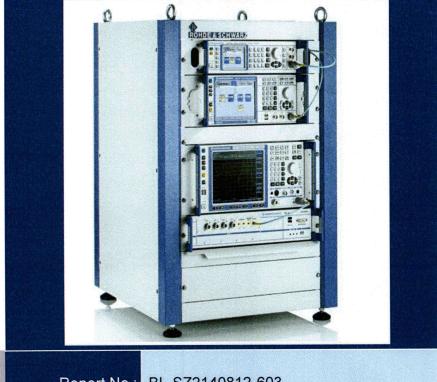
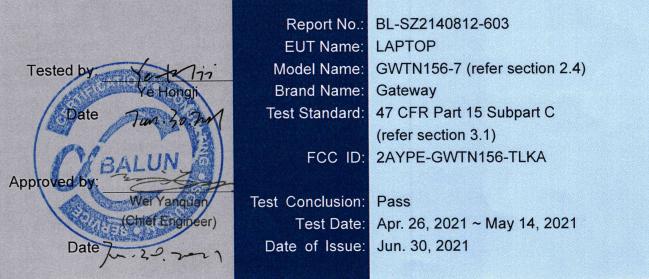
# RF

TEST REPORT

ISSUED BY Shenzhen BALUN Technology Co., Ltd.





FOR

LAPTOP

ISSUED TO E&S INTERNATIONAL ENTERPRISES, INC.

7801 HAYVENHURST AVE. VAN NUYS, CA 91406





NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong, P. R. China 518055 TEL: +86-755-66850100, FAX: +86-755-61824271 Email: qc@baluntek.com www.baluntek.com



## **Revision History**

Version <u>Rev. 01</u> Issue Date Jun. 30, 2021 Revisions Content Initial Issue

## TABLE OF CONTENTS

| 1 | ADMIN | ISTRATIVE DATA (GENERAL INFORMATION)               | . 5 |
|---|-------|----------------------------------------------------|-----|
|   | 1.1   | Identification of the Testing Laboratory           | . 5 |
|   | 1.2   | Identification of the Responsible Testing Location | . 5 |
|   | 1.3   | Laboratory Condition                               | . 5 |
|   | 1.4   | Announce                                           | . 5 |
| 2 | PRODU | JCT INFORMATION                                    | . 6 |
|   | 2.1   | Applicant Information                              | . 6 |
|   | 2.2   | Manufacturer Information                           | . 6 |
|   | 2.3   | Factory Information                                | . 6 |
|   | 2.4   | General Description for Equipment under Test (EUT) | . 6 |
|   | 2.5   | Technical Information                              | . 7 |
|   | 2.6   | Additional Instructions                            | 10  |
| 3 | SUMMA | ARY OF TEST RESULTS                                | 12  |
|   | 3.1   | Test Standards                                     | 12  |
|   | 3.2   | Verdict                                            | 12  |
| 4 | GENER | AL TEST CONFIGURATIONS                             | 13  |
|   | 4.1   | Test Environments                                  | 13  |
|   | 4.2   | Test Equipment List                                | 13  |
|   | 4.3   | Measurement Uncertainty                            | 13  |
|   | 4.4   | Description of Test Setup                          | 14  |
|   | 4.4.1 | For Antenna Port Test                              | 14  |
|   | 4.4.2 | For AC Power Supply Port Test                      | 14  |
|   | 4.4.3 | For Radiated Test (Below 30 MHz)                   | 15  |
|   | 4.4.4 | For Radiated Test (30 MHz-1 GHz)                   | 15  |
|   | 4.4.5 | For Radiated Test (Above 1 GHz)                    | 16  |
|   |       |                                                    |     |



| 4 | 1.5    | Measurement Results Explanation Example             | . 17 |
|---|--------|-----------------------------------------------------|------|
|   | 4.5.1  | For conducted test items:                           | . 17 |
|   | 4.5.2  | For radiated band edges and spurious emission test: | . 17 |
| 5 | TEST I | TEMS                                                | . 18 |
| Ę | 5.1    | Antenna Requirements                                | . 18 |
|   | 5.1.1  | Relevant Standards                                  | . 18 |
|   | 5.1.2  | Antenna Anti-Replacement Construction               | . 18 |
|   | 5.1.3  | Antenna Gain                                        | . 18 |
| Ę | 5.2    | Output Power                                        | . 19 |
|   | 5.2.1  | Test Limit                                          | . 19 |
|   | 5.2.2  | Test Setup                                          | . 19 |
|   | 5.2.3  | Test Procedure                                      | . 19 |
|   | 5.2.4  | Test Result                                         | . 20 |
| Ę | 5.3    | 6dB Bandwidth                                       | . 21 |
|   | 5.3.1  | Limit                                               | . 21 |
|   | 5.3.2  | Test Setup                                          | . 21 |
|   | 5.3.3  | Test Procedure                                      | . 21 |
|   | 5.3.4  | Test Result                                         | . 21 |
| Ę | 5.4    | Conducted Spurious Emission                         | . 22 |
|   | 5.4.1  | Limit                                               | . 22 |
|   | 5.4.2  | Test Setup                                          | . 22 |
|   | 5.4.3  | Test Procedure                                      | . 22 |
|   | 5.4.4  | Test Result                                         | . 23 |
| Ę | 5.5    | Band Edge (Authorized-band band-edge)               | . 24 |
|   | 5.5.1  | Limit                                               | . 24 |
|   | 5.5.2  | Test Setup                                          | . 24 |
|   | 5.5.3  | Test Procedure                                      | . 24 |
|   | 5.5.4  | Test Result                                         | . 25 |
| Ę | 5.6    | Conducted Emission                                  | . 26 |
|   | 5.6.1  | Limit                                               | . 26 |
|   | 5.6.2  | Test Setup                                          | . 26 |
|   | 5.6.3  | Test Procedure                                      | . 26 |
|   |        |                                                     |      |



| 5.6.4   | Test Result                           |     |
|---------|---------------------------------------|-----|
| 5.7     | Radiated Spurious Emission            | 27  |
| 5.7.1   | Limit                                 | 27  |
| 5.7.2   | Test Setup                            | 27  |
| 5.7.3   | Test Procedure                        | 27  |
| 5.7.4   | Test Result                           | 30  |
| 5.8     | Band Edge (Restricted-band band-edge) | 31  |
| 5.8.1   | Limit                                 | 31  |
| 5.8.2   | Test Setup                            | 31  |
| 5.8.3   | Test Procedure                        | 31  |
| 5.8.4   | Test Result                           | 31  |
| 5.9     | Power Spectral density (PSD)          | 32  |
| 5.9.1   | Limit                                 | 32  |
| 5.9.2   | Test Setup                            | 32  |
| 5.9.3   | Test Procedure                        | 32  |
| 5.9.4   | Test Result                           | 32  |
| ANNEX A | TEST RESULT                           | 33  |
| A.1     | Output Power                          | 33  |
| A.2     | Bandwidth                             | 44  |
| A.3     | Conducted Spurious Emissions          | 59  |
| A.4     | Band Edge (Authorized-band band-edge) | 130 |
| A.5     | Conducted Emissions                   | 153 |
| A.6     | Radiated Emission                     | 155 |
| A.7     | Band Edge (Restricted-band band-edge) |     |
| A.8     | Power Spectral Density (PSD)          | 228 |
| ANNEX B | TEST SETUP PHOTOS                     | 245 |
| ANNEX C | EUT EXTERNAL PHOTOS                   | 245 |
| ANNEX D | EUT INTERNAL PHOTOS                   | 245 |



# **1 ADMINISTRATIVE DATA (GENERAL INFORMATION)**

## **1.1 Identification of the Testing Laboratory**

| Company Name | Shenzhen BALUN Technology Co., Ltd.                                 |
|--------------|---------------------------------------------------------------------|
| Address      | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, |
| Address      | Nanshan District, Shenzhen, Guangdong Province, P. R. China         |
| Phone Number | +86 755 6685 0100                                                   |

## **1.2 Identification of the Responsible Testing Location**

| Test Location | Shenzhen BALUN Technology Co., Ltd.                                 |  |  |
|---------------|---------------------------------------------------------------------|--|--|
| Address       | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, |  |  |
| Address       | Nanshan District, Shenzhen, Guangdong Province, P. R. China         |  |  |
| Accreditation | The laboratory is a testing organization accredited by FCC as a     |  |  |
| Certificate   | accredited testing laboratory. The designation number is CN1196.    |  |  |
|               | All measurement facilities used to collect the measurement data are |  |  |
| Description   | located at Block B, FL 1, Baisha Science and Technology Park, Shahe |  |  |
| Description   | Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.      |  |  |
|               | China 518055                                                        |  |  |

## 1.3 Laboratory Condition

| Ambient Temperature          | 20°C to 25°C       |
|------------------------------|--------------------|
| Ambient Relative<br>Humidity | 45% to 55%         |
| Ambient Pressure             | 100 kPa to 102 kPa |

## 1.4Announce

- (1) The test report reference to the report template version v6.4.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.



# **2 PRODUCT INFORMATION**

## **2.1 Applicant Information**

| Applicant | E&S INTERNATIONAL ENTERPRISES, INC.      |  |  |
|-----------|------------------------------------------|--|--|
| Address   | 7801 HAYVENHURST AVE. VAN NUYS, CA 91406 |  |  |

## 2.2 Manufacturer Information

| Mar | nufacturer | E&S INTERNATIONAL ENTERPRISES, INC.      |  |  |
|-----|------------|------------------------------------------|--|--|
| Add | dress      | 7801 HAYVENHURST AVE. VAN NUYS, CA 91406 |  |  |

## 2.3 Factory Information

| Factory | HUNAN GREATWALL COMPUTER SYSTEM CO., LTD                    |
|---------|-------------------------------------------------------------|
| Address | Tianyi Science and Technology Town, Xiangyun Road, Tianyuan |
| Audress | District, Zhuzhou, Hunan, P.R. China                        |

## 2.4 General Description for Equipment under Test (EUT)

| EUT Type              | LAPTOP                                              |  |  |
|-----------------------|-----------------------------------------------------|--|--|
| Model Name Under Test | GWTN156-7                                           |  |  |
|                       | GWTN156-7BK, GWTN156-7BL, GWTN156-7PR, GWTN156-7GR, |  |  |
| Series Model Name     | GWTN156-7**                                         |  |  |
|                       | (* can be 0-9, a-z, A-Z)                            |  |  |
| Description of Model  | Only with different shell colors.                   |  |  |
| name differentiation  |                                                     |  |  |
| Hardware Version      | N14TRB110                                           |  |  |
| Software Version      | 20H1                                                |  |  |
| Dimensions (Approx.)  | N/A                                                 |  |  |
| Weight (Approx.)      | N/A                                                 |  |  |



# 2.5 Technical Information

|         | Network and Wireless WIFI 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax |                                                                     |                                                                                                                                                                                                                                                                                       |  |  |  |
|---------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | connectivity                                                                        | /                                                                   | Bluetooth (BR+EDR+BLE)                                                                                                                                                                                                                                                                |  |  |  |
| The req | uirement for                                                                        | the following tec                                                   | hnical information of the EUT was tested in this report:                                                                                                                                                                                                                              |  |  |  |
| ·       | Frequency Range                                                                     |                                                                     | 802.11b/g/n/ax(20 MHz): 2.412 GHz - 2.462 GHz<br>f <sub>c</sub> = 2412 MHz + (N-1)*5 MHz, where                                                                                                                                                                                       |  |  |  |
|         |                                                                                     |                                                                     | - $f_c$ = "Operating Frequency" in MHz,<br>- N = "Channel Number" with the range from 1 to 11.<br>802.11n/ax(40 MHz): 2.422 GHz - 2.452 GHz<br>$f_c$ = 2412 MHz + (N-1)*5 MHz, where<br>- $f_c$ = "Operating Frequency" in MHz,<br>- N = "Channel Number" with the range from 3 to 9. |  |  |  |
|         | Modulation                                                                          | Type                                                                | DSSS, OFDM                                                                                                                                                                                                                                                                            |  |  |  |
|         | Product Ty                                                                          |                                                                     | <ul> <li>☐ Mobile</li> <li>➢ Portable</li> <li>☐ Fix Location</li> </ul>                                                                                                                                                                                                              |  |  |  |
|         | Antenna System (eg.,<br>MIMO, Smart Antenna)                                        |                                                                     | Cyclic Delay Diversity (CDD) for 802.11n<br>Basic methodology with <i>NANT</i> transmit antennas, each with the<br>same directional gain <i>GANT</i> dBi for 802.11b/g                                                                                                                |  |  |  |
|         | Categorization as<br>Correlated or Completely<br>Uncorrelated                       |                                                                     | Categorization as Correlated                                                                                                                                                                                                                                                          |  |  |  |
|         | Antenna Main Antenna<br>Type Aux. Antenna                                           |                                                                     | PIFA Antenna                                                                                                                                                                                                                                                                          |  |  |  |
|         | Antenna Main Antenna<br>Gain Aux. Antenna                                           |                                                                     | 2.5 dBi (In test items related to antenna gain, the final results reflect this figure. This value is provided by the applicant.)                                                                                                                                                      |  |  |  |
|         | For power<br>spectral<br>density(PSD)<br>measurement<br>s                           |                                                                     | 2.5 dBi<br>Formulas: Directional gain = GANT + Array Gain, <i>Array Gain</i> = 10<br><i>log(NANT/NSS) dB. NSS</i> =2, GANT set equal to the gain of the<br>antenna having the highest gain.                                                                                           |  |  |  |
|         | Total<br>directiona<br>I gain                                                       | For power<br>measurement<br>s                                       | 2.5 dBi<br>Formulas: Directional gain = GANT + Array Gain, <i>Array Gain</i> = 0,<br>GANT set equal to the gain of the antenna having the highest<br>gain.                                                                                                                            |  |  |  |
|         |                                                                                     | For<br>Conducted<br>Out-of-Band<br>and Spurious<br>Measurement<br>s | 2.5 dBi<br>Formulas: Directional gain = GANT + Array Gain, <i>Array Gain</i> = 10<br><i>log(NANT/NSS) dB. NSS</i> =2, GANT set equal to the gain of the<br>antenna having the highest gain.                                                                                           |  |  |  |
|         | About the Product                                                                   |                                                                     | Only the WIFI 802.11b, 802.11g, 802.11n (HT20/40) and 802.11ax (HE20/40) was tested in this report.                                                                                                                                                                                   |  |  |  |



| Antenna      |                                               |                                                                                      |                                    |                                              |
|--------------|-----------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------|
| Main Antenna | Aux. Antenna                                  | MIMO-Main<br>Antenna                                                                 | MIMO-Aux.<br>Antenna               | MIMO                                         |
| $\checkmark$ | $\checkmark$                                  |                                                                                      |                                    |                                              |
| $\checkmark$ |                                               |                                                                                      |                                    |                                              |
| $\checkmark$ | $\checkmark$                                  | $\checkmark$                                                                         | $\checkmark$                       | $\checkmark$                                 |
| $\checkmark$ | $\checkmark$                                  |                                                                                      |                                    | $\checkmark$                                 |
| $\checkmark$ | $\checkmark$                                  |                                                                                      |                                    | $\checkmark$                                 |
| $\checkmark$ |                                               |                                                                                      |                                    | $\checkmark$                                 |
|              | Main Antenna $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ | Main AntennaAux. Antenna $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ | Main Antenna Aux Antenna MIMO-Main | Main Antenna Aux Antenna MIMO-Main MIMO-Aux. |

Note: All the configurations were tested, but only the worst data was shown in this report.

| Modulation technology | Modulation Type | Transfer Rate (Mbps)    |
|-----------------------|-----------------|-------------------------|
|                       | DBPSK           | 1                       |
| DSSS (802.11b)        | DQPSK           | 2                       |
|                       | CCK             | 5.5/11                  |
|                       | BPSK            | 6/9                     |
|                       | QPSK            | 12/18                   |
| OFDM (802.11g)        | 16QAM           | 24/36                   |
|                       | 64QAM           | 48 / 54                 |
|                       | BPSK            | 6.5/7.2                 |
| OFDM                  | QPSK            | 13/19.5/14.4/21.7       |
| (802.11n-20MHz)       | 16QAM           | 26/39/28.9/43.3         |
|                       | 64QAM           | 52/58.5/65/57.8/65/72.2 |
|                       | BPSK            | 13.5/15                 |
| OFDM                  | QPSK            | 27/40.5/30/45           |
| (802.11n-40MHz)       | 16QAM           | 54/81/60/90             |
|                       | 64QAM           | 108/121.5/135/120/150   |
|                       | BPSK            | 4                       |
|                       | QPSK            | 16/24/17/26             |
| OFDMA                 | 16QAM           | 33/49/34/52             |
| (802.11ax-20 MHz)     | 64QAM           | 65/73/81/69/77/86       |
|                       | 256QAM          | 98/108/103/115          |
|                       | 1024QAM         | 122/135/129/143         |
|                       | BPSK            | 8/9                     |
|                       | QPSK            | 33/49/34/52             |
| OFDMA                 | 16QAM           | 65/98/69/103            |
| (802.11ax-40 MHz)     | 64QAM           | 130/146/163/138/155/172 |
|                       | 256QAM          | 195/217/207/229         |
|                       | 1024QAM         | 244/271/258/287         |

Note: Preliminary tests were performed in different data rate in above table to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.



| Test Items                    | Mode                 | Data Rate        | Cha    | nnel  |
|-------------------------------|----------------------|------------------|--------|-------|
| Output Bower                  | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
| Output Power                  | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |
| 6dB Bandwidth                 | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
|                               | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |
| Conducted Spurious Emission   | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
| Conducted Spanous Emission    | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |
| Conducted Emission            | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
| Conducted Emission            | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |
| Radiated Spurious Emission    | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
|                               | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |
| Band Edge                     | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
| Band Edge                     | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |
| Power spectral density (PSD)  | 11b/11g/11n20/11n40/ | 1/6/6.5/13.5/4/8 | 1/6/11 | 3/6/9 |
| Fower spectral defisity (FSD) | ax20/ax40            | Mbps             | 1/0/11 | 3/0/9 |

Note: The above EUT information in section 2.4 and 2.6 was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.



## 2.6 Additional Instructions

EUT Software Settings:

|      | $\square$ | Special software is used.                               |
|------|-----------|---------------------------------------------------------|
| Mode |           | The software provided by client to enable the EUT under |
| Mode |           | transmission condition continuously at specific channel |
|      |           | frequencies individually.                               |

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

| Power level setup in software |         |          |         |           |           |
|-------------------------------|---------|----------|---------|-----------|-----------|
| Test Software Version         | DRTU    |          |         |           |           |
|                               |         | Soft Set |         |           |           |
| Mode                          | Channel | Main     | Aux.    | MIMO-Main | MIMO-Aux. |
|                               |         | Antenna  | Antenna | Antenna   | Antenna   |
|                               | CH1     | 13.0     | 13.0    |           |           |
| 802.11 b                      | CH6     | 13.0     | 13.0    |           |           |
|                               | CH11    | 13.0     | 13.0    |           |           |
|                               | CH1     | 13.5     | 13.5    | 13.5      | 13.5      |
| 802.11 g                      | CH6     | 13.5     | 13.5    | 13.5      | 13.5      |
|                               | CH11    | 13.5     | 13.5    | 13.5      | 13.5      |
|                               | CH1     | 13.5     | 13.0    | 13.5      | 13.5      |
| 802.11 n20                    | CH6     | 13.5     | 13.0    | 13.5      | 13.5      |
|                               | CH11    | 13.5     | 13.0    | 13.5      | 13.0      |
|                               | CH3     | 12.0     | 12.0    | 12.5      | 12.0      |
| 802.11 n40                    | CH6     | 12.5     | 12.0    | 12.5      | 12.0      |
|                               | CH9     | 12.5     | 12.0    | 12.5      | 12.0      |
|                               | CH1     | 13.5     | 13.5    | 13.5      | 13.5      |
| 802.11 ax20 (SU)              | CH6     | 13.5     | 13.0    | 13.5      | 13.5      |
|                               | CH11    | 13.5     | 13.0    | 13.5      | 13.5      |
|                               | CH3     | 11.5     | 12.0    | 12.5      | 12.5      |
| 802.11 ax40 (SU)              | CH6     | 12.5     | 12.0    | 12.5      | 12.5      |
|                               | CH9     | 12.5     | 12.0    | 12.5      | 12.5      |



#### Run software:

| DRTU - Diagnostics and Regulatory                                                                                                             | festing Utility                                                                                                                | - 🗆 ×                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File View AT@ Help                                                                                                                            |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 📴 🚔 📕 🔜 😵 🛛 Remote address                                                                                                                    | localhost                                                                                                                      | Remote port: 8751 Disconnect                                                                                                                                                                                                                                                                                                                                                                            |
| Work mode navigator  Work mode navigator Harrison Peak  Wi-Fi Wi-Fi Modulated Tx Continuous Rx Rx sensitivity Actual power table (frx NVM/OTP | Power mode   Power control  Automatic driver settings  Transmit power (chain A):  Transmit power (chain B):                    | Radio settings         Transmit chains:       ✓ A (1)       B (2)         Band:       ● 2.4 GHz       ⊂ 5 GHz         Band width:       20 MHz       ✓         Channel:       1 / 2412 MHz       ✓         Control Ch.:       ✓       ✓         ✓       Full Bandwidth       Resource Unit:       242 Tone (20M)         Specific Resource Unit:       0       ✓         ✓       Frame settings       ✓ |
|                                                                                                                                               | Send Packets Settings<br>Transmit Mode: Off C Burst C Unlimited<br>Destination MAC Address: FF:FF:FF:FF:FF:<br>Packet count: 0 | Prame settings       Rate:       MCS0       Transmission Mode:       SISO       Duty cycle:       Guard interval:         1600 uSec                                                                                                                                                                                                                                                                     |
|                                                                                                                                               | Regulatory information       Current MCC:     US       Dusable regulatory limits in PAPD calibration:                          | LTF: HE 2xLTF   Extended Range Inter Frame Interval: 40(us)   Frame Size: 4176 (bytes)  BF Emulation                                                                                                                                                                                                                                                                                                    |
| 4                                                                                                                                             | Calibrate TX TX calibrated           Send         Stop         Read         Default                                            | ☐ Disable Calibrations                                                                                                                                                                                                                                                                                                                                                                                  |
| WiFi Modulated Tx configuration was wr                                                                                                        | tten                                                                                                                           | power: Chain A (1) 12 dBm Modulated Tx                                                                                                                                                                                                                                                                                                                                                                  |



# **3 SUMMARY OF TEST RESULTS**

## 3.1 Test Standards

| No. | Identity                  | Document Title                                                      |
|-----|---------------------------|---------------------------------------------------------------------|
| 1   | 47 CFR Part 15, Subpart C | Miscellaneous Wireless Communications Services                      |
|     |                           | GUIDANCE FOR COMPLIANCE MEASUREMENTS ON                             |
| 2   | KDB Publication 558074    | DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING                      |
| 2   | D01v05r02                 | SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES                   |
|     |                           | OPERATING UNDER SECTION 15.247 OF THE FCC RULES                     |
| 3   | KDB Publication           | Emissions Testing of Transmitters with Multiple Outputs in the Same |
| 3   | 662911 D01v02r01          | Band (e.g., MIMO, Smart Antenna, etc)                               |
| 4   | ANGL C62 10 2012          | American National Standard of Procedures for Compliance Testing of  |
| 4   | ANSI C63.10-2013          | Unlicensed Wireless Devices                                         |

## 3.2 Verdict

| No.     | Description                          | FCC PART No.      | Test Result | Verdict                |
|---------|--------------------------------------|-------------------|-------------|------------------------|
| 1       | Antenna Requirement                  | 15.203; 15.247(b) | N/A         | Pass <sup>Note 1</sup> |
| 2       | Output Power                         | 15.247(b)         | ANNEX A.1   | Pass                   |
| 3       | 6dB Bandwidth                        | 15.247(a)         | ANNEX A.2   | Pass                   |
| 4       | Conducted Spurious Emission          | 15.247(d)         | ANNEX A.3   | Pass                   |
| 5       | Band Edge(Authorized-band band-edge) | 15.209; 15.247(d) | ANNEX A.4   | Pass                   |
| 6       | Conducted Emission                   | 15.207            | ANNEX A.5   | Pass                   |
| 7       | Radiated Spurious Emission           | 15.209; 15.247(d) | ANNEX A.6   | Pass                   |
| 8       | Band Edge(Restricted-band band-edge) | 15.209; 15.247(d) | ANNEX A.7   | Pass                   |
| 9       | Power spectral density (PSD)         | 15.247(e)         | ANNEX A.8   | Pass                   |
| 10      | Receiver Spurious Emissions          | N/A               | N/A         | N/A Note 2             |
| Note 1: | Please refer to section 5.1.         |                   | •           |                        |

Note <sup>2</sup>: Only radio communication receivers operating in stand-alone mode within the band 30-960 MHz, as well as scanner receivers, are subject to Industry Canada requirements, so this test is not applicable.



