

RADIO TEST REPORT FCC ID: 2AYOQ-BTRCRMIC

Product:Universal Wireless Controller with MicrophoneTrade Mark:DS18Model No.:BTRCRMICFamily Model:N/AReport No.:S22082600701001Issue Date:Oct 14. 2022

Prepared for

SPIRIT LLC 1400 NW 159TH ST, BAY 101 MIAMI GARDENS, FL 33169,USA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1 T	1 TEST RESULT CERTIFICATION			
2 S	2 SUMMARY OF TEST RESULTS			
3 F.	ACILITIES AND ACCREDITATIONS	5		
3.1	FACILITIES			
3.2	LABORATORY ACCREDITATIONS AND LISTINGS			
3.3	MEASUREMENT UNCERTAINTY			
	SENERAL DESCRIPTION OF EUT			
5 D	DESCRIPTION OF TEST MODES	8		
6 SI	ETUP OF EQUIPMENT UNDER TEST	9		
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM			
6.2	SUPPORT EQUIPMENT	10		
6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS			
7 T	EST REQUIREMENTS	13		
7.1	CONDUCTED EMISSIONS TEST			
7.2	RADIATED SPURIOUS EMISSION			
7.3	NUMBER OF HOPPING CHANNEL			
7.4	HOPPING CHANNEL SEPARATION MEASUREMENT			
7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)			
7.6	20DB BANDWIDTH TEST			
7.7	PEAK OUTPUT POWER			
7.8	CONDUCTED BAND EDGE MEASUREMENT			
7.9	SPURIOUS RF CONDUCTED EMISSION			
7.10				
	FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS			
8 T	EST RESULTS			
8.1	DWELL TIME			
8.2	MAXIMUM CONDUCTED OUTPUT POWER			
8.3	OCCUPIED CHANNEL BANDWIDTH			
8.4	CARRIER FREQUENCIES SEPARATION			
8.5	NUMBER OF HOPPING CHANNEL	53		
8.6	BAND EDGE			
8.7	CONDUCTED RF SPURIOUS EMISSION	63		

1 TEST RESULT CERTIFICATION

Applicant's name	SPIRIT LLC
Address	1400 NW 159TH ST, BAY 101
	MIAMI GARDENS, FL 33169,USA
Manufacturer's Name	DECCON INTERNATIONAL LTD.
Address	7F, No.31 Lane 341, Chuang Ching Rd., Taipei, Taiwan
Factory's name	DONGGUAN CHAMPION ELECTRONICS LTD
Address	ANG-WEI INDUSTRY DISTRICT, SHIPAI , DONGGUAN,
	GUANDONG, CHINA , 523337
Product description	
Product name	Universal Wireless Controller with Microphone
Model and/or type reference	BTRCRMIC
Family Model	N/A
Test sample number	S220826007002

Measurement Procedure Used:

APPLICABLE STANDARDS

FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	TEST RESULT Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Aug 26. 2022 ~ Oct 14. 2022
Testing Engineer	: (Susan li)
Authorized Signatory	Ades
	(Alex Li)

2 SUMMARY OF TEST RESULTS				
FCC Part15 (15.247), Subpart C				
Standard Section	Test Item Verdict Remark			
15.207	Conducted Emission	N/A		
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS		
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.203	Antenna Requirement	PASS		

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test ±2.80dB	
2	RF power, conducted ±0.16dB	
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment	Universal Wireless Controller with Microphone	
Trade Mark	DS18	
FCC ID	2AYOQ-BTRCRMIC	
Model No.	BTRCRMIC	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	-0.58 dBi	
Power supply	DC 12V-14.4V	
Adapter	N/A	
Battery	N/A	
HW Version	N/A	
SW Version	N/A	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode, the power level is the software default value.

Certificate #4298.01			
Revision History			
Version	Description	Issued Date	
Rev.01	Initial issue of report	Oct 14. 2022	
<u> </u>			
	R	Revision History Version Description	

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for $\pi/4$ -DQPSK modulation) were used for all test. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

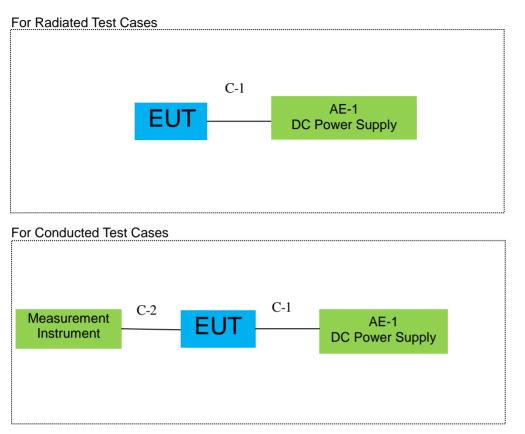
Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.


For Conducted Test Cases		
Final Test Mode	Description	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

Note: 1. The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	DC Power Supply	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power cable	NO	NO	0.3m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Vaulatio		estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A
18	DC Power Supply	Zhaoxin	PS-6005D	2017040078 1	2020.05.11	2023.05.10	3 year

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

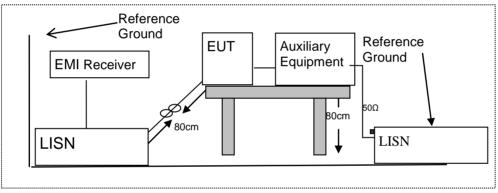
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

N/A

7.1.6 Test Results

EUT:	Universal Wireless Controller with Microphone	Model Name :	BTRCRMIC
Temperature:	121 6 1	Relative Humidity:	56%
Pressure:	1010hPa	Phase :	N/A
Test Voltage :	N/A	Test Mode:	N/A

