA-3					
		Refer as FCC KDB 558074, clause 8.3.2.2 & C63.10 clause 11.9.2.2.7 Method AVGSA-3A (alternative)					
	Measurement using a power meter (PM)						
		Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.1 Method AVGPM (using an RF average power meter).					
	\boxtimes	Refer as FCC KDB 558074, clause 8.3.2.3 & C63.10 clause 11.9.2.3.2 Method AVGPM-G (using an gate RF average power meter).					
•	For	conducted measurement.					
	•	If the EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.					
	•	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = $P_{total} + DG$					

Report No.: FR171418AA

TEL: 886-3-656-9065 Page Number : 24 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.3.4 Test Setup

Report No.: FR171418AA

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

TEL: 886-3-656-9065 Page Number : 25 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

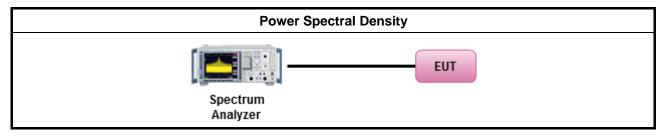
3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit Power Spectral Density (PSD) ≤ 8 dBm/3kHz

Report No.: FR171418AA

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

	Test Method					
•	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).					
	\boxtimes	Ref	er as FCC KDB 558074, clause 8.4 & C63.10 clause 11.10 Method Max. PSD.			
•	For	cond	ucted measurement.			
	•	If Th	ne EUT supports multiple transmit chains using options given below:			
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the NTX output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.			
			Option 2: Measure and sum spectral maxima across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The maximum value (peak) of each spectrum is determined. These maximum values are then summed mathematically in linear power units across the outputs. These operations shall be performed separately over frequency spans that have different out-of-band or spurious emission limits,			
			Option 3: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.			

TEL: 886-3-656-9065 Page Number : 26 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.4.4 Test Setup

Report No.: FR171418AA

3.4.5 Test Result of Power Spectral Density

Refer as Appendix D

TEL: 886-3-656-9065 Page Number : 27 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

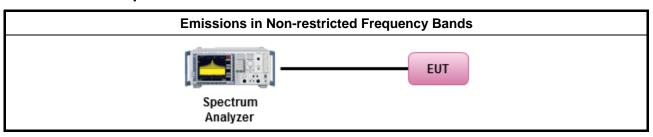
3.5 Emissions in Non-restricted Frequency Bands

3.5.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dBc)			
Peak output power procedure	20			
Average output power procedure	30			

Report No.: FR171418AA

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.


3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method	
 Refer as FCC KDB 558074, clause 8.5 for unwanted emissions into non-restricted bands. 	

3.5.4 Test Setup

3.5.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix E

TEL: 886-3-656-9065 Page Number : 28 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.6 Emissions in Restricted Frequency Bands

3.6.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Report No.: FR171418AA

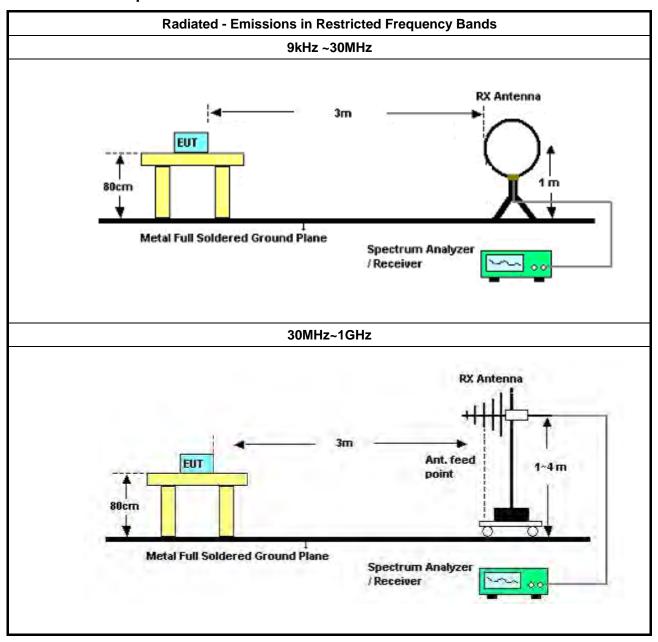
- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the ELIT
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

TEL: 886-3-656-9065 Page Number : 29 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.6.3 Test Procedures


	Test Method						
•	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].					
•	 Refer as ANSI C63.10, clause 6.10.3 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band. 						
•	For the transmitter unwanted emissions shall be measured using following options below:						
	 Refer as FCC KDB 558074, clause 8.6 for unwanted emissions into restricted bands. 						
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.1(trace averaging for duty cycle ≥98%).					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.2(trace averaging + duty factor).					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.5.3(Reduced VBW≥1/T).					
		Refer as ANSI C63.10, clause 11.12.2.5.3 (Reduced VBW). VBW ≥ 1/T, where T is pulse time.					
		Refer as ANSI C63.10, clause 7.5 average value of pulsed emissions.					
		Refer as FCC KDB 558074, clause 8.6 & C63.10 clause 11.12.2.4 measurement procedure peak limit.					
•	For	the transmitter band-edge emissions shall be measured using following options below:					
	•	Refer as FCC KDB 558074 clause 8.7 & C63.10 clause 11.13.1, When the performing peak or average radiated measurements, emissions within 2 MHz of the authorized band edge may be measured using the marker-delta method described below.					
	 Refer as FCC KDB 558074, clause 8.7 (ANSI C63.10, clause 6.10.6) for marker-delta method band-edge measurements. 						
	•	Refer as FCC KDB 558074, clause 8.7 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).					
	•	For conducted unwanted emissions into restricted bands (absolute emission limits). Devices with multiple transmit chains using options given below: (1) Measure and sum the spectra across the outputs or (2) Measure and add 10 log(N) dB					
	•	For FCC KDB 662911 The methodology described here may overestimate array gain, thereby resulting in apparent failures to satisfy the out-of-band limits even if the device is actually compliant. In such cases, compliance may be demonstrated by performing radiated tests around the frequencies at which the apparent failures occurred.					

Report No.: FR171418AA

TEL: 886-3-656-9065 Page Number : 30 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

3.6.4 Test Setup

TEL: 886-3-656-9065 Page Number : 31 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Report No.: FR171418AA

3.6.5 Measurement Results Calculation

The measured Level is calculated using:

Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level.

3.6.6 Emissions in Restricted Frequency Bands (Below 30MHz)

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar.

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10th harmonic or 40 GHz, whichever is appropriate.

3.6.7 Test Result of Emissions in Restricted Frequency Bands

Refer as Appendix F

TEL: 886-3-656-9065 Page Number : 32 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

4 Test Equipment and Calibration Data

Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.4GHz	Mar. 03, 2021	Mar. 02, 2022	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50- 16-2	04083	150kHz ~ 100MHz	Jan. 06, 2021	Jan. 05, 2022	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Mar. 07, 2021	Mar. 06, 2022	Conduction (CO01-CB)
Pulse Limiter	Rohde&Schwa rz	ESH3-Z2	100430	9kHz ~ 30MHz	Jan. 30, 2021	Jan. 29, 2022	Conduction (CO01-CB)
COND Cable	Woken	Cable	Low cable-CO01	9kHz ~ 30MHz	May 19, 2021	May 18, 2022	Conduction (CO01-CB)
Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Apr. 14, 2021	Apr. 13, 2022	Radiation (03CH03-CB)
3m Semi Anechoic Chamber NSA	TDK	SAC-3M	03CH03-CB	30 MHz ~ 1 GHz	Jan. 27, 2021	Jan. 26, 2022	Radiation (03CH03-CB)
3m Semi Anechoic Chamber VSWR	TDK	SAC-3M	03CH03-CB	1GHz ~18GHz 3m	May 06, 2021	May 05, 2022	Radiation (03CH03-CB)
Bilog Antenna with 6 dB attenuator	Schaffner & EMCI	CBL6112B & N-6-06	2928 & AT-N0608	20MHz ~ 2GHz	Feb. 22, 2021	Feb. 21, 2022	Radiation (03CH03-CB)
Horn Antenna	ETS · Lindgren	3115	6821	750MHz~18GHz	Jan. 26, 2021	Jan. 25, 2022	Radiation (03CH03-CB)
Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170507	15GHz ~ 40GHz	Jun. 18, 2021	Jun. 17, 2022	Radiation (03CH03-CB)
Pre-Amplifier	Agilent	8447D	2944A10259	9kHz ~ 1.3GHz	Jan. 11, 2021	Jan. 10, 2022	Radiation (03CH03-CB)
Pre-Amplifier	Agilent	8449B	3008A02097	1GHz ~ 26.5GHz	Jul. 02, 2021	Jul. 01, 2022	Radiation (03CH03-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 13, 2021	Jul. 12, 2022	Radiation (03CH03-CB)
Spectrum Analyzer	R&S	FSP40	100019	9kHz ~ 40GHz	Jun. 04, 2021	Jun. 03, 2022	Radiation (03CH03-CB)
EMI Test Receiver	R&S	ESCS	826547/017	9kHz ~ 2.75GHz	Jun. 21, 2021	Jun. 20, 2022	Radiation (03CH03-CB)
RF Cable-low	Woken	RG402	Low Cable-02+29	30MHz ~ 1GHz	Aug. 20, 2021	Aug. 19, 2022	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-20+29	1GHz ~ 18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-29	1GHz ~ 18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH03-CB)
RF Cable-high	Woken	RG402	High Cable-29	1GHz ~ 18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH03-CB)

TEL: 886-3-656-9065 FAX: 886-3-656-9085

Report Template No.: CB-A10_10 Ver1.3

Page Number : 33 of 35 Issued Date : Nov. 23, 2021

Report No.: FR171418AA

Report Version : 06

SCHWARZBE

CK

BBHA 9170

Horn Antenna

Calibration Calibration Instrument Model No. Serial No. Characteristics Remark **Brand** Date **Due Date** High Radiation Jul. 16, 2020 Jul. 15, 2021 RF Cable-high RG402 18GHz ~ 40 GHz Woken (03CH03-CB) Cable-40G#1 High Radiation RF Cable-high Jul. 15, 2021 Jul. 14, 2022 Woken RG402 18GHz ~ 40 GHz (03CH03-CB) Cable-40G#1 High Radiation Jul. 16, 2020 Jul. 15, 2021 RF Cable-high Woken RG402 18GHz ~ 40 GHz (03CH03-CB) Cable-40G#2 High Radiation Jul. 15, 2021 Jul. 14, 2022 RF Cable-high Woken RG402 18GHz ~ 40 GHz (03CH03-CB) Cable-40G#2 Radiation **SPORTON Test Software** SENSE V5.10 N.C.R. N.C.R. (03CH03-CB) 3m Semi Anechoic 1GHz ~18GHz Radiation RIKEN SAC-3M 03CH02-CB Mar. 27, 2021 Mar. 26, 2022 (03CH02-CB) Chamber 3_m **VSWR** Radiation Horn Antenna **EMCO** 3115 9610-4976 1GHz ~ 18GHz May 04, 2021 May 03, 2022 (03CH02-CB) **SCHWARZBE** Radiation Horn Antenna **BBHA 9170** BBHA9170507 15GHz ~ 40GHz Jun. 18, 2021 Jun. 17, 2022 (03CH02-CB) CK Radiation Pre-Amplifier Agilent 83017A MY39501305 1GHz ~ 26.5GHz Jul. 12, 2021 Jul. 11, 2022 (03CH02-CB) TTA1840-35-H Radiation Pre-Amplifier MITEQ 1864479 18GHz ~ 40GHz Jul. 13, 2021 Jul. 12, 2022 G (03CH02-CB) Spectrum Radiation **FSU** 100015 R&S 9kHz~26GHz Oct. 15, 2020 Oct. 14, 2021 analyzer (03CH02-CB) Radiation RF Cable-high Woken RG402 High Cable-18 1GHz ~ 18GHz Oct. 05, 2020 Oct. 04, 2021 (03CH02-CB) Radiation High RF Cable-high Woken RG402 1GHz ~ 18GHz Oct. 05, 2020 Oct. 04, 2021 Cable-18+19 (03CH02-CB) High Radiation RF Cable-high Woken RG402 18GHz ~ 40 GHz Jul. 16, 2020 Jul. 15, 2021 (03CH02-CB) Cable-40G#1 Hiah Radiation RF Cable-high Jul. 15, 2021 Jul. 14, 2022 18GHz ~ 40 GHz Woken RG402 (03CH02-CB) Cable-40G#1 High Radiation RF Cable-high RG402 18GHz ~ 40 GHz Jul. 16, 2020 Jul. 15, 2021 Woken (03CH02-CB) Cable-40G#2 High Radiation RF Cable-high Jul. 15, 2021 Jul. 14, 2022 Woken RG402 18GHz ~ 40 GHz (03CH02-CB) Cable-40G#2 Radiation **Test Software SPORTON** SENSE V5.10 N.C.R. N.C.R. (03CH02-CB) 3m Semi 1GHz ~18GHz Anechoic Radiation 03CH05-CB Nov. 08, 2020 TDK SAC-3M Nov. 07. 2021 Chamber (03CH05-CB) 3m **VSWR SCHWARZBE BBHA 9120** Radiation BBHA9120D 1GHz~18GHz Horn Antenna Sep. 05, 2020 Sep. 04, 2021 D-1291 (03CH05-CB) CK

Report No.: FR171418AA

Radiation

(03CH05-CB)

TEL: 886-3-656-9065 Page Number: 34 of 35
FAX: 886-3-656-9085 Issued Date: Nov. 23, 2021

15GHz ~ 40GHz

Jun. 18, 2021

Jun. 17, 2022

Report Template No.: CB-A10_10 Ver1.3 Report Version : 06

BBHA9170507

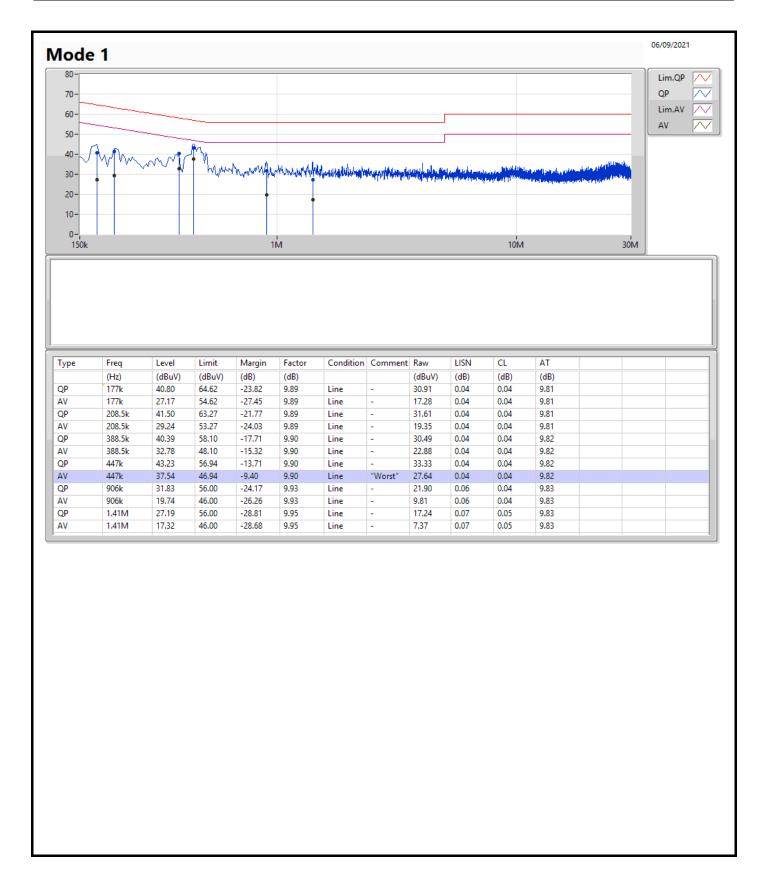
Instrument	Brand	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
Pre-Amplifier	EMCI	EMC12630SE	980287	1GHz – 26.5GHz	Jul. 02, 2021	Jul. 01, 2022	Radiation (03CH05-CB)
Pre-Amplifier	MITEQ	TTA1840-35-H G	1864479	18GHz ~ 40GHz	Jul. 13, 2021	Jul. 12, 2022	Radiation (03CH05-CB)
Spectrum Analyzer	R&S	FSP40	100304	9kHz ~ 40GHz	Nov. 10, 2020	Nov. 09, 2021	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-28	1GHz~18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-04+28	1GHz~18GHz	Oct. 05, 2020	Oct. 04, 2021	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-40G#1	18GHz ~ 40 GHz	Jul. 15, 2021	Jul. 14, 2022	Radiation (03CH05-CB)
RF Cable-high	Woken	RG402	High Cable-40G#2	18GHz ~ 40 GHz	Jul. 15, 2021	Jul. 14, 2022	Radiation (03CH05-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Radiation (03CH05-CB)
Spectrum analyzer	R&S	FSV40	101028	9kHz~40GHz	Dec. 31, 2020	Dec. 30, 2021	Conducted (TH03-CB)
Power Sensor	Anritsu	MA2411B	1726195	300MHz~40GHz	Aug. 17, 2020	Aug. 16, 2021	Conducted (TH03-CB)
Power Sensor	Anritsu	MA2411B	1531344	300MHz~40GHz	Jul. 27, 2021	Jul. 26, 2022	Conducted (TH03-CB)
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Aug. 17, 2020	Aug. 16, 2021	Conducted (TH03-CB)
Power Meter	Anritsu	ML2495A	1728002	300MHz~40GHz	Jul. 27, 2021	Jul. 26, 2022	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-11	1 GHz –18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-12	1 GHz –18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-13	1 GHz –18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-14	1 GHz –18 GHz	Oct. 05, 2020	Oct. 04, 2021	Conducted (TH03-CB)
RF Cable-high	Woken	RG402	High Cable-15	1 GHz –18 GHz Oct. 05, 2020 Oct. 0		Oct. 04, 2021	Conducted (TH03-CB)
Test Software	SPORTON	SENSE	V5.10	-	N.C.R.	N.C.R.	Conducted (TH03-CB)

Report No.: FR171418AA

Note: Calibration Interval of instruments listed above is one year. NCR means Non-Calibration required.