# **4 GENERAL TEST CONFIGURATIONS**

## **4.1 Test Environments**

During the measurement, the normal environmental conditions were within the listed ranges:

| Relative Humidity          | 45% - 55%               |                |  |
|----------------------------|-------------------------|----------------|--|
| Atmospheric Pressure       | 100 kPa - 102 kPa       |                |  |
| Temperature                | NT (Normal Temperature) | +22°C to +25°C |  |
| Working Voltage of the EUT | NV (Normal Voltage)     | 11.4 V         |  |

## 4.2 Test Equipment List

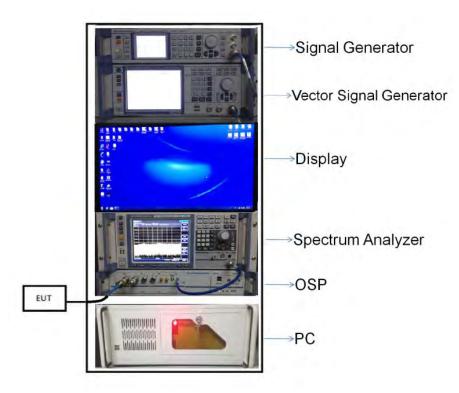
| Description                           | Manufacturer               | Model                 | Serial No. | Cal. Date  | Cal. Due   |
|---------------------------------------|----------------------------|-----------------------|------------|------------|------------|
| Spectrum Analyzer                     | ROHDE&SCHWARZ              | FSV-40                | 101544     | 2021.04.01 | 2022.03.31 |
| Bluetooth Signaling<br>Unit           | ROHDE&SCHWARZ              | CMW500                | 142028     | 2021.06.01 | 2022.05.31 |
| EMI Receiver                          | KEYSIGHT                   | N9038A                | MY53220118 | 2021.06.01 | 2022.05.31 |
| EMI Receiver                          | ROHDE&SCHWARZ              | ESRP                  | 101036     | 2021.06.01 | 2022.05.31 |
| LISN                                  | SCHWARZBECK                | NSLK 8127             | 8127-687   | 2021.06.01 | 2022.05.31 |
| Test Antenna-<br>Loop(9 kHz-30 MHz)   | SCHWARZBECK                | FMZB 1519             | 1519-037   | 2019.10.29 | 2021.10.28 |
| Test Antenna-<br>Bi-Log(30 MHz-3 GHz) | SCHWARZBECK                | VULB 9163             | 9163-624   | 2019.07.02 | 2021.07.01 |
| Test Antenna-<br>Horn(1-18 GHz)       | SCHWARZBECK                | BBHA<br>9120D         | 9120D-1917 | 2019.07.02 | 2021.07.01 |
| Test Antenna-<br>Horn (18-40 GHz)     | A-INFO                     | LB-<br>180400KF       | J211060273 | 2021.01.05 | 2023.01.04 |
| Anechoic Chamber                      | RAINFORD                   | 9m*6m*6m              | N/A        | 2017.02.21 | 2022.02.20 |
| Anechoic Chamber                      | EMC Electronic Co.,<br>Ltd | 20.10*11.60<br>*7.35m | N/A        | 2018.08.08 | 2021.08.07 |
| Shielded Enclosure                    | ChangNing                  | CN-130701             | 130703     |            |            |

## 4.3 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2.

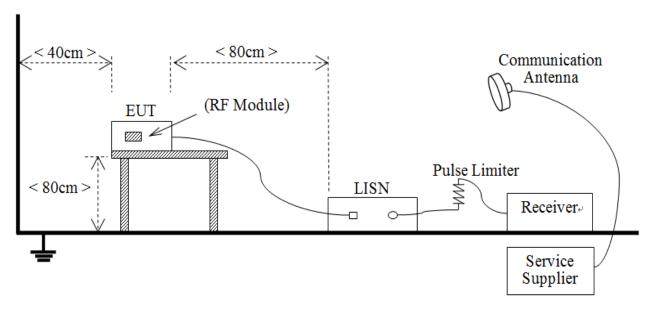
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Measurement                       | Value     |
|-----------------------------------|-----------|
| Occupied Channel Bandwidth        | ±4%       |
| RF output power, conducted        | ±1 .21 dB |
| Power Spectral Density, conducted | ±1.25 dB  |
| Unwanted Emissions, conducted     | ±1.26 dB  |
| All emissions, radiated           | ±3.86 dB  |
| Temperature                       | ±1°C      |
| Humidity                          | ±4%       |




## 4.4 Description of Test Setup

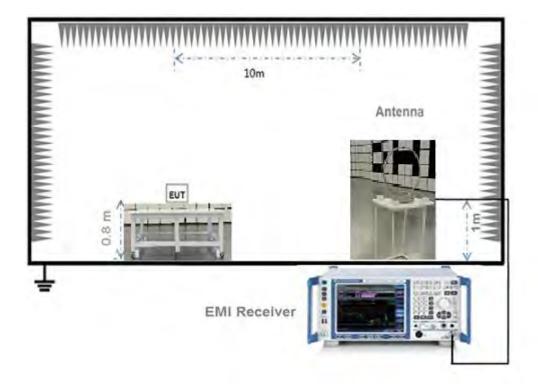
## 4.4.1 For Antenna Port Test


Conducted value (dBm) = Measurement value (dBm) + cable loss (dB)

For example: the measurement value is 10 dBm and the cable 0.5dBm used, then the final result of EUT: Conducted value (dBm) = 10 dBm + 0.5 dB = 10.5 dBm

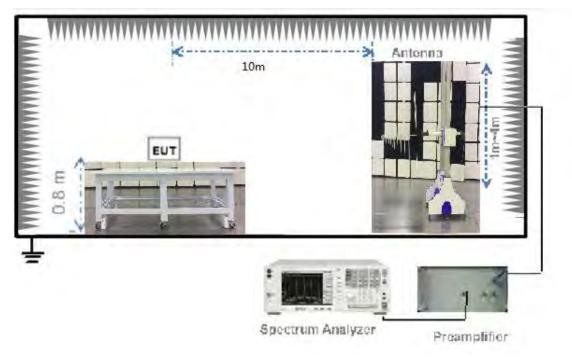


(Diagram 1)





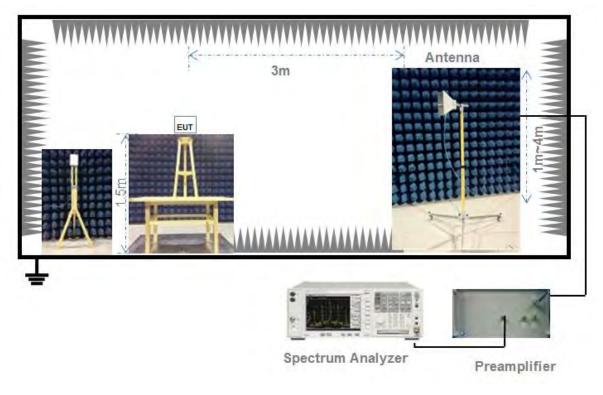

(Diagram 2)




4.4.3 For Radiated Test (Below 30 MHz)



(Diagram 3)


4.4.4 For Radiated Test (30 MHz-1 GHz)



(Diagram 4)



## 4.4.5 For Radiated Test (Above 1 GHz)



(Diagram 5)



## 4.5 Measurement Results Explanation Example

4.5.1 For conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

4.5.2 For radiated band edges and spurious emission test:

E = EIRP - 20log D + 104.8

where:

E = electric field strength in  $dB\mu V/m$ ,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

EIRP= Measure Conducted output power Value (dBm) + Maximum transmit antenna gain (dBi) + the appropriate maximum ground reflection factor (dB)





# 5 TEST ITEMS

## 5.1 Antenna Requirements

## 5.1.1 Relevant Standards

## FCC §15.203 & 15.247(b); RSS-247, 5.4 (f)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of § 15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

## 5.1.2 Antenna Anti-Replacement Construction

#### The Antenna Anti-Replacement as following method:

| Protected Method               | Description                            |
|--------------------------------|----------------------------------------|
| The antenna is embedded in the | An embedded-in antenna design is used. |
| product.                       |                                        |

| Reference Documents | Item                                     |
|---------------------|------------------------------------------|
| Photo               | Please refer to the EUT Photo documents. |

## 5.1.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.



## 5.2 Output Power

#### 5.2.1 Test Limit

FCC § 15.247(b); RSS-247, 5.4 (d)

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antennas antennas and antennas and antennas and antennas and antennas and antennas and antennas antenn

#### 5.2.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

#### 5.2.3 Test Procedure

#### Maximum peak conducted output power

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

#### Maximum conducted (average) output power (Reporting Only)

a) As an alternative to spectrum analyzer or EMI receiver measurements, measurements may be performed

using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.

1) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.

2) At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.

3) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a

factor of five.

b) If the transmitter does not transmit continuously, measure the duty cycle (x) of the transmitter output signal as

described in Section 6.0.

c) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

d) Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

#### Measurements of duty cycle

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal.

Set the center frequency of the instrument to the center frequency of the transmission.



Set RBW  $\geq$  OBW if possible; otherwise, set RBW to the largest available value.

Set VBW  $\geq$  RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T  $\leq$  16.7 microseconds.)

5.2.4 Test Result

Please refer to ANNEX A.1.



## 5.36dB Bandwidth

5.3.1 Limit

FCC §15.247(a); RSS-GEN, 6.7

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW. The 6 dB bandwidth must be greater than 500 kHz.

5.3.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

Use the following spectrum analyzer settings:

Set RBW = 100 kHz.

Set the video bandwidth (VBW)  $\geq$  3 RBW.

Detector = Peak.

Trace mode = max hold.

Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.3.4 Test Result

Please refer to ANNEX A.2.



## 5.4 Conducted Spurious Emission

## 5.4.1 Limit

FCC §15.247(d); RSS-247, 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

## 5.4.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

## 5.4.3 Test Procedure

The DTS rules specify that in any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions:

a) If the maximum peak conducted output power procedure was used to demonstrate compliance as described in 9.1, then the peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

 b) If maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 30 dBc).

c) In either case, attenuation to levels below the 15.209 general radiated emissions limits is not required.

The following procedures shall be used to demonstrate compliance to these limits. Note that these procedures can be used in either an antenna-port conducted or radiated test set-up. Radiated tests must conform to the test site requirements and utilize maximization procedures defined herein.

#### Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to  $\geq$  1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW  $\geq$  3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.



#### Emission level measurement

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

Set the RBW = 100 kHz.

Set the VBW  $\geq$  3 x RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.4.4 Test Result

Please refer to ANNEX A.3.



## 5.5 Band Edge (Authorized-band band-edge)

#### 5.5.1 Limit

FCC §15.247(d); RSS-GEN, 8.9, RSS-247, 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

#### 5.5.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

#### 5.5.3 Test Procedure

The following procedures may be used to determine the peak or average field strength or power of an unwanted emission that is within 2 MHz of the authorized band edge. If a peak detector is utilized, use the procedure described in 13.2.1. Use the procedure described in 13.2.2 when using an average detector and the EUT can be configured to transmit continuously (i.e., duty cycle  $\geq$  98%). Use the procedure described in 13.2.3 when using an average detector and the EUT cannot be configured to transmit continuously but the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent). Use the procedure described in 13.2.4 when using an average detector for those cases where the EUT cannot be configured to transmit continuously and the duty cycle is not constant (duty cycle variations equal or exceed 2 percent).

When using a peak detector to measure unwanted emissions at or near the band edge (within 2 MHz of the authorized band), the following integration procedure can be used.

Set instrument center frequency to the frequency of the emission to be measured (must be within 2 MHz of the authorized band edge).

Set span to 2 MHz

RBW = 100 kHz.

VBW  $\geq$  3 x RBW.

Detector = peak.

Sweep time = auto.

Trace mode = max hold.

Allow sweep to continue until the trace stabilizes (required measurement time may increase for low duty cycle applications)

Compute the power by integrating the spectrum over 1 MHz using the analyzer's band power measurement function with band limits set equal to the emission frequency (femission)  $\pm$  0.5 MHz. If the instrument does not have a band power function, then sum the amplitude levels (in power units) at 100 kHz intervals extending across the 1 MHz spectrum defined by femission  $\pm$  0.5 MHz.

Standard method(The 99% OBW of the fundamental emission is without 2 MHz of the authorized band):

Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products that fall outside of the authorized band of operation.



Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

Attenuation: Auto (at least 10 dB preferred).

Sweep time: Coupled.

Resolution bandwidth: 100 kHz.

Video bandwidth: 300 kHz.

Detector: Peak.

Trace: Max hold.

5.5.4 Test Result

Please refer to ANNEX A.4.



## 5.6 Conducted Emission

5.6.1 Limit

FCC §15.207; RSS-GEN, 8.8

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a  $50\mu$ H/ $50\Omega$  line impedance stabilization network (LISN).

| Frequency range | Conducted Limit (dBµV) |          |  |  |
|-----------------|------------------------|----------|--|--|
| (MHz)           | Quai-peak              | Average  |  |  |
| 0.15 - 0.50     | 66 to 56               | 56 to 46 |  |  |
| 0.50 - 5        | 56                     | 46       |  |  |
| 0.50 - 30       | 60                     | 50       |  |  |

## 5.6.2 Test Setup

See section 4.4.2 for test setup description for the AC power supply port. The photo of test setup please refer to ANNEX B.

## 5.6.3 Test Procedure

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation. A device rated for 50/60 Hz operation need not be tested at both frequencies provided the radiated and line conducted emissions are the same at both frequencies.

## 5.6.4 Test Result

Please refer to ANNEX A.5.



## 5.7 Radiated Spurious Emission

## 5.7.1 Limit

## FCC §15.209&15.247(c); RSS-247, 5.5

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (MHz) | Field Strength (µV/m) | Measurement Distance (m) |
|-----------------|-----------------------|--------------------------|
| 0.009 - 0.490   | 2400/F(kHz)           | 300                      |
| 0.490 - 1.705   | 24000/F(kHz)          | 30                       |
| 1.705 - 30.0    | 30                    | 30                       |
| 30 - 88         | 100                   | 3                        |
| 88 - 216        | 150                   | 3                        |
| 216 - 960       | 200                   | 3                        |
| Above 960       | 500                   | 3                        |

Note:

- 1. For Above 1000 MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000 MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK).

## 5.7.2 Test Setup

See section 4.4.3 to 4.4.5 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

## 5.7.3 Test Procedure

Since the emission limits are specified in terms of radiated field strength levels, measurements performed to demonstrate compliance have traditionally relied on a radiated test configuration. Radiated measurements remain the principal method for demonstrating compliance to the specified limits; however antenna-port conducted measurements are also now acceptable to demonstrate compliance (see below for details). When radiated measurements are utilized, test site requirements and procedures for maximizing and measuring radiated emissions that are described in ANSI C63.10 shall be followed.

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

#### General Procedure for conducted measurements in restricted bands

a) Measure the conducted output power (in dBm) using the detector specified (see guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see guidance on determining the applicable antenna gain)

c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies ≤ 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).

d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all



chains in linear terms (e.g., Watts, mW).

e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP – 20log D + 104.8

where:

E = electric field strength in  $dB\mu V/m$ ,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

f) Compare the resultant electric field strength level to the applicable limit.

g) Perform radiated spurious emission test.

Quasi-Peak measurement procedure

The specifications for measurements using the CISPR quasi-peak detector can be found in Publication 16 of the International Special Committee on Radio Frequency Interference (CISPR) of the International Electrotechnical Commission.

As an alternative to CISPR quasi-peak measurement, compliance can be demonstrated to the applicable emission limits using a peak detector.

Peak power measurement procedure

Peak emission levels are measured by setting the instrument as follows:

- a) RBW = as specified in Table 1.
- b) VBW  $\geq$  3 x RBW.
- c) Detector = Peak.
- d) Sweep time = auto.
- e) Trace mode = max hold.

f) Allow sweeps to continue until the trace stabilizes. (Note that the required measurement time may be longer for low duty cycle applications).

| Frequency   | RBW         |
|-------------|-------------|
| 9-150 kHz   | 200-300 Hz  |
| 0.15-30 MHz | 9-10 kHz    |
| 30-1000 MHz | 100-120 kHz |
| > 1000 MHz  | 1 MHz       |

If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction

If continuous transmission of the EUT (i.e., duty cycle  $\ge$  98 percent) cannot be achieved and the duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent), then the following procedure shall be used:

a) The EUT shall be configured to operate at the maximum achievable duty cycle.

b) Measure the duty cycle, x, of the transmitter output signal as described in section 6.0.



c) RBW = 1 MHz (unless otherwise specified).

d) VBW ≥ 3 x RBW.

e) Detector = RMS, if span/(# of points in sweep)  $\leq$  (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.

f) Averaging type = power (i.e., RMS).

1) As an alternative, the detector and averaging type may be set for linear voltage averaging.

2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

g) Sweep time = auto.

h) Perform a trace average of at least 100 traces.

i) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

1) If power averaging (RMS) mode was used in step f), then the applicable correction factor is  $10 \log(1/x)$ , where x is the duty cycle.

2) If linear voltage averaging mode was used in step f), then the applicable correction factor is  $20 \log(1/x)$ , where x is the duty cycle.

3) If a specific emission is demonstrated to be continuous ( $\geq$  98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

NOTE: Reduction of the measured emission amplitude levels to account for operational duty factor is not permitted. Compliance is based on emission levels occurring during transmission - not on an average across on and off times of the transmitter.

#### Determining the applicable transmit antenna gain

A conducted power measurement will determine the maximum output power associated with a restricted band emission; however, in order to determine the associated EIRP level, the gain of the transmitting antenna (in dBi) must be added to the measured output power (in dBm).

Since the out-of-band characteristics of the EUT transmit antenna will often be unknown, the use of a conservative antenna gain value is necessary. Thus, when determining the EIRP based on the measured conducted power, the upper bound on antenna gain for a device with a single RF output shall be selected as the maximum in-band gain of the antenna across all operating bands, or 2 dBi, whichever is greater. However, for devices that operate in multiple frequency bands while using the same transmit antenna, the highest gain of the antenna within the operating band nearest in frequency to the restricted band emission being measured may be used in lieu of the overall highest gain when the emission is at a frequency that is within 20 percent of the nearest band edge frequency, but in no case shall a value less than 2 dBi be used.

See KDB 662911 for guidance on calculating the additional array gain term when determining the effective antenna gain for a EUT with multiple outputs occupying the same or overlapping frequency ranges in the same band.



#### Radiated spurious emission test

An additional consideration when performing conducted measurements of restricted band emissions is that unwanted emissions radiating from the EUT cabinet, control circuits, power leads, or intermediate circuit elements will likely go undetected in a conducted measurement configuration. To address this concern, a radiated test shall be performed to ensure that emissions emanating from the EUT cabinet (rather than the antenna port) also comply with the applicable limits.

For these cabinet radiated spurious emission measurements the EUT transmit antenna may be replaced with a termination matching the nominal impedance of the antenna. Procedures for performing radiated measurements are specified in ANSI C63.10. All detected emissions shall comply with the applicable limits.

The measurement frequency range is from 30 MHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for  $f \ge 1$  GHz, 100 kHz for f < 1 GHz VBW  $\ge$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 5.7.4 Test Result

Please refer to ANNEX A.6.



## 5.8 Band Edge (Restricted-band band-edge)

## 5.8.1 Limit

FCC §15.209&15.247(c); RSS-247, 5.5

Radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

## 5.8.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

#### 5.8.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured RBW = 1 MHz for  $f \ge 1$  GHz, 100 kHz for f < 1 GHz VBW  $\ge$  RBW Sweep = auto Detector function = peak Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

For transmitters operating above 1 GHz repeat the measurement with an average detector.

#### 5.8.4 Test Result

Please refer to ANNEX A.7.



## 5.9 Power Spectral density (PSD)

5.9.1 Limit

FCC §15.247(d); RSS-247, 5.2 (b)

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

## 5.9.2 Test Setup

See section 4.4.1 for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

#### 5.9.3 Test Procedure

Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz  $\leq$  RBW  $\leq$  100 kHz.

Set the VBW  $\geq$  3 RBW.

Detector = peak.

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.9.4 Test Result

Please refer to ANNEX A.8.