Note:Not applicable

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
ſ	0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
ſ	0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
ſ	1.705~30.0	30	29.5	30
ſ	30-88	100	40	3
ſ	88-216	150	43.5	3
ſ	216-960	200	46	3
	Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	′m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

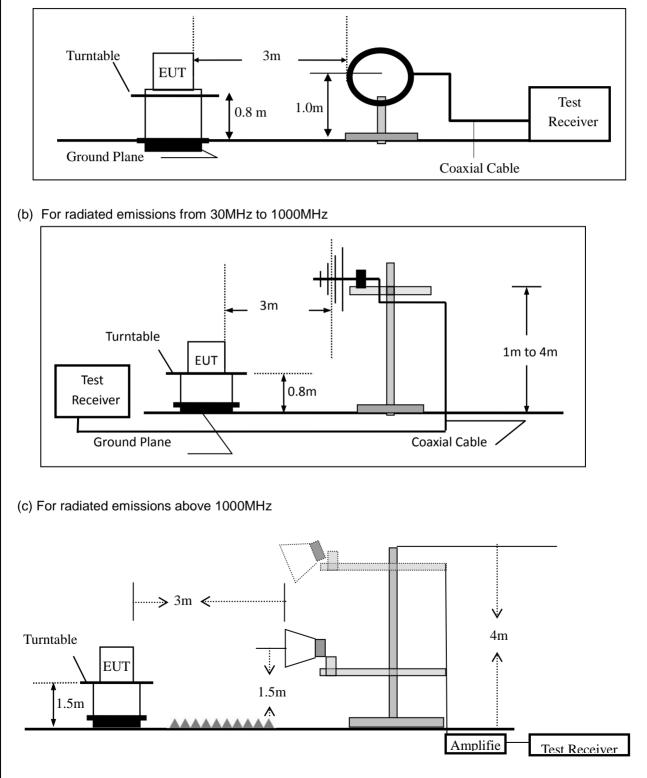
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEK 北测[®]


7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

ACCREDITED Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

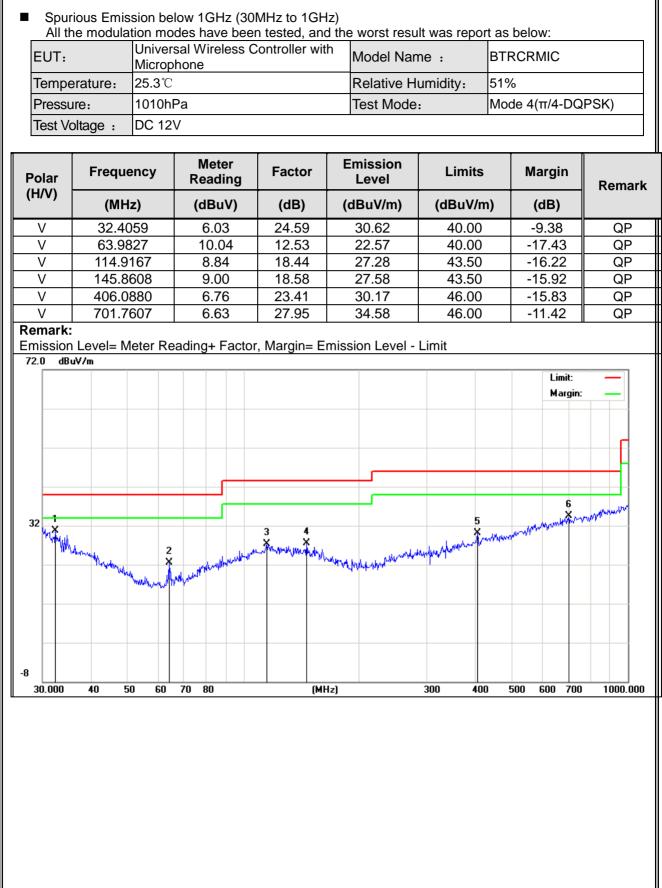
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:					
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth		
30 to 1000	QP	120 kHz	300 kHz		
Ab 200	Peak	1 MHz	1 MHz		
Above 1000	Average	1 MHz	1 MHz		

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

Spurious Er	Spurious Emission below 30MHz (9KHz to 30MHz)							
	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC					
Temperature:		Relative Humidity:	48%					
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li					

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.6376	4.83	25.86	30.69	40.00	-9.31	QP
Н	140.8351	9.29	18.86	28.15	43.50	-15.35	QP
Н	348.0274	7.49	21.65	29.14	46.00	-16.86	QP
Н	383.9318	6.76	22.96	29.72	46.00	-16.28	QP
Н	687.1507	7.78	27.50	35.28	46.00	-10.72	QP
Н	887.6099	7.11	30.42	37.53	46.00	-8.47	QP
72.0 dB	uV/m					Limit: Margin:	
						5	E
32	thin the man	well for the second	2 Whither will when	mMMMMuumhunhaart	3 4		
-8	40 50 60	70 80	(MF	łz)	300 400	500 600 700	1000.000