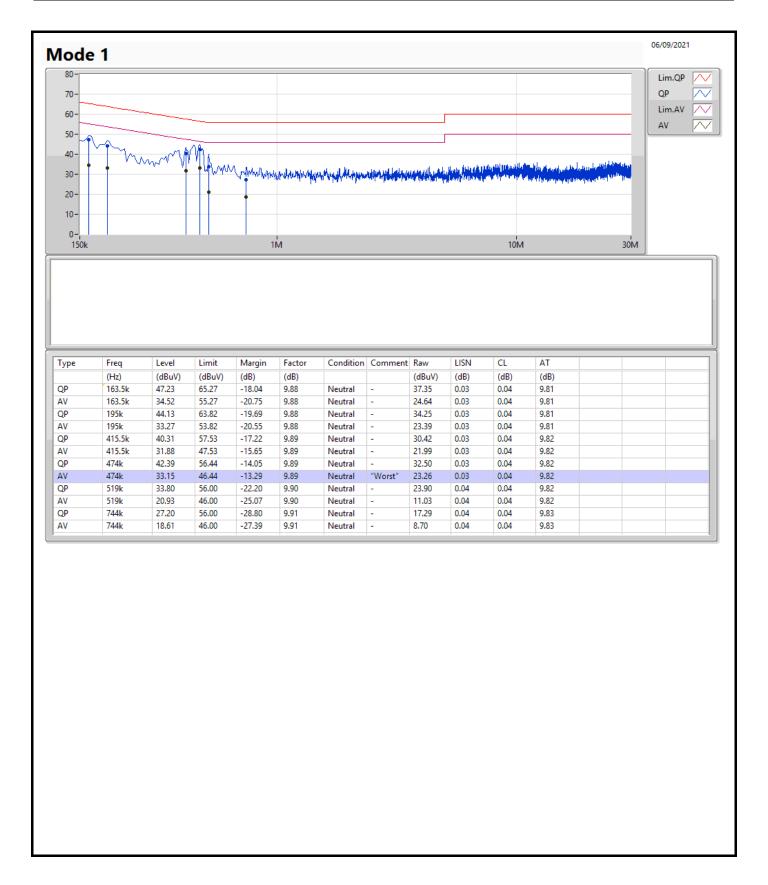
TEL: 886-3-656-9065 Page Number : 35 of 35
FAX: 886-3-656-9085 Issued Date : Nov. 23, 2021

Conducted Emissions at Powerline


Appendix A

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Condition
Mode 1	Pass	AV	447k	37.54	46.94	-9.40	Line


Sporton International Inc. Hsinchu Laboratory Page No. Report No. : 1 of 3 : FR171418AA

Page No. : 2 of 3
Report No. : FR171418AA

Page No. : 3 of 3
Report No. : FR171418AA

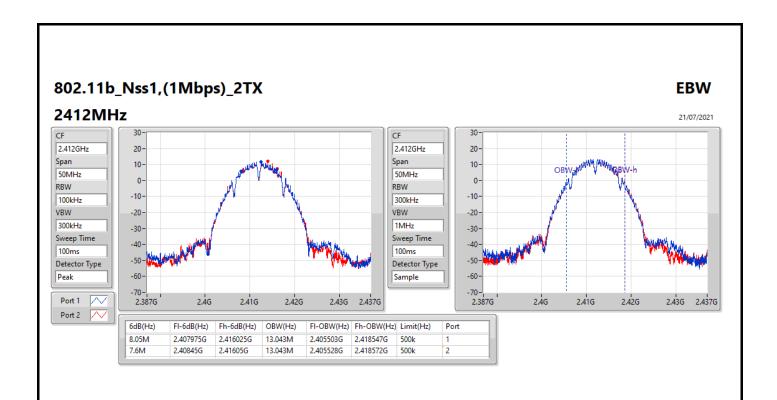
Summary

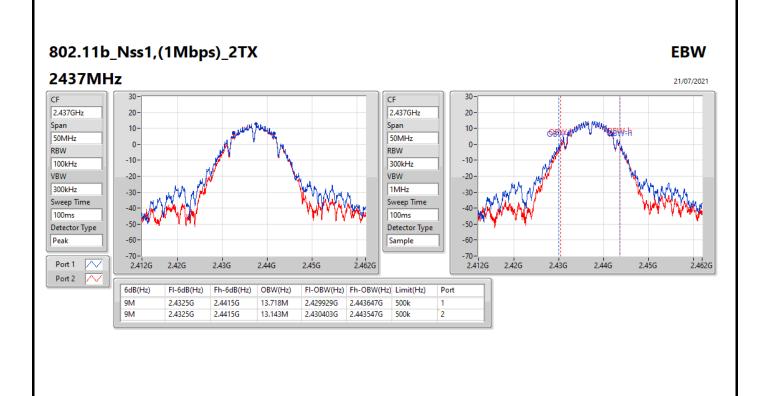
Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	=	-	-
802.11b_Nss1,(1Mbps)_2TX	9M	13.718M	13M7G1D	7.575M	13.043M
802.11g_Nss1,(6Mbps)_2TX	15.075M	16.617M	16M6D1D	14.975M	16.317M
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	16.875M	18.941M	18M9D1D	14.975M	18.816M
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	32.55M	37.781M	37M8D1D	19.4M	37.481M

 $\label{eq:max-N} Max-N~dB = Maximum~6dB~down~bandwidth; Max-OBW = Maximum~99\%~occupied~bandwidth; Min-N~dB = Minimum~6dB~down~bandwidth; Min-OBW = Minimum~99\%~occupied~bandwidth; Minimum~99\%$

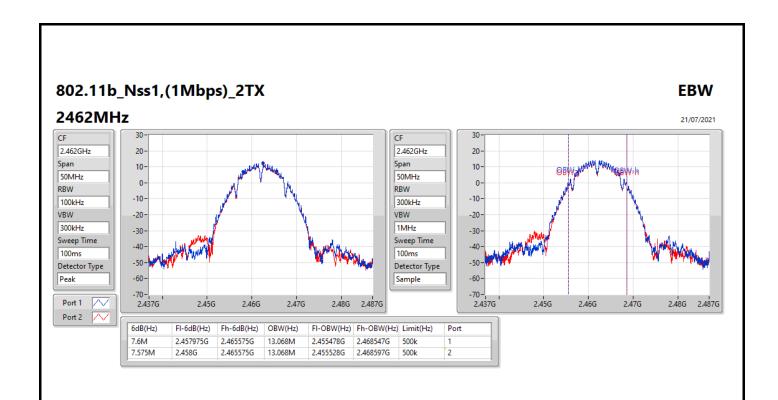
Sporton International Inc. Hsinchu Laboratory

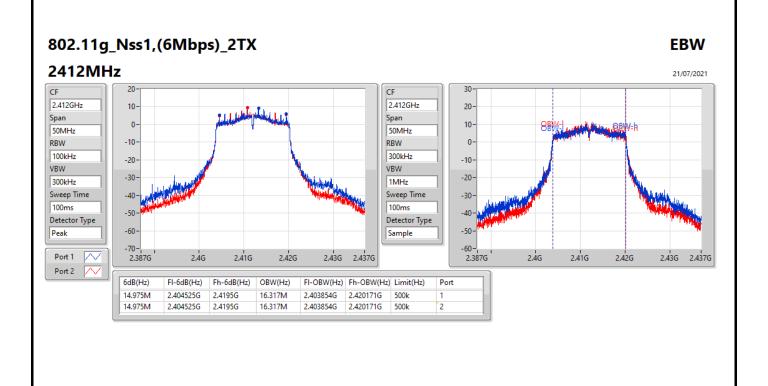
Page No. : 1 of 8 Report No. : FR171418AA

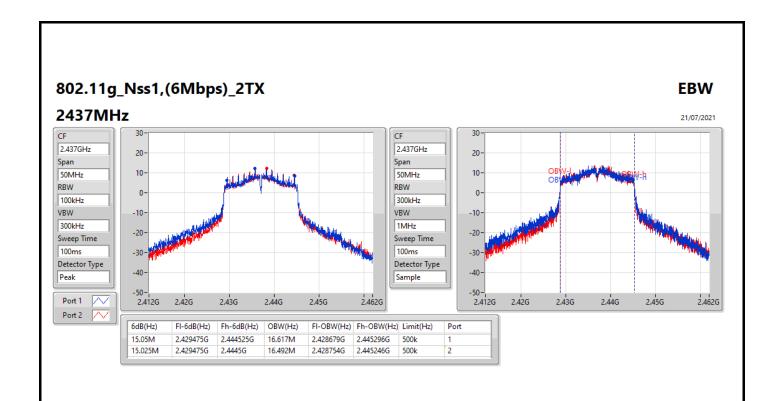

Result

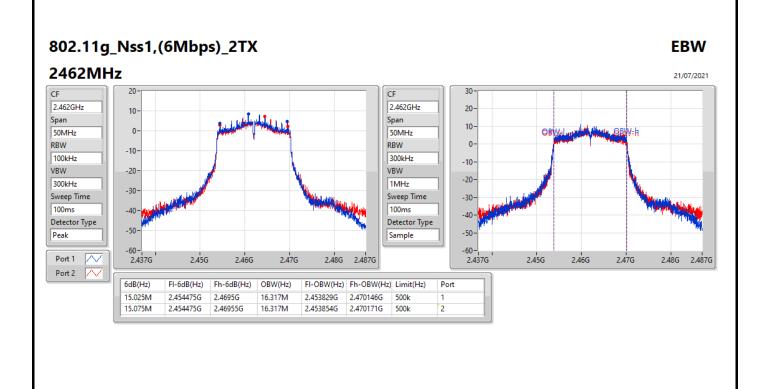

Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	8.05M	13.043M	7.6M	13.043M
2437MHz	Pass	500k	9M	13.718M	9M	13.143M
2462MHz	Pass	500k	7.6M	13.068M	7.575M	13.068M
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	14.975M	16.317M	14.975M	16.317M
2437MHz	Pass	500k	15.05M	16.617M	15.025M	16.492M
2462MHz	Pass	500k	15.025M	16.317M	15.075M	16.317M
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	16.875M	18.816M	15M	18.816M
2437MHz	Pass	500k	15.05M	18.866M	15.025M	18.941M
2462MHz	Pass	500k	14.975M	18.816M	15.225M	18.816M
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	500k	32.5M	37.631M	25M	37.531M
2437MHz	Pass	500k	22.8M	37.731M	19.4M	37.531M
2452MHz	Pass	500k	21.6M	37.781M	32.55M	37.481M

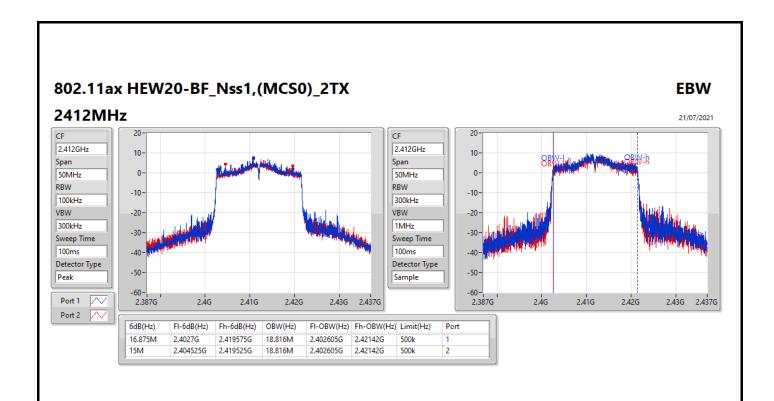
Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth

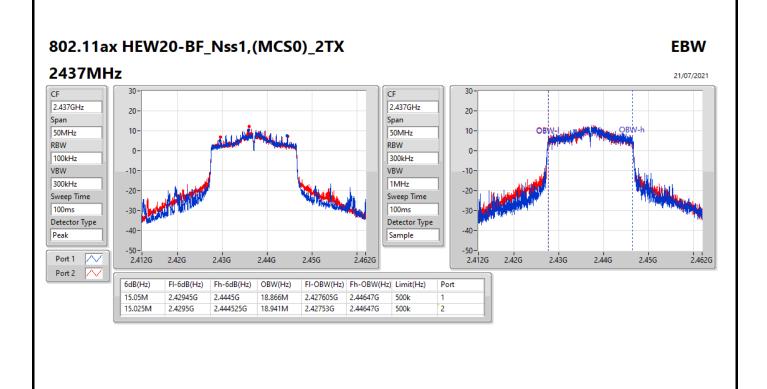

Sporton International Inc. Hsinchu Laboratory

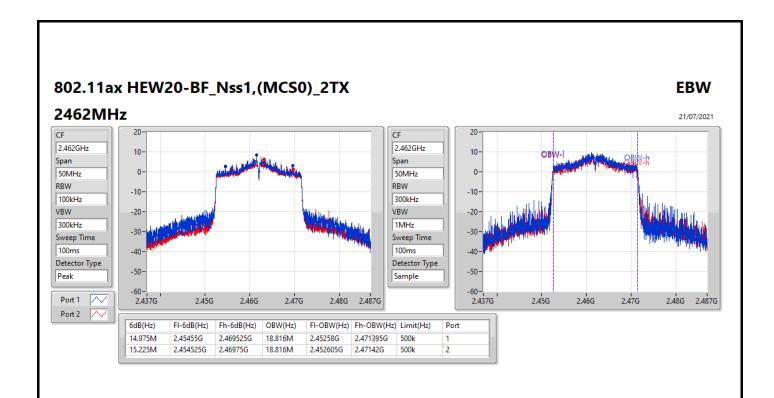

Page No. : 2 of 8 Report No. : FR171418AA

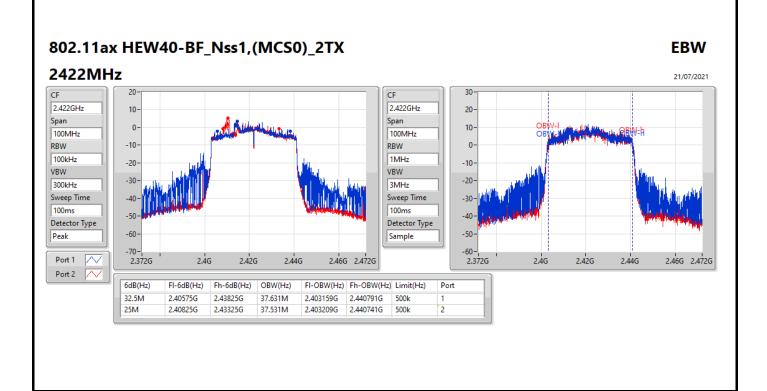



Page No. : 3 of 8 Report No. : FR171418AA

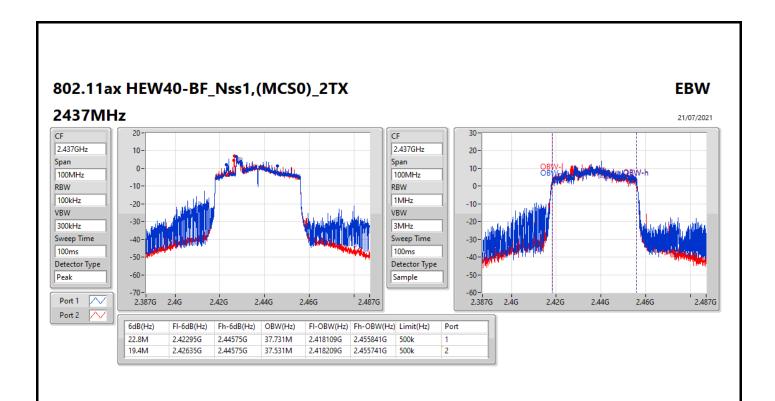


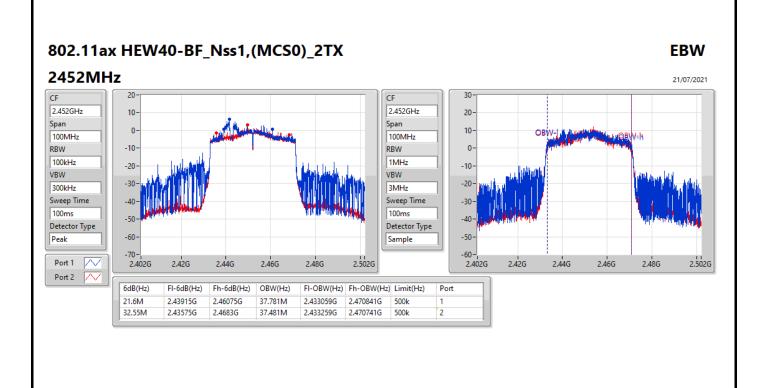

Page No. : 4 of 8 Report No. : FR171418AA




Page No. : 5 of 8 Report No. : FR171418AA

Page No. : 6 of 8 Report No. : FR171418AA





Page No. : 7 of 8
Report No. : FR171418AA

SPORTON LAB

EBW Appendix B

Page No. : 8 of 8 Report No. : FR171418AA

Average Power Appendix C

Summary

Mode	Total Power (dBm)	Total Power (W)
2.4-2.4835GHz	-	-
802.11b_Nss1,(1Mbps)_2TX	25.93	0.39174
802.11g_Nss1,(6Mbps)_2TX	24.69	0.29444
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	23.34	0.21577
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	19.62	0.09162

Sporton International Inc. Hsinchu Laboratory

Page No. : 1 of 2 Report No. : FR171418AA

Average Power Appendix C

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	2.67	21.18	21.13	24.17	30.00
2437MHz	Pass	2.67	22.99	22.84	25.93	30.00
2462MHz	Pass	2.67	21.91	21.69	24.81	30.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	2.67	18.50	18.60	21.56	30.00
2417MHz	Pass	2.67	19.60	20.12	22.88	30.00
2437MHz	Pass	2.67	21.74	21.61	24.69	30.00
2457MHz	Pass	2.67	19.43	19.14	22.30	30.00
2462MHz	Pass	2.67	17.47	17.31	20.40	30.00
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.41	16.18	16.79	19.51	30.00
2417MHz	Pass	5.41	17.22	17.35	20.30	30.00
2437MHz	Pass	5.41	20.45	20.21	23.34	30.00
2457MHz	Pass	5.41	17.49	17.38	20.45	30.00
2462MHz	Pass	5.41	16.84	16.27	19.57	30.00
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	5.41	15.52	15.48	18.51	30.00
2437MHz	Pass	5.41	16.62	16.59	19.62	30.00
2452MHz	Pass	5.41	15.68	15.52	18.61	30.00