# ANNEX A TEST RESULT

## A.1 Output Power

Note: All the configurations were pre tested, only the worst configuration has been reported in this report. <u>Duty Cycle</u>

| Test Mode            | On Time (ms) | On+Off Time (ms) | Duty Cycle |
|----------------------|--------------|------------------|------------|
| 802.11b              | 8.34090      | 8.39770          |            |
| 802.11g              | 8.08334      | 8.13334          | 99.39%     |
| 802.11n-20 MHz       | 3.96739      | 4.02174          | 98.65%     |
| 802.11n-40 MHz       | 3.96739      | 4.01630          | 98.78%     |
| 802.11ax-20 MHz (SU) | 3.95313      | 4.00521          | 98.70%     |
| 802.11ax-40 MHz (SU) | 3.95500      | 4.01000          | 98.63%     |





## Peak Power Test Data

## Main Antenna

## 802.11b Mode:

| Channel | Measured Output Peak Power |       | Limit |      | Verdict |      |  |
|---------|----------------------------|-------|-------|------|---------|------|--|
| Channel | dBm                        | mW    | dBm   | mW   | verdict |      |  |
| Low     | 16.78                      | 47.64 | 30    |      |         | Pass |  |
| Middle  | 16.62                      | 45.92 |       | 1000 | Pass    |      |  |
| High    | 16.85                      | 48.42 |       |      |         |      |  |

## 802.11g Mode:

| Channel | Measured Output Peak Power |        | Limit |         | Verdiet |  |
|---------|----------------------------|--------|-------|---------|---------|--|
| Channel | dBm                        | mW     | dBm   | mW      | Verdict |  |
| Low     | 22.03                      | 159.59 |       |         | Pass    |  |
| Middle  | 21.77                      | 150.31 | 30    | 30 1000 | Pass    |  |
| High    | 21.88                      | 154.17 |       |         | Pass    |  |

#### 802.11n-20 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |         | Verdict |  |      |
|---------|----------------------------|--------|-------|---------|---------|--|------|
| Channel | dBm                        | mW     | dBm   | mW      | Verdict |  |      |
| Low     | 21.42                      | 138.68 | 30    |         |         |  | Pass |
| Middle  | 21.18                      | 131.22 |       | 30 1000 | Pass    |  |      |
| High    | 21.27                      | 133.97 |       |         |         |  |      |

#### 802.11n-40 MHz Mode:

| Channal | Measured Output Peak Power |        | Limit |      | Vordiot |  |      |
|---------|----------------------------|--------|-------|------|---------|--|------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |      |
| Low     | 20.67                      | 116.68 |       |      | Pass    |  |      |
| Middle  | 20.52                      | 112.72 | 30    | 1000 | Pass    |  |      |
| High    | 20.52                      | 112.72 |       |      |         |  | Pass |

## 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |         | Verdict |  |
|---------|----------------------------|--------|-------|---------|---------|--|
| Channel | dBm                        | mW     | dBm   | mW      | Verdict |  |
| Low     | 22.55                      | 179.89 |       |         | Pass    |  |
| Middle  | 22.28                      | 169.04 | 30    | 30 1000 | Pass    |  |
| High    | 22.44                      | 175.39 |       |         |         |  |

## 802.11ax-40 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |  |      |
|---------|----------------------------|--------|-------|------|---------|--|------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |      |
| Low     | 21.32                      | 135.52 | 30    |      |         |  | Pass |
| Middle  | 21.66                      | 146.55 |       | 1000 | Pass    |  |      |
| High    | 21.70                      | 147.91 |       | 1    |         |  |      |



# <u>Aux. Antenna</u>

## 802.11b Mode:

| Channel | Measured Output Peak Power |       | Limit |      | Verdict |  |  |      |
|---------|----------------------------|-------|-------|------|---------|--|--|------|
| Channel | dBm                        | mW    | dBm   | mW   | Verdict |  |  |      |
| Low     | 16.97                      | 49.77 |       |      | Pass    |  |  |      |
| Middle  | 16.93                      | 49.32 | 30    | 1000 | Pass    |  |  |      |
| High    | 17.22                      | 52.72 |       |      |         |  |  | Pass |

#### 802.11g Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdici |
| Low     | 22.01                      | 158.85 |       |      | Pass    |
| Middle  | 22.04                      | 159.96 | 30    | 1000 | Pass    |
| High    | 22.37                      | 172.58 | -     |      | Pass    |

#### 802.11n-20 MHz Mode:

| Chappel | Measured Output Peak Power |        | Limit |      | Verdict |  |
|---------|----------------------------|--------|-------|------|---------|--|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |
| Low     | 21.26                      | 133.66 |       |      | Pass    |  |
| Middle  | 21.29                      | 134.59 | 30    | 1000 | Pass    |  |
| High    | 21.49                      | 140.93 |       |      | Pass    |  |

#### 802.11n-40 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Vordiot |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 20.52                      | 112.72 |       |      | Pass    |
| Middle  | 20.57                      | 114.02 | 30    | 1000 | Pass    |
| High    | 20.70                      | 117.49 |       |      | Pass    |

## 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 23.10                      | 204.17 |       |      | Pass    |
| Middle  | 22.59                      | 181.55 | 30    | 1000 | Pass    |
| High    | 22.87                      | 193.64 | -     |      | Pass    |

#### 802.11ax-40 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Vordiot |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 21.88                      | 154.17 |       |      | Pass    |
| Middle  | 21.90                      | 154.88 | 30    | 1000 | Pass    |
| High    | 22.05                      | 160.32 |       |      | Pass    |



## MIMO-Main Antenna

## 802.11g Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |  |
|---------|----------------------------|--------|-------|------|---------|--|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |
| Low     | 21.92                      | 155.60 |       |      | Pass    |  |
| Middle  | 21.50                      | 141.25 | 30    | 1000 | Pass    |  |
| High    | 21.69                      | 147.57 |       |      | Pass    |  |

#### 802.11n-20 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Vordiot |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 21.82                      | 152.05 |       |      | Pass    |
| Middle  | 21.50                      | 141.25 | 30    | 1000 | Pass    |
| High    | 21.67                      | 146.89 | •     |      | Pass    |

#### 802.11n-40 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 21.13                      | 129.72 |       |      | Pass    |
| Middle  | 20.93                      | 123.88 | 30    | 1000 | Pass    |
| High    | 20.93                      | 123.88 | -     |      | Pass    |

## 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Vordiot |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 22.62                      | 182.81 |       |      | Pass    |
| Middle  | 22.29                      | 169.43 | 30    | 1000 | Pass    |
| High    | 21.45                      | 139.64 |       |      | Pass    |

## 802.11ax-40 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 21.90                      | 154.88 |       |      | Pass    |
| Middle  | 21.67                      | 146.89 | 30    | 1000 | Pass    |
| High    | 21.70                      | 147.91 |       |      | Pass    |





### MIMO-Aux. Antenna

### 802.11g Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | verdict |
| Low     | 22.00                      | 158.49 |       |      | Pass    |
| Middle  | 22.02                      | 159.22 | 30    | 1000 | Pass    |
| High    | 22.29                      | 169.43 |       |      | Pass    |

### 802.11n-20 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdici |
| Low     | 21.68                      | 147.23 |       |      | Pass    |
| Middle  | 21.75                      | 149.62 | 30    | 1000 | Pass    |
| High    | 21.54                      | 142.56 |       |      | Pass    |

### 802.11n-40 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |         | Verdict |
|---------|----------------------------|--------|-------|---------|---------|
| Channel | dBm                        | mW     | dBm   | mW      | Verdict |
| Low     | 20.55                      | 113.50 |       |         | Pass    |
| Middle  | 20.52                      | 112.72 | 30    | 30 1000 | Pass    |
| High    | 20.60                      | 114.82 |       |         | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channal | Measured Output Peak Power |        | Limit |      | Vordiot |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |
| Low     | 22.89                      | 194.54 |       |      | Pass    |
| Middle  | 22.97                      | 198.15 | 30    | 1000 | Pass    |
| High    | 23.12                      | 205.12 |       |      | Pass    |

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |  |      |
|---------|----------------------------|--------|-------|------|---------|--|------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |      |
| Low     | 22.22                      | 166.72 |       |      |         |  | Pass |
| Middle  | 22.22                      | 166.72 | 30    | 1000 | Pass    |  |      |
| High    | 22.36                      | 172.19 |       |      | Pass    |  |      |



### <u>MIMO</u> 802.11g Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |
|---------|----------------------------|--------|-------|------|---------|
| Channel | dBm                        | mW     | dBm   | mW   | verdict |
| Low     | 24.97                      | 314.09 |       | 1000 | Pass    |
| Middle  | 24.78                      | 300.47 | 30    |      | Pass    |
| High    | 25.01                      | 317.00 |       |      | Pass    |

### 802.11n-20 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |         | Verdict |
|---------|----------------------------|--------|-------|---------|---------|
| Channel | dBm                        | mW     | dBm   | mW      | Verdict |
| Low     | 24.76                      | 299.29 |       |         | Pass    |
| Middle  | 24.64                      | 290.88 | 30    | 30 1000 | Pass    |
| High    | 24.62                      | 289.45 |       |         | Pass    |

### 802.11n-40 MHz Mode:

| Channel | Measured Output Peak Power |        | Limit |         | Verdict |
|---------|----------------------------|--------|-------|---------|---------|
| Channel | dBm                        | mW     | dBm   | mW      | Verdict |
| Low     | 23.86                      | 243.22 |       |         | Pass    |
| Middle  | 23.74                      | 236.60 | 30    | 30 1000 | Pass    |
| High    | 23.78                      | 238.70 |       |         | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |  |      |
|---------|----------------------------|--------|-------|------|---------|--|------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |      |
| Low     | 25.77                      | 377.35 |       |      |         |  | Pass |
| Middle  | 25.65                      | 367.59 | 30    | 1000 | Pass    |  |      |
| High    | 25.38                      | 344.75 |       |      | Pass    |  |      |

| Channel | Measured Output Peak Power |        | Limit |      | Verdict |  |  |      |
|---------|----------------------------|--------|-------|------|---------|--|--|------|
| Channel | dBm                        | mW     | dBm   | mW   | Verdict |  |  |      |
| Low     | 25.07                      | 321.61 |       |      |         |  |  | Pass |
| Middle  | 24.96                      | 313.62 | 30    | 1000 | Pass    |  |  |      |
| High    | 25.05                      | 320.10 |       |      | Pass    |  |  |      |



### Average Power Test Data

### Main Antenna

### 802.11b Mode:

| Channel | Measured Output Average Power |       | Limit |      | Vardiat |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 12.15                         | 16.41 |       |      | Pass    |
| Middle  | 11.97                         | 15.74 | 30    | 1000 | Pass    |
| High    | 11.98                         | 15.78 |       |      | Pass    |

### 802.11g Mode:

| Channel | Measured Output Average Power |       | Limit |      | Vordiot |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 12.18                         | 16.52 |       |      | Pass    |
| Middle  | 11.94                         | 15.63 | 30    | 1000 | Pass    |
| High    | 11.95                         | 15.67 |       |      | Pass    |

### 802.11n-20 MHz Mode:

| Channel | Measured Outp | Measured Output Average Power |     | nit  | Verdict |
|---------|---------------|-------------------------------|-----|------|---------|
| Channel | dBm           | mW                            | dBm | mW   | Verdict |
| Low     | 11.91         | 15.52                         |     |      | Pass    |
| Middle  | 11.56         | 14.32                         | 30  | 1000 | Pass    |
| High    | 11.67         | 14.69                         |     |      | Pass    |

### 802.11n-40 MHz Mode:

| Channel | Measured Output Average Power |       | Limit |      | Vordiot |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 10.37                         | 10.89 |       |      | Pass    |
| Middle  | 10.76                         | 11.91 | 30    | 1000 | Pass    |
| High    | 10.71                         | 11.78 |       |      | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channel |     | Measured Outp | ut Average Power | Limit |      | Vordiot |
|---------|-----|---------------|------------------|-------|------|---------|
| Chan    | lei | dBm           | mW               | dBm   | mW   | Verdict |
| Low     | /   | 11.67         | 14.69            |       |      | Pass    |
| Middl   | le  | 11.32         | 13.55            | 30    | 1000 | Pass    |
| High    | 1   | 11.41         | 13.84            |       |      | Pass    |

| Channel | Measured Output Average Power |       | Limit |      | Vordiot |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 9.56                          | 9.04  |       |      | Pass    |
| Middle  | 10.44                         | 11.07 | 30    | 1000 | Pass    |
| High    | 10.37                         | 10.89 |       |      | Pass    |



## Aux. Antenna

### 802.11b Mode:

| Channel | Measured Output Average Power |       | Limit |      | Verdict |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 12.14                         | 16.37 |       |      | Pass    |
| Middle  | 12.17                         | 16.48 | 30    | 1000 | Pass    |
| High    | 12.34                         | 17.14 |       |      | Pass    |

### 802.11g Mode:

| Channel | Measured Output Average Power |       | Limit |      | Verdict |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 12.10                         | 16.22 |       |      | Pass    |
| Middle  | 12.09                         | 16.18 | 30    | 1000 | Pass    |
| High    | 12.27                         | 16.87 |       |      | Pass    |

### 802.11n-20 MHz Mode:

| Channel | Measured Outp | Measured Output Average Power |     | nit  | Verdict |
|---------|---------------|-------------------------------|-----|------|---------|
| Channel | dBm           | mW                            | dBm | mW   | Verdict |
| Low     | 11.54         | 14.26                         |     |      | Pass    |
| Middle  | 11.59         | 14.42                         | 30  | 1000 | Pass    |
| High    | 11.67         | 14.69                         |     |      | Pass    |

### 802.11n-40 MHz Mode:

| Channel | Measured Outp | red Output Average Power |     | nit  | Vordiot |
|---------|---------------|--------------------------|-----|------|---------|
| Channel | dBm           | mW                       | dBm | mW   | Verdict |
| Low     | 10.71         | 11.78                    |     |      | Pass    |
| Middle  | 10.81         | 12.05                    | 30  | 1000 | Pass    |
| High    | 10.92         | 12.36                    |     |      | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Outp | Measured Output Average Power |     | nit  | Verdict |
|---------|---------------|-------------------------------|-----|------|---------|
| Channel | dBm           | mW                            | dBm | mW   | Verdict |
| Low     | 11.84         | 15.28                         |     |      | Pass    |
| Middle  | 11.44         | 13.93                         | 30  | 1000 | Pass    |
| High    | 11.58         | 14.39                         |     |      | Pass    |

| Channal | Measured Output Average Power |       | Limit |      | Vordiot |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 10.59                         | 11.46 |       |      | Pass    |
| Middle  | 10.53                         | 11.30 | 30    | 1000 | Pass    |
| High    | 10.58                         | 11.43 |       |      | Pass    |



### MIMO-Main Antenna

### 802.11g Mode:

| Channel | Measured Outp | Measured Output Average Power |     | nit  | Vordiot |
|---------|---------------|-------------------------------|-----|------|---------|
| Channel | dBm           | mW                            | dBm | mW   | Verdict |
| Low     | 12.09         | 16.18                         |     |      | Pass    |
| Middle  | 12.01         | 15.89                         | 30  | 1000 | Pass    |
| High    | 11.98         | 15.78                         |     |      | Pass    |

### 802.11n-20 MHz Mode:

| Channel | Measured Output Average Power |       | Limit |      | Verdict |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 11.80                         | 15.14 |       |      | Pass    |
| Middle  | 11.52                         | 14.19 | 30    | 1000 | Pass    |
| High    | 11.55                         | 14.29 |       |      | Pass    |

### 802.11n-40 MHz Mode:

| Channel | Measured Outp | ut Average Power | Limit |          | Verdict |
|---------|---------------|------------------|-------|----------|---------|
| Channel | dBm           | mW               | dBm   | mW       | Verdict |
| Low     | 10.92         | 12.36            |       |          | Pass    |
| Middle  | 10.61         | 11.51            | 30    | 1000 Pas | Pass    |
| High    | 10.75         | 11.89            |       |          | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |
|---------|---------------|------------------|-------|------|---------|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |
| Low     | 11.66         | 14.66            |       |      | Pass    |
| Middle  | 11.39         | 13.77            | 30    | 1000 | Pass    |
| High    | 11.39         | 13.77            |       |      | Pass    |

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |  |
|---------|---------------|------------------|-------|------|---------|--|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |  |
| Low     | 10.66         | 11.64            |       |      | Pass    |  |
| Middle  | 10.55         | 11.35            | 30    | 1000 | Pass    |  |
| High    | 10.48         | 11.17            |       |      | Pass    |  |



### MIMO-Aux. Antenna

### 802.11g Mode:

| Channel | Measured Outp | ut Average Power | Limit |           | Verdict |
|---------|---------------|------------------|-------|-----------|---------|
| Channel | dBm           | mW               | dBm   | mW        | Verdict |
| Low     | 12.07         | 16.11            |       |           | Pass    |
| Middle  | 12.13         | 16.33            | 30    | 1000 Pass | Pass    |
| High    | 12.15         | 16.41            |       |           | Pass    |

### 802.11n-20 MHz Mode:

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |  |
|---------|---------------|------------------|-------|------|---------|--|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |  |
| Low     | 11.87         | 15.38            |       |      | Pass    |  |
| Middle  | 11.96         | 15.70            | 30    | 1000 | Pass    |  |
| High    | 11.63         | 14.55            |       |      | Pass    |  |

### 802.11n-40 MHz Mode:

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |
|---------|---------------|------------------|-------|------|---------|
| Channel | dBm           | mW               | dBm   | mW   | verdict |
| Low     | 10.56         | 11.38            |       |      | Pass    |
| Middle  | 10.72         | 11.80            | 30    | 1000 | Pass    |
| High    | 10.75         | 11.89            |       |      | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |
|---------|---------------|------------------|-------|------|---------|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |
| Low     | 11.83         | 15.24            |       |      | Pass    |
| Middle  | 11.82         | 15.21            | 30    | 1000 | Pass    |
| High    | 11.94         | 15.63            |       |      | Pass    |

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |  |
|---------|---------------|------------------|-------|------|---------|--|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |  |
| Low     | 10.89         | 12.27            |       |      | Pass    |  |
| Middle  | 10.96         | 12.47            | 30    | 1000 | Pass    |  |
| High    | 10.96         | 12.47            |       |      | Pass    |  |



### <u>MIMO</u> 802.11g Mode:

| Channel | Measured Output | ut Average Power | Limit |      | Verdict |
|---------|-----------------|------------------|-------|------|---------|
| Channel | dBm             | mW               | dBm   | mW   | Verdici |
| Low     | 15.09           | 32.29            |       |      | Pass    |
| Middle  | 15.08           | 32.22            | 30    | 1000 | Pass    |
| High    | 15.08           | 32.18            |       |      | Pass    |

### 802.11n-20 MHz Mode:

| Channel |     | Measured Outp | ut Average Power | Limit |         | Vordiot |
|---------|-----|---------------|------------------|-------|---------|---------|
| Channel | dBm | mW            | dBm              | mW    | Verdict |         |
| Low     |     | 14.85         | 30.52            |       |         | Pass    |
| Middle  |     | 14.76         | 29.89            | 30    | 1000 F  | Pass    |
| High    |     | 14.60         | 28.84            |       |         | Pass    |

### 802.11n-40 MHz Mode:

| Channel | Measured Outp | ut Average Power | Limit |      | Verdict |
|---------|---------------|------------------|-------|------|---------|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |
| Low     | 13.75         | 23.74            |       |      | Pass    |
| Middle  | 13.68         | 23.31            | 30    | 1000 | Pass    |
| High    | 13.76         | 23.77            |       |      | Pass    |

### 802.11ax-20 MHz (SU) Mode:

| Channal | Measured Outp | ut Average Power | Limit |      | Verdict |  |
|---------|---------------|------------------|-------|------|---------|--|
| Channel | dBm           | mW               | dBm   | mW   | Verdict |  |
| Low     | 14.76         | 29.90            |       |      | Pass    |  |
| Middle  | 14.62         | 28.98            | 30    | 1000 | Pass    |  |
| High    | 14.68         | 29.40            |       |      | Pass    |  |

| Channel | Measured Output Average Power |       | Limit |      | Verdict |
|---------|-------------------------------|-------|-------|------|---------|
| Channel | dBm                           | mW    | dBm   | mW   | Verdict |
| Low     | 13.79                         | 23.92 |       |      | Pass    |
| Middle  | 13.77                         | 23.82 | 30    | 1000 | Pass    |
| High    | 13.74                         | 23.64 |       |      | Pass    |



### A.2 Bandwidth

Note 1: All antenna were tested, but only the worst case has been reported in this report.

Note 2: All the configurations were pre tested, only the worst configuration has been reported in this report. <u>Test Data</u>

### Main Antenna

802.11b Mode:

| Channal | 6 dB Bandwidth | 99% Bandwidth | 6 dB Bandwidth |
|---------|----------------|---------------|----------------|
| Channel | (MHz)          | (MHz)         | Limits (kHz)   |
| Low     | 8.660889       | 13.256151     | ≥500           |
| Middle  | 9.111572       | 13.198263     | ≥500           |
| High    | 9.161621       | 13.256151     | ≥500           |

### 802.11g Mode:

| Channel | 6 dB Bandwidth | 99% Bandwidth | 6 dB Bandwidth |
|---------|----------------|---------------|----------------|
| Channel | (MHz)          | (MHz)         | Limits (kHz)   |
| Low     | 15.218994      | 17.481910     | ≥500           |
| Middle  | 15.218994      | 17.424023     | ≥500           |
| High    | 15.218994      | 17.366136     | ≥500           |

### 802.11n-20MHz Mode:

| Channel | 6 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | 6 dB Bandwidth<br>Limits (kHz) |
|---------|-------------------------|------------------------|--------------------------------|
| Low     | 15.118896               | 18.350217              | ≥500                           |
| Middle  | 15.218994               | 18.350217              | ≥500                           |
| High    | 15.168945               | 18.408104              | ≥500                           |

### 802.11n-40MHz Mode:

| Channel | 6 dB Bandwidth | 99% Bandwidth | 6 dB Bandwidth |
|---------|----------------|---------------|----------------|
| Channel | (MHz)          | (MHz)         | Limits (kHz)   |
| Low     | 35.171875      | 36.200000     | ≥500           |
| Middle  | 35.121826      | 36.100000     | ≥500           |
| High    | 35.171875      | 36.200000     | ≥500           |

| Channel | 6 dB Bandwidth | 99% Bandwidth | 6 dB Bandwidth |
|---------|----------------|---------------|----------------|
| Channel | (MHz)          | (MHz)         | Limits (kHz)   |
| Low     | 15.369141      | 19.160637     | ≥500           |
| Middle  | 17.421875      | 18.986975     | ≥500           |
| High    | 16.270264      | 19.102750     | ≥500           |



### 802.11ax-40 MHz (SU) Mode:

| Channel | 6 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | 6 dB Bandwidth<br>Limits (kHz) |
|---------|-------------------------|------------------------|--------------------------------|
| Low     | 36.072510               | 37.500000              | ≥500                           |
| Middle  | 36.122559               | 37.600000              | ≥500                           |
| High    | 36.072510               | 37.600000              | ≥500                           |

### Aux. Antenna

### 802.11b Mode:

| Channel | 6 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | 6 dB Bandwidth<br>Limits (kHz) |
|---------|-------------------------|------------------------|--------------------------------|
| Low     | 8.610840                | 13.256151              | ≥500                           |
| Middle  | 9.111572                | 13.314038              | ≥500                           |
| High    | 9.161621                | 13.256151              | ≥500                           |

### 802.11g Mode:

| Channel | 6 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | 6 dB Bandwidth<br>Limits (kHz) |
|---------|-------------------------|------------------------|--------------------------------|
| Low     | 15.218994               | 17.424023              | ≥500                           |
| Middle  | 15.218994               | 17.366136              | ≥500                           |
| High    | 15.168945               | 17.424023              | ≥500                           |

### 802.11n-20MHz Mode:

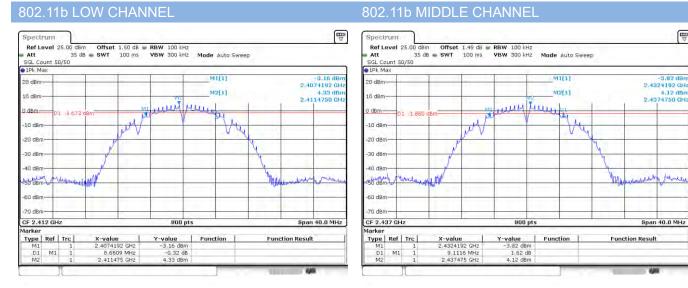
| Channel | 6 dB Bandwidth | 99% Bandwidth | 6 dB Bandwidth |
|---------|----------------|---------------|----------------|
| Onanner | (MHz)          | (MHz)         | Limits (kHz)   |
| Low     | 17.671875      | 18.697540     | ≥500           |
| Middle  | 17.671875      | 18.755427     | ≥500           |
| High    | 17.671875      | 18.639653     | ≥500           |

### 802.11n-40MHz Mode:

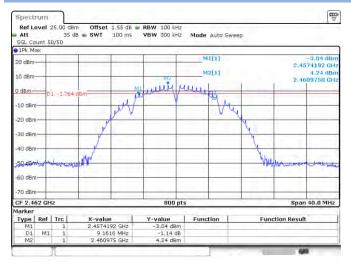
| Channel | 6 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | 6 dB Bandwidth<br>Limits (kHz) |
|---------|-------------------------|------------------------|--------------------------------|
| Low     | 36.372559               | 36.600000              | ≥500                           |
| Middle  | 36.422607               | 36.500000              | ≥500                           |
| High    | 36.422607               | 36.500000              | ≥500                           |

| Channel | 6 dB Bandwidth | 99% Bandwidth | 6 dB Bandwidth |
|---------|----------------|---------------|----------------|
| Channel | (MHz)          | (MHz)         | Limits (kHz)   |
| Low     | 18.973633      | 19.334298     | ≥500           |
| Middle  | 18.923584      | 19.392185     | ≥500           |
| High    | 19.023682      | 19.334298     | ≥500           |




### 802.11ax-40 MHz (SU) Mode:

| Channel | 6 dB Bandwidth<br>(MHz) | 99% Bandwidth<br>(MHz) | 6 dB Bandwidth<br>Limits (kHz) |
|---------|-------------------------|------------------------|--------------------------------|
| Low     | 37.973633               | 37.800000              | ≥500                           |
| Middle  | 38.073730               | 37.800000              | ≥500                           |
| High    | 38.023682               | 37.900000              | ≥500                           |