EUT:		ersal Wir ophone	eless Con	troller with	Model N	lo.:	BTRC	RMIC		
Femperature					Relative Humidity		48%			
Fest Mode:	Mode	e2/Mode	3/Mode4		Test By:		Susan	li		
Il the modul	ation mode	s have b	een tested	, and the	worst result	was	report	as below	/:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Li	imits	Margin	Rema	rk Commen
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dB	μV/m)	(dB)		
		Lo	w Channel	(2402 MHz)(π/4-DQPS	SK)A	Above 1	G		·
4804	68.5	5.21	35.59	44.30	65.00	74	4.00	-9.00	Pk	Vertical
4804	47.51	5.21	35.59	44.30	44.01	54	4.00	-9.99	AV	Vertical
7206	68.09	6.48	36.27	44.60	66.24	74	4.00	-7.76	Pk	Vertical
7206	46.29	6.48	36.27	44.60	44.44	54	4.00	-9.56	AV	Vertical
4804	69.78	5.21	35.55	44.30	66.24	74	4.00	-7.76	Pk	Horizontal
4804	48.6	5.21	35.55	44.30	45.06	54	4.00	-8.94	AV	Horizontal
7206	70.26	6.48	36.27	44.52	68.49	74	4.00	-5.51	Pk	Horizontal
7206	49.68	6.48	36.27	44.52	47.91	54	4.00	-6.09	AV	Horizontal
		Mi	d Channel	(2441 MHz))(π/4-DQPS	K)A	bove 1	G		
4882	70.6	5.21	35.66	44.20	67.27	74	4.00	-6.73	Pk	Vertical
4882	46.6	5.21	35.66	44.20	43.27	54	4.00	-10.73	AV	Vertical
7323	68.36	7.10	36.50	44.43	67.53	74	4.00	-6.47	Pk	Vertical
7323	45.89	7.10	36.50	44.43	45.06	54	4.00	-8.94	AV	Vertical
4882	69.5	5.21	35.66	44.20	66.17	74	4.00	-7.83	Pk	Horizontal
4882	48.78	5.21	35.66	44.20	45.45	54	4.00	-8.55	AV	Horizontal
7323	69.24	7.10	36.50	44.43	68.41	74	4.00	-5.59	Pk	Horizontal
7323	50.4	7.10	36.50	44.43	49.57	54	4.00	-4.43	AV	Horizontal
		Hig	h Channel	(2480 MHz)(π/4-DQPS	5K) /	Above 1	G		
4960	70.69	5.21	35.52	44.21	67.21	74	4.00	-6.79	Pk	Vertical
4960	48.7	5.21	35.52	44.21	45.22	5	4.00	-8.78	AV	Vertical
7440	69.24	7.10	36.53	44.60	68.27	7	4.00	-5.73	Pk	Vertical
7440	45.42	7.10	36.53	44.60	44.45	5	4.00	-9.55	AV	Vertical
4960	69.88	5.21	35.52	44.21	66.40	7	4.00	-7.60	Pk	Horizontal
4960	48.32	5.21	35.52	44.21	44.84	5	4.00	-9.16	AV	Horizontal
7440	68.74	7.10	36.53	44.60	67.77	7	4.00	-6.23	Pk	Horizontal
7440	45.4	7.10	36.53	44.60	44.43	5	4.00	-9.57	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious	Emission in				0MHz and 2	2483.	5-250	OMHz		
EUT:	Universal Microphon		Controlle	r with	Model No.:		BTRC	RMIC		
Temperature	Temperature: 20 ℃				Relative Humidity:		48%			
Test Mode: Mode2/ Mode4(π/4-DQPSK) Test By: Susan li										
All the modu	lation mode	s have b	been teste	d, and the	worst resu	It wa	s repo	rt as belo	SW:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
				bps(GFSK						
2310.00	69.15	2.97	27.80	43.80	56.12		'4	-17.88	Pk	Horizontal
2310.00	46.22	2.97	27.80	43.80	33.19		54	-20.81	AV	Horizontal
2310.00	70.01	2.97	27.80	43.80	56.98		'4	-17.02	Pk	Vertical
2310.00	47.22	2.97	27.80	43.80	34.19	-	54	-19.81	AV	Vertical
2390.00	70.38	3.14	27.21	43.80	56.93		'4	-17.07	Pk	Vertical
2390.00	47.53	3.14	27.21	43.80	34.08		54	-19.92	AV	Vertical
2390.00	68.89	3.14	27.21	43.80	55.44		'4	-18.56	Pk	Horizontal
2390.00	49.92	3.14	27.21	43.80	36.47	5	54	-17.53	AV	Horizontal
2483.50	69.90	3.58	27.70	44.00	57.18		'4	-16.82	Pk	Vertical
2483.50	47.53	3.58	27.70	44.00	34.81		54	-19.19	AV	Vertical
2483.50	70.12	3.58	27.70	44.00	57.40		'4	-16.60	Pk	Horizontal
2483.50	48.31	3.58	27.70	44.00	35.59	5	54	-18.41	AV	Horizontal
				1Mbps	hopping					
2310.00	68.05	2.97	27.80	43.80	55.02	7	'4	-18.98	Pk	Horizontal
2310.00	47.71	2.97	27.80	43.80	34.68		54	-19.32	AV	Horizontal
2310.00	70.74	2.97	27.80	43.80	57.71		'4	-16.29	Pk	Vertical
2310.00	47.69	2.97	27.80	43.80	34.66		54	-19.34	AV	Vertical
2390.00	70.72	3.14	27.21	43.80	57.27	7	'4	-16.73	Pk	Vertical
2390.00	50.08	3.14	27.21	43.80	36.63		54	-17.37	AV	Vertical
2390.00	70.44	3.14	27.21	43.80	56.99		'4	-17.01	Pk	Horizontal
2390.00	49.75	3.14	27.21	43.80	36.30		54	-17.70	AV	Horizontal
2483.50	68.43	3.58	27.70	44.00	55.71		'4	-18.29	Pk	Vertical
2483.50	46.81	3.58	27.70	44.00	34.09	5	54	-19.91	AV	Vertical
2483.50	68.99	3.58	27.70	44.00	56.27		'4	-17.73	Pk	Horizontal
2483.50	46.14	3.58	27.70	44.00	33.42	5	54	-20.58	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