DG = Directional Gain; Port X = Port X output power

Page No. : 2 of 2 Report No. : FR171418AA

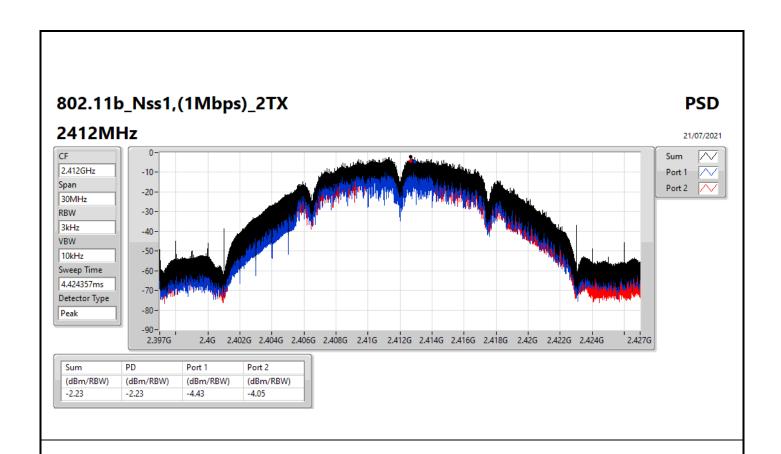
Summary

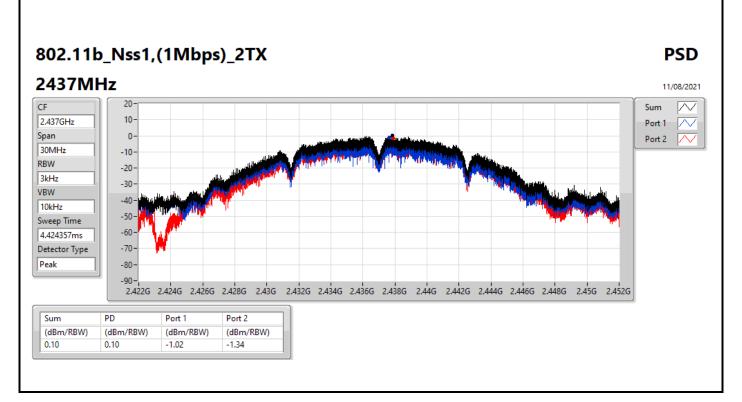
Mode	PD (dBm/RBW)
2.4-2.4835GHz	-
802.11b_Nss1,(1Mbps)_2TX	0.10
802.11g_Nss1,(6Mbps)_2TX	-2.73
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-3.11
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-7.91

RBW = 3kHz;

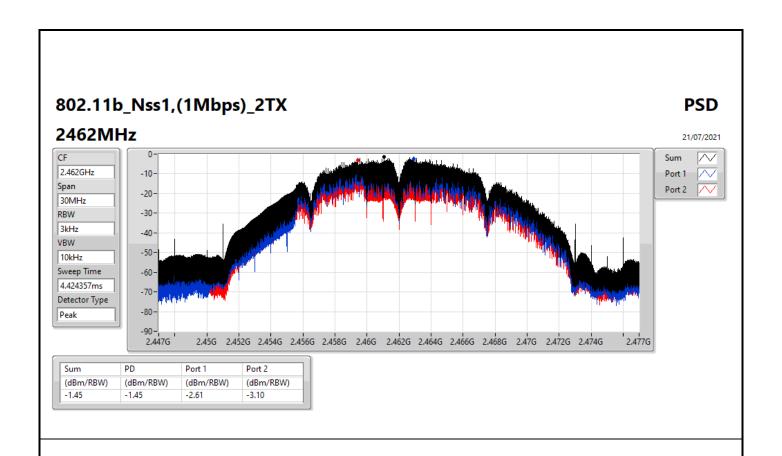
Page No. : 1 of 8 Report No. : FR171418AA

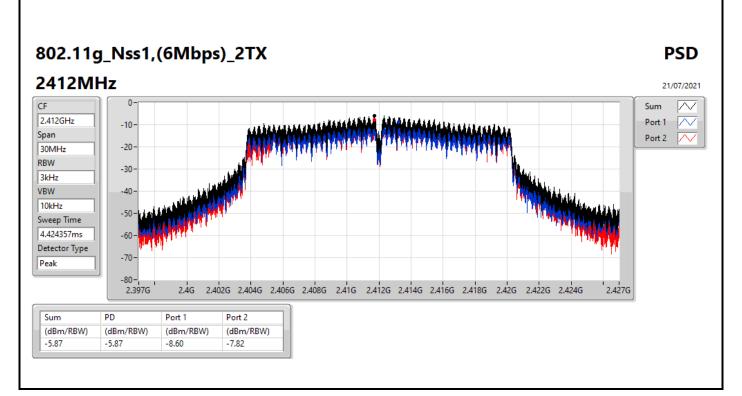
Appendix D **PSD**

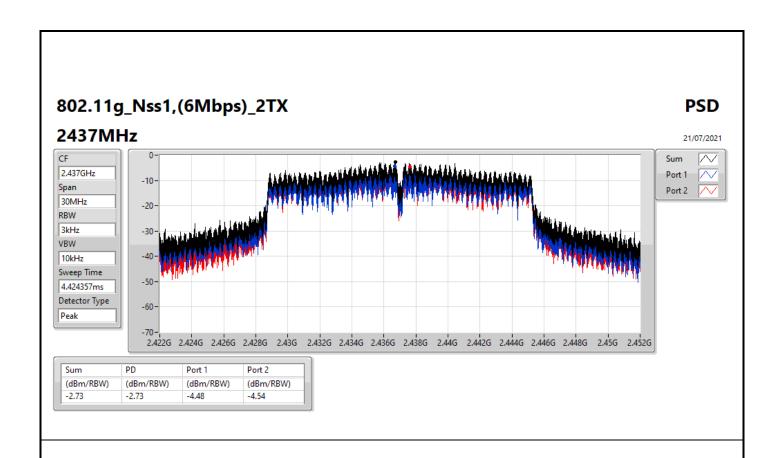

Result

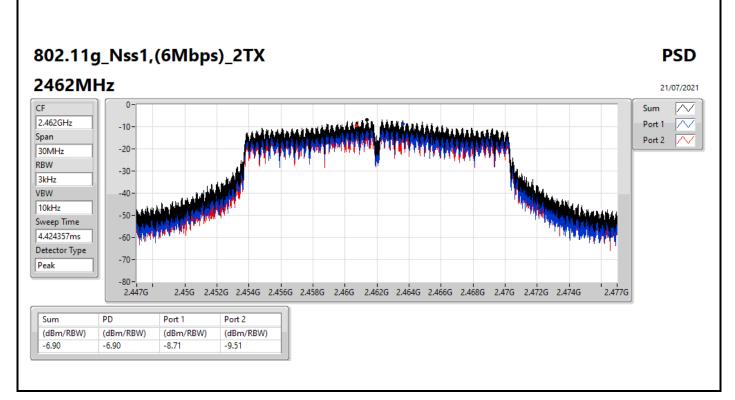

Mode	Result	DG	Port 1	Port 2	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.41	-4.43	-4.05	-2.23	8.00
2437MHz	Pass	5.41	-1.02	-1.34	0.10	8.00
2462MHz	Pass	5.41	-2.61	-3.10	-1.45	8.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	5.41	-8.60	-7.82	-5.87	8.00
2437MHz	Pass	5.41	-4.48	-4.54	-2.73	8.00
2462MHz	Pass	5.41	-8.71	-9.51	-6.90	8.00
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	=	-	-	-	-	-
2412MHz	Pass	5.41	-8.51	-8.15	-6.63	8.00
2437MHz	Pass	5.41	-5.32	-5.54	-3.11	8.00
2462MHz	Pass	5.41	-8.43	-7.92	-6.70	8.00
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	5.41	-9.97	-9.87	-9.36	8.00
2437MHz	Pass	5.41	-9.78	-9.94	-7.91	8.00
2452MHz	Pass	5.41	-12.24	-11.76	-10.04	8.00

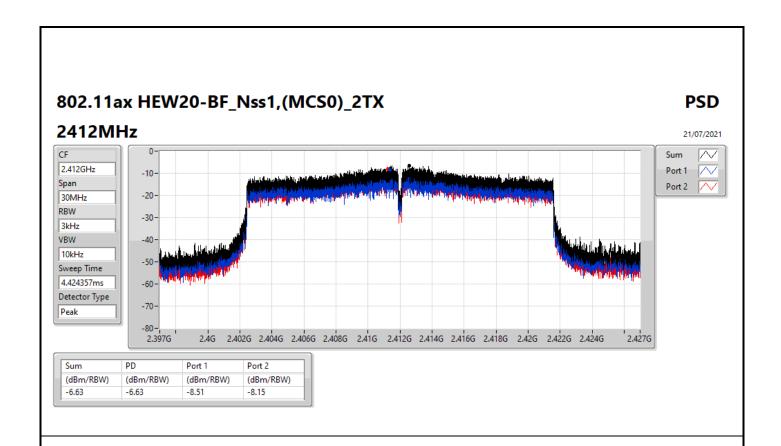
Sporton International Inc. Hsinchu Laboratory

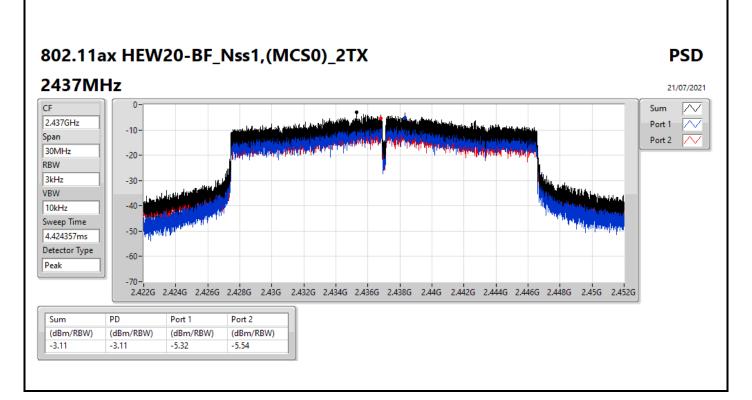

: 2 of 8 Page No. Report No. : FR171418AA

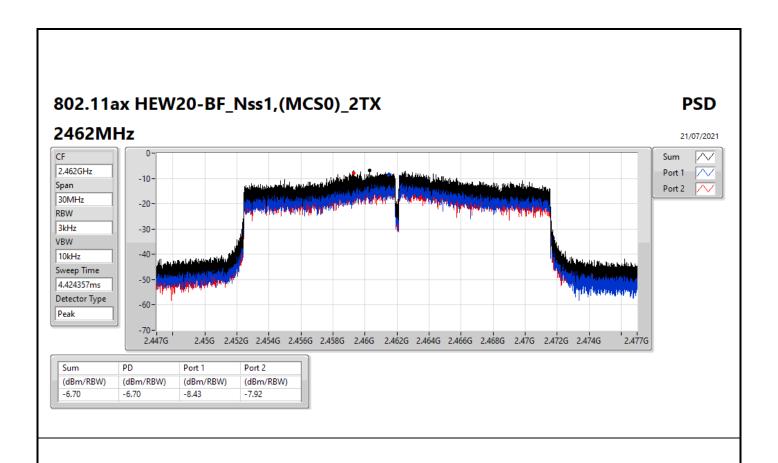

DG = Directional Gain; RBW = 3kHz; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X Power Density;



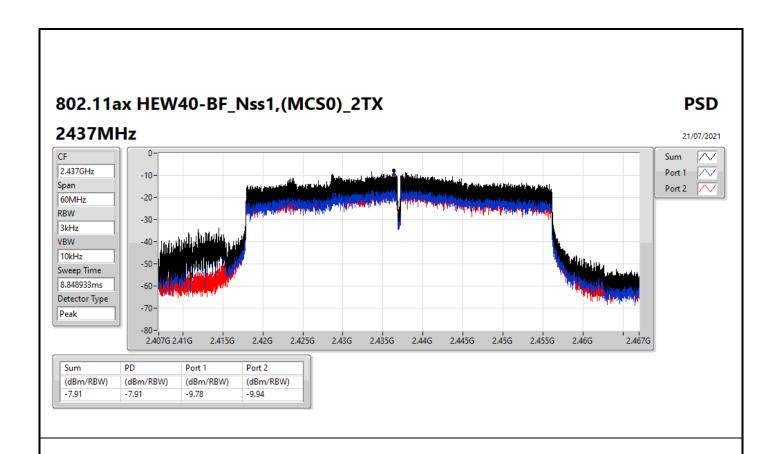

Page No. : 3 of 8
Report No. : FR171418AA

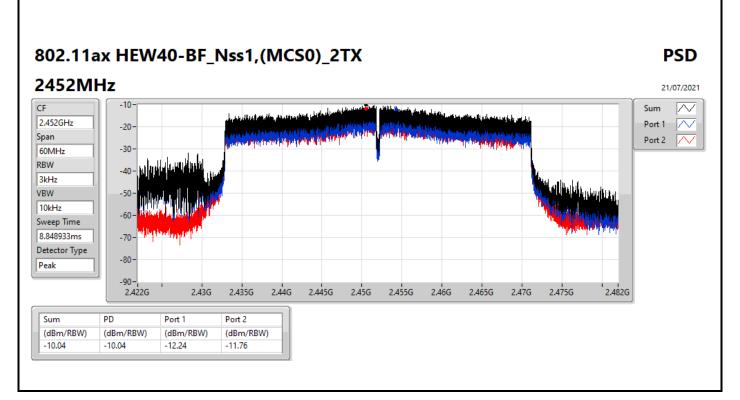



Page No. : 4 of 8 Report No. : FR171418AA



Page No. : 5 of 8
Report No. : FR171418AA



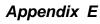

Page No. : 6 of 8 Report No. : FR171418AA

802.11ax HEW40-BF_Nss1,(MCS0)_2TX **PSD** 2422MHz 21/07/2021 $\overline{}$ Sum 2.422GHz -10-Port 1 Span Port 2 -20-60MHz -30-RBW 3kHz -40 VBW Sweep Time 8.848933ms -70 Detector Type -80-Peak -90 -2.392G 2.415G 2.42G 2.425G 2.41G 2.43G 2.435G 2.44G 2.445G 2.4G 2.405G 2.452G (dBm/RBW) (dBm/RBW) (dBm/RBW) (dBm/RBW) -9.36 -9.97 -9.87

Page No. : 7 of 8
Report No. : FR171418AA

Page No. : 8 of 8 Report No. : FR171418AA

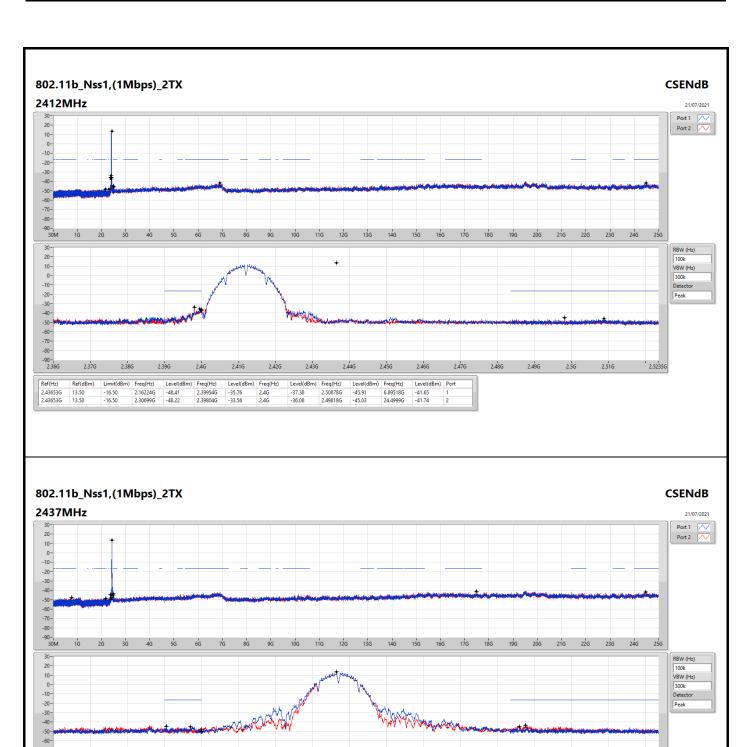
Appendix E


Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz			-		-	-	-	-	-	-				-	-
802.11b_Nss1,(1Mbps)_2TX	Pass	2.43653G	13.50	-16.50	2.30699G	-48.22	2.39804G	-33.56	2.4G	-36.08	2.49818G	-45.03	24.4999G	-41.74	2
802.11g_Nss1,(6Mbps)_2TX	Pass	2.43828G	12.45	-17.55	2.19108G	-47.90	2.3998G	-28.42	2.4G	-29.47	2.512G	-46.30	16.77641G	-41.07	1
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	Pass	2.43824G	11.07	-18.93	876.96M	-47.13	2.39702G	-20.75	2.4G	-23.90	2.48366G	-46.60	17.42823G	-41.92	1
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	Pass	2.42547G	6.23	-23.77	1.91038G	-48.02	2.39604G	-28.53	2.4835G	-42.21	2.4941G	-24.96	21.89535G	-41.55	1

Sporton International Inc. Hsinchu Laboratory Page No. Report No.