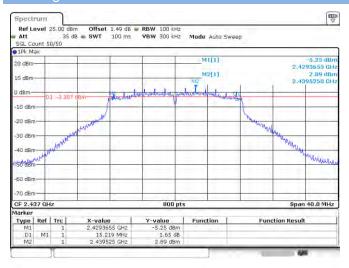

### Test plots

### 6 dB Bandwidth

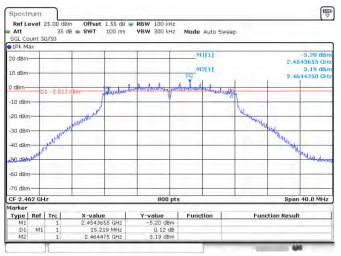

### Main Antenna



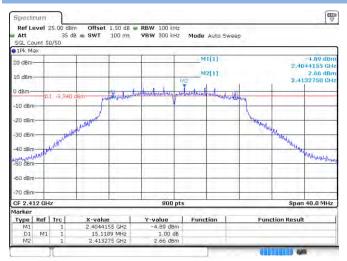
### 802.11b HIGH CHANNEL



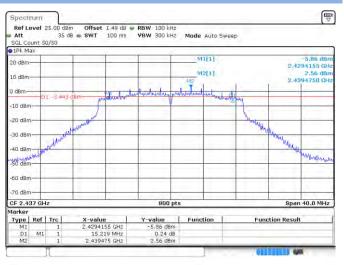

### 802.11g LOW CHANNEL



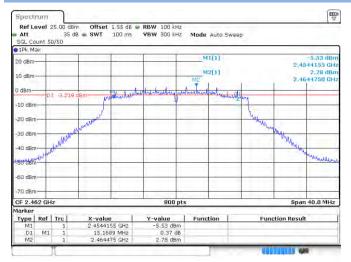




### 802.11g MIDDLE CHANNEL

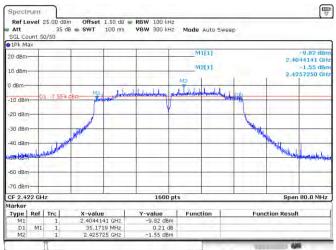



### 802.11g HIGH CHANNEL



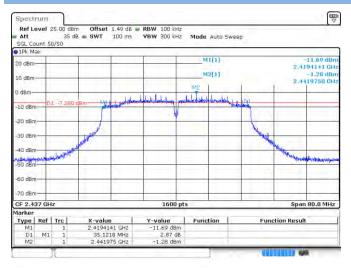

### 802.11n-20 MHz LOW CHANNEL




### 802.11 n-20 MHz MIDDLE CHANNEL

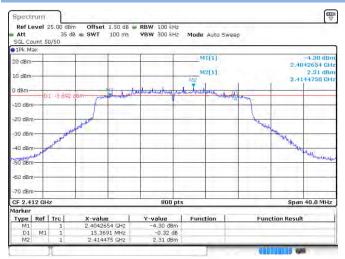


### 802.11n-20 MHz HIGH CHANNEL

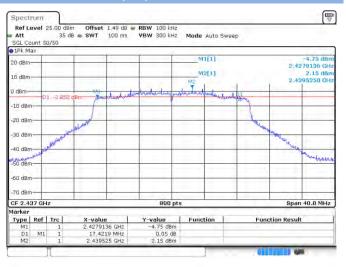



### 802.11n-40 MHz LOW CHANNEL

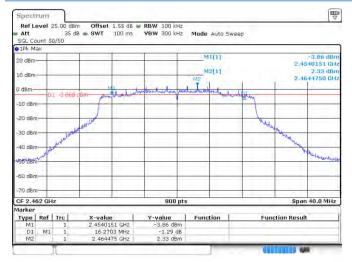




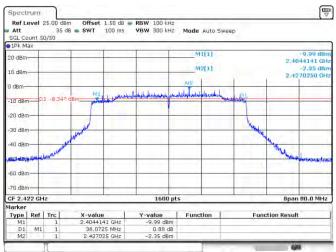

### 802.11n-40 MHz MIDDLE CHANNEL




### Spectrum Ref Level 25.00 dBm Att 35 dB 0 dBm Offset 1.51 dB RBW 100 kHz 35 dB SWT 100 ms VBW 300 kHz Mode Auto Sweep SGL Count 50/50 9 1Pk Max -9,64 dBn 2:4344141 GH -1.37 dBn 2:4569750 CH MI[1] 20 dBr M2[1] 16 dBm ME d8m under the bulle M1 ..... 1-7 374 -10 dBm 20 dBm 30 dBm 40 dBn he -50 dBm-60 dBm -70 dBm Span 80.0 MHz CF 2.452 GHz 1600 pts ark X-value 2.4344141 GH2 35,1719 MHz 2.456975 GHz Type | Ref | Trc | Y-value Function Function Result D1 M1 M2 -1.34 dB -1.37 dBm

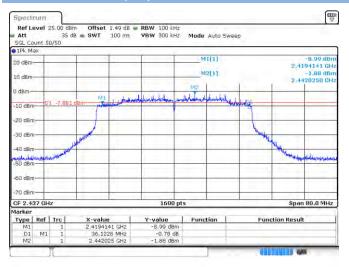

### 802.11ax-20 MHz (SU) LOW CHANNEL




### 802.11ax-20 MHz (SU) MIDDLE CHANNEL



### 802.11ax-20 MHz (SU) HIGH CHANNEL

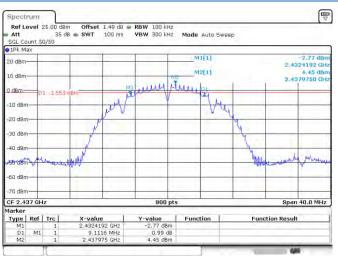



### 802.11ax-40 MHz (SU) LOW CHANNEL

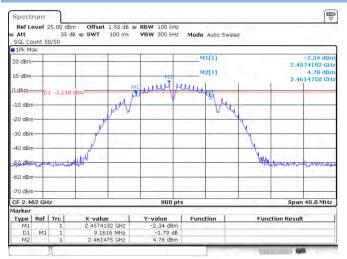




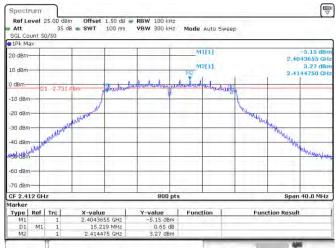
### 802.11ax-40 MHz (SU) MIDDLE CHANNEL





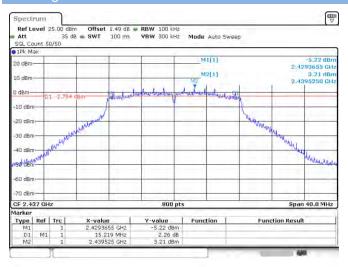


### Aux. Antenna



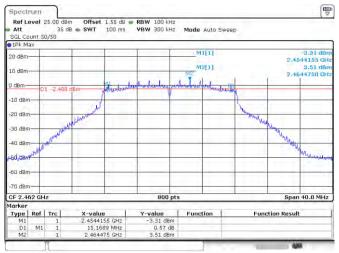

### 802.11b MIDDLE CHANNEL



### 802.11b HIGH CHANNEL

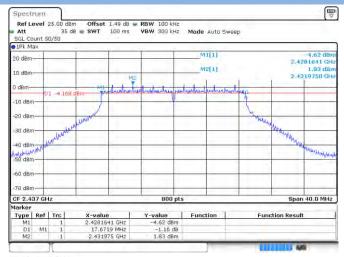



### 802.11g LOW CHANNEL



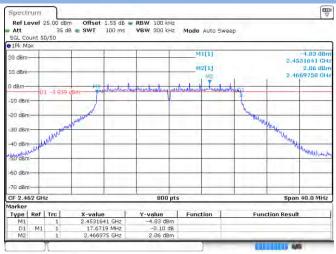



### 802.11g MIDDLE CHANNEL




### 302.11g HIGH CHANNEL




### 802.11n-20 MHz LOW CHANNEL E Spectrum Ref Level 25.00 dBr Att 35 d Offset 1.50 dB = RBW 100 k 35 dB 🖷 SWT 100 ms VBW 300 kHz Mode Auto Sweep Count 50/50 SGL Co -4.96 dBr 2.4031641 GH 1.80 dBr M1[1] 20 dBm M2[1] 16 dBm 2.4144750 GH dBmdust 01 -4.201 10 dBm-20 dBm 30 dBm und 40 dBm 1 thebriefly -50 dBm 60 dBm-70 dBm CF 2.412 GH 800 pts Span 40.0 MHz Marke Type Ref Trc Function X-value Y-value nction Result 2.4031641 GHz 17.6719 MHz 2.414475 GHz D1 M1 1 M2 1 -0.74 dB 1.80 dBm

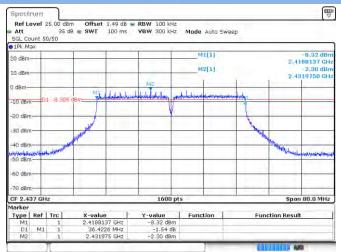
### 802.11 n-20 MHz MIDDLE CHANNEL




Date: 7 MAY 2021 23:34:00

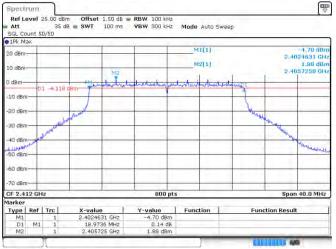
### 802.11n-20 MHz HIGH CHANNEI

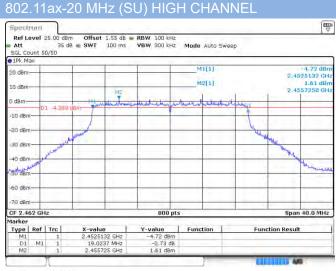



Date: 7 MAY 2021 23:38:59

Date: 7 MAY 2021 23:36:33

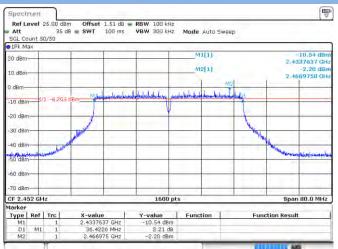






### 802.11n-40 MHz MIDDLE CHANNEL



Date: 7 MAY 2021 23:45:07

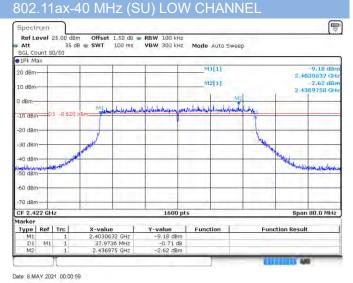

### 802.11ax-20 MHz (SU) LOW CHANNEL





Date: 7 MAY 2021 23:57:51

Date: 7 MAY.2021 23:51:22




Date: 7 MAY.2021 23:48:12

### 802.11ax-20 MHz (SU) MIDDLE CHANNEL



Date: 7 MAY 2021 23:55:20





### 802.11ax-40 MHz (SU) MIDDLE CHANNEL



 
 Spectrum
 RefLovel 25.00 dBm
 Offset 1.51 dB
 RBW 100 kHz

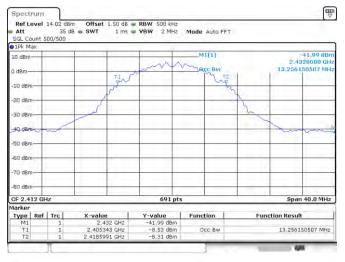
 Att
 35 dB
 SWT
 100 ms
 VBW 300 kHz
 Mode Auto Sweep

 SGL Count 50/50
 Image: Solution 100 ms
 VBW 300 kHz
 Mode Auto Sweep
 MI[1] -9,79 dBn 20 d8m--9,79 dBn 2,4330132 GH -2,70 dBn 2,4557250 GH M2[1] 16 d8m MZ dBm muldur aluer of all whether and a Millelaster handle have been and a standard with the second secon 01 -8.704 -10 dBm--20 dBm-30 dBm -40 dBmand the first Arrest. undisch. -50 dBm-60 dBm -70 dBm CF 2.452 GHz 1600 pts Span 80.0 MHz arker 
 Y-value
 Function

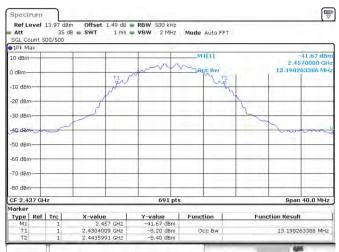
 -9.79 dBm
 -0.04 dB

 -2.70 dBm
 -2.70 dBm
 X-value 2.4330132 GHz 38.0237 MHz 2.455725 GHz Type Ref Trc Function Result T M1 D1 M1 M2

Date: 8 MAY.2021 00:06:46


Date: 8 MAY 2021 00:03:39




### 99% Bandwidth

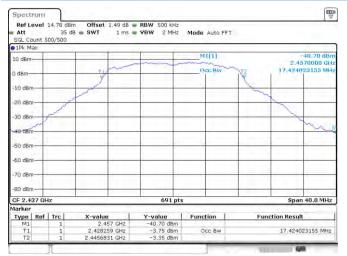
### Main Antenna

### 802.11b LOW CHANNEL

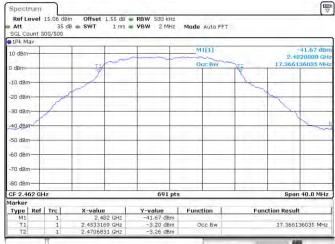


### 802.11b MIDDLE CHANNEL




### 802.11b HIGH CHANNEL

| Ref Lo<br>Att<br>SGL Co |       |       |         |          | <b>RBW</b> 500 k<br><b>VBW</b> 2 M |          | Mode Auto FET | r   |              |                         |
|-------------------------|-------|-------|---------|----------|------------------------------------|----------|---------------|-----|--------------|-------------------------|
| ●1Pk M                  | ах    |       | 0       |          |                                    | <i>a</i> |               |     |              |                         |
| 10 dBm                  |       | _     |         |          | in                                 | N        | MI[1]         |     | 2.4          | -43.98 dBn<br>320000 GH |
| 0 dBm-                  | -     |       |         | TI C     | MAC                                | -        | TARC BW       | 1   | 13.256       | 505117 MH               |
| -10 dBm                 |       | _     |         | TIN<br>P | -                                  | -        | re            | 5   |              | -                       |
| -20 dBm                 |       | _     | 1       | 1        | -                                  | -        |               | 1   | -            |                         |
| -30 dBn                 | -     |       | A       | -        | -                                  | -        |               | 5   |              | -                       |
| -40 dBm                 | h     | 1     |         |          | -                                  | -        |               | -   | The          | m                       |
| -50 dBm                 |       |       | -       |          | -                                  | -        |               | -   | -            |                         |
| -60 dBm                 |       |       | -       | -        | -                                  | -        |               | -   |              | -                       |
| -70 dBn                 |       |       |         | -        | -                                  | -        |               |     |              | -                       |
| -80 dBm                 | ,     | -     |         | -        |                                    |          |               | -   | 1            | 1.0                     |
| CF 2.4                  | 62 GF | z     | -       |          | 691                                | pts      |               |     | Spar         | 40.0 MHz                |
| Marker                  | 1.00  | 1.000 | 1       |          |                                    |          |               | -   |              | -                       |
| Type                    | Ref   | Trc   | X-value | 82 GHz   | -43.98 dB                          | am.      | Function      | Fur | iction Resul | 1                       |
| T1                      | -     | 1     |         | 43 GHz   | -8.53 dt                           |          | Occ Bw        |     | 13.2561      | 50507 MHz               |
| T2                      |       | 1     | 2.46859 |          | -8.31 de                           |          |               |     |              |                         |


### 802.11g LOW CHANNEL

₽ Spectrum Ref Level 15.28 dBm Att 35 dB SGL Count 500/500 PPk Max Offset 1.50 dB - RBW 500 kHz SWT 1 ms - VBW 2 MHz 35 dB . SWT Mode Auto FET MI[1] 40.52 dB 10 dBm-2.432 Der Bw 17.481910275 MH 1 dAm -10 dBm 20 dBm 30 dBn HØ dBn 50 dB -60 dBn 70 dBn 80 dBm CF 2.412 GHz 691 pts Span 40.0 MHz arki X-value 2.432 GHz Y-value Type | Ref | Trc | Function Function Result 1 2.4032012 GHz 2.4206831 GHz 17.481910275 MHz -3.44 dBm -3.06 dBm Occ Bw

### 802.11g MIDDLE CHANNEL

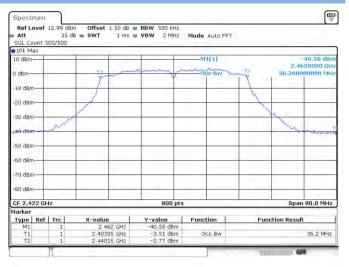


### 802.11g HIGH CHANNEL

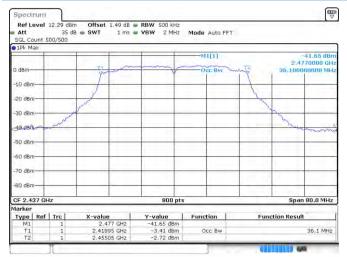




### 802.11n-20 MHz LOW CHANNEL




### 802.11 n-20 MHz MIDDLE CHANNEL Spectrum Ref Level 14.33 dBm Offse Att 35 dB SWT Offset 1.49 dB RBW 500 kHz SWT 1 ms VBW 2 MHz Mode Auto FFT SGL Count 500/500 -40.66 dl MI[1] 10 dBm-18.350217077 MH dBri 10 dBm 20 dBm 30 dBm La dam -50 dBm--60 dBm--70 dBm -80 dBm CF 2.437 GH Span 40.0 MHz 691 pts arke X-value 2,457 GHz 2,4277381 GHz 2,4460883 GHz Type | Ref | Trc | Y-value Function Function Result -3.65 dBm -3.01 dBm 18.350217077 MHz T1 T2 Occ Bw


### 802.11n-20 MHz HIGH CHANNEL

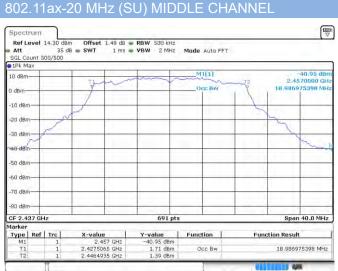
| Att<br>SGL Co | unt 5 | 14.35 dBr<br>35 d<br>00/500 | B . SWT |        | RBW 500 kHz<br>VBW 2 MHz | Mode Auto F | FT |                  |
|---------------|-------|-----------------------------|---------|--------|--------------------------|-------------|----|------------------|
| 10 dBm        | 9X    |                             | 1       |        | 1 1                      | M1[1]       |    | -42.40 dBm       |
| 10 dBm        |       |                             |         |        | man                      |             |    | 2.4820000 GH     |
| 0 dBm-        |       |                             | TV      | mun    | 1                        | Occ Bw      | 12 | 18,408104197 MH  |
| a sale in t   |       |                             | Y       |        |                          |             | Y  |                  |
| -10 dBn       |       |                             | 1       |        | -                        |             | 1  |                  |
|               |       |                             | pro l   |        |                          |             | ~  | A l              |
| -20 dBn       | -     | 5                           | -       |        |                          |             | _  | 12               |
| -             |       | 7                           |         |        |                          |             |    | 1                |
| -30 dBn       | -     | 1                           |         |        |                          |             |    | 7                |
| 40 dBp        | 1     |                             |         |        |                          |             |    | 2                |
| 10 990        | 111   |                             |         |        |                          |             |    |                  |
| -50 dBm       |       |                             | -       | -      | -                        |             |    |                  |
|               |       |                             | 1.2     |        |                          |             |    |                  |
| -60 dBn       | +     |                             | -       | -      |                          |             |    |                  |
| -             |       |                             | 1       |        |                          |             |    |                  |
| -70 dBn       | -     |                             |         |        |                          |             |    |                  |
| -80 dBm       |       |                             |         |        |                          |             |    |                  |
|               | 20.00 |                             |         |        |                          |             |    |                  |
| CF 2.4        | 52 GF | z                           | -       |        | 691 pt                   | s           |    | Span 40.0 MHz    |
| larker        |       |                             |         |        |                          |             |    |                  |
|               | Ref   |                             | X-value |        | Y-value                  | Function    | Fu | nction Result    |
| M1            |       | 1                           |         | 82 GHz | -42.40 dBm               |             |    |                  |
| T1<br>T2      |       | 1                           | 2.45279 |        | -3.09 dBm<br>-3.15 dBm   | Occ Bw      |    | 18.408104197 MHz |


### 802.11n-40 MHz LOW CHANNEL



### 802.11n-40 MHz MIDDLE CHANNEL




### 802.11n-40 MHz HIGH CHANNEL

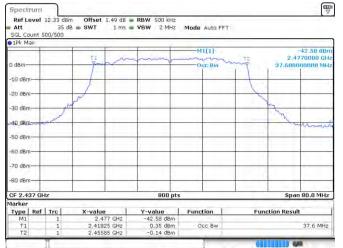




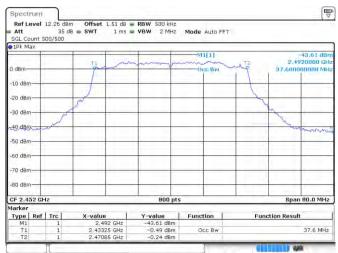
### 802.11ax-20 MHz (SU) LOW CHANNEL






### 802.11ax-20 MHz (SU) HIGH CHANNEL

| SGL Co   | unt 5 | 14.24 dBi<br>35 d<br>00/500 |                                       | VBW 2 MHz              | Mode Auto FF         | т   | -                          |
|----------|-------|-----------------------------|---------------------------------------|------------------------|----------------------|-----|----------------------------|
| ●1Pk M   | ах    |                             |                                       |                        | A 19 7               |     |                            |
| 10 dBm   | -     |                             |                                       | man                    | M1[1]                |     | -43.14 dBn<br>2.4820000 GH |
| - 14     |       |                             | 1 mm                                  |                        | Occ Bw               | {2  | 19.102749638 MH            |
| 0 dBm-   | - 1   |                             |                                       | -                      |                      |     |                            |
| -10 dBr  |       |                             |                                       |                        |                      |     |                            |
|          |       |                             | ~                                     |                        |                      |     |                            |
| -20 dBn  | -     | AN                          |                                       | -                      |                      | _   | 2                          |
| -30 dBn  |       | 5                           |                                       |                        |                      | -   | 1                          |
| -30 001  | X     |                             |                                       |                        |                      |     |                            |
| -40 dBm  | ~     |                             |                                       |                        |                      | -   |                            |
|          |       |                             |                                       |                        |                      | -   |                            |
| -50 dBn  | 1-1-1 |                             |                                       |                        |                      | -   |                            |
| -60 dBn  |       |                             |                                       |                        |                      |     |                            |
| 00 000   |       |                             | · · · · · · · · · · · · · · · · · · · |                        |                      |     |                            |
| -70 dBn  |       |                             |                                       |                        |                      | -   |                            |
| -        |       |                             |                                       |                        |                      | -   |                            |
| -80 dBm  |       |                             |                                       |                        |                      |     |                            |
| CF 2.4   | 62 GH | z                           |                                       | 691 pts                | 6                    |     | Span 40.0 MHz              |
| Marker   |       |                             | - 12 - C                              |                        | in the second second |     |                            |
| Туре     | Ref   |                             | X-value                               | Y-value                | Function             | Fur | nction Result              |
| M1<br>T1 |       | 1                           | 2.482 GH2<br>2.4524486 GHz            | -43.14 dBm<br>0.95 dBm | Occ Bw               |     | 19.102749638 MHz           |
| T2       |       | 1                           | 2.4715514 GHz                         | 0.73 dBm               | JCC DW               |     | AP-406 (49000 MILE         |


### 802.11ax-40 MHz (SU) LOW CHANNEL

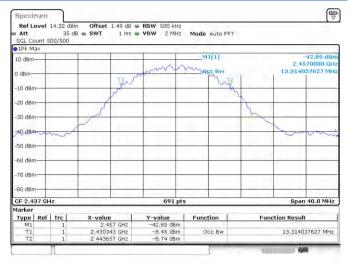


### 802.11ax-40 MHz (SU) MIDDLE CHANNEL



### 802.11ax-40 MHz (SU) HIGH CHANNEL






### Aux. Antenna

### 802.11b LOW CHANNEL

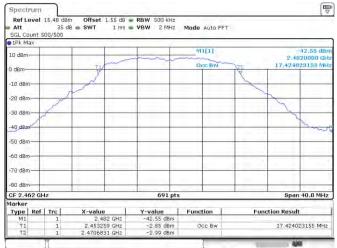
| Att<br>SGL Co  | unt 50 |                 | 3 <b>e</b> SWT |         | RBW 500 kHz<br>VBW 2 MHz |           | FFT  |                                                |
|----------------|--------|-----------------|----------------|---------|--------------------------|-----------|------|------------------------------------------------|
| 1Pk Ma         | x      |                 |                |         | 1 7                      |           |      |                                                |
| 10 dBm-        |        |                 |                | TI C    | m                        | M1[1]     | T2   | -43.15 dBn<br>2.4320000 GH<br>13.256 L50507 MH |
| -10 dBm        |        |                 |                | T1      | -                        | 6         | 17 C |                                                |
| -20 dBm        | -      |                 | 1              |         | -                        |           | 4    |                                                |
| -30 dBm        | -      |                 |                | -       |                          |           | has  |                                                |
| 740 dBm        | v      | $ \rightarrow $ |                |         | -                        |           |      | mound                                          |
| -50 dBm        | -      | -               | -              | -       |                          |           | -    |                                                |
| -60 dBm        |        | _               | -              | -       |                          |           |      |                                                |
| -70 dBm        |        |                 | -              |         | -                        |           |      | _                                              |
| -80 dBm        |        |                 |                |         |                          |           | _    | the stand                                      |
| CF 2.41        | 2 GHz  | 1               | -              |         | 691 p                    | ts        |      | Span 40.0 MHz                                  |
| Marker<br>Type | Pof    | Trel            | X-valu         | . 1     | Y-value                  | Function  | 1 6  | unction Result                                 |
| M1             | nut.   | 1               |                | H32 GH2 | -43.15 dBm               | - anction | 1    | unction result                                 |
| T1<br>T2       |        | 1               | 2,4053         | 43 GHz  | -8.41 dBm<br>-8.18 dBm   |           | 1    | 13.256150507 MHz                               |