EUT:	EUT: Universal Wireless Controller with Microphone			Ì	Mod	el No.:		BTF	RCRMIC			
Temperature: 20 °C					Relative Humidity: 48%			, 0				
Test Mode:		Mode	2/ Mode	4(π/4-DQI	PSK)		Test	By:		Sus	an li	
All the modu	lation	mode	s have b	een teste	d, and the	worst	resu	ilt was repo	rt as	belo	W:	
Frequency	Read Lev	0	Cable Loss	Antenna Factor	Preamp Factor	Emiss Lev		Limits	Mar	gin	Detector	Comment
(MHz)	(dBj	JV)	(dB)	dB/m	(dB)	(dBµ∖	//m)	(dBµV/m)	(dE	3)	Туре	
3260	70.	24	4.04	29.57	44.70	59.1	15	74	-14.	85	Pk	Vertical
3260	49.	66	4.04	29.57	44.70	38.5	57	54	-15.	43	AV	Vertical
3260	68.	39	4.04	29.57	44.70	57.3	30	74	-16.	70	Pk	Horizontal
3260	50.	56	4.04	29.57	44.70	39.4	17	54	-14.	53	AV	Horizontal
3332	68.	78	4.26	29.87	44.40	58.5	51	74	-15.	49	Pk	Vertical
3332	47.	50	4.26	29.87	44.40	37.2	23	54	-16.	77	AV	Vertical
3332	69.	30	4.26	29.87	44.40	59.0)3	74	-14.	97	Pk	Horizontal
3332	49.	74	4.26	29.87	44.40	39.4	17	54	-14.	53	AV	Horizontal
17797	57.	89	10.99	43.95	43.50	69.3	33	74	-4.6	67	Pk	Vertical
17797	35.	16	10.99	43.95	43.50	46.6	60	54	-7.4	10	AV	Vertical
17788	50.	37	11.81	43.69	44.60	61.2	27	74	-12.	73	Pk	Horizontal
17788	34.	37	11.81	43.69	44.60	45.2	27	54	-8.7	73	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.3.6 Test Results

	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC
Temperature:	20 (Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Susan li

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge$ the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan li

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

	Universal Wireless Controller with Microphone	Model No.:	BTRCRMIC
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Susan li

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: -0.58 dBi). It comply with the standard requirement.

NTEK ILW®

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

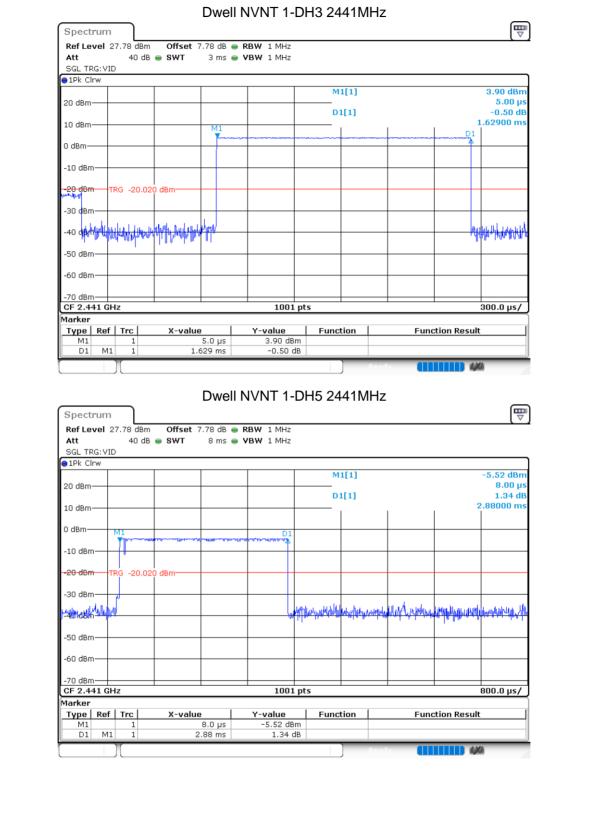
7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

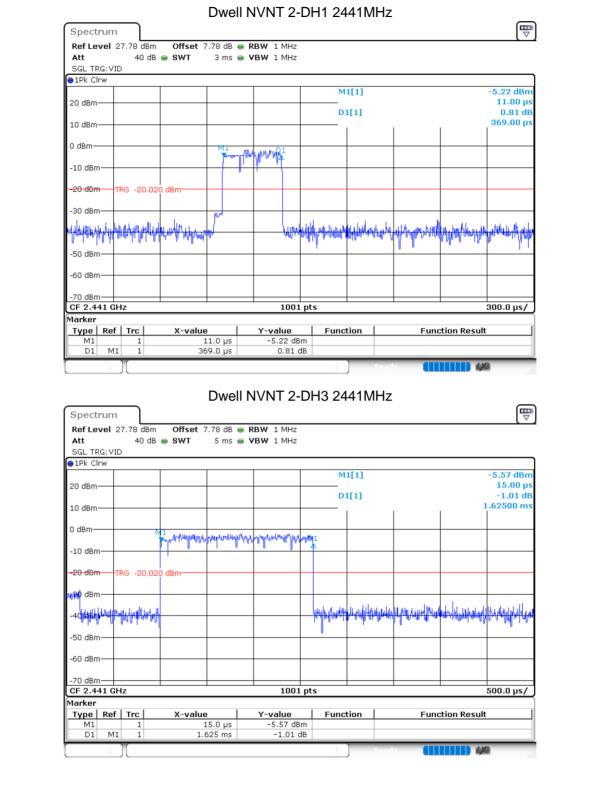
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