: 1 of 8 : FR171418AA


Result

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
802.11b_Nss1,(1Mbps)_2TX	-		-	-		-	-	,	-	-	-	-		,	-
2412MHz	Pass	2.43653G	13.50	-16.50	2.16224G	-48.41	2.39954G	-35.76	2.4G	-37.38	2.50878G	-45.91	6.89518G	-41.65	1
2412MHz	Pass	2.43653G	13.50	-16.50	2.30699G	-48.22	2.39804G	-33.56	2.4G	-36.08	2.49818G	-45.03	24.4999G	-41.74	2
2437MHz	Pass	2.43653G	13.50	-16.50	766.57M	-47.91	2.39048G	-44.34	2.4G	-49.48	2.48592G	-45.11	17.49285G	-41.33	1
2437MHz	Pass	2.43653G	13.50	-16.50	2.17826G	-48.54	2.397G	-44.90	2.4G	-47.65	2.48754G	-43.42	24.46899G	-41.92	2
2462MHz	Pass	2.43653G	13.50	-16.50	768.61M	-48.15	2.39332G	-46.61	2.4835G	-45.37	2.49204G	-42.80	6.9907G	-41.78	1
2462MHz	Pass	2.43653G	13.50	-16.50	648.62M	-48.17	2.4G	-45.79	2.4G	-46.95	2.48756G	-42.73	16.72022G	-41.19	2
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-		-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.43828G	12.45	-17.55	2.19108G	-47.90	2.3998G	-28.42	2.4G	-29.47	2.512G	-46.30	16.77641G	-41.07	1
2412MHz	Pass	2.43828G	12.45	-17.55	2.30379G	-48.27	2.39998G	-31.93	2.4G	-31.74	2.48876G	-46.25	23.49688G	-41.27	2
2437MHz	Pass	2.43828G	12.45	-17.55	957.05M	-46.54	2.39824G	-32.72	2.4G	-38.00	2.4835G	-40.11	6.79123G	-41.03	1
2437MHz	Pass	2.43828G	12.45	-17.55	2.12496G	-48.01	2.39894G	-36.59	2.4G	-41.36	2.48418G	-43.21	24.82581G	-41.88	2
2462MHz	Pass	2.43828G	12.45	-17.55	938.7M	-47.58	2.39946G	-47.29	2.4835G	-41.82	2.4835G	-39.42	6.7828G	-40.30	1
2462MHz	Pass	2.43828G	12.45	-17.55	1.8142G	-47.66	2.39908G	-46.41	2.4835G	-39.06	2.48388G	-36.19	15.12158G	-42.05	2
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2412MHz	Pass	2.43824G	11.07	-18.93	876.96M	-47.13	2.39702G	-20.75	2.4G	-23.90	2.48366G	-46.60	17.42823G	-41.92	1
2412MHz	Pass	2.43824G	11.07	-18.93	1.80575G	-48.14	2.39934G	-25.34	2.4G	-29.45	2.50514G	-46.23	24.46618G	-41.35	2
2437MHz	Pass	2.43824G	11.07	-18.93	2.07254G	-46.04	2.39278G	-35.33	2.4G	-42.07	2.4901G	-37.66	6.89518G	-41.92	1
2437MHz	Pass	2.43824G	11.07	-18.93	447.94M	-48.45	2.39978G	-41.44	2.4G	-42.96	2.48488G	-43.80	6.85585G	-42.24	2
2462MHz	Pass	2.43824G	11.07	-18.93	536.48M	-47.65	2.3971G	-39.66	2.4835G	-28.04	2.48408G	-27.37	21.90948G	-42.20	1
2462MHz	Pass	2.43824G	11.07	-18.93	865.31M	-48.18	2.39712G	-37.63	2.4835G	-31.79	2.48492G	-30.50	6.72099G	-41.92	2
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2422MHz	Pass	2.42547G	6.23	-23.77	868.71M	-47.80	2.39832G	-34.92	2.4G	-38.97	2.50778G	-26.89	6.72267G	-41.99	1
2422MHz	Pass	2.42547G	6.23	-23.77	899.91M	-47.42	2.39996G	-36.98	2.4G	-38.31	2.55086G	-47.39	16.77702G	-41.52	2
2437MHz	Pass	2.42547G	6.23	-23.77	48.89M	-42.30	2.39456G	-25.12	2.4835G	-35.24	2.49322G	-25.10	2.57752G	-37.65	1
2437MHz	Pass	2.42547G	6.23	-23.77	813.47M	-47.28	2.3952G	-31.84	2.4G	-43.87	2.5047G	-43.09	6.83765G	-41.45	2
2452MHz	Pass	2.42547G	6.23	-23.77	1.91038G	-48.02	2.39604G	-28.53	2.4835G	-42.21	2.4941G	-24.96	21.89535G	-41.55	1
2452MHz	Pass	2.42547G	6.23	-23.77	191.73M	-47.93	2.39972G	-43.40	2.4835G	-30.74	2.48954G	-25.33	16.85555G	-41.80	2

Sporton International Inc. Hsinchu Laboratory

Page No. : 2 of 8 Report No. : FR171418AA

2.37G

Ref(Hz)

2.43653G 2.43653G 2.38G

Limit(dBm) Freq(Hz) -16.50 766.57M -16.50 2.17826G

2.39G

2.4G

Level(dBm) Freq(Hz) -47.91 2.39048G -48.54 2.397G 2.41G

Level(dBm) Freq(Hz)

2.42G

2.43G

Level(dBm) Freq(Hz)

-49.48 -47.65 2.44G

2.45G

Level(dBm) Freq(Hz)

Page No. : 3 of 8
Report No. : FR171418AA

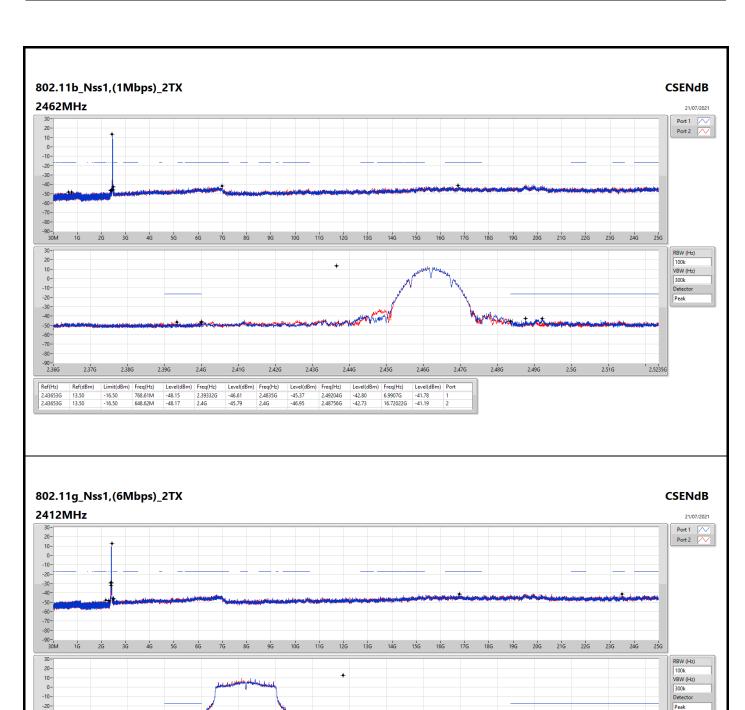
2.48G

2.47G

Level(dBm) Port

-90-2.36G

2.43828G 2.43828G 2.39G


Limit(dBm) Freq(Hz)

2.19108G 2.30379G

-17.55 -17.55 2.41G

2.4G 2.4G

2.3998G 2.39998G

2.44G

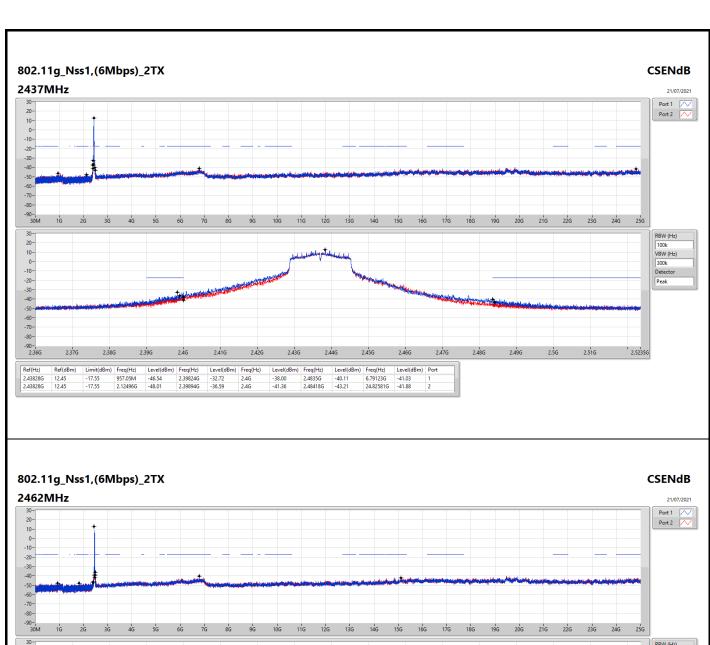
-46.30 -46.25

2.512G 2.48876G

2.43G

-29.47 -31.74 2.45G

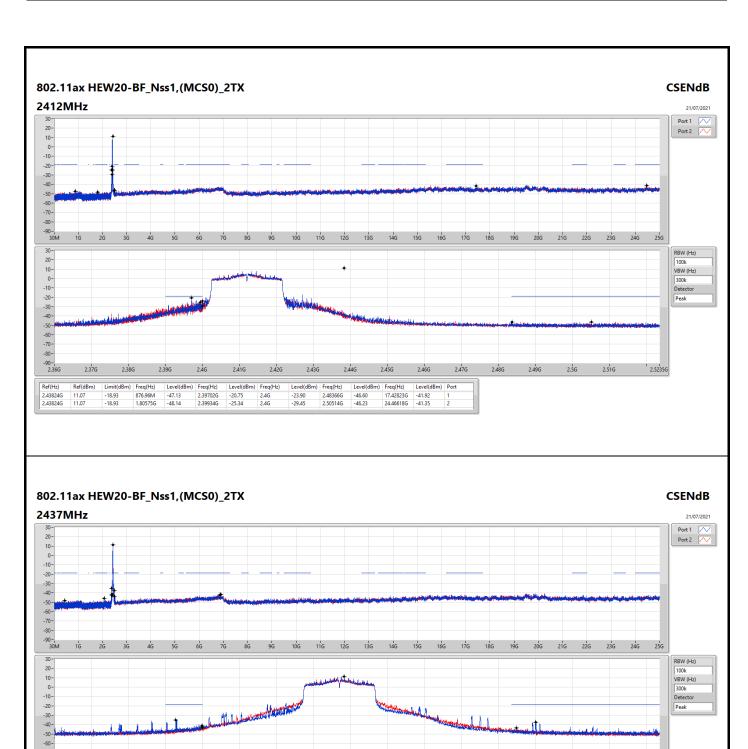
16.77641G -41.07 23.49688G -41.27 2.47G


2.48G

2.49G

2.5G

2.51G



Page No. : 5 of 8 Report No. : FR171418AA

2.45G

6.85585G

-41.92 -42.24

-18.93 -18.93 2.39G

2.4G

2.39278G 2.39978G 2.41G

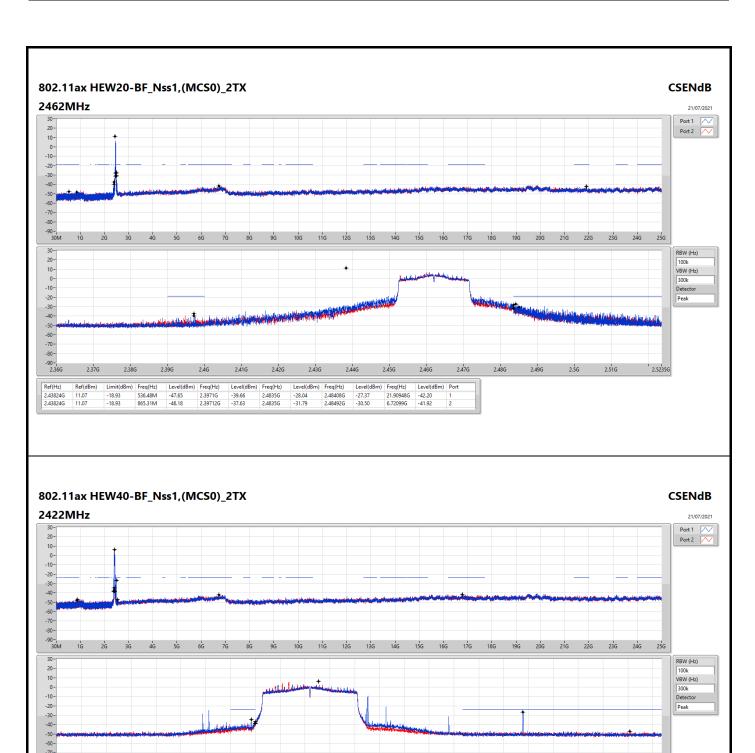
2.4G 2.4G -42.07 -42.96 2.4901G 2.48488G -37.66 -43.80

-90-2.36G

2.43824G 2.43824G

> Page No. : 6 of 8 Report No. : FR171418AA

2.51G


2.5G

2.48G

2.47G

2.49G

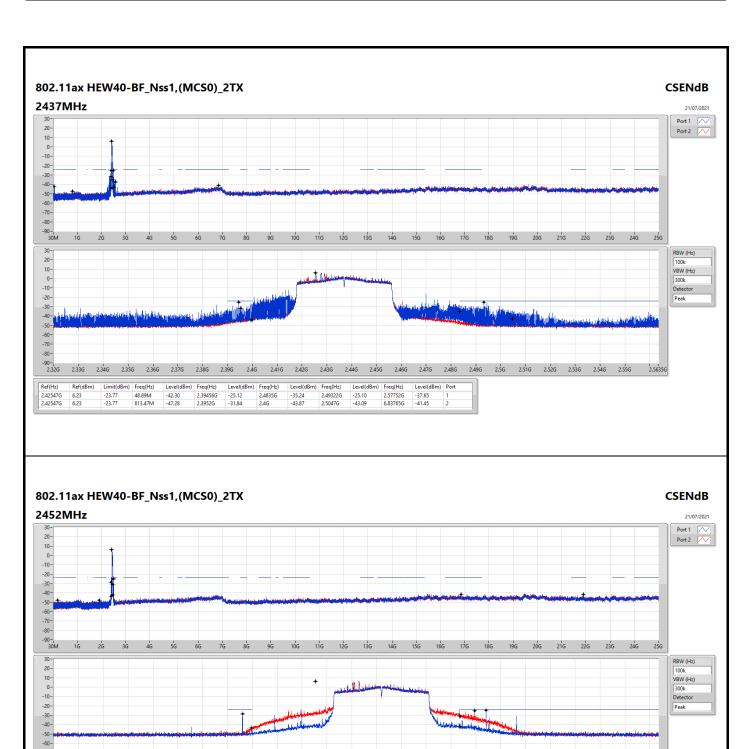
2.34G 2.35G 2.36G 2.37G 2.38G 2.39G 2.4G 2.41G 2.42G 2.43G 2.44G 2.45G 2.45G 2.45G 2.49G 2.5G 2.5G 2.51G 2.52G 2.53G 2.54G 2.55G 2.5635G

6.72267G -41.99 16.77702G -41.52

-26.89 -47.39

2.50778G 2.55086G

-38.31


2.39832G 2.39996G 2.4G 2.4G

-90 -2.32G

2.42547G 6.23 2.42547G 6.23

Page No. : 7 of 8
Report No. : FR171418AA

234G 235G 236G 237G 238G 239G 24G 241G 242G 243G 244G 245G 245G 247G 248G 249G 25G 251G 252G 253G 254G 255G 25635G

-24.96 -25.33

2.4941G 2.48954G 21.89535G -41.55 16.85555G -41.80

Level(dBm) Freq(Hz)

2.4835G 2.4835G

2.39604G 2.39972G

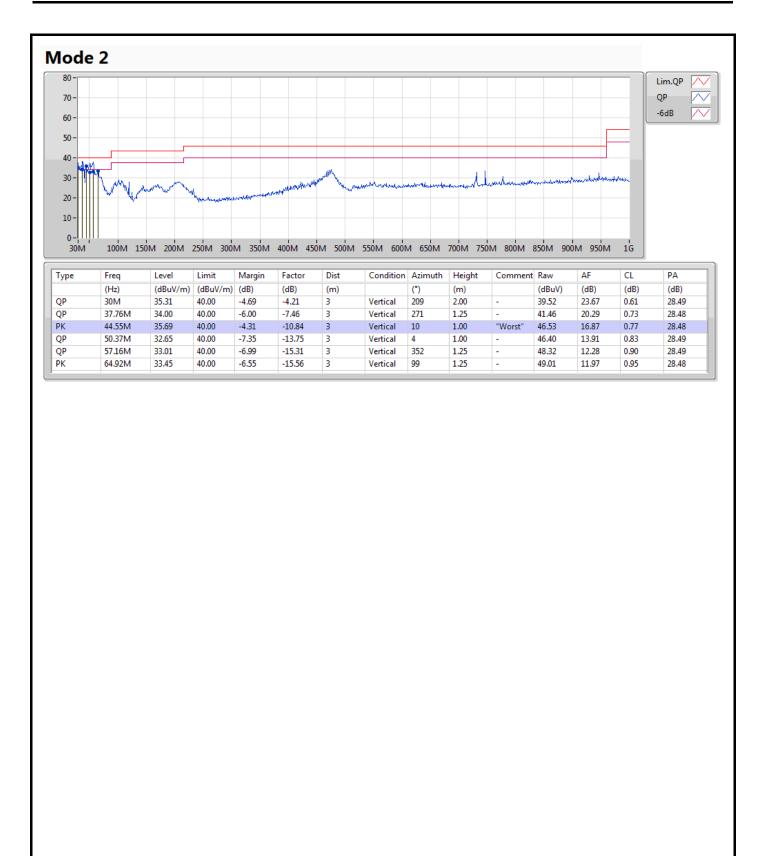
1.91038G 191.73M

-90 -2.32G

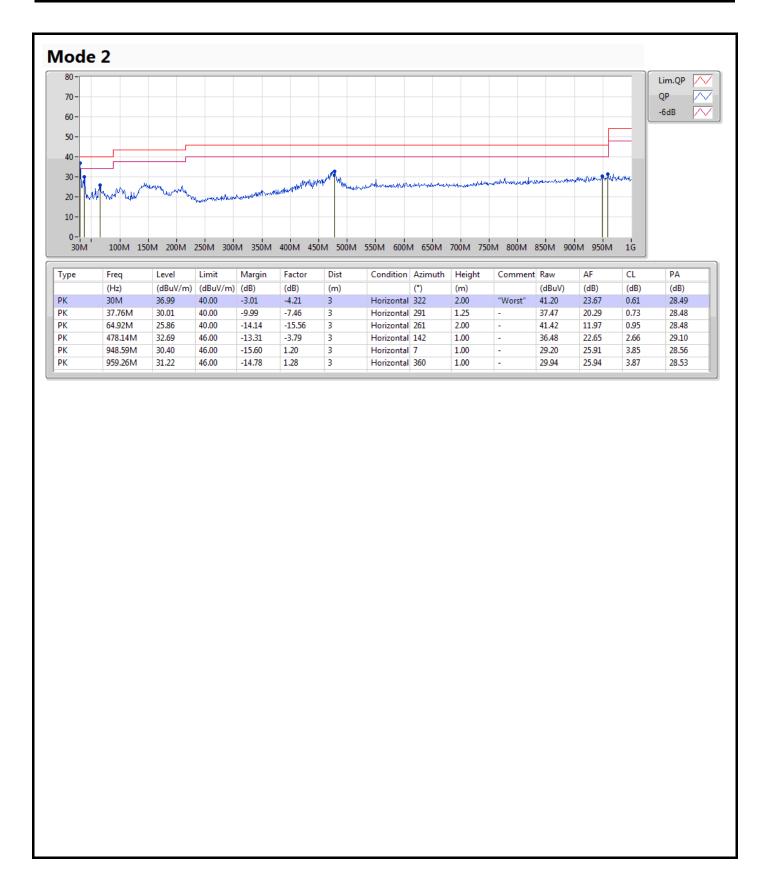
2.42547G 2.42547G

> Page No. : 8 of 8 Report No. : FR171418AA

Radiated Emissions below 1GHz


Appendix F.1

Summary


Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 2	Pass	PK	30M	36.99	40.00	-3.01	Horizontal

Sporton International Inc. Hsinchu Laboratory Page No. Report No.