### 802.11b MIDDLE CHANNEL




### 802.11b HIGH CHANNEL

| SGL Co   |      |       | dB 🖝 SWT 1 ms             | WBW 2 MHz               | Mode Auto FF | T    |                                       |
|----------|------|-------|---------------------------|-------------------------|--------------|------|---------------------------------------|
| 1Pk Ma   | 1    |       | 1 1                       | 1 1                     | MIEI         |      | -43.00 dBn                            |
| 10 dBm-  | -    |       |                           |                         | MILTI        |      | 2.4820000 GH                          |
| a dBm-   |      |       |                           | man and                 | ALE BW       |      | 13.256150507 MH                       |
| a aum    |      |       | TIN                       |                         | TE           |      |                                       |
| -10 dBm  | -    |       | 1                         |                         |              | 2    |                                       |
| -        |      |       | X                         | -                       |              | 4    |                                       |
| -20 dBm  |      |       |                           |                         |              | 5    |                                       |
| -30 dBm  | -    |       | P                         | -                       |              | 1    |                                       |
|          |      | 1     |                           |                         |              |      |                                       |
| 40 dBm   | -    | int   |                           |                         |              |      | mining                                |
| -50 dBm  | 1    |       |                           | -                       |              | -    |                                       |
| 1.1      | 111  |       |                           | -                       |              |      | 1 1 1 1 1 1 1 1                       |
| -60 dBm  | -    |       |                           |                         |              | -    |                                       |
| -70 dBm  |      |       |                           |                         |              |      | · · · · · · · · · · · · · · · · · · · |
|          | 111  |       |                           |                         |              |      |                                       |
| -80 dBm  | -    | _     |                           | -                       |              | _    |                                       |
| CF 2.46  | 2 GH | z     | <u> </u>                  | 691 pts                 |              | _    | Span 40.0 MHz                         |
| Marker   |      | 10.00 |                           |                         |              |      |                                       |
| Type     | Ref  |       | X-value                   | Y-value                 | Function     | Fune | ction Result                          |
| M1<br>T1 | _    | 1     | 2.482 GHz<br>2.455343 GHz | -43.00 dBm<br>-7,95 dBm | Occ Bw       |      | 13.256150507 MHz                      |
| T2       |      | 1     | 2,4585991 GHz             | -7.84 dBm               | OCC BW       |      | 13.230150507 MHZ                      |


### 802.11g LOW CHANNEL



### 802.11g MIDDLE CHANNEL



### 802.11g HIGH CHANNEL





### 802.11n-20 MHz LOW CHANNEL

| Att<br>SGL Co  | unt 5 | 35 d    |          |        | RBW 500 kHz<br>VBW 2 MHz | Mode Auto | FFT |                                 |
|----------------|-------|---------|----------|--------|--------------------------|-----------|-----|---------------------------------|
| 10 dBm         | ax.   | -       | 1        | -      | T T                      | M1[1]     | -   | -41,38 dBn                      |
| 0 dBm-         |       |         | y        |        |                          | Occ Bw    | 122 | 2.4320060 GH<br>18.697539797 MH |
| -10 dBm        |       |         | 1        |        |                          |           |     |                                 |
| -20 dBn        |       | P       |          | -      |                          |           |     | 2                               |
| -30 dBn        | A     | <u></u> |          |        |                          |           |     |                                 |
| -40 d8n        |       |         |          |        |                          |           |     |                                 |
| -60 dBm        |       |         |          |        |                          |           |     |                                 |
| -70 dBn        | +     | _       |          |        | -                        |           | _   |                                 |
| -80 dBm        | -     | _       |          | -      |                          |           |     |                                 |
| CF 2.4         | 12 GH | z       | 4        |        | 691 pt                   | s         | 1   | Span 40.0 MHz                   |
| Marker<br>Type | Ref   | Trc     | X-value  | - 1    | Y-value                  | Function  | Fur | iction Result                   |
| M1<br>T1       |       | 1       | 2.402623 |        | -41,38 dBm<br>-3,18 dBm  | Occ Bw    |     | 18.697539797 MHz                |
| T2             |       | 1       | 2.421319 | 98 GHz | -3.22 dBm                | 1         |     |                                 |

Date: 7 MAY 2021 23:34:10

### 802.11n-20 MHz HIGH CHANNEL

| PIPk Ma | 9X    |     |               | _      |              |                         |     |                            |
|---------|-------|-----|---------------|--------|--------------|-------------------------|-----|----------------------------|
| 10 dBm  | -     | _   | -             |        |              | M1[1]                   |     | -41,26 dBn<br>2.4820060 GH |
| 0 dBm—  | -     | _   | ¥             |        |              | Occ Bw                  | T2  | 18.639652677 MH            |
| -10 dBm | -     | _   | 1             |        |              |                         | 2   |                            |
| -20 dBm | -     | 1   | -             |        |              |                         | -   | 2                          |
| -30 dBm | 1     | 1   |               |        | -            |                         | -   | 1                          |
| -48-d8n | 4     | _   | -             | -      |              |                         | -   | 200                        |
| -50 dBm | -     | _   | -             |        | -            |                         | -   |                            |
| 60 dBm  | -     |     | -             | -      |              |                         | -   |                            |
| -70 dBm | -     |     | -             |        |              |                         | -   |                            |
| -BU dBm | -     |     | -             |        |              |                         | -   |                            |
| CF 2.46 | 52 GH | z   | 1             | -      | 691 pt       | s                       |     | Span 40.0 MHz              |
| larker  |       |     | - Commin of a |        | - maintain a | · · · · · · · · · · · · |     |                            |
| Type M1 | Ref   | Trc | X-value       | 82 GHz | -41.26 dBm   | Function                | Fun | ction Result               |
| T1      | -     | 1   | 2.45268       |        | -41.26 dBm   | Occ Bw                  |     | 18.639652677 MHz           |
| T2      | -     | 1   | 2.47131       |        | -2.59 dBm    |                         |     | and a second second second |

Date: 7 MAY 2021 23:39:10

### 802.11n-40 MHz MIDDLE CHANNEL



Date: 7 MAY 2021 23:45:19

### 802.11 n-20 MHz MIDDLE CHANNEL



Date: 7 MAY 2021 23:36:43

### 802.11n-40 MHz LOW CHANNEL



Date: 7 MAY 2021 23:42:01

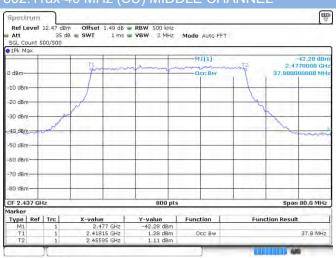


Date, 7 MA(1202



### 802.11ax-20 MHz (SU) LOW CHANNEL




Date: 7 MAY.2021 23:51:32

### 802.11ax-20 MHz (SU) HIGH CHANNEL

| - AC 1. 10 | ах    |     | -      | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                          |
|------------|-------|-----|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------------------|
| 16 dBm     | -     |     |        | han     | man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1[1]    |           | -40,03 dE<br>2,4020000 G |
|            |       |     | ¥.     |         | The second secon | Occ Bw   | F         | 19.334298119 M           |
| 0 dBm-     |       |     | 1      | 1.1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1         | 15.051250115.0           |
| 10 dBn     |       |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                          |
| 10 000     |       |     | V      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1         |                          |
| 20 dBn     |       | 1   | 1      | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | -         | 2                        |
|            |       | N   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | 1                        |
| 30 dBn     | 1-p   |     | -      | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |                          |
| 10 10      | ~     |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | 1 m                      |
| 40 elBn    |       |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                          |
| 50 dBn     | n     |     | -      | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                          |
|            |       |     | 1      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1.1.1.1.1 |                          |
| 60 dBn     | n     |     | -      | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |                          |
|            | 2.11  |     | 1.1.1  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1 - 1     |                          |
| 70 dBn     | 0     |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                          |
| BO dBn     | -     |     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -         |                          |
| CF 2.4     | -     |     |        | -       | 691 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           | Span 40.0 MH             |
| larker     | 02 GF | 2   |        | _       | oar pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | _         | opbit 40.0 MH            |
| Type       | Ref   | Trc | X-valu | e       | Y-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Function | Fun       | ction Result             |
| M1         | 1.461 | 1   |        | 182 GHz | -40.03 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 1 41      | and the second           |
| T1         |       | 1   | 2.4523 | 329 GHz | 1.10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Occ Bw   |           | 19.334298119 MH          |
| T2         |       | 1   | 2.4716 | 571 GHz | 0.80 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |                          |

Date: 7 MAY 2021 23:58:01

### 802.11ax-40 MHz (SU) MIDDLE CHANNEL



Date: 8.MAY.2021 00:03:51

### 802.11ax-20 MHz (SU) MIDDLE CHANNEL



Date: 7 MAY.2021 23:55:30

### 802.11ax-40 MHz (SU) LOW CHANNEL



Date: 8,MAY,2021 00:01:11



Date: 8 MAY 2021 00:06:58



## A.3 Conducted Spurious Emissions

Note: All the configurations were pre tested, only the worst configuration has been reported in this report. <u>Test Data</u>

Main Antenna

802.11b Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -54.99               | 4.43          | -15.57                     | Pass    |
| Middle  | -55.61               | 3.94          | -16.06                     | Pass    |
| High    | -54.84               | 4.11          | -15.89                     | Pass    |

### 802.11g Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -55.21               | 2.65          | -17.35                     | Pass    |
| Middle  | -54.22               | 3.29          | -16.71                     | Pass    |
| High    | -55.43               | 3.47          | -16.53                     | Pass    |

### 802.11n-20MHz Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -50.71               | 3.03          | -16.97                     | Pass    |
| Middle  | -50.68               | 2.72          | -17.28                     | Pass    |
| High    | -49.94               | 2.96          | -17.04                     | Pass    |

### 802.11n-40MHz Mode:

|         | Measured Max. Out of | Limit (dBm)   |                            |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -55.12               | -1.22         | -21.22                     | Pass    |
| Middle  | -50.56               | -1.27         | -21.27                     | Pass    |
| High    | -50.64               | -1.16         | -21.16                     | Pass    |

|         | Measured Max. Out of | Limit (       | dBm)          |         |
|---------|----------------------|---------------|---------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20 | Verdict |
|         |                      | Carrier Lever | dBc Limit     |         |
| Low     | -50.07               | 2.56          | -17.44        | Pass    |
| Middle  | -50.18               | 2.38          | -17.62        | Pass    |
| High    | -50.14               | 2.53          | -17.47        | Pass    |



### 802.11ax-40 MHz (SU) Mode:

|         | Measured Max. Out of | Limit (dBm)   |                            |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -54.18               | -2.26         | -22.26                     | Pass    |
| Middle  | -49.57               | -1.81         | -21.81                     | Pass    |
| High    | -50.29               | -1.92         | -21.92                     | Pass    |

### Aux. Antenna

802.11b Mode:

|         | Measured Max. Out of | Limit (dBm)   |                            | Verdict<br>Pass |
|---------|----------------------|---------------|----------------------------|-----------------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict         |
| Low     | -55.37               | 3.79          | -16.21                     | Pass            |
| Middle  | -56.00               | 3.81          | -16.19                     | Pass            |
| High    | -55.20               | 4.57          | -15.43                     | Pass            |

### 802.11g Mode:

|         | Measured Max. Out of | Limit (                 | dBm)          |         |
|---------|----------------------|-------------------------|---------------|---------|
| Channel | Band Emission (dBm)  | Carrier Lovel           | Calculated 20 | Verdict |
|         |                      | Carrier Level dBc Limit |               |         |
| Low     | -55.53               | 3.01                    | -16.99        | Pass    |
| Middle  | -55.31               | 3.67                    | -16.33        | Pass    |
| High    | -55.90               | 3.91                    | -16.09        | Pass    |

### 802.11n-20MHz Mode:

|         | Measured Max. Out of | Limit (       | dBm)          |         |
|---------|----------------------|---------------|---------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20 | Verdict |
|         |                      |               | dBc Limit     |         |
| Low     | -49.87               | 1.99          | -18.01        | Pass    |
| Middle  | -49.56               | 1.91          | -18.09        | Pass    |
| High    | -50.10               | 2.28          | -17.72        | Pass    |

### 802.11n-40MHz Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -49.96               | -1.88         | -21.88                     | Pass    |
| Middle  | -50.70               | -1.76         | -21.76                     | Pass    |
| High    | -50.13               | -1.97         | -21.97                     | Pass    |



### 802.11ax-20 MHz (SU) Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -50.43               | 2.07          | -17.93                     | Pass    |
| Middle  | -50.04               | 1.61          | -18.39                     | Pass    |
| High    | -49.99               | 2.03          | -17.97                     | Pass    |

### 802.11ax-40 MHz (SU) Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -50.83               | -2.68         | -22.68                     | Pass    |
| Middle  | -50.53               | -2.21         | -22.21                     | Pass    |
| High    | -49.81               | -2.16         | -22.16                     | Pass    |

### MIMO-Main Antenna

802.11g Mode:

|         | Measured Max. Out of | Limit (dBm)   |               |         |
|---------|----------------------|---------------|---------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20 | Verdict |
|         |                      | dBc Limit     |               |         |
| Low     | -55.62               | 3.21          | -16.79        | Pass    |
| Middle  | -55.24               | 3.24          | -16.76        | Pass    |
| High    | -55.56               | 3.36          | -16.64        | Pass    |

### 802.11n-20MHz Mode:

|         | Measured Max. Out of | Limit (       | dBm)          |         |
|---------|----------------------|---------------|---------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20 | Verdict |
|         |                      | Carrier Lever | dBc Limit     |         |
| Low     | -50.80               | 3.11          | -16.89        | Pass    |
| Middle  | -50.12               | 2.73          | -17.27        | Pass    |
| High    | -50.54               | 2.59          | -17.41        | Pass    |

### 802.11n-40MHz Mode:

|         | Measured Max. Out of | Limit (dBm)   |                            |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -50.86               | -1.18         | -21.18                     | Pass    |
| Middle  | -50.22               | -1.26         | -21.26                     | Pass    |
| High    | -49.67               | -1.43         | -21.43                     | Pass    |



### 802.11ax-20 MHz (SU) Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |  |
|---------|----------------------|---------------|----------------------------|---------|--|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |  |
| Low     | -50.30               | 2.57          | -17.43                     | Pass    |  |
| Middle  | -50.87               | 2.42          | -17.58                     | Pass    |  |
| High    | -51.01               | 1.59          | -18.41                     | Pass    |  |

### 802.11ax-40 MHz (SU) Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |
|---------|----------------------|---------------|----------------------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |
| Low     | -50.29               | -1.94         | -21.94                     | Pass    |
| Middle  | -50.30               | -1.70         | -21.70                     | Pass    |
| High    | -50.57               | -1.75         | -21.75                     | Pass    |

### MIMO-Aux. Antenna

802.11g Mode:

|         | Measured Max. Out of | Limit (       | dBm)          |         |
|---------|----------------------|---------------|---------------|---------|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20 | Verdict |
|         |                      |               | dBc Limit     |         |
| Low     | -55.72               | 3.41          | -16.59        | Pass    |
| Middle  | -55.85               | 3.60          | -16.40        | Pass    |
| High    | -54.59               | 3.89          | -16.11        | Pass    |

### 802.11n-20MHz Mode:

|         | Measured Max. Out of | Limit (       | dBm)          |         |  |
|---------|----------------------|---------------|---------------|---------|--|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20 | Verdict |  |
|         |                      | Carrier Lever | dBc Limit     |         |  |
| Low     | -49.52               | 2.18          | -17.82        | Pass    |  |
| Middle  | -50.15               | 2.37          | -17.63        | Pass    |  |
| High    | -50.54               | 2.39          | -17.61        | Pass    |  |

### 802.11n-40MHz Mode:

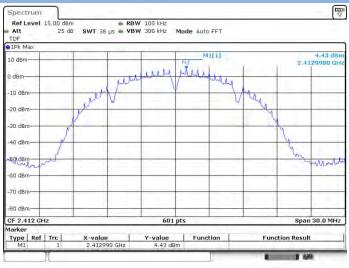
|         | Measured Max. Out of | Limit (       | dBm)                       |         |  |
|---------|----------------------|---------------|----------------------------|---------|--|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |  |
| Low     | -49.24               | -1.98         | -21.98                     | Pass    |  |
| Middle  | -49.53               | -1.82         | -21.82                     | Pass    |  |
| High    | -50.16               | -2.00         | -22.00                     | Pass    |  |





### 802.11ax-20 MHz (SU) Mode:

|         | Measured Max. Out of | Limit (       | dBm)                       |         |  |
|---------|----------------------|---------------|----------------------------|---------|--|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |  |
| Low     | -50.92               | 1.81          | -18.19                     | Pass    |  |
| Middle  | -50.13               | 2.03          | -17.97                     | Pass    |  |
| High    | -50.51               | 2.36          | -17.64                     | Pass    |  |


|         | Measured Max. Out of | Limit (       | dBm)                       |         |  |
|---------|----------------------|---------------|----------------------------|---------|--|
| Channel | Band Emission (dBm)  | Carrier Level | Calculated 20<br>dBc Limit | Verdict |  |
| Low     | -49.86               | -2.25         | -22.25                     | Pass    |  |
| Middle  | -50.28               | -1.93         | -21.93                     | Pass    |  |
| High    | -50.97               | -1.87         | -21.87                     | Pass    |  |



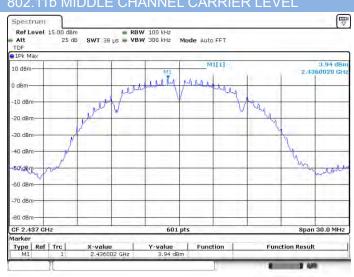
### Test Plots

### Main Antenna





# 802.11b LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Ref Level 15.00 d<br>Att 25<br>TDF |                            | <ul> <li>RBW 100 kHz</li> <li>VBW 300 kHz</li> </ul> | Mode Auto Sweep                                                                                                 | 2                   |                             |  |  |
|------------------------------------|----------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|--|--|
| 91Pk Max                           |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| 10 dBm                             |                            | -                                                    | M1[1]                                                                                                           |                     | -58.89 dBm<br>2.75720 GHz   |  |  |
| 1 C                                |                            | 1.1.1                                                | 1                                                                                                               | 1.                  | 2.75720 GH                  |  |  |
| 0 dBm                              |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| 5.5.1                              |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| -10 dBm                            | 1                          |                                                      |                                                                                                                 |                     |                             |  |  |
| -20 dBm-                           | 70 dBm                     |                                                      |                                                                                                                 |                     |                             |  |  |
| -20 0Bm                            |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| -30 dBm                            |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| SC USI                             |                            |                                                      |                                                                                                                 | 1                   |                             |  |  |
| -40 dBm-                           |                            |                                                      |                                                                                                                 | -                   |                             |  |  |
|                                    |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| -50 dBm                            |                            |                                                      |                                                                                                                 |                     |                             |  |  |
|                                    |                            |                                                      |                                                                                                                 |                     | NI                          |  |  |
| -60 dBm-                           | and an and a second second | all hundred was described and                        | new responsed on the maintainst                                                                                 | wayanis up well the | pallikana akaranganahanan a |  |  |
| -70 dBm                            | 1                          |                                                      | The second se | 1 1 1               |                             |  |  |
| 10 0011                            |                            |                                                      |                                                                                                                 |                     | CONTRACTOR OF A             |  |  |
| -90 dBm                            |                            |                                                      |                                                                                                                 |                     |                             |  |  |
| Start 30.0 MHz                     |                            | 1001                                                 | pts                                                                                                             |                     | Stop 3.0 GHz                |  |  |
| Marker                             |                            | ACAL MARKED                                          |                                                                                                                 |                     |                             |  |  |
| Type Ref Trc                       | X-value<br>2.7572 GHz      | -58.89 dBr                                           | Function                                                                                                        | Funct               | ion Result                  |  |  |

# 802.11b LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| Att       | el 15.00 dBn<br>25 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                | W 100 kHz<br>W 300 kHz | Mode Au                   | to Sweep |                           |                             |             |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|------------------------|---------------------------|----------|---------------------------|-----------------------------|-------------|--|
| 1Pk Max   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                        |                           |          |                           | _                           |             |  |
| 10 dBm-   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         | 1              | · · · · ·              | M                         | 111      | -54,99 dBm<br>6.29250 GHz |                             |             |  |
| diam'r    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | 1.000                  |                           |          | 1 ·····                   |                             |             |  |
| 0 dBm     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | 21.00                  |                           |          |                           |                             |             |  |
| - 0 dBm-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                        | _                         |          |                           |                             |             |  |
|           | D1 -15.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dBm       |                | -                      | -                         |          |                           |                             |             |  |
| -20 dBm-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                        |                           |          |                           |                             |             |  |
| -30 dBm-  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |                        |                           |          |                           |                             |             |  |
| 1.00      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                        |                           |          | -                         |                             |             |  |
| -40 dBm-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                        |                           |          |                           |                             |             |  |
| -50 dBm-  | WI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -              |                        |                           |          |                           |                             |             |  |
| 1000      | A second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and the   |                | Sec.                   | -                         |          |                           | 1 martin                    | 1000        |  |
| AQ dBrow  | Condition of the local division of the local | With what | and shaken and | ALL MALLANNIA AND      | Contraction of the second | -        | - Hand Place              | Address of the state of the | A. 40. 4144 |  |
| -70 dBm-  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _         |                |                        |                           |          |                           |                             |             |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |                        |                           |          |                           |                             | 1.0         |  |
| -80 dBm-  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | · ·            |                        |                           |          |                           | 1                           |             |  |
| Start 2.0 | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                | 4001                   | pts                       | -        |                           | Stop                        | 25.0 GHz    |  |
| Marker    | tef   Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | X-value   |                | Y-value                | Func                      | alan 1   | E.m.                      | tion Result                 |             |  |
| M1        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 25 GHz         | -54,99 dB              |                           | ciun I   | Fund                      | LIOIT KESUIC                |             |  |