 $\overline{}$

8 TEST RESULTS

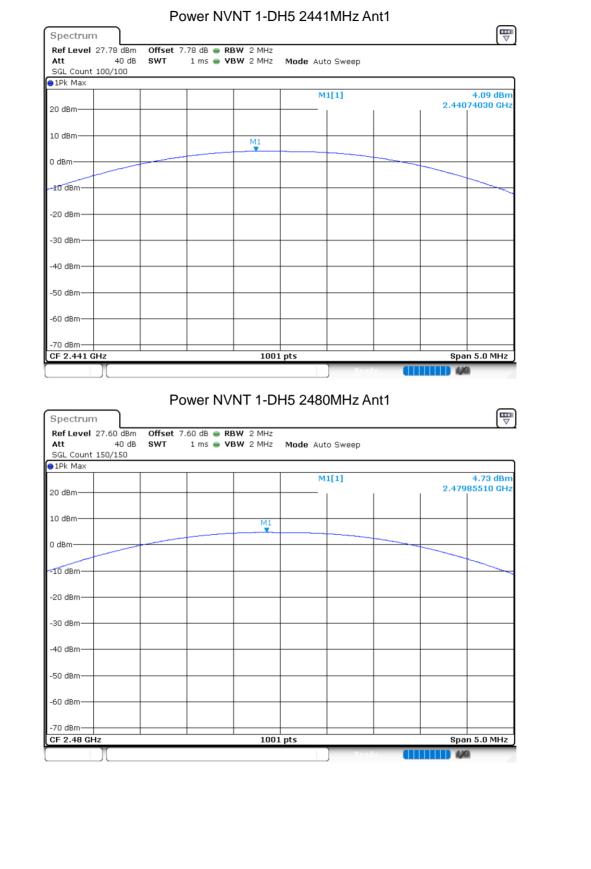

8.1 **DWELL TIME**

Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict				
		(MHz)	(ms)	Time (ms)	(ms)	(ms)					
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass				
NVNT	1-DH3	2441	1.629	260.64	31600	400	Pass				
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass				
NVNT	2-DH1	2441	0.369	118.08	31600	400	Pass				
NVNT	2-DH3	2441	1.625	260	31600	400	Pass				
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass				

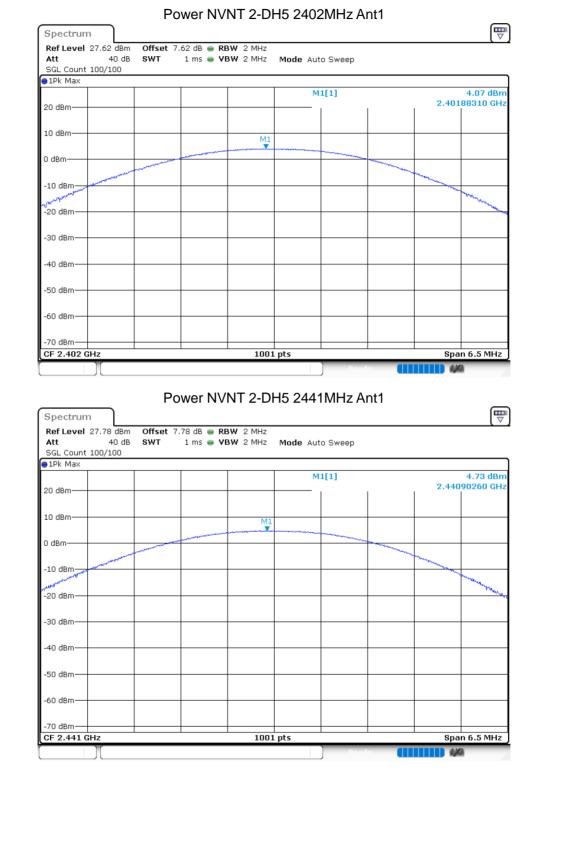

Dwell NVNT 1-DH1 2441MHz

Spect	um										
Ref Lev	/el 2	7.78 di	Bm Offset	7.78 dB (BRBW 1 MHz						
Att			dB 👄 SWT	3 ms (VBW 1 MHz						
SGL TR)									
●1Pk Clr	w										
						M1[1]			-7.72 dBn		
20 dBm-						+			5.00 µ		
						D1[1]			1.91 dE 372.00 µ:		
10 dBm-						+	1	1	1	a72.00 µs	
0 dBm—											
U UBIII-				Milmer	ֈՠՠՠֈ						
-10 dBm	_				le le araz						
					.						
-20 dBm	TF	RG -20	.020 dBm								
-30 dBm	+			Tul.		-			+	-	
Uhra. Ale	. Lude	dala	al waldata at lad	uk	line	And Mathe	J. Walter	Pulathan Automat	Internal Antonio	ير دارد المريس	
anter la	204 million	Anna J	ditation and a second	1	ունուն	alath da illeanar	hiddle ou d	ի ախորդի ու կիրինին	di madilitak inda al	la na lla dan da a	
-50 dBm		· •				· ·		1			
00 00.0											
-60 dBm	_								+		
-70 dBm						<u> </u>			<u> </u>	-	
CF 2.44	1 GH	z			100	1 pts				300.0 µs/	
Marker											
Type	Ref		X-value	X-value Y-			nction	Fun	ction Result	t	
M1 1 D1 M1 1		5.0 μs 372.0 μs		-7.72 d 1.91							
01	TWI	1		2.0 µ3	1.91	ub					
								Ready			