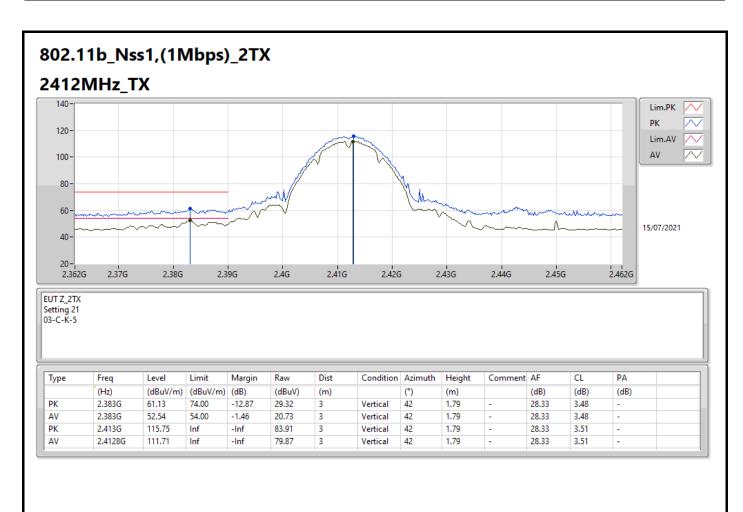
: 1 of 3 : FR171418AA

Page No. : 2 of 3 Report No. : FR171418AA

Page No. : 3 of 3 Report No. : FR171418AA

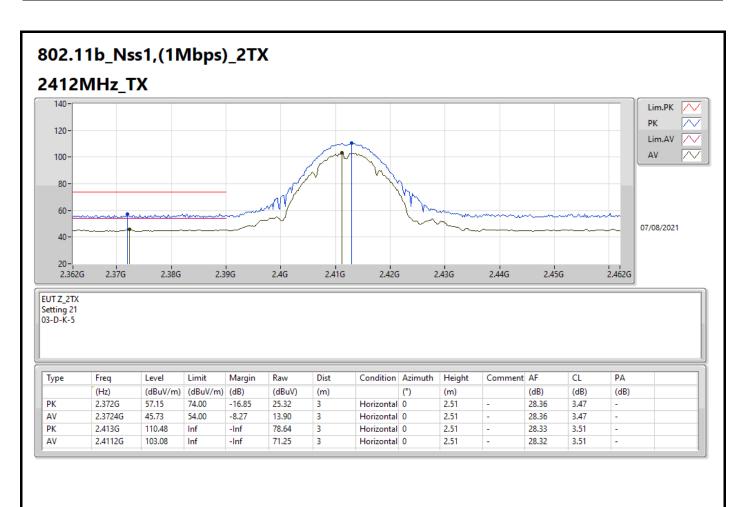
RSE TX above 1GHz

Appendix F.2

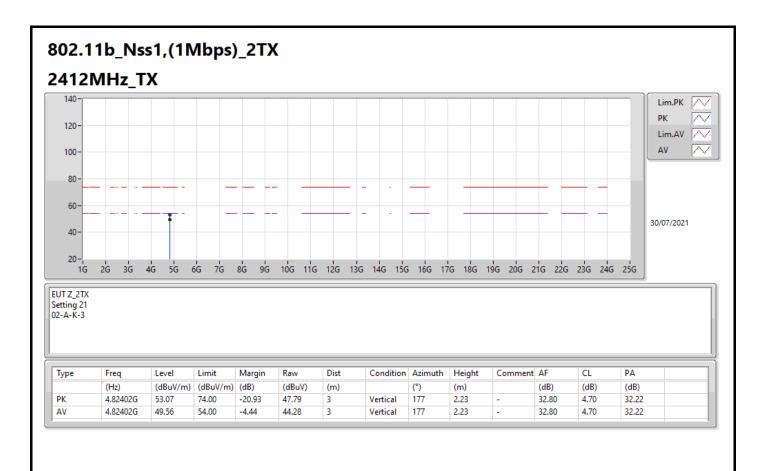

Summary

Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Dist (m)	Condition	Azimuth (°)	Height (m)	Comments
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-
802.11g_Nss1,(6Mbps)_2TX	Pass	AV	2.3894G	52.95	54.00	-1.05	3	Vertical	170	1.80	-

Sporton International Inc. Hsinchu Laboratory


Page No. : 1 of 57 Report No. : FR171418AA

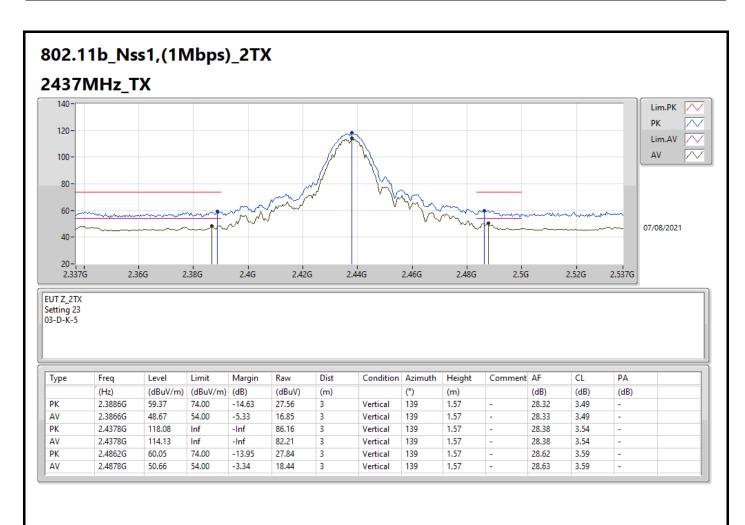
Page No. : 2 of 57 Report No. : FR171418AA

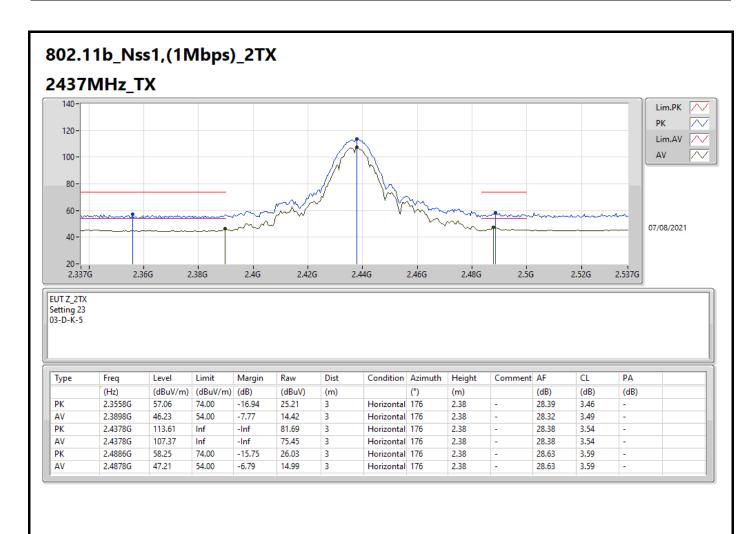


Page No. : 3 of 57 Report No. : FR171418AA

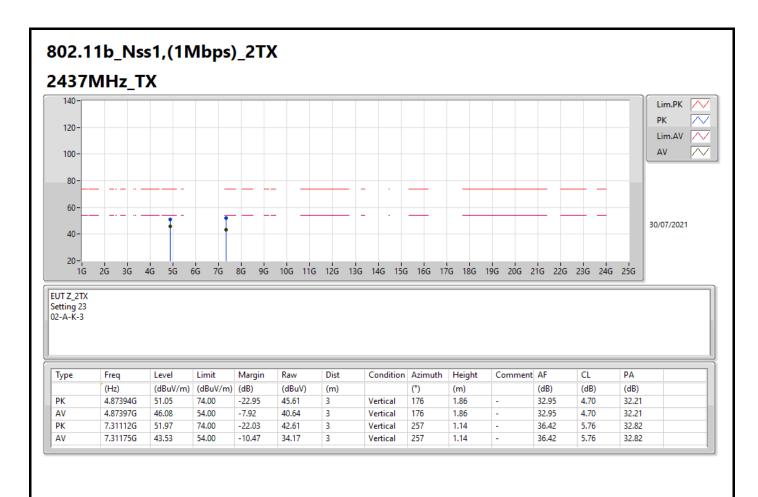
Appendix F.2

Page No. : 4 of 57 Report No. : FR171418AA

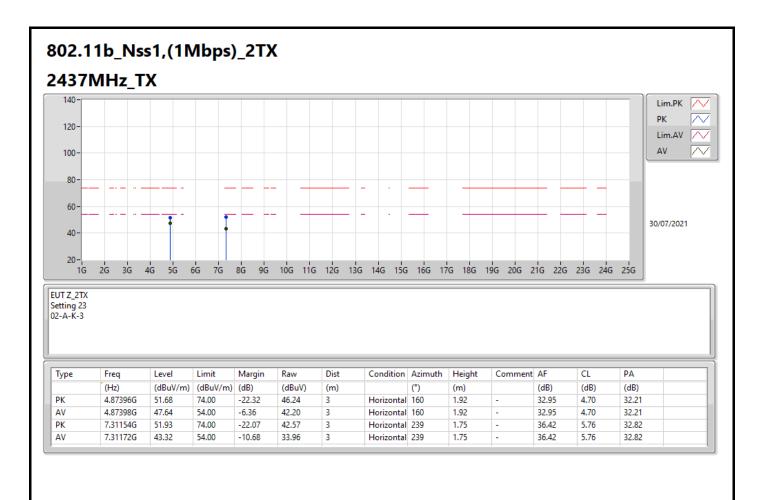

Appendix F.2


Page No. : 5 of 57 Report No. : FR171418AA

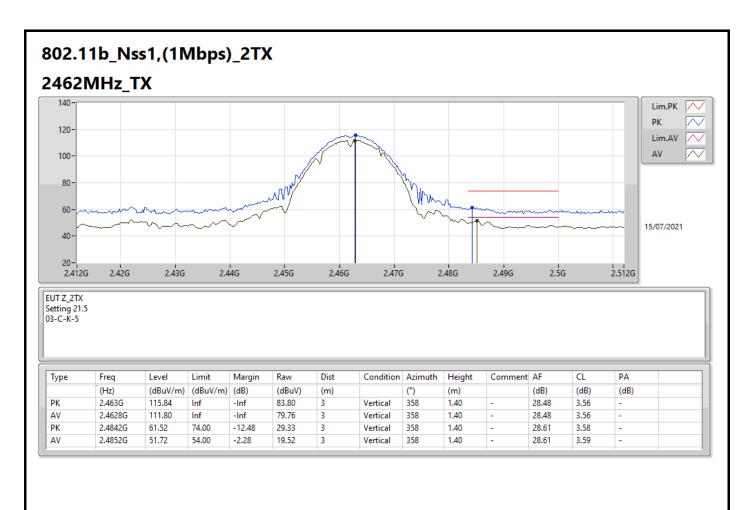
Page No. : 6 of 57 Report No. : FR171418AA

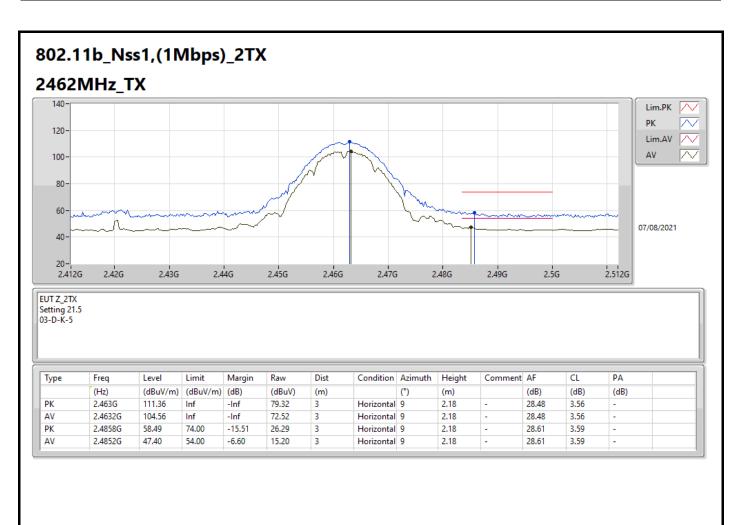


Page No. : 7 of 57 Report No. : FR171418AA

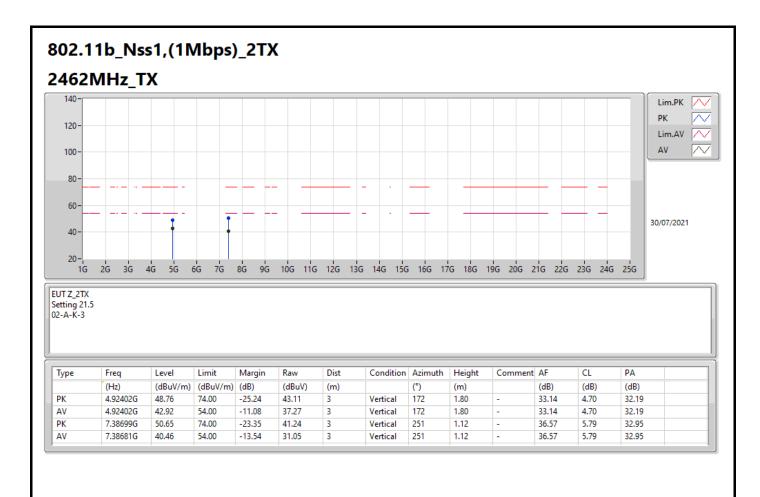


Page No. : 8 of 57 Report No. : FR171418AA

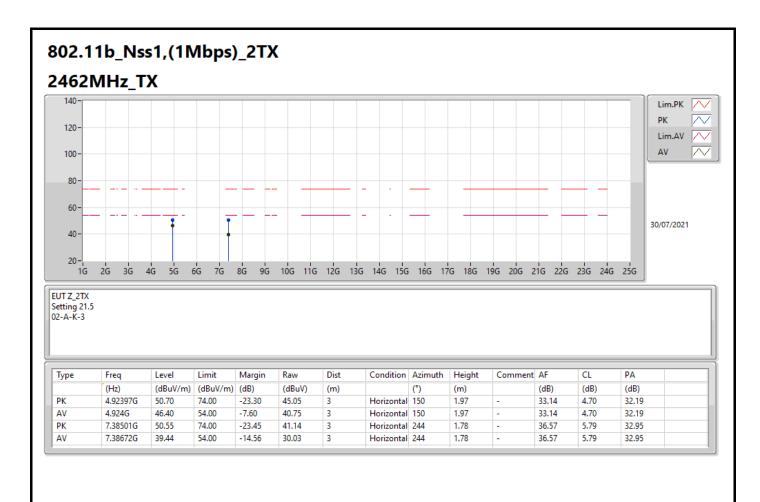



Page No. : 9 of 57 Report No. : FR171418AA

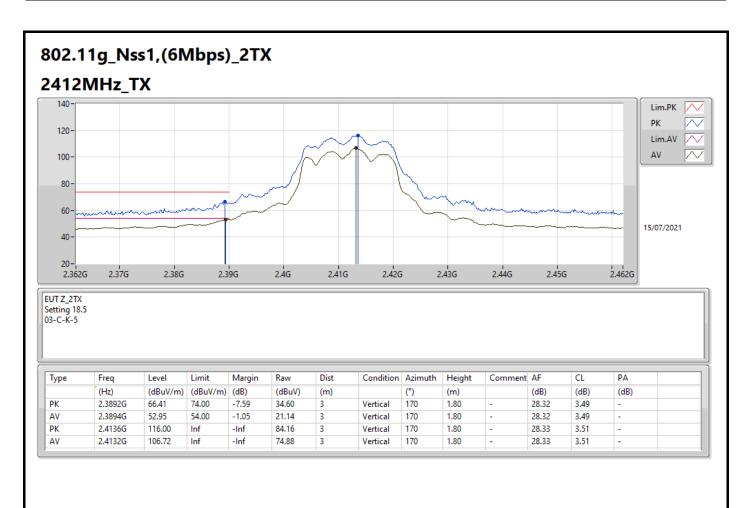
Page No. : 10 of 57 Report No. : FR171418AA