### 802.11b MIDDLE CHANNEL CARRIER LEVEL



### 802.11b MIDDLE CHANNEL, SPURIOUS

### 30 MHz ~ 3 GHz

| Att        | al 15.00 dBm<br>25 dB        |                                                                                                                 |           | 3W 100 KHz<br>3W 300 KHz | Mode Au      | to Sweep  |                   |                           |                  |  |
|------------|------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|--------------------------|--------------|-----------|-------------------|---------------------------|------------------|--|
| 😋 1Pk Max  |                              |                                                                                                                 |           |                          |              |           |                   |                           |                  |  |
| 10 dBm     |                              |                                                                                                                 | -         | 1                        | M1[1]        |           |                   | -58.68 dBm<br>2.67340 GHz |                  |  |
|            |                              |                                                                                                                 |           | 11                       | 1            |           | 1                 | 2                         | 17340 GH         |  |
| 0 dBm      |                              |                                                                                                                 | _         |                          | -            |           |                   |                           |                  |  |
| -10 dBm    |                              |                                                                                                                 |           |                          |              | -         |                   |                           |                  |  |
| -10 dBm    | at and                       |                                                                                                                 |           |                          |              |           |                   |                           |                  |  |
| -20 dBm    | D1 -16,060                   | dBm:                                                                                                            |           |                          |              |           |                   |                           |                  |  |
|            |                              |                                                                                                                 |           |                          |              |           |                   |                           |                  |  |
| -30 dBm    |                              |                                                                                                                 |           | -                        | -            |           |                   |                           |                  |  |
| 10.1       |                              |                                                                                                                 |           | 1.000                    |              |           |                   |                           |                  |  |
| -40 dBm    |                              |                                                                                                                 |           |                          |              |           |                   |                           | -                |  |
| -50 dBm    |                              |                                                                                                                 |           |                          |              |           |                   |                           |                  |  |
|            |                              |                                                                                                                 |           |                          |              |           |                   | MI                        |                  |  |
| -60 dBm    |                              | er or manual second second                                                                                      |           | and the strength of      | and publikes | allabelte | mary man interest | havening                  | the towner where |  |
|            | and the amount of the second | A PARAMANA A | alter and |                          |              |           |                   |                           |                  |  |
| -70 dBm    |                              |                                                                                                                 |           |                          |              |           |                   |                           |                  |  |
| -90 dBm    |                              |                                                                                                                 |           |                          |              |           |                   |                           |                  |  |
| Start 30.0 | MUS                          |                                                                                                                 |           | 1001                     | nte          |           | -                 | Pto                       | p 3.0 GHz        |  |
| Marker     | UMITIZ                       |                                                                                                                 | -         | 1001                     | pes          | -         | -                 | 310                       | 3.0 GH2          |  |
|            | f Trc                        | X-value                                                                                                         | 1.        | Y-value                  | Funct        | ion 1     | Funct             | ion Result                |                  |  |

# 802.11b MIDDLE CHANNEL, SPURIOUS

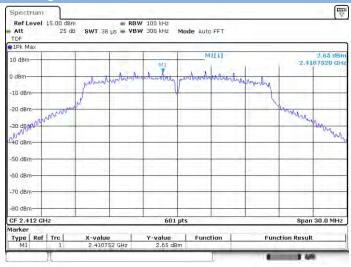
| Ref Lo<br>Att        | evel 15.00 de<br>25 (    | 3m<br>dB <b>SWT</b> 230 |       | W 100 KHZ<br>W 300 KHZ | Mode Au          | to Sweep    |      |                                     |                       |
|----------------------|--------------------------|-------------------------|-------|------------------------|------------------|-------------|------|-------------------------------------|-----------------------|
| 1Pk M                | эх                       | s                       |       |                        |                  | _           |      |                                     |                       |
| 10 dBm               |                          | 6 (e)                   |       | (                      | M                | 1(1)        | _    |                                     | 55.61 dBn<br>21660 GH |
| 0 dBm-               | -                        |                         |       |                        |                  | -           | -    |                                     | 1000 511              |
| -10 dBn              |                          |                         |       |                        | -                |             | -    |                                     |                       |
| -30 dBm              | D1 -16,88                | 50 dBm                  |       |                        |                  |             |      |                                     |                       |
| -30 dBm              |                          | -                       |       |                        | -                |             |      | -                                   |                       |
| -40 dBm              | 1                        | -                       | -     |                        |                  | -           |      |                                     |                       |
| -\$0 dBr             |                          |                         |       |                        | -                |             |      |                                     |                       |
| -dQ dBo              | and a stand of the stand | Washington Barrier      |       | lan and the part       | inity production | New Manager | -    | and the second second second second | e also also also      |
| -70 dBn              |                          |                         |       |                        |                  |             |      |                                     |                       |
| -90 dBm              |                          |                         |       |                        |                  | -           |      | 1                                   |                       |
| Start 2              | 0 GHz                    | -                       |       | 4001                   | pts              |             |      | Stop                                | 25.0 GHz              |
| Marker<br>Type<br>M1 | Ref Trc                  | X-value                 | 6 GHz | Y-value<br>-55.61 dB   | Func             | tion        | Fund | tion Result                         |                       |



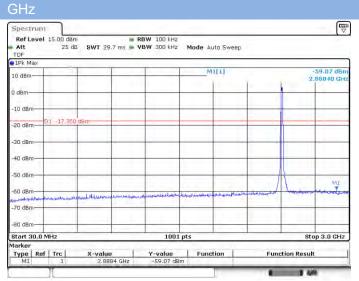


## 802.11b HIGH CHANNEL, SPURIOUS

### 30 MHz ~ 3 GHz


| 0 dBm                | 1 11        |                |                                                | 21                   |                |         |                     | /                |                                           |
|----------------------|-------------|----------------|------------------------------------------------|----------------------|----------------|---------|---------------------|------------------|-------------------------------------------|
| -10 dBm              | 01 -15.890  | dBm            |                                                |                      |                |         |                     |                  |                                           |
| -20 dBm              |             | -              |                                                |                      |                |         |                     |                  |                                           |
| -40 dBm              |             |                |                                                |                      | -              |         |                     |                  |                                           |
| -S0 d8m              |             |                | 1                                              |                      |                |         |                     | A                | ML                                        |
| -60 dBm<br>          | Lugarlingar | ininkotophinas | ben have been been been been been been been be | gener respectively a | n-maken bendan | Malanan | mledennesseetenness | M Bison Boscycom | And a |
| -80 dBm              |             | -              |                                                |                      | _              |         |                     |                  |                                           |
| Start 30.0<br>Marker | MHz         |                |                                                | 1001                 | pts            |         |                     | Sto              | op 3.0 GH                                 |

# 802.11b HIGH CHANNEL, SPURIOUS


| Att<br>TDF               | el 15.00 dBn<br>25 dB       |         | 0 ms - VB   | W 100 kHz<br>W 300 kHz | Mode Au      | to Sweep          |               |             |             |
|--------------------------|-----------------------------|---------|-------------|------------------------|--------------|-------------------|---------------|-------------|-------------|
| 🛛 1Pk Max                | S                           |         |             |                        |              |                   |               |             |             |
| 10 dBm-                  | 1                           |         | 1           | 1                      | M            | 1[1]              | -54.1         |             |             |
| 1.00                     |                             |         | 1.01        |                        |              |                   | · · · · · · · |             | 27500 611   |
| 0 dBm-                   |                             |         |             | 20.00                  |              |                   | 1             |             |             |
| -10 dBm-                 | -                           | -       |             |                        |              |                   |               |             |             |
| -20 dBm-                 | 01 -15,890                  | dBm     |             |                        | _            |                   | -             |             |             |
| -30 dBm                  | -                           |         |             |                        |              | _                 | _             |             | _           |
| -40 dBm-                 | -                           |         |             |                        | _            | -                 |               |             |             |
| -SO dBm-                 |                             |         |             |                        |              | 0.00              | -             |             |             |
| -                        | والملجه التبينة فالمتجلط وم | Window  | Allengenety | magnitude the state    | ndu deserved | the second second | Anal Andrews  | A Stranger  | a linearity |
| -70 d8m-                 | -                           |         |             |                        | _            |                   |               | _           |             |
| -80 dBm-                 |                             |         |             |                        |              |                   |               |             |             |
| Start 2.0                | GHz                         |         |             | 4001                   | ots          |                   |               | Stop        | 25.0 GHz    |
| Marker<br>Type   I<br>M1 | tef Trc                     | X-value | 98 GHz      | Y-value                | Fund         | tion              | Fund          | tion Result |             |

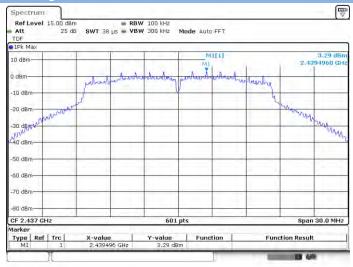


### 802.11g LOW CHANNEL CARRIER LEVEL



### 802.11g LOW CHANNEL, SPURIOUS 30 MHz ~ 3




### Spectrum Ref Level 15.00 dBm RBW 100 kH2 Att 25 dB SWT 230 ms VBW 300 kH2 Mode Auto Sweep TOP O IPK Max M1[1] 55.21 dBn 28560 GH 10 dBm ,dBr 0 dBm 1 -17.3 0 dBm n dBr 0 dBm 0 dBm L 70 dBm 90 dBm 4001 pts Stop 25.0 GHz Start 2.0 GHz larke Type Ref Trc X-value 6.2856 GHz Y-value -55.21 dBm Function Function Result 10 446 .

802.11g LOW CHANNEL, SPURIOUS 2 GHz ~ 25

### 67 / 245

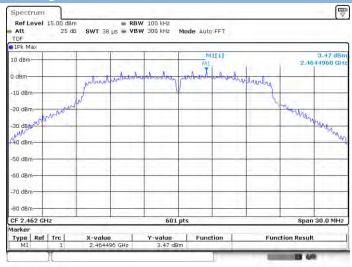


### 802.11g MIDDLE CHANNEL CARRIER LEVEL



## 802.11g MIDDLE CHANNEL, SPURIOUS

### 30 MHz ~ 3 GHz


| Att        | 15.00 dBm<br>25 dB   |                  |                                                                                                                 | BW 100 kHz<br>BW 300 kHz | Mode Au                   | uto Sweep     |                                         |                     |                       |
|------------|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|---------------|-----------------------------------------|---------------------|-----------------------|
| 1Pk Max    |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| 10 dBm     | M1[1]                |                  |                                                                                                                 |                          |                           |               |                                         |                     | 59.82 dBn<br>67690 GH |
| 11. Y .Y.  |                      |                  |                                                                                                                 |                          | 1                         |               | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) | 2.0                 | 37690 GH              |
| 0 dBm      | -                    | -                |                                                                                                                 |                          | -                         |               | -                                       | 1                   |                       |
|            |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| -10 dBm    | S                    |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| -20 dBm    | 01 +16.710           | dBm              |                                                                                                                 |                          |                           |               |                                         |                     |                       |
|            |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| -30 dBm    |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| 1.1.1      |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| -40 dBm    |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| -50 dBm    |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| -30 UBIII- |                      |                  |                                                                                                                 |                          |                           |               |                                         | 643                 |                       |
| -60 dBm    |                      |                  | 1.000.00                                                                                                        |                          |                           |               | and the second                          | the fit was a start | Colling Starteday     |
|            | exhibition which the | annuthal stracks | grade and the second of the | - here will re- mained   | his shirt have the second | umana ana ang | Commercial of                           |                     |                       |
| -70 dBm    |                      |                  |                                                                                                                 |                          | -                         | -             |                                         |                     | -                     |
| -90 dBm    |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
|            |                      |                  |                                                                                                                 |                          |                           |               |                                         |                     |                       |
| Start 30.0 | MHz                  |                  |                                                                                                                 | 1001                     | pts                       |               | _                                       | Sto                 | p 3.0 GHz             |
| Marker     | f   Trc              | X-value          |                                                                                                                 | Y-value                  | Fund                      |               |                                         | tion Result         |                       |

### 802.11g MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| Att        |         | 15.00 dBn<br>25 df |               |                     | W 100 KHz<br>W 300 KHz | Mode Au     | to Sweep    |                       |                       |                  |
|------------|---------|--------------------|---------------|---------------------|------------------------|-------------|-------------|-----------------------|-----------------------|------------------|
| 1Pk M      | ах      |                    |               | 0                   |                        |             |             |                       |                       |                  |
| 10 dBm     | -       |                    |               | 1                   | 1                      | M           | 111         | 54,22 dBr<br>82160 GH |                       |                  |
|            |         |                    |               | 1.1.1               |                        |             | 1.          | 1                     |                       | 82100 GH         |
| 0 dBm-     | -       | _                  | -             | -                   |                        | -           | -           | -                     | -                     |                  |
| -10 dBn    |         |                    |               |                     |                        |             |             |                       |                       |                  |
| -10 080    |         | and a stand        |               |                     |                        |             |             |                       |                       |                  |
| -30 dBm    | D       | 1 -16.710          | dBm           |                     |                        | -           |             |                       |                       |                  |
| 1.1        |         |                    |               |                     |                        |             |             |                       |                       |                  |
| -30 dBri   | -       |                    |               |                     |                        |             |             | -                     |                       |                  |
| -0 dBm     |         |                    |               |                     |                        |             |             |                       |                       |                  |
| - C GBI    | ·       |                    |               |                     |                        |             | 1.1.1       |                       |                       | 11 7             |
| -SO dBr    | -       |                    | 41            |                     | -                      |             |             |                       | -                     |                  |
| 100        |         | -                  | 1.            |                     | the second             |             | diam'r alw  | a characteristics     | and a la              | No. The          |
| -th dBr    | a state | Manager a          | Lynd a Wigher | And a special first | -                      | and have an | A har water | A Station Alter       | Sector and the sector | - Martin Provide |
| -70 dBm    | -       |                    | 1 - C - X     | 1000                |                        |             |             |                       |                       | 11-1-1-1         |
|            |         |                    |               |                     |                        |             |             |                       |                       | 10.000           |
| -80 dBm    | -       | -                  | -             |                     |                        | -           | -           | -                     |                       |                  |
| Start 2    | O GH    | z                  |               |                     | 4001                   | pts         |             |                       | Stop                  | 25.0 GHz         |
| Marker     |         |                    |               |                     |                        |             |             | -                     |                       |                  |
| Type<br>M1 | Ref     | Trc 1              | X-valu        | e 216 GHz           | -54.22 dB              | Func        | tion        | Fun                   | ction Result          | -                |

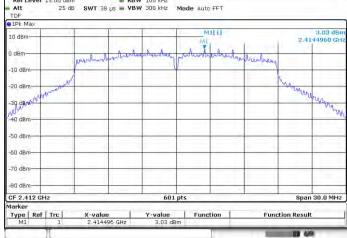


### 802.11g HIGH CHANNEL CARRIER LEVEL

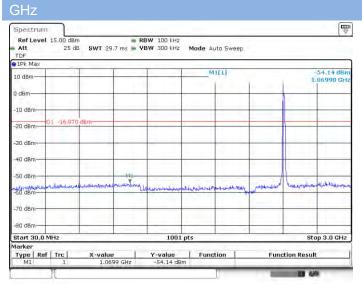


## 802.11g HIGH CHANNEL, SPURIOUS




|              | 15.00 dBm          |                                       | • RBW 100 KHz            | 2.0.2                                    |                    | _                             |             |                                     |
|--------------|--------------------|---------------------------------------|--------------------------|------------------------------------------|--------------------|-------------------------------|-------------|-------------------------------------|
| Att<br>TDF   | 25 dB              | SWT 29.7 ms                           | • VBW 300 kHz            | Mode Auto                                | 5 Sweep            |                               |             |                                     |
| PiPk Max     | -                  |                                       |                          |                                          | -                  |                               | -           |                                     |
| 10 dBm-      | -                  | · · · · · · · · · · · · · · · · · · · |                          | M1[                                      | 11                 |                               |             | 59.61 dBn                           |
|              |                    |                                       |                          | 1                                        | 1                  | 1                             | 2.          | 25680 GH                            |
| 0 dBm        | -                  | -                                     |                          |                                          |                    | -                             | 1           |                                     |
| -10 dBm      | -                  |                                       |                          |                                          |                    |                               |             |                                     |
|              |                    |                                       |                          |                                          |                    |                               |             |                                     |
| -20 dBm-     | 01 -16 530         | dBm                                   | -                        |                                          |                    |                               |             |                                     |
|              |                    |                                       |                          |                                          | -                  |                               |             |                                     |
| -30 dBm      |                    |                                       |                          |                                          |                    | -                             |             | -                                   |
| -40 dBm      |                    |                                       |                          |                                          |                    |                               |             |                                     |
| is sont      |                    |                                       |                          | 1                                        |                    |                               | 122.21      | 1.1                                 |
| -S0 dBm-     |                    |                                       |                          | -                                        |                    |                               |             |                                     |
|              |                    |                                       |                          | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |                    | M1                            | 1           |                                     |
| -60 dBm      | Andrew Like way Ma | due shikun ingersildura migal         | university of the second | depirent principle                       | Inconstructure del | are determined and the second | - MULTONICO | and and a contraction of the second |
| -70 dBm      |                    |                                       |                          |                                          |                    |                               |             |                                     |
|              |                    |                                       |                          | _                                        |                    |                               |             |                                     |
| -90 dBm      |                    |                                       |                          |                                          | -                  |                               |             |                                     |
| Start 30.0 M | MHz                |                                       | 1001                     | pts                                      |                    |                               | Sto         | p 3.0 GHz                           |
| Marker       | 1                  |                                       | 1                        | 1                                        |                    | -                             |             |                                     |
| Type Ref     | 1 Trc              | X-value<br>2.2568 GHz                 | -59.61 dB                | Functio                                  | m                  | Funct                         | ion Result  | -                                   |

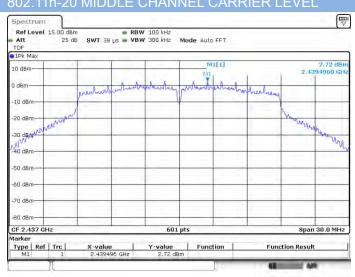
### 802.11g HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz


| Ref Le<br>Att | vel 15.00 dBn<br>25 dB       | n<br>3 SWT 23 |             | W 100 KHZ<br>W 300 KHZ | Mode Au      | to Sweep |                      |                     |                |  |
|---------------|------------------------------|---------------|-------------|------------------------|--------------|----------|----------------------|---------------------|----------------|--|
| 1Pk Ma        | ×                            |               |             |                        |              |          |                      |                     |                |  |
| 10 dBm-       | 1                            |               |             | 1                      | M            | 1[1]     | -55.43               |                     |                |  |
|               |                              |               | 1.11        | 1                      |              | 1        | (                    |                     | 07000 Gri      |  |
| 0 dBm-        | 1                            | -             |             |                        |              | -        |                      |                     |                |  |
| -10 dBm-      |                              |               |             |                        |              |          | -                    |                     |                |  |
|               | 01 -16.530                   | dBm           |             |                        |              |          |                      |                     |                |  |
| -20 dBm-      |                              |               |             | -                      | -            |          |                      |                     |                |  |
| -30 dBm-      | _                            |               |             |                        |              |          |                      |                     |                |  |
| - Co Gbillio  |                              |               |             |                        |              |          |                      |                     |                |  |
| -40 dBm-      | -                            |               |             |                        |              |          |                      |                     |                |  |
| -SO dBm-      |                              | -             |             |                        | -            | -        |                      |                     |                |  |
| 20 Opin       |                              | 2             |             |                        |              |          | 1.00                 | 1.1.1               | 1              |  |
| -da dem       | and the second second second | With Mary     | Martin Land | -                      | Martin Minth | -        | ART AND A CONTRACTOR | territe the last of | and the states |  |
| -70 d8m-      |                              |               | 1000        |                        |              |          |                      |                     |                |  |
|               |                              | 1             |             | 1.1                    |              | 1        |                      |                     |                |  |
| -80 dBm-      | -                            |               |             |                        |              |          |                      |                     |                |  |
| Start 2.      | 0 GHz                        |               |             | 4001                   | pts          |          |                      | Stop                | 25.0 GHz       |  |
| Marker        |                              |               |             |                        | 1            |          |                      | A                   | _              |  |
| Type<br>M1    | Ref Trc                      | X-value       | 65 GHz      | -55,43 dB              | Func         | tion     | Fund                 | tion Result         |                |  |



# 802.11n-20 LOW CHANNEL CARRIER LEVEL




### 802.11n-20 LOW CHANNEL, SPURIOUS 30 MHz ~ 3



### Ref Level 15.00 dBm RBW 100 kHz Att 25 dB SWT 230 ms YBW 300 kHz Mode Auto Sweep Spectrum TDF Pk Max M1[1] 58.71 dBr 94660 GH 10 dBm-0 dBm 0 dBm 01 -16.9 20 dBm n dam 0 dBm 0 dBm ukh. -60 dBm--70 dBm--90 dBm-4001 pts Stop 25.0 GHz Start 2.0 GHz larke Type Ref Trc X-value 6.9466 GHz Y-value -50.71 dBm Function Function Result 10 4.45 .

## 802.11n-20 LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz





### 802.11n-20 MIDDLE CHANNEL, SPURIOUS 30 MHz ~ 3 GHz

| 15.00 dBm<br>25 dB |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BW 100 kHz<br>BW 300 kHz | Mode Au                      | uto Sweep          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
|--------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--|
|                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                        |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
| -                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                        | M1[1] -53.76 dB<br>1 11450 G |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
| -                  | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                              | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | -               |  |
| -                  | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                              |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                 |  |
| 01 -17.280         | d9m                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
|                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | _                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
|                    |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | _                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
|                    | -                       | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | -                            | -                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -              |                 |  |
| un water and       | advante autorite        | have a second and the second sec | -Justimora and           | mandulations                 | Munipular          | a portugation have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | humanault      | and be seen and |  |
|                    | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                 |  |
|                    | _                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | -               |  |
| MHz                |                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1001                     | pts                          | -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sto            | p 3.0 GHz       |  |
| f   Trc            | X-value                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y-value                  | Fund                         |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion Result     |                 |  |
|                    | 01 -17.260<br>Чагцын эн | 101 -17,280 85m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 -17.260 UBM           | 01 -17,280 d9m-              | 01 -17,280 dBm<br> | 01 -17,280 dBm-<br>01 -17,280 dBm-<br>197.200 d | D1 -17.280 dSm | D3 -17,280 Bm   |  |

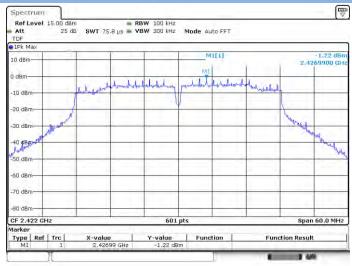
# 802.11n-20 MIDDLE CHANNEL, SPURIOUS

| Ref Leve<br>Att<br>TDF | el 15.00 dBn<br>25 di |                 |                          | BW 100 kHz<br>BW 300 kHz | Mode Au | to Sweep   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
|------------------------|-----------------------|-----------------|--------------------------|--------------------------|---------|------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|
| 1Pk Max                |                       |                 | 2                        |                          |         |            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| 10 dBm                 |                       | -               |                          |                          | M       | 1[1]       | v                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -50.68 dBr<br>6.17630 GH |  |  |
| 0 dBm                  |                       |                 |                          |                          | _       | -          | -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| -10 dBm                |                       |                 | -                        |                          | -       | -          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| -20 dBm                | 01 -17,290            | d9m             |                          |                          |         | -          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| -30 dBm                |                       |                 | -                        | -                        |         | -          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| O dBm                  |                       |                 |                          |                          | -       | -          | -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                        |  |  |
| SO dBm-                | M2                    |                 |                          | 1.1.1.1.1                |         | a mailes a | الم المام الم                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to a selection de selece |  |  |
| -60 dBm                |                       | - Lever and the | and a first state of the | anti-factorianter auto   |         |            | and we can see a second second | Contraction of the local distribution of the |                          |  |  |
| -70 d8m                | -                     |                 |                          | -                        |         |            | -                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| -90 dBm                |                       |                 |                          |                          | _       | -          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |  |  |
| Start 2.0              | GHz                   | £.              | t:                       | 4001                     | pts     |            |                                | Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0 GHz                 |  |  |
| larker<br>Type R<br>M1 | ef Trc                | X-value         | 53 GHz                   | Y-value                  | Func    | tion       | Fund                           | tion Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t                        |  |  |