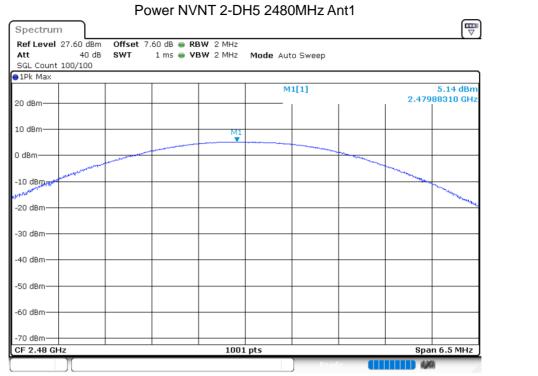
	Dwe	II NVNT 2-DH	15 2441MH	z		
Spectrum						
Ref Level 27.78 di		🖷 RBW 1 MHz				
	dB 🖷 SWT 🛛 8 ms	🔵 VBW 1 MHz				
SGL TRG: VID						
1Pk Clrw						
			M1[1]			-4.79 dBm
20 dBm			D1[1]			16.00 µs 0.97 dB
0 dBm			01[1]		2	.87200 ms
U UBIII					Ĩ	
dBm M1						
- MINI	phalader Draverter and a consider	m-wallyray-wards				
LO dBm						
2 0 dBm TRG -20	.020 dBm					
30 dBm					1	
holderer Altradyanda		Why kay	Dytanilla y flor and ghe	Alberry Clarker Alberry	munih	Mandalharth
				01 1 1. 0	ti a a ciatara	0.00 0 - 1.4
50 dBm				_		
60 dBm						
70 dBm		1001	-			
CF 2.441 GHz		1001 pts	5			300.0 µs/
arker	×	I		-		
Type Ref Trc M1 1	<u>X-value</u> 16.0 μs	-4.79 dBm	Function	Func	tion Result	
D1 M1 1	2.872 ms	0.97 dB				
I	2.0.2 102	0.0.00				
			Re	aoy		1

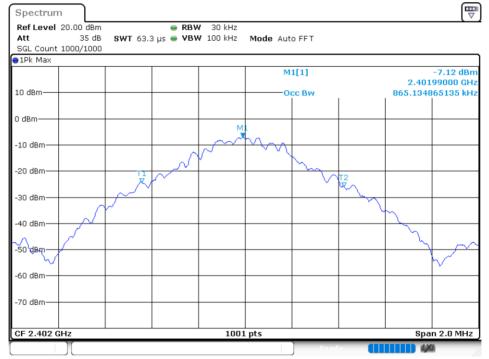


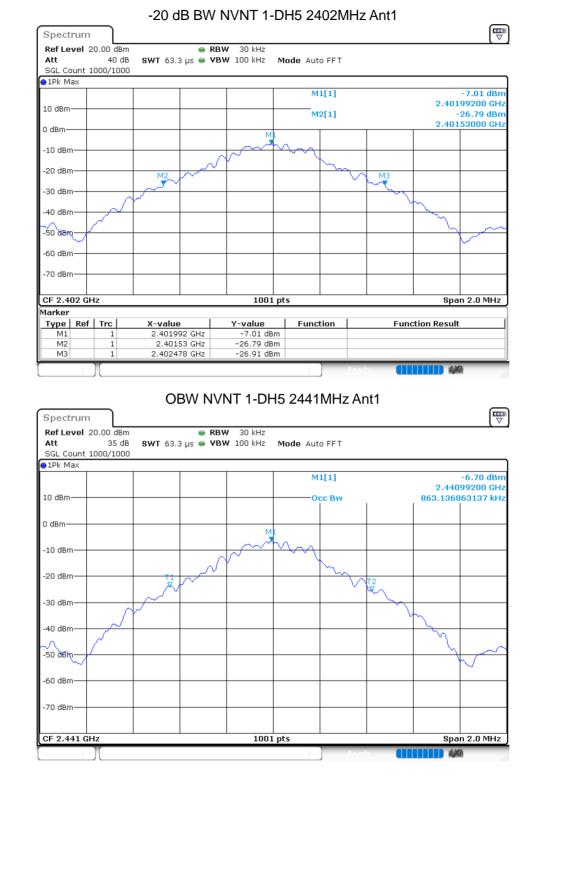
8.2 MAXIMUM CONDUCTED OUTPUT POWER


Condition	Mode	Frequency (MHz)	Antenna			
			Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	3.564	30	Pass
NVNT	1-DH5	2441	Ant 1	4.09	30	Pass
NVNT	1-DH5	2480	Ant 1	4.731	30	Pass
NVNT	2-DH5	2402	Ant 1	4.071	21	Pass
NVNT	2-DH5	2441	Ant 1	4.73	21	Pass
NVNT	2-DH5	2480	Ant 1	5.144	21	Pass
	NVNT NVNT NVNT	NVNT1-DH5NVNT1-DH5NVNT2-DH5NVNT2-DH5	NVNT1-DH52441NVNT1-DH52480NVNT2-DH52402NVNT2-DH52441	NVNT 1-DH5 2441 Ant 1 NVNT 1-DH5 2480 Ant 1 NVNT 2-DH5 2402 Ant 1 NVNT 2-DH5 2402 Ant 1 NVNT 2-DH5 2441 Ant 1	NVNT1-DH52441Ant 14.09NVNT1-DH52480Ant 14.731NVNT2-DH52402Ant 14.071NVNT2-DH52441Ant 14.73	NVNT 1-DH5 2441 Ant 1 4.09 30 NVNT 1-DH5 2480 Ant 1 4.731 30 NVNT 2-DH5 2402 Ant 1 4.071 21 NVNT 2-DH5 2441 Ant 1 4.73 21