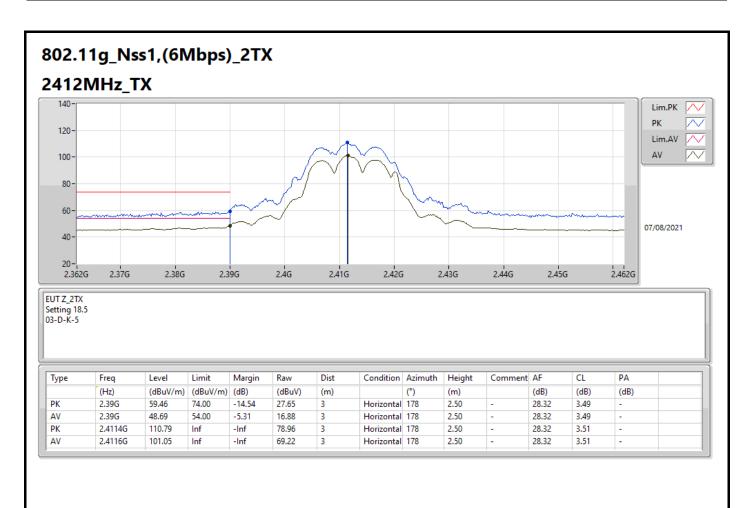


Page No. : 11 of 57 Report No. : FR171418AA

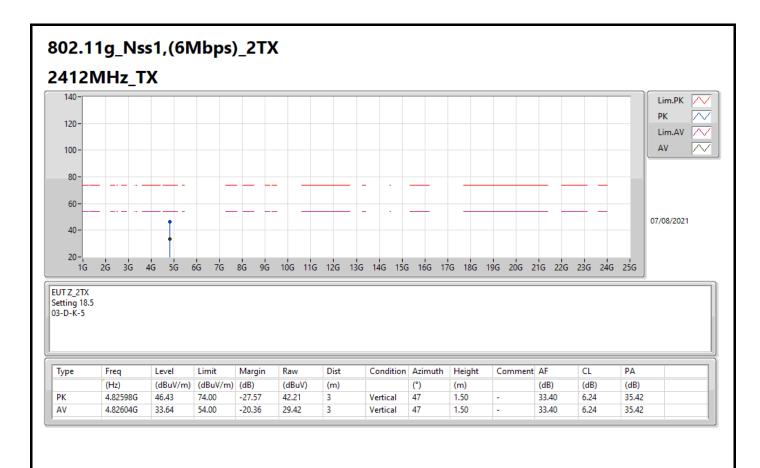


Page No. : 12 of 57 Report No. : FR171418AA

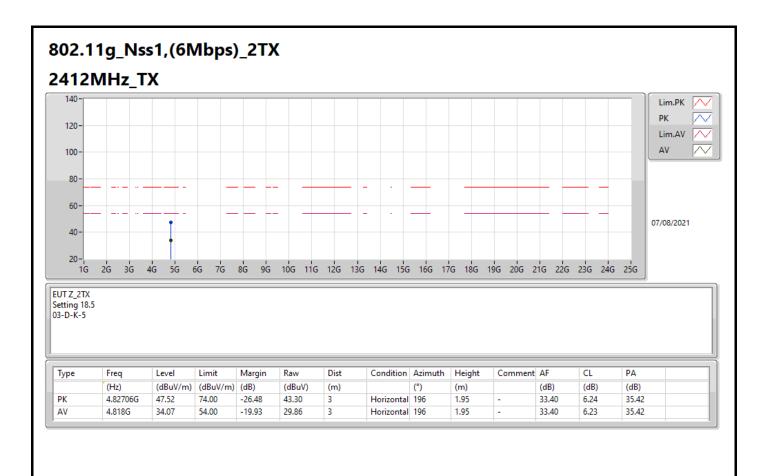



Page No. : 13 of 57 Report No. : FR171418AA

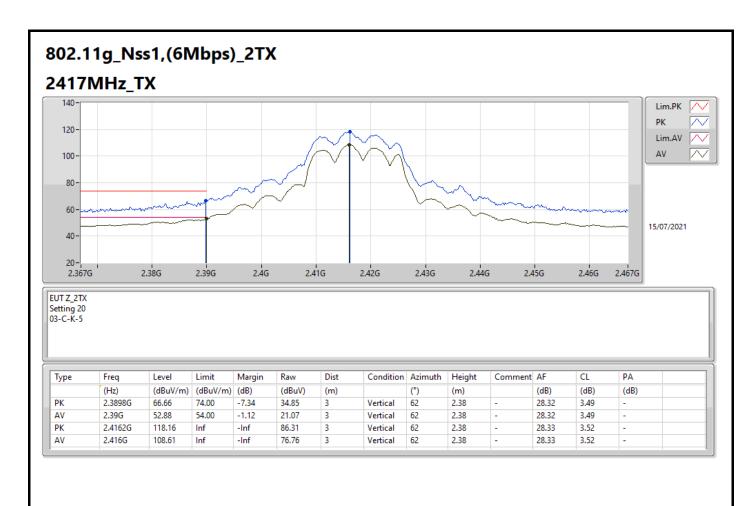
Page No. : 14 of 57 Report No. : FR171418AA

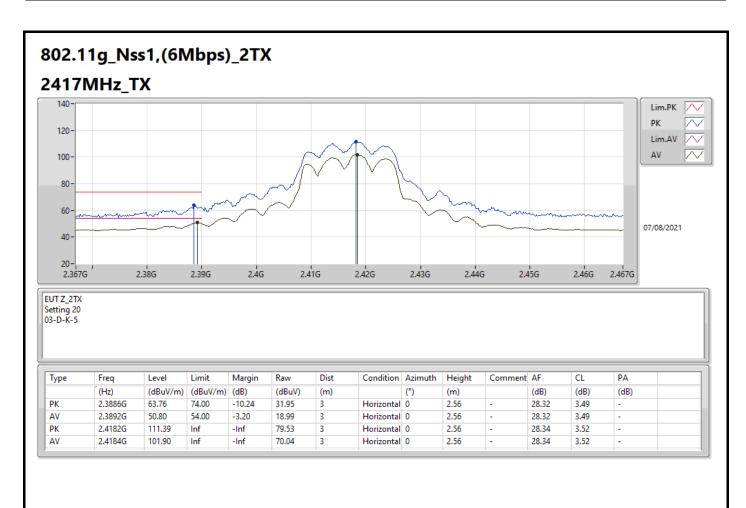


Page No. : 15 of 57 Report No. : FR171418AA

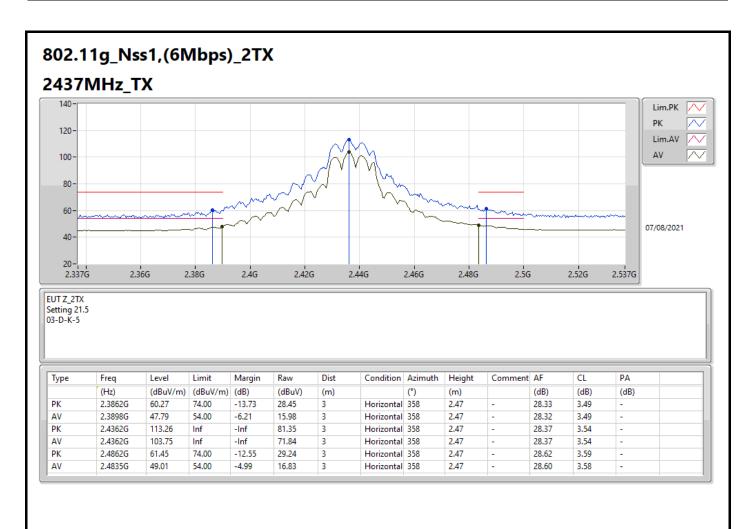


Page No. : 16 of 57 Report No. : FR171418AA

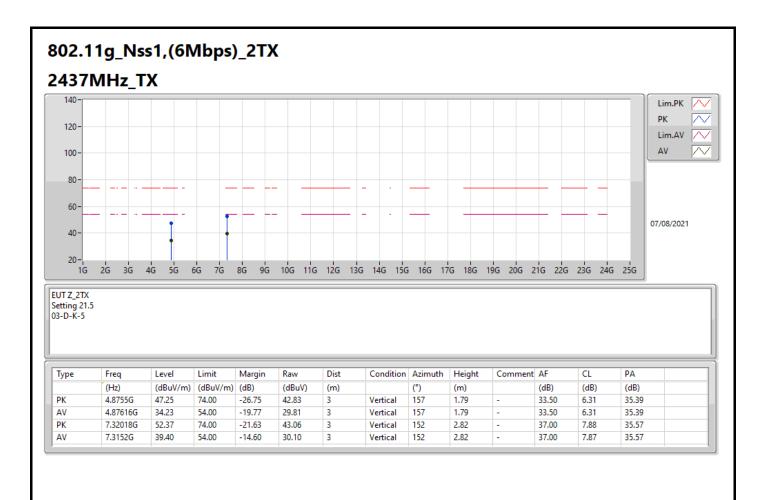



Page No. : 17 of 57 Report No. : FR171418AA

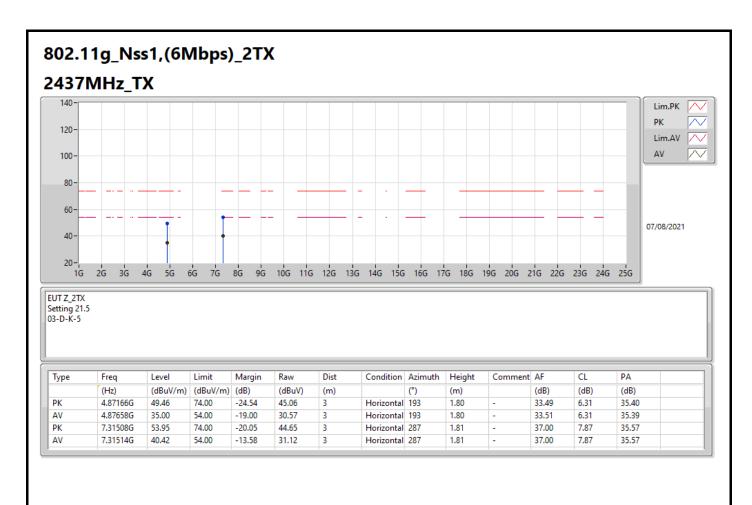
Page No. : 18 of 57 Report No. : FR171418AA


Page No. : 19 of 57 Report No. : FR171418AA

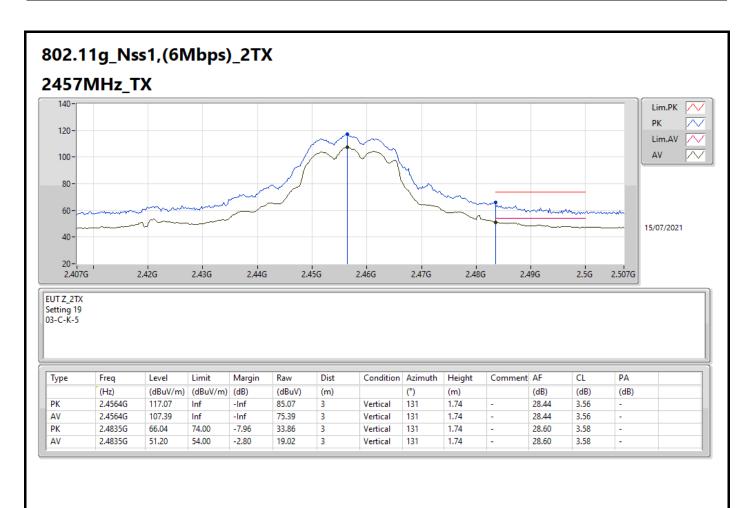
Page No. : 20 of 57 Report No. : FR171418AA

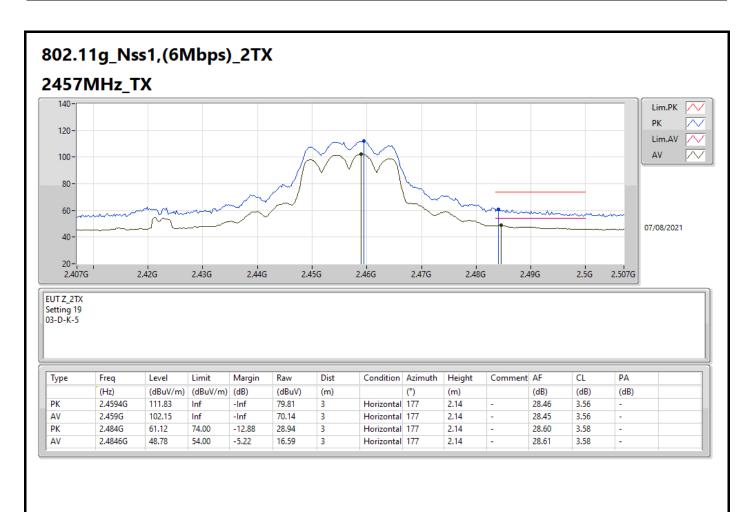


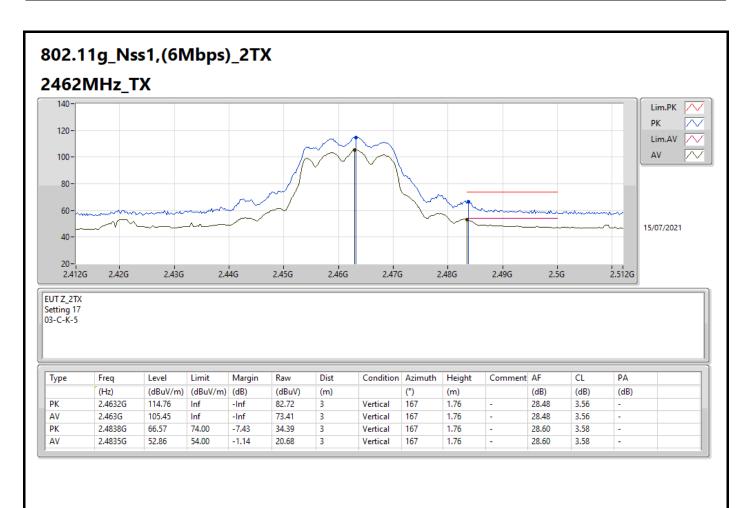
Page No. : 21 of 57 Report No. : FR171418AA

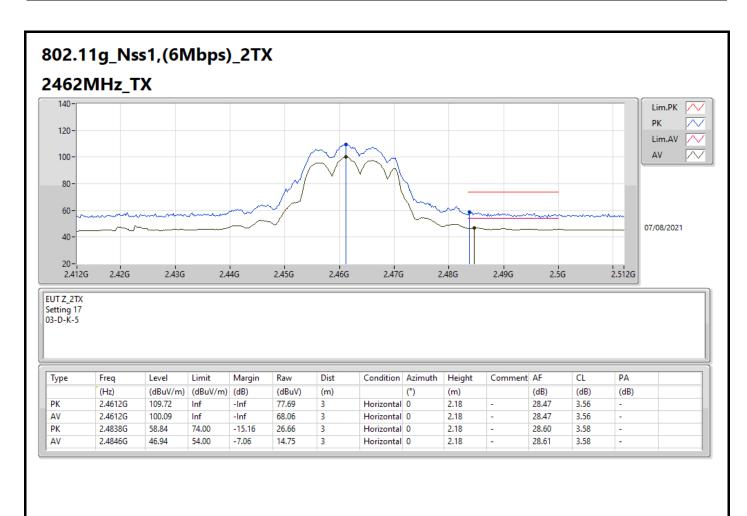


Page No. : 22 of 57 Report No. : FR171418AA

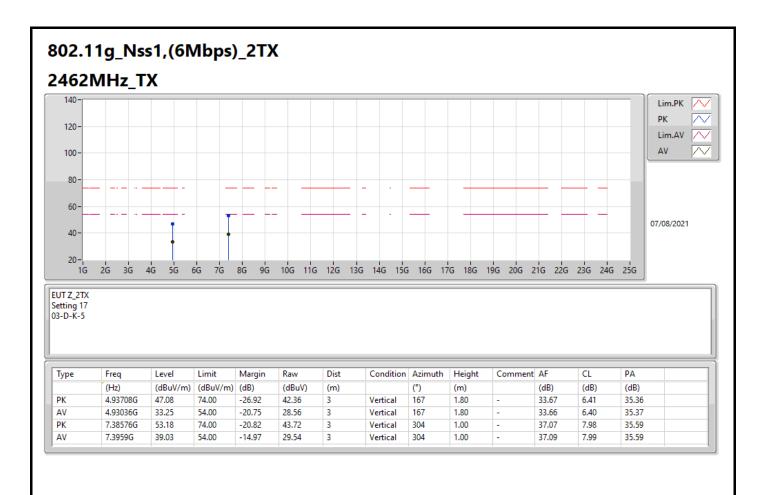



Page No. : 23 of 57 Report No. : FR171418AA

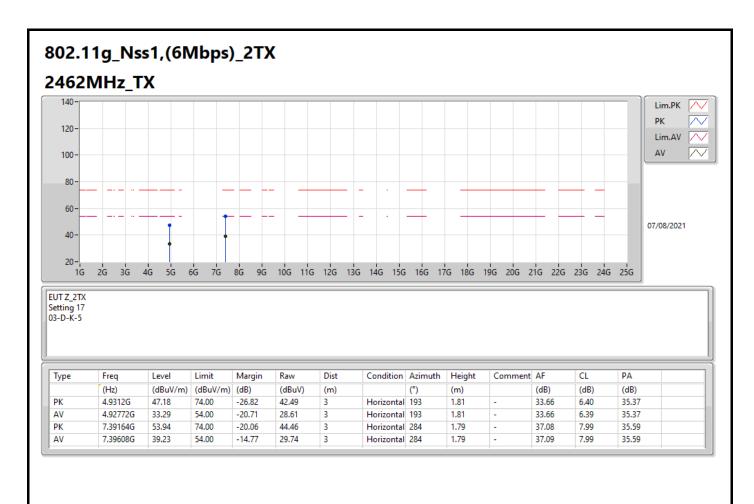

Page No. : 24 of 57 Report No. : FR171418AA


Page No. : 25 of 57 Report No. : FR171418AA

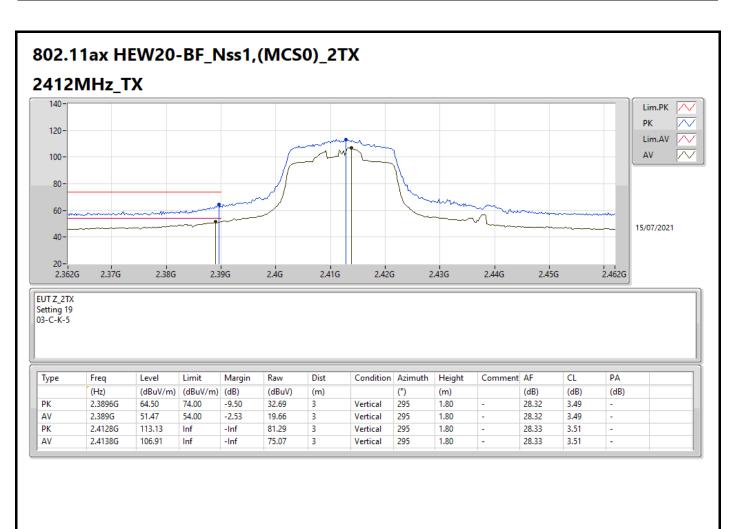
Page No. : 26 of 57 Report No. : FR171418AA