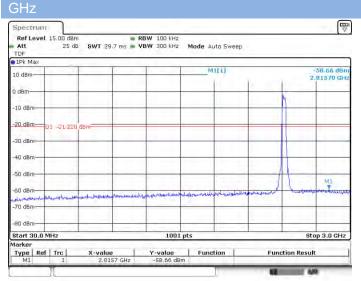


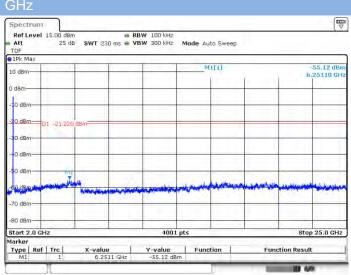


### 802.11n-20 HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Att            | 15.00 dBm<br>25 dB | SWT 29.      |                 | W 100 KHz<br>W 300 KHz | Mode Au               | uto Sweep                |            |                |                                                                                                                  |
|----------------|--------------------|--------------|-----------------|------------------------|-----------------------|--------------------------|------------|----------------|------------------------------------------------------------------------------------------------------------------|
| TDF<br>1Pk Max |                    |              |                 |                        |                       |                          |            |                |                                                                                                                  |
| 10 dBm         | -                  |              |                 |                        | M                     | -54,64 dBr<br>1.15300 GH |            |                |                                                                                                                  |
| 0 dBm          |                    |              |                 |                        | _                     |                          |            | 1              | _                                                                                                                |
| -10 dBm        |                    |              |                 |                        |                       |                          |            |                |                                                                                                                  |
| -20 dBm        | 01 -17.040 0       | iBm          |                 |                        | -                     | -                        | -          |                |                                                                                                                  |
| -30 dBm        |                    |              | -               | -                      |                       |                          |            |                |                                                                                                                  |
| -40 dBm        |                    |              | _               |                        | -                     |                          |            |                |                                                                                                                  |
| -S0 dBm        |                    |              | MI              |                        |                       |                          |            |                |                                                                                                                  |
| -60 dBm        | ukamman Ahuli      | alutionstate | ana and and and | rodinicalitationsp     | - Alexandre Alexandre | erannoway                | normal the | . Manual Maria | and the second |
| -70 d8m        |                    |              | _               |                        |                       | -                        |            | _              |                                                                                                                  |
|                |                    |              |                 |                        | 1                     |                          |            |                |                                                                                                                  |
| -80 dBm        |                    |              |                 | 1001                   | ste                   |                          |            | Sto            | p 3.0 GHz                                                                                                        |

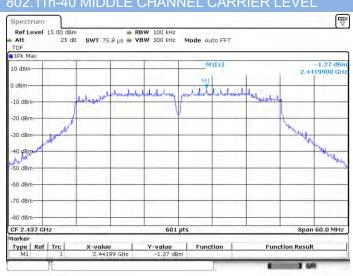
# 802.11n-20 HIGH CHANNEL, SPURIOUS


| Ref Lo<br>Att | evel 15 |        | SWT 23   |              | BW 100 kHz<br>BW 300 kHz | Mode Au          | to Sweep      |               |                           |                 |  |
|---------------|---------|--------|----------|--------------|--------------------------|------------------|---------------|---------------|---------------------------|-----------------|--|
| 1Pk M         | ах      |        |          | ō.           |                          |                  |               |               |                           |                 |  |
| 10 dBm        |         |        |          |              | 1                        | M                | 111           |               | -49,94 dBr                |                 |  |
|               |         |        |          |              |                          |                  |               | (             | и.                        | 18210 GH        |  |
| 0 dBm-        | _       |        | _        |              | -                        | _                |               | _             | -                         |                 |  |
|               |         |        |          |              |                          |                  |               |               |                           |                 |  |
| 10 dBn        |         |        |          | 1            | -                        | -                |               | -             | -                         |                 |  |
| -             | 01      | 17.040 | dBm      |              | -                        | _                | _             |               |                           |                 |  |
| a0 dBm        | -       |        |          |              | -                        |                  |               | -             |                           |                 |  |
| 30 dBm        |         |        |          |              |                          |                  |               |               |                           |                 |  |
| au aen        |         |        |          |              |                          |                  |               |               |                           |                 |  |
| 40 dBm        | -       |        |          |              |                          |                  |               |               |                           |                 |  |
|               |         | 943    |          |              | 1                        |                  |               |               |                           |                 |  |
| SO dBr        | -       |        | -        |              | -                        |                  | 1.1           |               | -                         |                 |  |
| durin in      | -       | Human  | backweit | hubing       | And the second second    | المطلبات الملقيت | And the Manua | entertainetes | and a state of the second | and the weather |  |
| 60 dBn        |         | -      |          |              |                          |                  |               |               |                           | _               |  |
|               |         |        |          |              |                          |                  |               |               | 10.0                      |                 |  |
| 70 dBm        |         |        |          |              |                          |                  |               |               |                           |                 |  |
| -90 dBm       |         |        |          |              |                          |                  |               |               | 100                       |                 |  |
|               |         |        |          |              |                          |                  |               |               | ÷                         |                 |  |
|               | 0 GHz   |        |          |              | 4001                     | pts              |               |               | Stop                      | 25.0 GHz        |  |
| larker        |         |        |          |              |                          | 1                |               |               |                           |                 |  |
| Type<br>M1    | Ref   T | 1      | X-valu   | e<br>121 GHz | -49,94 dB                | Func             | tion          | Fund          | tion Result               | _               |  |




#### 802.11n-40 LOW CHANNEL CARRIER LEVEL




### 802.11n-40 LOW CHANNEL, SPURIOUS 30 MHz ~ 3



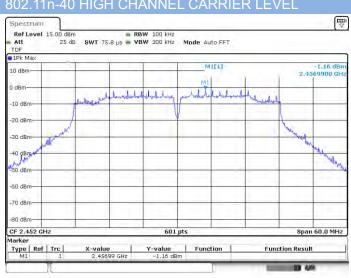


802.11n-40 LOW CHANNEL, SPURIOUS 2 GHz ~ 25





# 802.11n-40 MIDDLE CHANNEL, SPURIOUS


| Spectrum                |                    |            |                      |                        |                  |           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|--------------------|------------|----------------------|------------------------|------------------|-----------|-----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ref Level<br>Att<br>TDF | 15.00 dBm<br>25 dB |            |                      | W 100 kHz<br>W 300 kHz | Mode Au          | ito Sweep |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1Pk Max                 |                    |            |                      |                        |                  |           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm                  |                    |            |                      |                        | M                | 1[1]      |                 |            | -54,16 dB/<br>939,40 MF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 dBm                   | -                  | -          |                      |                        | -                |           |                 |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -10 dBm                 | -                  | -          |                      |                        | -                | -         |                 | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm-                | 01 -21 270         | dBm        |                      |                        |                  | _         |                 | -          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -30 dBm                 |                    |            |                      |                        |                  |           |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                 | _                  |            |                      |                        | -                | -         | _               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -S0 dBm-                |                    |            | 11                   |                        | -                | -         | -               | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -80 dBm                 | hymmoshimmh        | expression | Parson Braspanal Mar | A Manual Lange         | homilationsellet | humanalay | winterfordation | handberthe | all and the local section of the sec |
| -70 d8m                 | -                  |            |                      | -                      |                  | _         |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -80 dBm                 |                    |            |                      |                        |                  | -         |                 |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 30.0 M            | 1Hz                | t          |                      | 1001                   | nts              |           |                 | St         | op 3.0 GH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

# 802.11n-40 MIDDLE CHANNEL, SPURIOUS

| Att<br>TDF              | l 15.00 dBn<br>25 dB |        |                                                                                                                | BW 100 kHz<br>BW 300 kHz | Mode Au   | to Sweep   |                       |                        |                       |
|-------------------------|----------------------|--------|----------------------------------------------------------------------------------------------------------------|--------------------------|-----------|------------|-----------------------|------------------------|-----------------------|
| 1Pk Max                 |                      |        | Q                                                                                                              |                          |           |            |                       | _                      |                       |
| 10 dBm                  |                      |        |                                                                                                                |                          | M         | 1[1]       |                       |                        | 50.56 dBn<br>91210 GH |
| 0 dBm                   | -                    |        | -                                                                                                              | -                        | _         |            | -                     | -                      |                       |
| -: 0 dBm                |                      |        | -                                                                                                              | -                        | _         | -          |                       |                        |                       |
| -20. dBm                | 01 -21 270           | dBm    |                                                                                                                | -                        |           | -          | -                     |                        |                       |
| -30 dBm                 |                      |        | -                                                                                                              |                          |           |            |                       | -                      |                       |
| -40 dBm                 |                      |        |                                                                                                                |                          | -         |            |                       | _                      |                       |
| -SO dBm                 |                      | MI     | 20.00                                                                                                          |                          | a salite  | م بالمعالي | the first             |                        | والمطارحة والرورية    |
| -60 dBm                 |                      | hubant | al an air an |                          | Withour M |            | and any second second | A CONTRACTOR OF STREET | Shire and the play    |
| -70 dBm                 |                      | _      | -                                                                                                              | -                        |           |            |                       |                        |                       |
| -80 dBm                 |                      |        |                                                                                                                | -                        |           | -          |                       | _                      |                       |
| Start 2.0 C             | Hz                   |        | 4                                                                                                              | 4001                     | pts       |            |                       | Stop                   | 25.0 GHz              |
| Marker<br>Type Re<br>M1 | f Trc                | X-valu | IE                                                                                                             | Y-value<br>-50.56 dB     | Func      | tion       | Fund                  | tion Result            |                       |

10 000





### 802.11n-40 HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Ref Level 1<br>Att<br>TDF | 5.00 dBm<br>25 dB | SWT 29              |                   | 3W 100 KHz<br>3W 300 kHz | Mode A       | uto Sweep        |          |     |              |                       |
|---------------------------|-------------------|---------------------|-------------------|--------------------------|--------------|------------------|----------|-----|--------------|-----------------------|
| 10Pk Max                  |                   |                     |                   |                          |              |                  |          | -   |              |                       |
| 10 dBm                    | -                 |                     | · · · · · · · · · | 1                        | M            | 1(1)             |          |     |              | 53.54 dBr<br>09960 GH |
| 1 mar 1                   |                   |                     |                   | 1                        |              | ( · · · ·        | (m. 11)  |     | -            | 03500 61              |
| 0 dBm                     |                   | 11                  |                   |                          |              |                  |          | I.  |              |                       |
| -10 dBm                   |                   | _                   | -                 |                          |              | -                |          | 1   |              |                       |
| A Cart                    | 100               |                     |                   |                          |              |                  |          |     |              | -                     |
| -20 dBm-01                | -21.160.6         | dBm-                |                   |                          |              |                  | ·        | 7   |              |                       |
| -30 dBm                   | -                 | _                   |                   | -                        |              |                  | _        |     |              |                       |
| -40 dBm-                  |                   |                     |                   | -                        |              |                  |          |     |              |                       |
| -40 GBII                  |                   |                     |                   |                          |              |                  |          |     | 11           |                       |
| -S0 dBm                   |                   |                     | MT                |                          |              |                  |          | -   |              |                       |
| -S0 dBm<br>-60 dBm        | enterestede       | Luss Humble Manager | workthaling       | allowed with being       | munullywhere | a particular and | multinin | 1   | - Anna there | Antochalthouta        |
| oo dom                    |                   |                     |                   |                          |              |                  |          |     |              |                       |
| -70 dBm                   | -                 |                     |                   |                          |              |                  | -        |     |              |                       |
| -90 dBm                   |                   |                     |                   |                          |              |                  |          |     |              |                       |
| Start 30.0 Mi             | łz                |                     |                   | 1001                     | pts          |                  |          | -   | Sto          | p 3.0 GHz             |
| Marker                    |                   |                     | -                 | 100                      |              |                  |          |     | 12.12        | -                     |
| Type Ref                  | Trc 1             | X-value             | 96 GHz            | -53,54 dB                | Func         | tion             | Func     | tio | n Result     |                       |

# 802.11n-40 HIGH CHANNEL, SPURIOUS

| Att                  | evel          | 15.00 dBm<br>25 dB      |                 |                                | BW 100 KH2<br>BW 300 KH2                                                                                         | Mode Au         | to Sweep                                 |                        |                |                                |
|----------------------|---------------|-------------------------|-----------------|--------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------------------|----------------|--------------------------------|
| TDF<br>1Pk M         | ax            |                         |                 |                                | _                                                                                                                |                 |                                          |                        |                |                                |
| 10 dBm               | -             |                         |                 |                                | -                                                                                                                | M               | 1[1]                                     | _                      |                | 58.64 dBr<br>98690 GH          |
| 0 dBm-               | -             |                         | _               |                                |                                                                                                                  | _               |                                          |                        |                |                                |
| -10 dBm              | -             |                         |                 |                                | -                                                                                                                | _               |                                          | _                      |                |                                |
| -20 dBr              | -0            | 1 -21 160               | dBm             |                                | -                                                                                                                | -               |                                          | _                      |                |                                |
| -30 dBm              | -             | -                       |                 |                                | -                                                                                                                |                 |                                          |                        | -              |                                |
| -40 dBm              |               | _                       |                 | -                              | -                                                                                                                | _               |                                          | -                      | -              |                                |
| -SO dBm              |               | _                       | Ma              |                                |                                                                                                                  | _               |                                          |                        | -              |                                |
| -60 dBm              | in the second | an international states | W Lawyork Harry | Mar and And Interesting States | and the second | فأطيان والمهادي | an a | al rest in the date in | William States | all and the state of the state |
| -70 dBm              |               | _                       |                 |                                |                                                                                                                  |                 |                                          |                        |                |                                |
| -80 dBm              | -             |                         | -               |                                | -                                                                                                                | _               | -                                        |                        |                |                                |
| Start 2              | ,0 GH         | z                       |                 | -P                             | 4001                                                                                                             | pts             |                                          |                        | Stop           | 25.0 GHz                       |
| Marker<br>Type<br>M1 | Ref           | Trc                     | X-valu          | e                              | Y-value<br>-50.64 dB                                                                                             | Func            | tion                                     | Fun                    | ction Result   |                                |



### 802.11ax-20 MHz (SU) LOW CHANNEL CARRIER



# 802.11ax-20 MHz (SU) LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Att<br>TDF     | 25 0                                | IB SWT 2                 | 9.7 ms 🗯 VI          | 300 kHz                    | Mode Au   | ito Sweep    | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|-------------------------------------|--------------------------|----------------------|----------------------------|-----------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01Pk Ma        | 18                                  |                          | <u></u>              |                            |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm-        | 1                                   | -                        |                      | -                          | M         | 111          |              | -54,12 dBm<br>1,03140 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 dBm—         | -                                   | -                        | -                    | -                          |           | -            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm        | -                                   |                          |                      |                            |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm        | D1 -17.94                           | 8 dBm                    | -                    |                            |           |              | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -30 dBm        |                                     | -                        | -                    | -                          |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm        | -                                   | -                        | -                    |                            |           |              | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -S0 dBm        | -                                   | -                        | 141                  |                            |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm        | an and a construction of the second | nations that have been a | nun anderenander bet | hand a state of the second | annumbric | aunitialisty | Julashingsof | Journal had a stand and the second a |
| -70 dBm        | -                                   | -                        |                      |                            |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -90 dBm        | -                                   |                          |                      |                            |           |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 3        | 0.0 MHz                             |                          | 40                   | 1001                       | pts       |              | -            | Stop 3.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| larker<br>Type | Ref   Trc                           | X-valu                   | ie                   | Y-value                    | Func      | tion         | Func         | tion Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# 802.11ax-20 MHz (SU) LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| TDF       |                           |                | 230 ms 🖷 VE  | 10. 11. 1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mode Aut      |             |          |                                        |           |  |
|-----------|---------------------------|----------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|----------|----------------------------------------|-----------|--|
| 10 dBm-   | -                         |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M             | 1[1]        |          |                                        | 58.07 dBn |  |
| TO OBII   |                           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | ( · · · · · |          | <b>B</b> ,                             | 98110 GH  |  |
| 0 dBm-    | -                         | -              |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |             |          |                                        |           |  |
| 10.10     |                           | -              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        |           |  |
| -10 dBm-  | 1                         |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        |           |  |
| -20 dBm-  | D1 -17.440                | dBm            | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        |           |  |
| 1.5-      |                           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        |           |  |
| -30 dBm-  |                           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        | 1         |  |
| -0 dBm-   | -                         |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | -        |                                        | _         |  |
| 1.00      |                           | MI             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | -        |                                        |           |  |
| -50 dBm-  | an miliater and here have |                |              | Norther Voter Party                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | and the state | -           | manadada | والمر الفالي مرد ال                    |           |  |
| -60 dBm-  |                           | - Minter March | WWW CLANDING | and the second se |               |             |          | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           |  |
|           |                           | 1.1            | 1.1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             | - 1      |                                        | 1.00      |  |
| -70 dBm-  |                           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        |           |  |
| -90 dBm-  |                           |                | -            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -             |             |          | _                                      |           |  |
| Start 2.0 | GHz                       |                |              | 4001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pts           |             |          | Stop                                   | 25.0 GHz  |  |
| Marker    |                           |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |             |          |                                        |           |  |



### 802.11ax-20 MHz (SU) MIDDLE CHANNEL CARRIER



### 802.11ax-20 MHz (SU) MIDDLE CHANNEL, SPURIOUS

#### 30 MHz ~ 3 GHz

| Ref Level 15     |                             |                   | RBW 100 KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.0 (C. C. C.                   |                |                          |
|------------------|-----------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------|--------------------------|
| Att<br>TDF       | 25 dB <b>S</b>              | WT 29.7 ms 🗯      | VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mode Auto Sweep                  | p              |                          |
| PiPk Max         | -                           | <u></u>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                          |
| 10 dBm           | -                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1[1]                            |                | -54,15 dBm<br>1.07290 GH |
| 0 dBm            |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | -              |                          |
|                  |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1 1 1          |                          |
| -10 dBm-         |                             |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | -              |                          |
| -20 dBm- D1      | -17.620 dBm                 | _                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | -              |                          |
| -30 dBm          | _                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                | _              |                          |
| -40 dBm          | _                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | _              |                          |
| -S0 dBm          | -                           | NA                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                          |
| 60 dBm           | persphare of the particular | surproducer in    | have proved to be a provided to be provided to be a provided to be a provided to be a provi | the wanter and the second second | ad internation | managelikhouterenteren   |
| -70 dBm          | _                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                          |
| -80 dBm          | -                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                |                          |
| Start 30.0 MH:   | z                           |                   | 1001 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ts                               | -              | Stop 3.0 GHz             |
| larker           |                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | Sector d       |                          |
| Type Ref 1<br>M1 | rc x                        | -value 1.8729 GHz | -54.15 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Function                         | Funct          | tion Result              |

# 802.11ax-20 MHz (SU) MIDDLE CHANNEL SPURIOUS

#### 2 GHz ~ 25 GHz

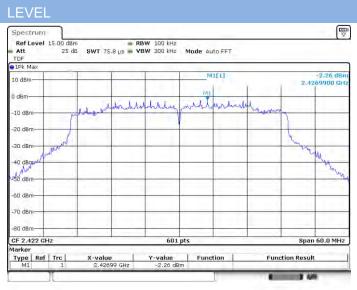
| Ref Leve<br>Att | 1 15.00 dBn<br>25 dB |                |                           | W 100 kHz<br>W 300 kHz | Mode Au   | to Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                |                                                                                                                |               |
|-----------------|----------------------|----------------|---------------------------|------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
| TDF<br>1Pk Max  |                      |                |                           | 8                      | 10000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                |               |
| 10 dBm          | ·                    | 1              | 1                         |                        | M         | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | -                                                                                                              | 50.18 dBr     |
| 10 dBm-         |                      |                |                           |                        |           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                              | Đ,                                                                                                             | 97540 GH      |
| dBm             |                      | -              | -                         |                        |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                              |                                                                                                                |               |
| 1.5             |                      |                |                           | -                      |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                |               |
| -10 dBm         |                      |                |                           |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                |               |
| -20 dBm         | D1 -17.620           | dBm            |                           |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                | -             |
| 1.2             | -                    | -              |                           |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                |               |
| 30 dBm-         |                      | -              |                           | -                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                |               |
| -0 dBm-         |                      | -              | _                         |                        | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                | _             |
| 1               |                      | MI             |                           |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                |               |
| 0 dBm-          | In the second        | 1A             | Children and              | 1. No. 7               | a a males | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U. Harris                                                                                                      | والد التركين والم                                                                                              | and the state |
| -60 dBm         |                      | - White office | and a state of the second | in wind them the part  | Mana and  | and the second s | The second s | A CONTRACTOR OF CONTRACTOR |               |
|                 |                      |                |                           |                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                                                |               |
| -70 dBm         |                      |                |                           |                        |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                |               |
| -90 dBm         |                      |                |                           |                        | -         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                                                |               |
| Start 2.0       | Hz                   |                |                           | 4001                   | nts       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | Ston                                                                                                           | 25.0 GHz      |
| larker          |                      |                |                           |                        |           | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.7                                                                                                          |                                                                                                                |               |
| Type   Re       | f Trc                | X-valu         | 754 GHz                   | Y-value<br>-50,18 dB   | Func      | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fun                                                                                                            | tion Result                                                                                                    |               |



### 802.11ax-20 MHz (SU) HIGH CHANNEL CARRIER



# 802.11ax-20 MHz (SU) HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Att<br>TDF             | el 15.00 dBn<br>25 dB |               | 9.7 ms 🕨 VI          | 3W 100 KHz<br>3W 300 KHz | Mode Au     | to Sweep      |               |             |                       |
|------------------------|-----------------------|---------------|----------------------|--------------------------|-------------|---------------|---------------|-------------|-----------------------|
| 91Pk Max               |                       | -             | ~                    | -                        |             |               |               |             |                       |
| 10 dBm-                | -                     | -             | -                    |                          | M           | 1[1]          |               |             | 54.17 dBn<br>08480 GH |
| 0 dBm                  |                       |               |                      |                          | _           |               | -             | 1           | 1                     |
| -10 dBm-               |                       | -             |                      |                          |             | -             |               |             |                       |
| -20 dBm                | D1 -17.470            | l dBm         |                      |                          |             |               |               |             |                       |
| -30 dBm                |                       |               |                      | -                        | _           |               |               |             | _                     |
| -40 dBm                |                       |               |                      |                          |             | -             |               | -           |                       |
| -50 dBm-               |                       |               | -912                 |                          | _           |               |               |             |                       |
| -60 dBm-               | and product the mode  | . Unnandersed | in the second second | almonth and the          | whilehelder | constantily a | Andrewsenhand | Henryamanta | lalaphininganaya ya   |
| -70 d8m-               |                       |               |                      |                          | _           | _             |               |             |                       |
| -80 dBm                |                       |               |                      |                          | _           | _             |               |             |                       |
| Start 30.              | 0 MHz                 |               |                      | 1001                     | pts         |               |               | Sto         | pp 3.0 GHz            |
| Marker<br>Type R<br>M1 | ef Trc                | X-valu        | ie                   | Y-value<br>-54.17 dB     | Func        | tion          | Funct         | ion Result  |                       |

# 802.11ax-20 MHz (SU) HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| 1Pk Max   |                                                |       | Q                      |       |               |                           |                |                |                       |
|-----------|------------------------------------------------|-------|------------------------|-------|---------------|---------------------------|----------------|----------------|-----------------------|
| 10 dBm—   |                                                |       |                        |       | M             | 111                       |                |                | 50.14 dBr<br>97540 GH |
| dBm-      | -                                              | _     |                        |       |               | -                         |                | 1              |                       |
| -10 dBm-  |                                                | -     |                        |       | 1             |                           |                |                |                       |
| -20 dBm   | D1 -17.470                                     | l dBm |                        |       |               |                           |                |                |                       |
| 30 dBm-   |                                                |       |                        |       |               |                           |                |                |                       |
| -40 dBm-  |                                                | -     |                        |       |               |                           | _              |                | 1                     |
| 50 dBm-   |                                                | MI    | _                      |       |               |                           |                |                |                       |
| 60 dBm-   | - HARRAN AND AND AND AND AND AND AND AND AND A | human | an and a standing stop | -     | والبيديهانهان | terset to Mail and all is | hoteliketekeel | Wintersteinute | multiphototic         |
| -70 dBm-  |                                                |       |                        | 1.    |               |                           |                |                |                       |
| -90 dBm   | 1.1                                            |       |                        | 1.1.1 |               | 1.11                      |                |                | 11.0                  |
| Start 2.0 | CH2                                            |       | 14                     | 4001  | t pts         |                           |                | Ston           | 25.0 GHz              |