Ref Level 30.62 dBm Att 40 dB SGL Count 300/300	Offset 7 SWT	.62 dB ● RBW 2 MHz 1 ms ● VBW 2 MHz	Mode Auto Sweep			
1Pk Max			M1[1]			3.56 dBn
20 dBm				I	2.401	.80020 GH:
:0 0811						
LO dBm						
) dBm						
10 dBm						
20 dBm						
30 dBm						
40 dBm						
50 40						
50 dBm						
60 dBm						

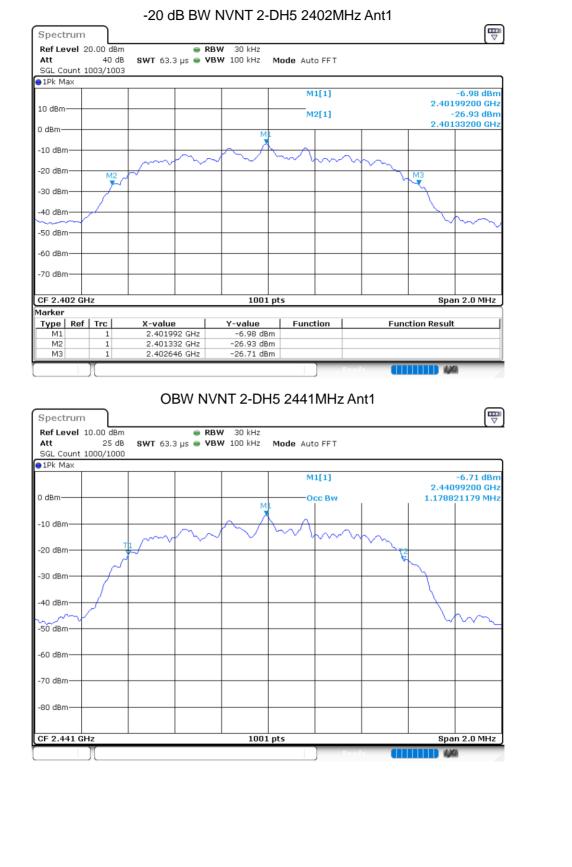


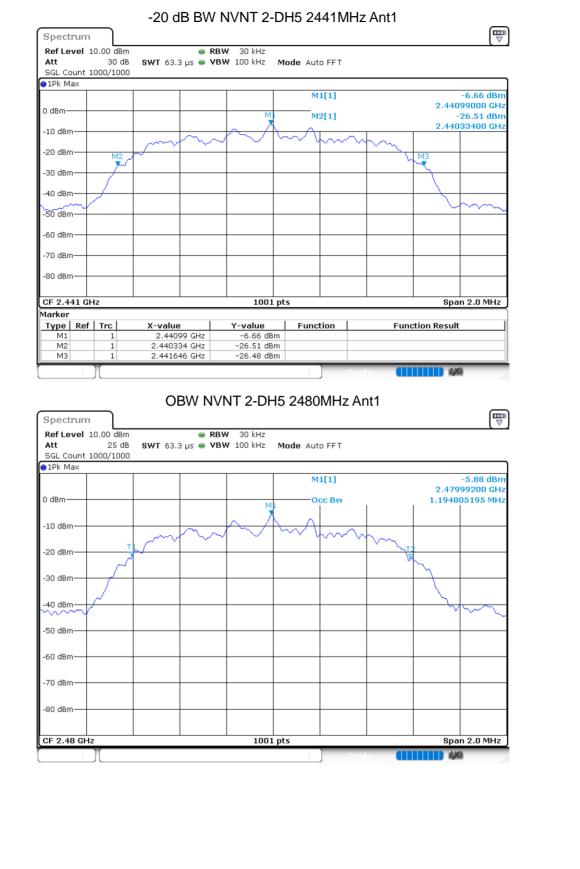


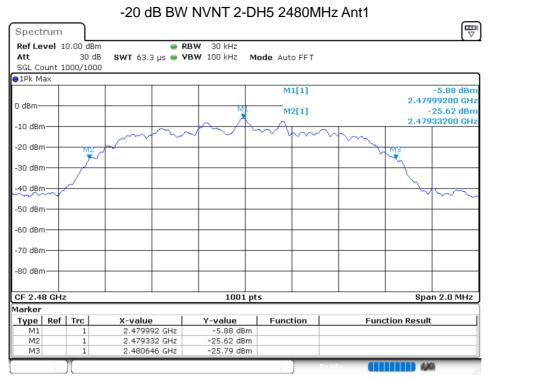

8.3 OCCUPIED CHANNEL BANDWIDTH

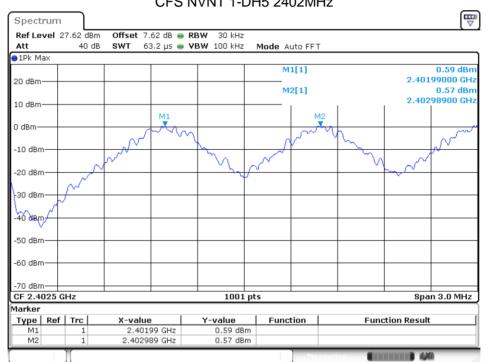
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.8651	0.948	Pass
NVNT	1-DH5	2441	Ant 1	0.8631	0.952	Pass
NVNT	1-DH5	2480	Ant 1	0.8871	0.936	Pass
NVNT	2-DH5	2402	Ant 1	1.1868	1.314	Pass
NVNT	2-DH5	2441	Ant 1	1.1788	1.312	Pass
NVNT	2-DH5	2480	Ant 1	1.1948	1.314	Pass