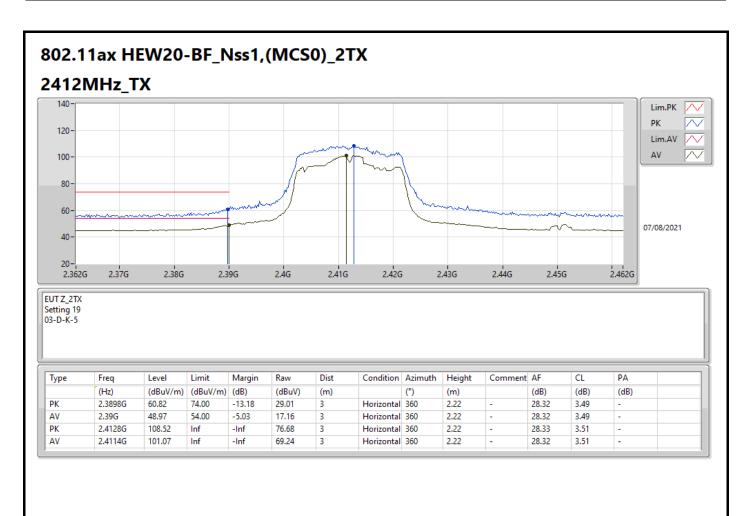


Page No. : 27 of 57 Report No. : FR171418AA

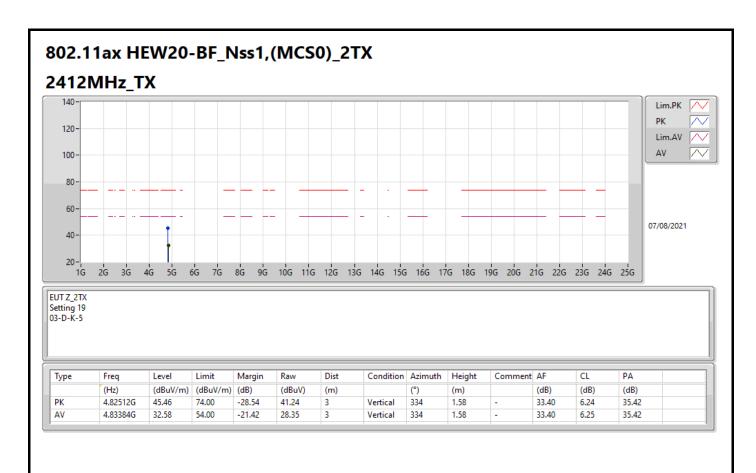


Page No. : 28 of 57 Report No. : FR171418AA

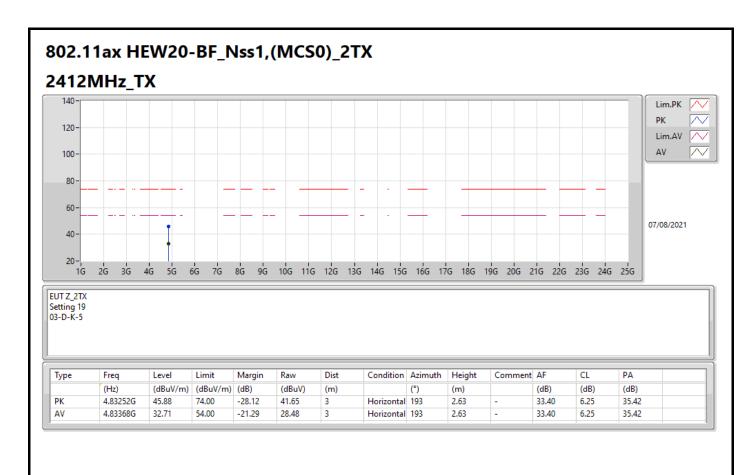



Page No. : 29 of 57 Report No. : FR171418AA

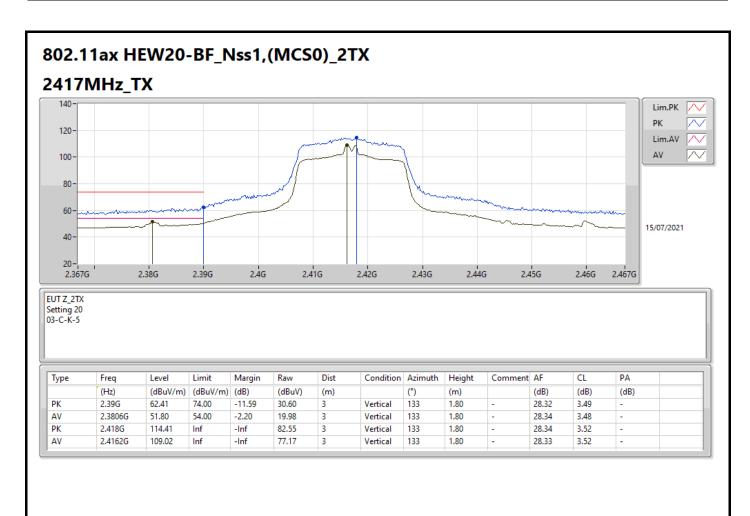
Page No. : 30 of 57 Report No. : FR171418AA

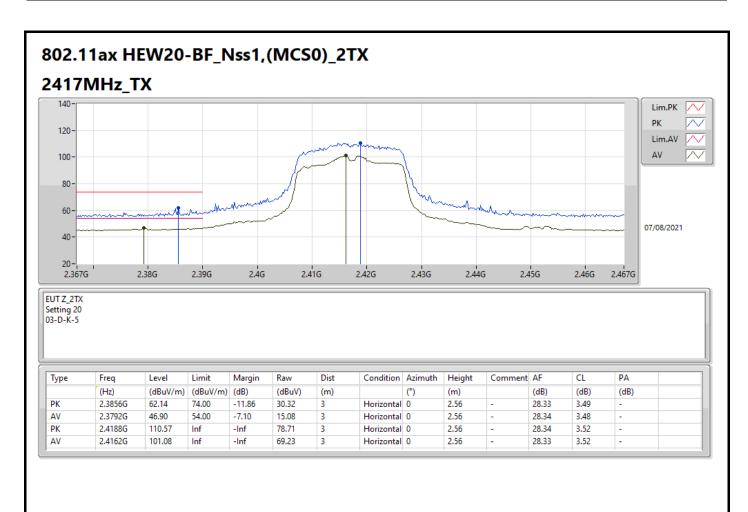


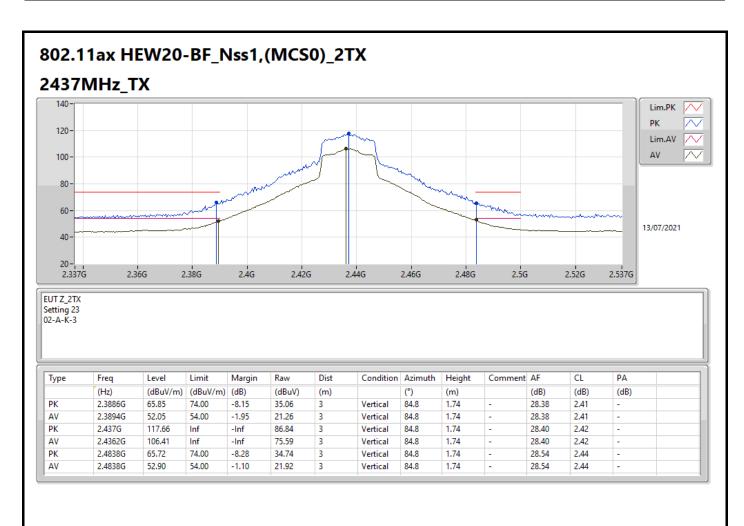
Page No. : 31 of 57 Report No. : FR171418AA



Page No. : 32 of 57 Report No. : FR171418AA

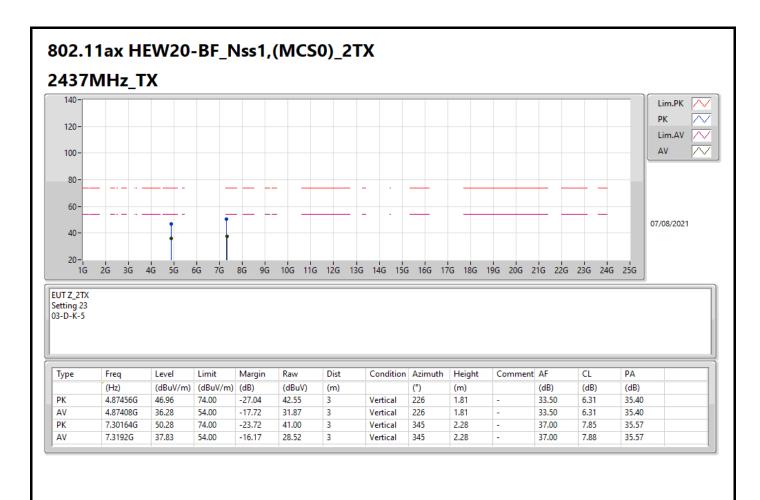



Page No. : 33 of 57 Report No. : FR171418AA

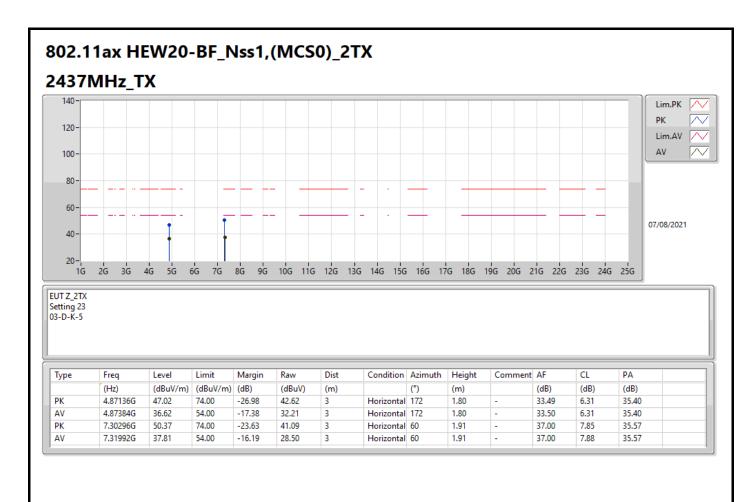

Page No. : 34 of 57 Report No. : FR171418AA

Page No. : 35 of 57 Report No. : FR171418AA

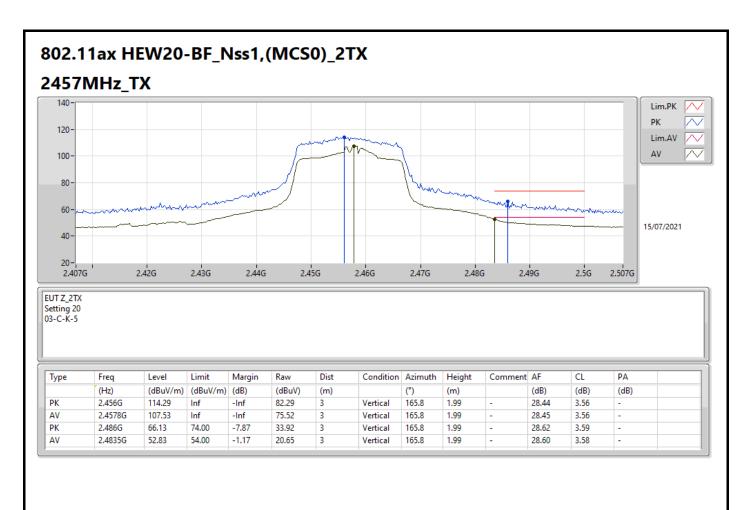
Page No. : 36 of 57 Report No. : FR171418AA

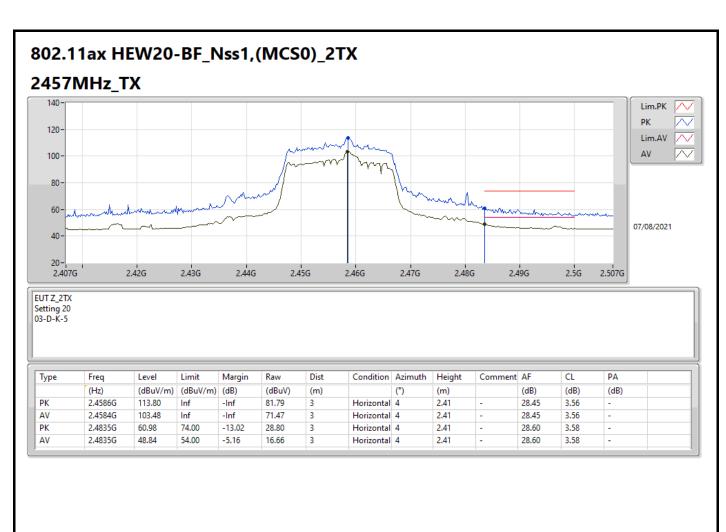


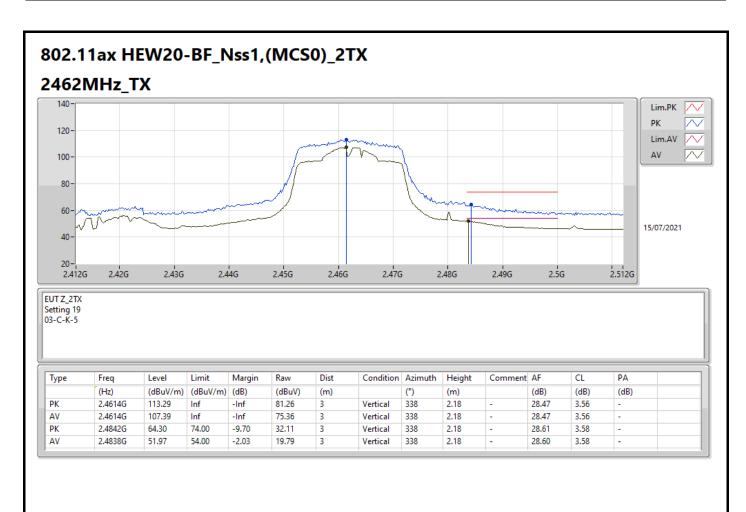
Page No. : 37 of 57 Report No. : FR171418AA

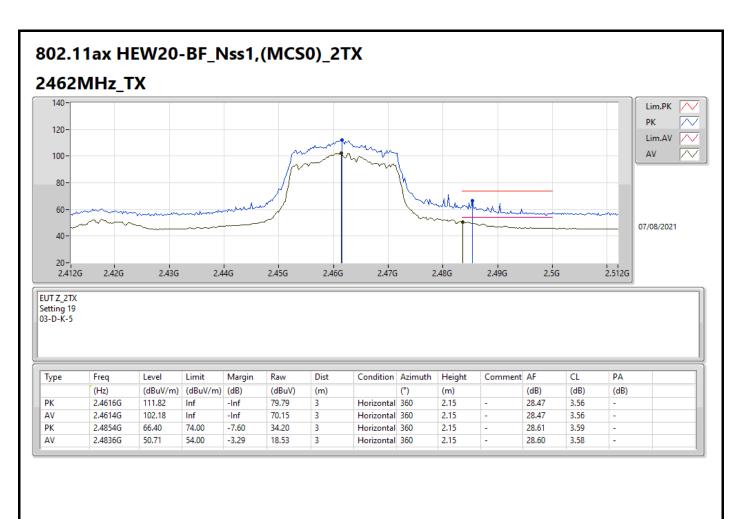


Page No. : 38 of 57 Report No. : FR171418AA

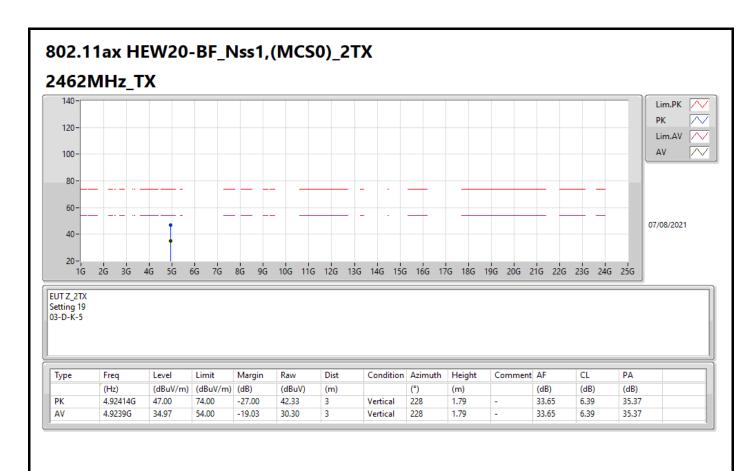



Page No. : 39 of 57 Report No. : FR171418AA


Page No. : 40 of 57 Report No. : FR171418AA

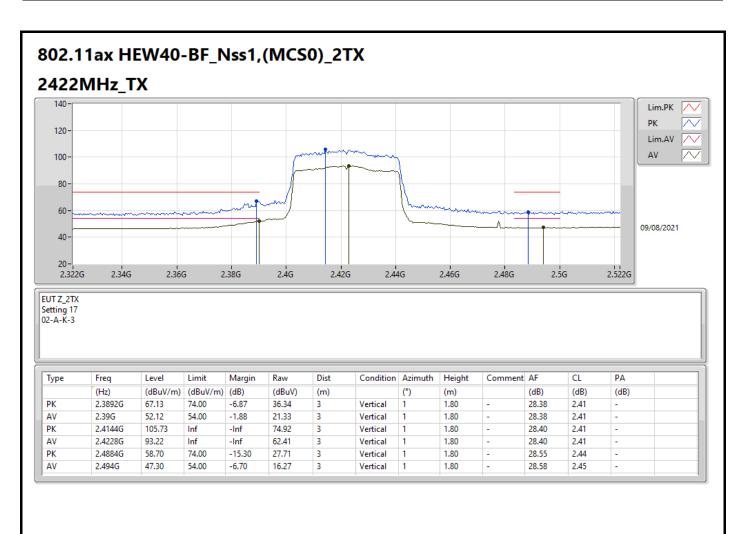

Page No. : 41 of 57 Report No. : FR171418AA

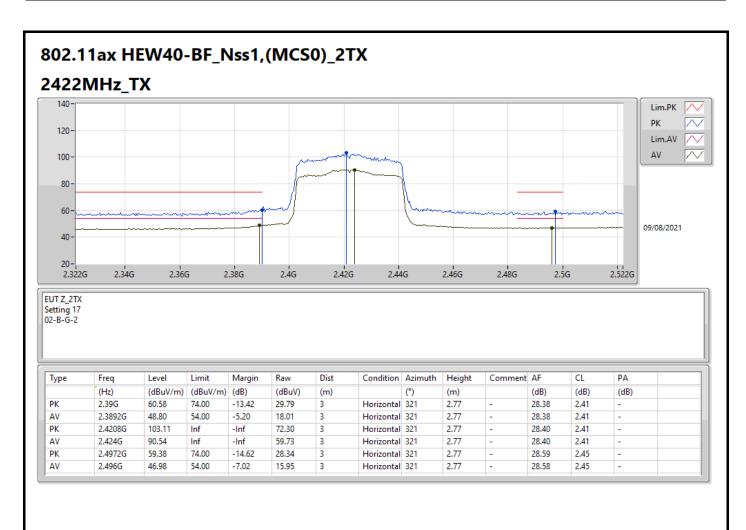
Page No. : 42 of 57 Report No. : FR171418AA