### 802.11ax-40 MHz (SU) LOW CHANNEL CARRIER



# 802.11ax-40 MHz (SU) LOW CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Att                    | el 15.00 dBr<br>25 di         |                       | .7 ms 👅 VB         | W 100 kHz                     | Mode A      | to Sweep   |            |               |                       |
|------------------------|-------------------------------|-----------------------|--------------------|-------------------------------|-------------|------------|------------|---------------|-----------------------|
| TDF<br>1Pk Max         |                               |                       |                    |                               |             |            |            |               |                       |
| 10 dBm-                | 1                             |                       |                    | 1                             | M           | 111        |            |               | 59.00 dBr<br>63770 GH |
| 0 dBm                  | -                             | -                     | _                  |                               |             |            | -          |               |                       |
| -10 dBm-               |                               |                       |                    |                               |             | -          |            | μ             |                       |
| -20 d8m                | 01 -22.260                    | l dBm                 |                    |                               |             |            |            |               |                       |
| -30 dBm-               |                               |                       |                    | -                             | _           |            |            |               |                       |
| -40 dBm-               |                               |                       |                    |                               | _           | -          |            |               |                       |
| -S0 dBm-               | -                             |                       |                    |                               | -           | -          |            | mi            |                       |
| -60 dBm-               | and the particul of the state | Law alter governation | ip analikan waidow | and in the line of the second | newwww.huch | uniopumbed | adamstered | Sperie astron | and the second second |
| -70 d8m-               |                               |                       |                    |                               |             |            |            |               |                       |
| -80 dBm-               |                               |                       |                    |                               |             |            | _          |               |                       |
|                        | tart 30.0 MHz 100             |                       |                    |                               |             |            |            | Sto           | p 3.0 GHz             |
| Marker<br>Type F<br>M1 | tef Trc                       | X-value               | 77 GHz             | Y-value                       | Func        | tion       | Fund       | tion Result   |                       |

# 802.11ax-40 MHz (SU) LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| Att<br>TDF |             | 25 di          | SWT 2           | 30 ms 🖷 🗸 | BW 300 kHz              | Mode Au | to Sweep              |                |                  |                     |
|------------|-------------|----------------|-----------------|-----------|-------------------------|---------|-----------------------|----------------|------------------|---------------------|
| 1Pk M      | ax.         | _              |                 | 1         | 1                       | M       | 1[1]                  |                |                  | 54.18 dBn           |
| 10 dBm     | -           | -              |                 |           |                         |         | 111                   | X              |                  | 75940 GH            |
| 0 dBm-     |             |                |                 |           |                         |         |                       |                |                  | 9                   |
| u sionin   |             |                | 11              |           | 121                     |         | 1                     |                |                  |                     |
| -: O dBr   |             | -              |                 |           |                         | -       | -                     |                |                  |                     |
| -20 dBm    |             |                |                 |           |                         | -       |                       |                |                  |                     |
|            | 0           | 1 -22:960      | dBm             |           |                         |         |                       |                |                  |                     |
| -30 dBn    | -           |                |                 |           | -                       |         |                       |                |                  |                     |
| -O dBri    |             | _              |                 |           | -                       | _       | -                     |                |                  |                     |
| -50 dBm    |             | -              |                 |           |                         |         | 101                   | -              |                  |                     |
| SO UBI     |             | -              | 1               |           |                         |         | T                     | Sec. March     | - 10-2           |                     |
| -DEL dad   | <b>Male</b> | the stand with | Minhilselligues | -         | Conception and the send | manan   | And the second second | and the second | AND CALIFICATION | a particular second |
| -70 dBm    |             |                |                 | 10-0      | 1                       |         |                       |                |                  |                     |
| 10.001     |             |                |                 |           | 11100                   |         | S                     |                |                  |                     |
| -80 dBm    | -           | -              |                 |           | -                       |         |                       |                |                  |                     |
| Start 2    | O GH        | z              |                 |           | 4001                    | pts     |                       | 1              | Stop             | 25.0 GHz            |
| Marker     | 17          |                |                 |           |                         |         | 100.00                | - C            | 0.000            |                     |
| Type<br>M1 | Ref         | Trc 1          | X-valu          | 94 GHz    | -54.18 dB               | Fund    | tion                  | Functi         | on Result        |                     |



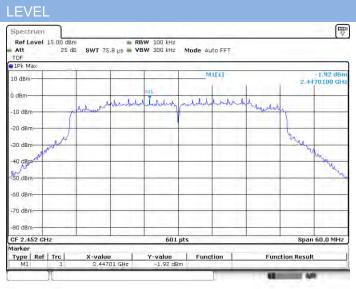
### 802.11ax-40 MHz (SU) MIDDLE CHANNEL CARRIER



### 802.11ax-40 MHz (SU) MIDDLE CHANNEL, SPURIOUS

#### 30 MHz ~ 3 GHz

| Ref Le<br>Att<br>TDF | vel 15.      | 25 dB     | SWT 29            |                                         | BW 100 KHz<br>BW 300 KHz         | Mode Au                | ito Sweep |                |             |                        |
|----------------------|--------------|-----------|-------------------|-----------------------------------------|----------------------------------|------------------------|-----------|----------------|-------------|------------------------|
| 🛛 1Pk Ma             | ax.          |           |                   | -                                       |                                  |                        |           |                |             |                        |
| 10 dBm-              |              |           |                   |                                         | -                                | M                      | 1[1]      |                |             | 54.35 dBn<br>975.00 MH |
| 0 dBm—               | -            | _         | _                 | -                                       |                                  |                        |           | -              | -           |                        |
| -10 dBm              | -            | -         | _                 |                                         | -                                |                        | -         |                | <u> </u>    |                        |
| -20 dBm              | -01 -        | 21.810    | dBm               |                                         | -                                | _                      | _         | _              |             |                        |
| -30 dBm              | -            |           | _                 |                                         | -                                |                        |           | -              |             |                        |
| -40 dBm              | -            | _         | _                 |                                         | -                                |                        | -         | -              | -           |                        |
| -S0 dBm              |              |           | an anticas data a | And | upped- where days to real income | 10000                  |           |                | Latingard   | historestature         |
| -60 dBm              | - Martineton |           | tur franchine     | 1.                                      | again dar bertenainanne          | (without work with the | manning   | a planeter but |             |                        |
| -70 dBm              |              | _         |                   |                                         | -                                |                        |           |                |             |                        |
| -80 dBm              | -            |           |                   |                                         |                                  |                        | -         |                |             |                        |
| Start 3              | 0.0 MHz      | -         |                   |                                         | 1001                             | pts                    |           |                | Sto         | op 3.0 GHz             |
| Marker<br>Type<br>M1 | Ref   Ti     | rc  <br>1 | X-value           | 0 MHz                                   | Y-value<br>-54,35 dB             | Func                   | tion      | Fund           | tion Result | 1                      |


## 802.11ax-40 MHz (SU) MIDDLE CHANNEL SPURIOUS

#### 2 GHz ~ 25 GHz

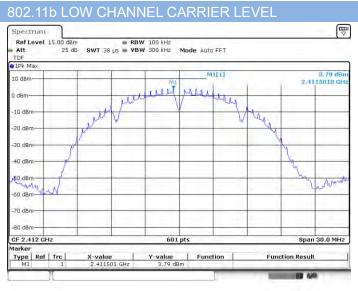
| Att                    | vel 15.00 dBn<br>25 dB |                 |                        | W 100 kHz<br>W 300 kHz | Mode Au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to Sweep       |                           |             |          |
|------------------------|------------------------|-----------------|------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------|-------------|----------|
| TDF<br>1Pk Max         |                        | E 343.          |                        |                        | 1.1.1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                           |             |          |
| 10 dBm—                |                        | -               |                        | -                      | M1[1] -49.57<br>0.99260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                           |             |          |
| 0 dBm-                 | -                      |                 | -                      |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | -                         |             |          |
| -: 0 dBm               | -                      |                 |                        |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | -                         |             |          |
| -20 dBm-               | 01 -21,810             | dBm             |                        |                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                           |             |          |
| -:0 dBm                |                        |                 |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -                         | -           | -        |
| -40 dBm-               | -                      |                 |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                           |             |          |
| -SO dBm-               | -                      | 611             | G. (1. 1. 1.)          | ور المانينيون          | an an aite dates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | و بنار المام ا |                           | L. Alterio  |          |
| -60 dBm-               |                        | 1 Kingereistens | la provident formation |                        | and the second s |                | A 161 A 161 A 161 A 161 A |             |          |
| -70 d8m-               | -                      | _               |                        |                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _              |                           |             |          |
| -80 dBm-               |                        |                 |                        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                           |             |          |
| Start 2.0              | GHz                    |                 |                        | 4001                   | pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                           | Stop        | 25.0 GHz |
| Marker<br>Type I<br>M1 | Ref Trc                | X-value         | e                      | Y-value<br>-49.57 dB   | Func                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion           | Fund                      | tion Result |          |



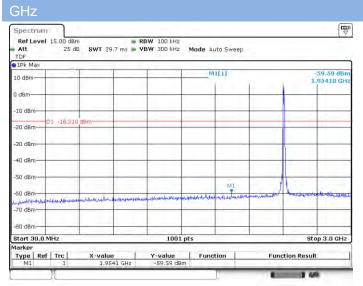
### 802.11ax-40 MHz (SU) HIGH CHANNEL CARRIER



# 802.11ax-40 MHz (SU) HIGH CHANNEL, SPURIOUS 30 MHz ~ 3 GHz


| Ref Lo<br>Att<br>TDF | evel :   | 15.00 dBm<br>25 dB                                  |                                        |        | BW 100 kHz |                   | uto Sweep |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|----------|-----------------------------------------------------|----------------------------------------|--------|------------|-------------------|-----------|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PiPk M               | ах       | -                                                   |                                        | -      |            |                   |           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10 dBm               | -        |                                                     |                                        |        |            | M                 | 1[1]      |             |             | -53.95 dBn<br>475.50 MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 dBm—               | -        | -                                                   | _                                      |        | -          |                   |           | -           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10 dBm              | -        |                                                     |                                        | -      | -          | -                 |           |             | A           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20 dBm              | -        | 1 -21,920                                           | d9m                                    |        | -          |                   | _         |             |             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -30 dBm              | -        | _                                                   |                                        |        |            |                   | _         |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 dBm               |          |                                                     | _                                      |        |            |                   |           | _           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -SO dBm              | +        | M1                                                  | Card and                               | 1      |            | -                 |           |             | Н.,         | all the Patrice barren da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -60 dBm              | Adelahan | million and any | a anna anna anna anna anna anna anna a | manual | Monaldwara | weekeen have with | monome    | a hailtaile | Sectionally | And the second s |
| -70 dBm              | -        | _                                                   |                                        |        | -          |                   |           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -80 dBm              | -        |                                                     |                                        |        |            |                   |           |             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 3              | 0.0 M    | Hz                                                  |                                        |        | 1001       | pts               |           |             | S           | top 3.0 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Marker<br>Type<br>M1 | Ref      | Trc                                                 | X-value                                | 5 MHz  | Y-value    | Func              | tion      | Func        | tion Resu   | lt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# 802.11ax-40 MHz (SU) HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

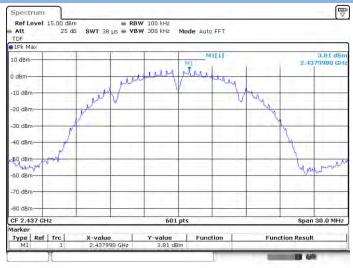

| 1Pk Max   |                       |               |               |      |               |                   |                       |                |                       |
|-----------|-----------------------|---------------|---------------|------|---------------|-------------------|-----------------------|----------------|-----------------------|
| 10 dBm    | 1                     |               |               |      | M             | 1(1)              |                       |                | 50.29 dBi<br>14760 GH |
| 0 dBm     | -                     |               |               |      |               |                   |                       | 1              | 1.1                   |
| 1         |                       | 11            |               |      |               |                   | -                     |                |                       |
| -10 dBm   |                       | -             |               |      |               |                   |                       |                |                       |
| -20 dBm   | 01 -21,920            | dBm           |               |      | _             |                   | _                     |                |                       |
| -30 dBm   |                       |               |               | -    |               |                   |                       |                |                       |
| -40 dBm   | -                     |               |               |      |               |                   | -                     |                |                       |
| -90 dBm   | Ma                    |               |               | _    |               |                   | -                     | -              |                       |
| -         | a second and a second | Manual Astern | and the stand | -    | and when when | - William Station | and the second second | بعرجال والتصغي | -                     |
| -60 dBm-  |                       |               |               |      |               |                   |                       |                |                       |
| -70 d8m   | -                     |               |               |      |               |                   |                       | _              |                       |
| -90 dBm   |                       |               |               |      | _             |                   | _                     |                | 11                    |
| Start 2.0 | 011-                  | L .           | e)            | 4001 | nte           |                   |                       | Ptor           | 25.0 GHz              |



#### Aux. Antenna



## 802.11b LOW CHANNEL, SPURIOUS 30 MHz ~ 3 $\,$




# 802.11b LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| Att<br>TDF            | el 15.00 dBm<br>25 dB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 ms - VB            | W 100 KHZ<br>W 300 KHZ                                                                                          | Mode Au | to Sweep         |            |                             |           |  |
|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|---------|------------------|------------|-----------------------------|-----------|--|
| 🛾 1Pk Max             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                     |                                                                                                                 |         |                  |            |                             |           |  |
| 10 dBm-               |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                     | 1                                                                                                               | M       | 1111             |            | -55.37 dBn<br>6.25110 GH    |           |  |
| 0 dBm                 |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                 | _       |                  | -          |                             |           |  |
| -10 dBm               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                 | -       |                  |            |                             |           |  |
| -20 dBm               | 01 -16:210            | dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                 |         |                  |            |                             |           |  |
| -30 dBm               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                 | -       |                  | -          |                             |           |  |
| -40 dBm               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     |                                                                                                                 |         | -                |            |                             |           |  |
| -50 dBm               | T                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                 |         | -                |            |                             |           |  |
| AR depart             | A statistic Pro       | a de la construcción de la const | and the second second | in the second | -       | Autorite Martine | Hit Harris | in the second second second | Manager 1 |  |
| -70 dBm               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                 |         | 1                |            |                             | 11.0.0    |  |
| -80 dBm—<br>Start 2.0 | GHz                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 4001                                                                                                            | pts     |                  |            | Stor                        | 25.0 GHz  |  |
| Marker                |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                 | 1.      |                  | -          |                             | -         |  |
| Type R<br>M1          | ef Trc                | X-valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e<br>11 GHz           | -55.37 dB                                                                                                       | Func    | tion             | Fund       | tion Result                 |           |  |

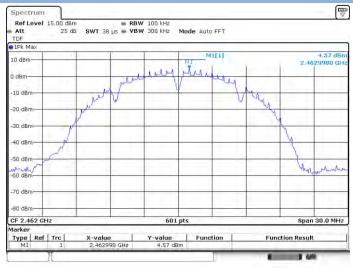


### 802.11b MIDDLE CHANNEL CARRIER LEVEL



# 802.11b MIDDLE CHANNEL, SPURIOUS

#### 30 MHz ~ 3 GHz


| Ref Leve<br>Att<br>TDF | l 15.00 dBm<br>25 dB          |                     |                      | 3W 100 KHz<br>3W 300 KHz  | Mode Au         | uto Sweep |      |               |                       |
|------------------------|-------------------------------|---------------------|----------------------|---------------------------|-----------------|-----------|------|---------------|-----------------------|
| 10/<br>1Pk Max         |                               | _                   |                      |                           | _               | _         |      |               |                       |
| 10 dBm                 | -                             |                     |                      | M1[1]                     |                 |           |      |               | 59.70 dBn<br>30130 GH |
| 0 dBm                  |                               | _                   |                      |                           |                 |           |      |               |                       |
| -10 dBm                |                               |                     |                      |                           | -               |           |      |               | -                     |
| -20 dBm                | 01 -16 190                    | dBm                 |                      |                           |                 |           | -    |               |                       |
| -30 dBm                | -                             |                     |                      |                           |                 |           |      |               |                       |
| -40 dBm                |                               |                     |                      |                           | _               | _         |      |               |                       |
| -50 dBm                | _                             | -                   |                      |                           |                 |           |      |               |                       |
| -60 dBm                |                               |                     |                      | - affer and an address of | - 1.0110        |           | M1   | Colectorayada | to Landa Bangaran     |
| -70 dBm                | بالمرابعة ومارية ألواريه والم | a manufaction thema | enter and the second | - Althoused in second     | AND ALL COMPANY |           |      | 0             |                       |
| -80 dBm                |                               |                     |                      |                           | -               |           |      |               |                       |
| Start 30.0             | MHz                           |                     |                      | 1001                      | pts             |           |      | Sto           | p 3.0 GHz             |
| Marker<br>Type Re      | f   Trc                       | X-value             |                      | Y-value                   | Func            | tion      | Fund | tion Result   |                       |

### 802.11b MIDDLE CHANNEL, SPURIOUS 2 GHz ~ 25 GHz

| Ref Lev<br>Att<br>TDF  | el 15.00 dBr<br>25 di |                      |                | BW 100 kHz<br>BW 300 kHz | Mode Au  | to Sweep |                           |             |                   |  |
|------------------------|-----------------------|----------------------|----------------|--------------------------|----------|----------|---------------------------|-------------|-------------------|--|
| 1Pk Max                |                       |                      | Q.             |                          |          | _        |                           |             |                   |  |
| 10 dBm-                |                       |                      |                |                          | 1[1]     |          | -56.00 dBm<br>6.86040 GHz |             |                   |  |
| 0 dBm                  | -                     | -                    |                | -                        | -        | -        | -                         | -           |                   |  |
| -10 dBm-               |                       |                      |                | -                        | _        |          |                           |             |                   |  |
| -20 dBm                | 01 -16.190            | dBm-                 |                |                          |          |          |                           |             |                   |  |
| 30 dBm                 | -                     |                      |                |                          |          |          |                           |             |                   |  |
| -40 dBm                |                       |                      |                | -                        |          | _        |                           |             |                   |  |
| \$0 dBm—               |                       | MI                   |                |                          | _        | -        | -                         |             |                   |  |
| ag dem                 | A straining to the    | i de la constitución | and a local la | -                        | WAR PARA | -        | and the second            | -           | Martillian Martin |  |
| -70 dBm                |                       | 10.11                |                |                          | -        |          |                           |             |                   |  |
| -90 dBm—               |                       |                      |                |                          | _        |          |                           |             |                   |  |
| Start 2.0              | GHz                   |                      |                | 4001                     | ots      |          |                           | Stop        | 25.0 GHz          |  |
| larker<br>Type R<br>M1 | ef Trc                | X-value              | 9  <br>04 GHz  | Y-value                  | Func     | tion     | Fund                      | tion Result |                   |  |

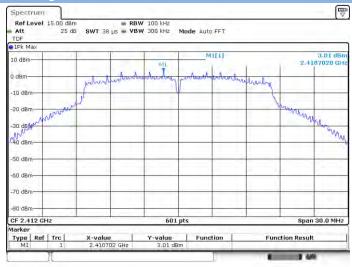


#### 802.11b HIGH CHANNEL CARRIER LEVEL

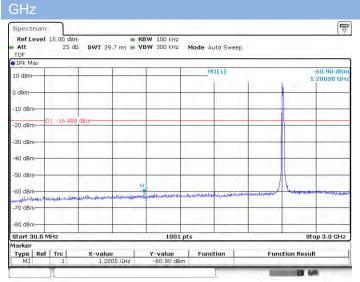


# 802.11b HIGH CHANNEL, SPURIOUS

#### 30 MHz ~ 3 GHz


| Att<br>TDF | evel 1  | 5.00 dBm<br>25 dB |               |            | BW 100 KHz<br>BW 300 KHz | Mode A            | uto Sweep    |                  |             |                          |
|------------|---------|-------------------|---------------|------------|--------------------------|-------------------|--------------|------------------|-------------|--------------------------|
| O 1Pk M    | ах      |                   |               |            |                          |                   |              |                  |             |                          |
| 10 dBm-    |         |                   |               |            |                          | M                 | 1(1)         |                  |             | 60.33 dBn<br>98830 GH    |
|            |         |                   |               |            |                          |                   |              |                  | 1           | bood an                  |
| 0 dBm-     | -       |                   |               |            |                          | Sec. 1            |              |                  | 1           |                          |
| -10 dBm    |         |                   |               |            |                          |                   |              |                  |             |                          |
| 10 000     |         | -15.430           | dBm           |            |                          | <u> </u>          |              |                  | 1           |                          |
| -20 dBm    |         |                   |               |            | -                        |                   |              |                  | -           |                          |
| -30 dBm    |         |                   |               |            |                          |                   |              | _                |             |                          |
| -40 dBm    |         |                   | -             |            | -                        | _                 |              |                  |             |                          |
| -S0 dBm    |         |                   | _             |            |                          | _                 |              |                  |             |                          |
| -60 dBm    | -     - |                   |               |            | · · · · · · · · · ·      |                   | MI           |                  | 14          | 1                        |
| -ou ubir   | under   | contrall          | amale candade | manalianda | al maninistered by       | Ulterrorutullitor | unable phone | and the shall be | - distantas | and conclusion that says |
| -70 dBm    |         | 1112              |               |            |                          | -                 |              |                  |             |                          |
| -90 dBm    | -       | -                 |               |            | -                        | _                 | -            |                  | _           |                          |
| Start 3    | 0.0 MH  | z                 |               |            | 1001                     | pts               |              | -                | Sto         | p 3.0 GHz                |
| Marker     |         |                   |               |            | 1. C                     | 1                 |              | S                |             |                          |
| Type<br>M1 | Ref     | Trc<br>1          | X-value       | B3 GHz     | Y-value<br>-60.33 dB     | Func              | tion         | Fund             | ion Result  |                          |

### 802.11b HIGH CHANNEL, SPURIOUS 2 GHz ~ 25 GHz


| Ref Lo<br>Att  |       | 15.00 dBm<br>25 dB |                       | 0 ms • VB | W 100 KHZ<br>W 300 KHZ | Mode Au         | to Sweep         | <i></i>                  |                          |          |
|----------------|-------|--------------------|-----------------------|-----------|------------------------|-----------------|------------------|--------------------------|--------------------------|----------|
| P1Pk M         | ах    |                    |                       | 2         |                        |                 |                  |                          |                          |          |
| 10 dBm         |       |                    | -                     | · · · · · | · · · · ·              | M               | 111              | -55.20 dBn<br>6.25110 GH |                          |          |
| o dam-         | _     | _                  |                       |           |                        | _               | -                |                          |                          |          |
| -10 dBn        |       |                    |                       |           |                        | _               |                  |                          |                          |          |
| -20 dBm        |       | 1 -15 430          | dBm                   |           |                        | -               |                  |                          |                          |          |
| <0 dBn         | r     |                    |                       |           |                        | -               |                  |                          | -                        |          |
| -40 dBm        |       | _                  | -                     |           |                        | -               |                  |                          |                          |          |
| -S0 dBri       | -     | - MA               |                       |           |                        | -               |                  |                          |                          |          |
| -dq,den        |       | -                  | with the state of the |           | -                      | with ministerio | Amonital Strengt | the stand and the stand  | A francisco and a second | -        |
| -70 dBm        | -     |                    |                       |           |                        |                 |                  |                          |                          |          |
| -80 dBm        | -     |                    |                       |           |                        |                 |                  |                          |                          |          |
| Start 2        | .0 GH | z                  |                       |           | 4001                   | pts             |                  |                          | Stop                     | 25.0 GHz |
| Marker<br>Type | Ref   | Trel               | X-value               | . 1       | Y-value                | Func            | tion 1           | Fun                      | ction Result             |          |
| M1             |       | 1                  |                       | 11 GHz    | -55.20 dB              |                 |                  |                          | action reasons           |          |



#### 802.11g LOW CHANNEL CARRIER LEVEL



# 802.11g LOW CHANNEL, SPURIOUS 30 MHz ~ 3



#### Spectrum Ref Level 15.00 dBm RBW 100 kH2 Att 25 dB SWT 230 ms VBW 300 kH2 Mode Auto Sweep TOP O IPK Max M1[1] 55.52 dBn 83740 GH 10 dBm ,dBm 0 dBm 1 -16.9 0 dBm O dBm 0 dBm 0 dBm -70 dBm-90 dBm 4001 pts Stop 25.0 GHz Start 2.0 GHz larke Type Ref Trc X-value 6.8374 GHz Y-value -55.52 dBm Function Function Result 11 646

# 802.11g LOW CHANNEL, SPURIOUS 2 GHz ~ 25 GHz