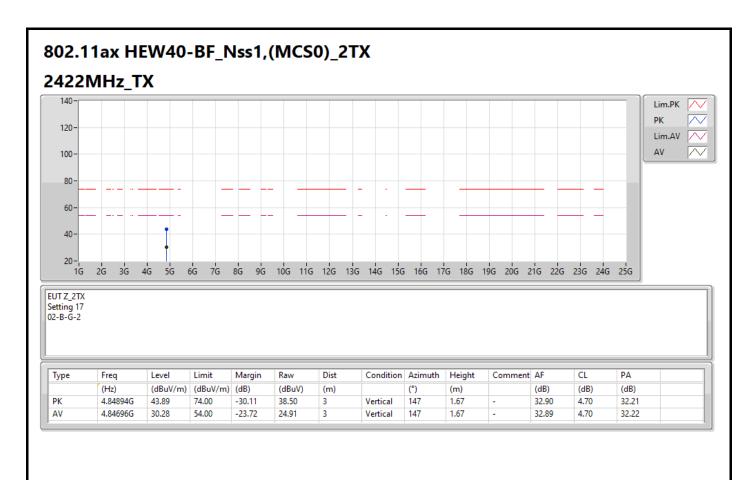
Page No. : 43 of 57 Report No. : FR171418AA

Page No. : 44 of 57 Report No. : FR171418AA



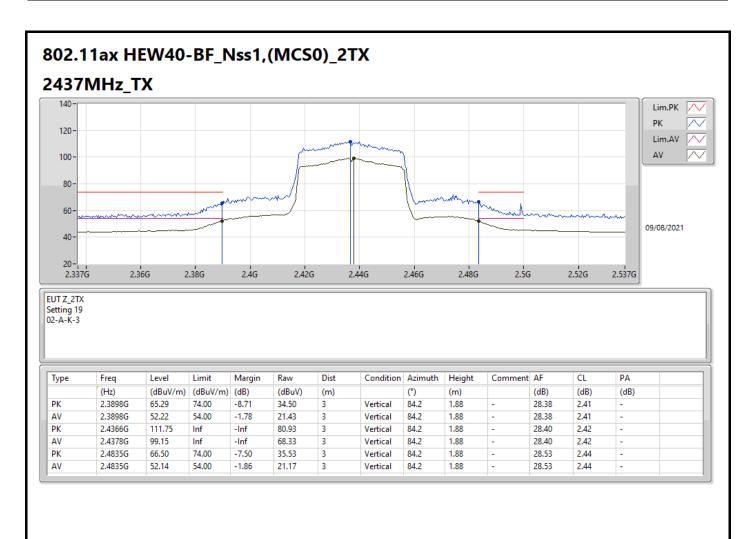

Page No. : 45 of 57 Report No. : FR171418AA

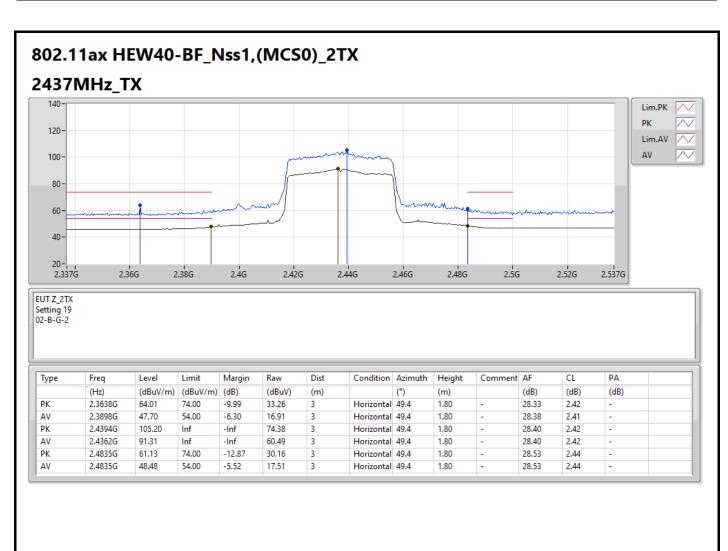
Page No. : 46 of 57 Report No. : FR171418AA



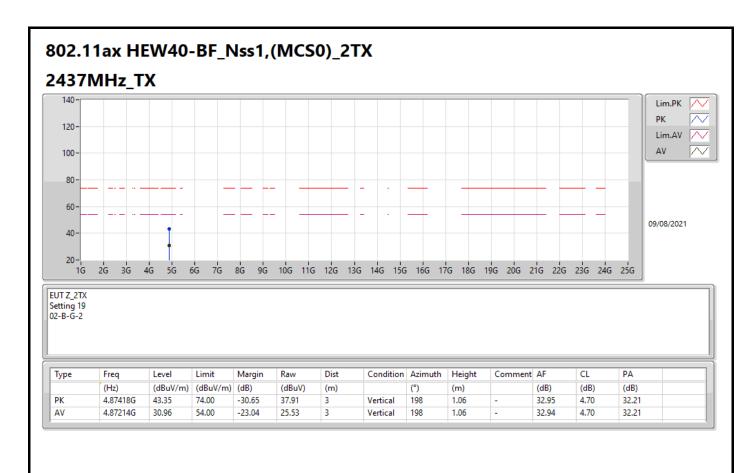
Page No. : 47 of 57 Report No. : FR171418AA

Page No. : 48 of 57 Report No. : FR171418AA

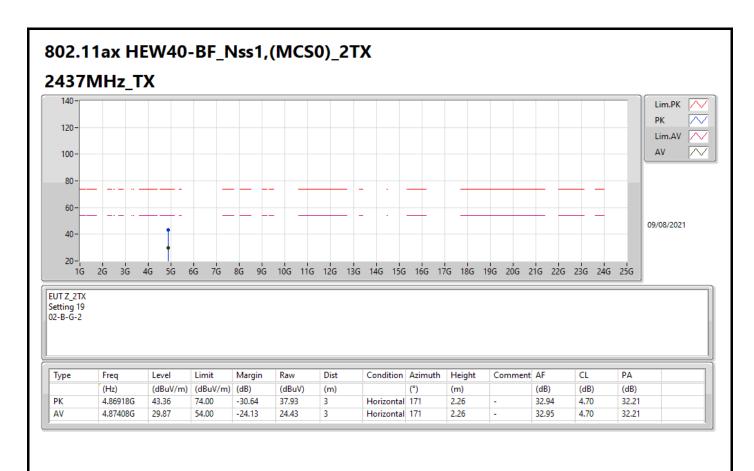



Page No. : 49 of 57 Report No. : FR171418AA

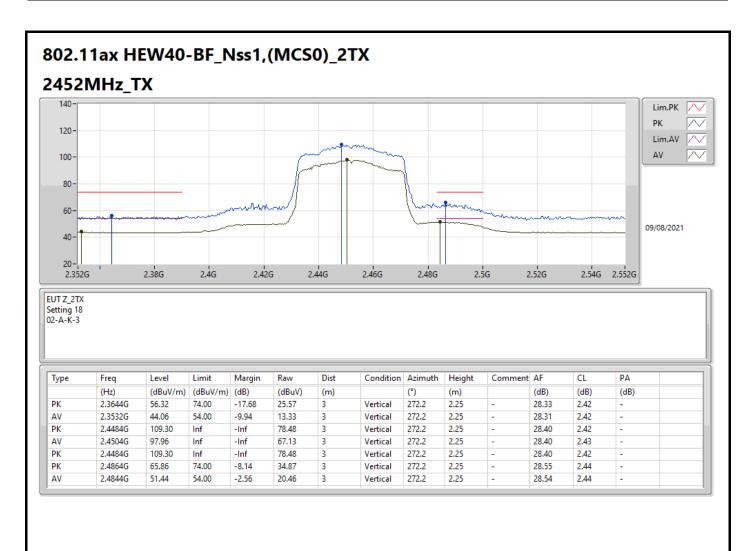
Page No. : 50 of 57 Report No. : FR171418AA

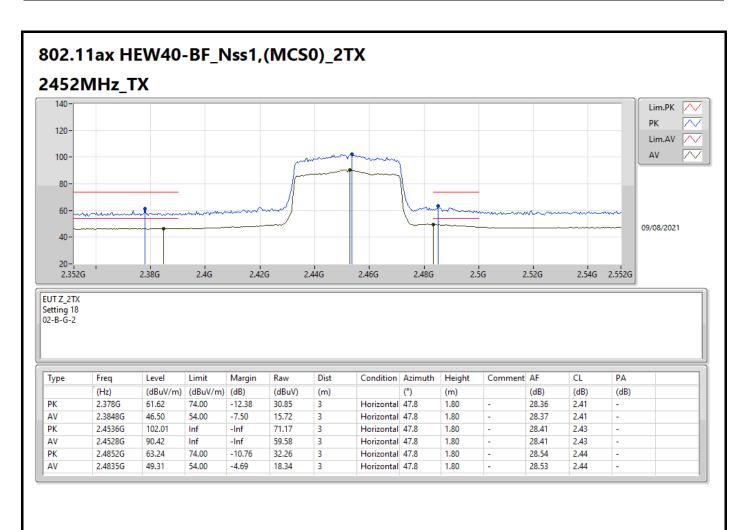


Page No. : 51 of 57 Report No. : FR171418AA

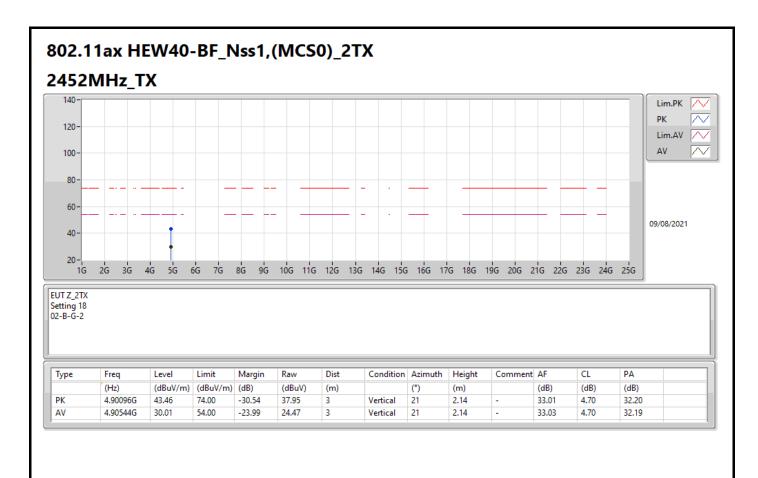


Page No. : 52 of 57 Report No. : FR171418AA

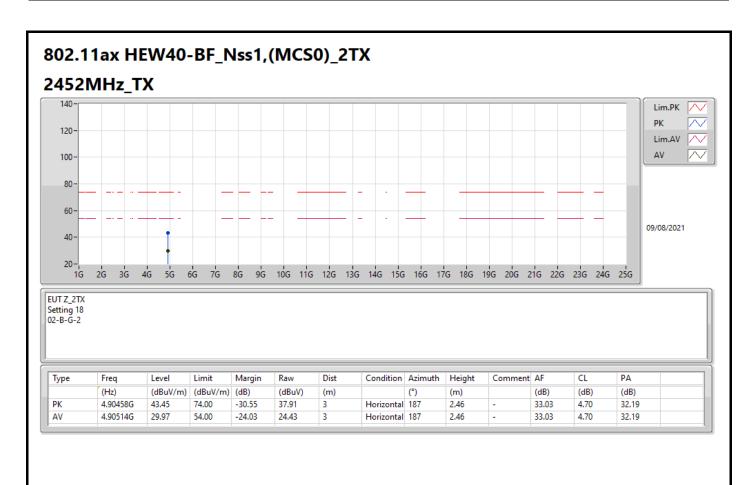



Page No. : 53 of 57 Report No. : FR171418AA

Page No. : 54 of 57 Report No. : FR171418AA



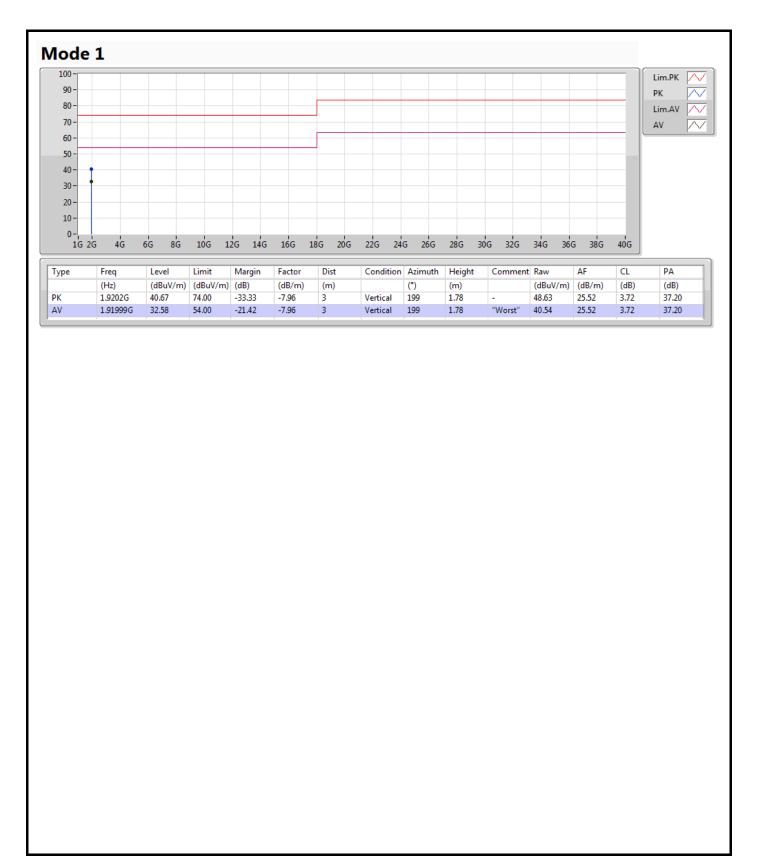
Page No. : 55 of 57 Report No. : FR171418AA



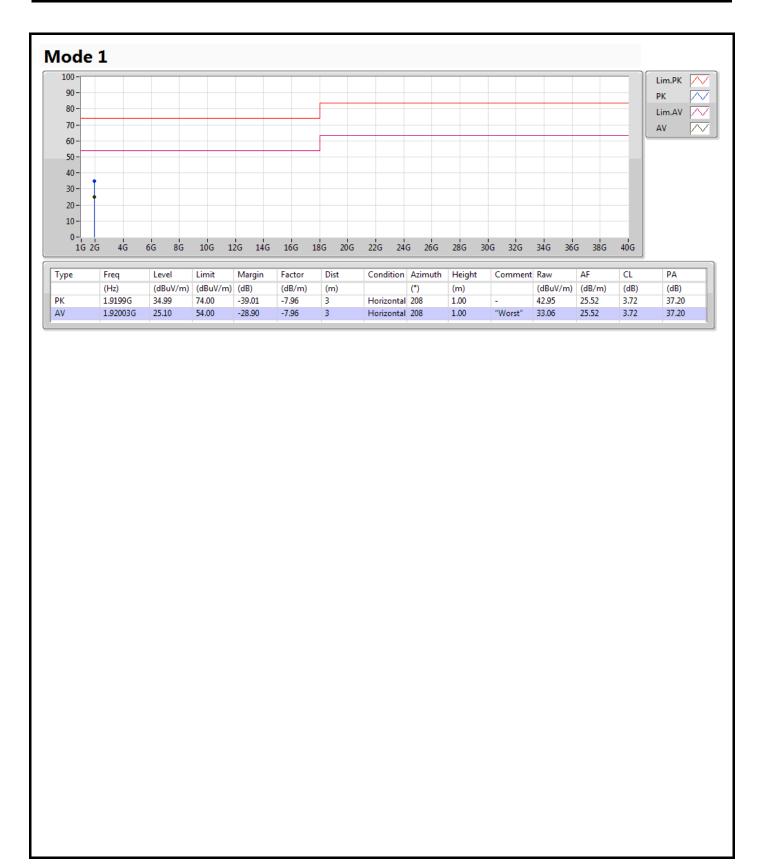
Page No. : 56 of 57 Report No. : FR171418AA

Page No. : 57 of 57 Report No. : FR171418AA

Radiated Emissions Co-location


Appendix G

Summary


Mode	Result	Туре	Freq (Hz)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Condition
Mode 1	Pass	AV	1.91999G	32.58	54.00	-21.42	Vertical

Sporton International Inc. Hsinchu Laboratory Page No. Report No. : 1 of 3 : FR171418AA

Page No. : 2 of 3 Report No. : FR171418AA

Page No. : 3 of 3 Report No. : FR171418AA