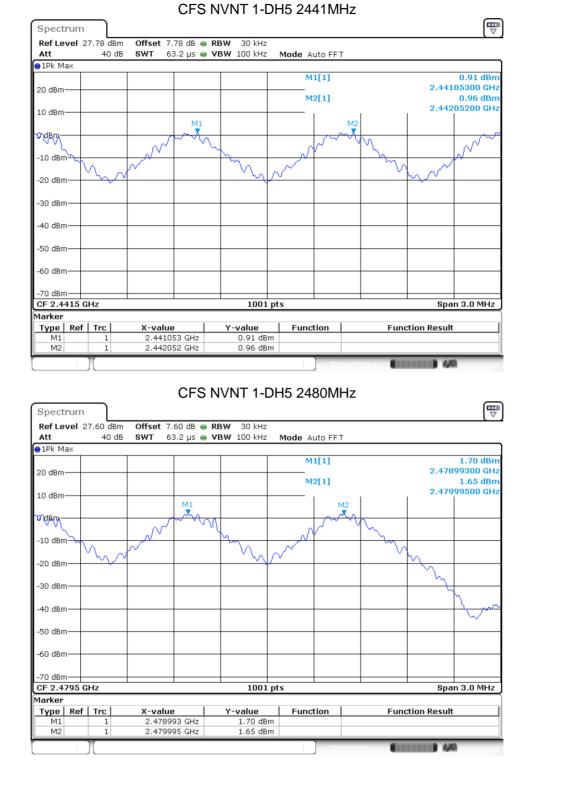
OBW NVNT 1-DH5 2402MHz Ant1



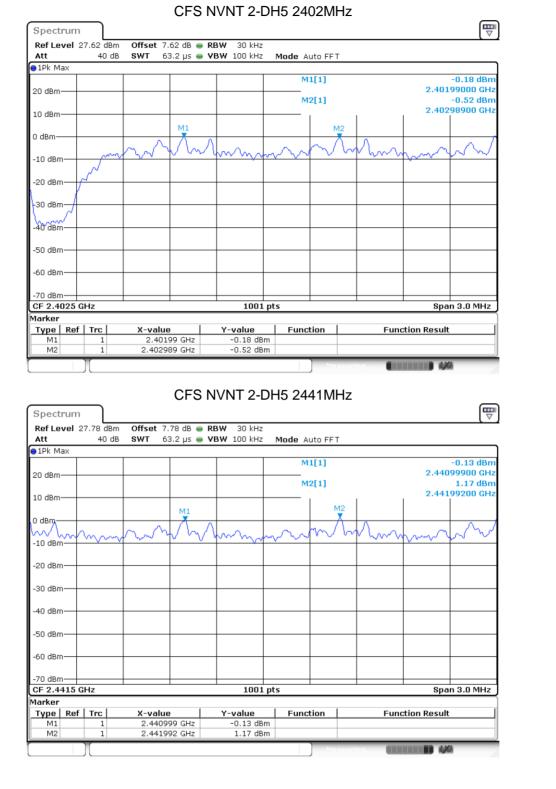




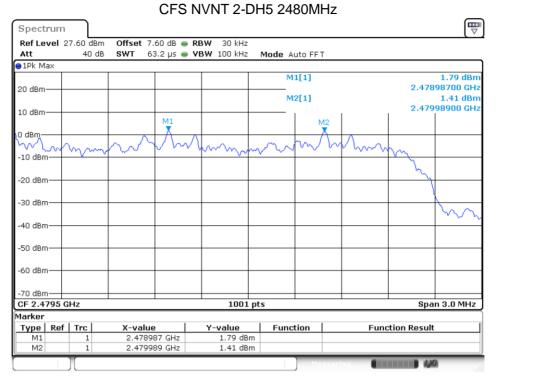



8.4 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	2401.99	2402.989	0.999	0.948	Pass
NVNT	1-DH5	2441.053	2442.052	0.999	0.952	Pass
NVNT	1-DH5	2478.993	2479.995	1.002	0.936	Pass
NVNT	2-DH5	2401.99	2402.989	0.999	0.876	Pass
NVNT	2-DH5	2440.999	2441.992	0.993	0.875	Pass
NVNT	2-DH5	2478.987	2479.989	1.002	0.876	Pass



CFS NVNT 1-DH5 2402MHz



8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass

	27.62 dBm	Offset 7.62	_						
Att SGL Count 7	40 dB	SWT 1 r	ns 😑 VE	3W 300 kHz	Mode Au	uto Sweep			
1Pk Max	000/1000								
					M	1[1]			2.78 dBm
20 dBm					M*	2[1]		2.40	18370 GHz 4.04 dBm
.0 dBm						2[X]		2.48	800765 GHz
						0.0.0.0.0.0.0		4.4.4.6.6.6.6.6	M2
dem a fi a fila	HARAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	HHADAA	<u>MHAMANN</u>	4888888	HRARAN	AAAAAAAAA	HANANA	
1000000	ստոտո	NVUUNUVUU	NUW	(AND DAVA)	ANNIN	(11/1/1/1/1	YYYYYYY	WWWW	001000
╡┥₿₿₩ Ŷ₿ ₽	Andhogi	Ashidosnok.	the ab		linnlik	ALULAIAA	108080101	11010101	01010
20 dBm									
30 dBm									
40 dBm									1 1 1 1 1 1
ie dem									v
50 dBm —									
60 dBm									
70 dBm									
tart 2.4 GH	Ηz	II		1001	pts			Stop 2	.4835 GHz
arker									
	Trc	X-value		Y-value	Funct	tion	Fund	tion Result	<u>ن</u>
M1	1	2.401837 0		2.78 dBn 4.04 dBn					

8.6 BAND EDGE

0.0 DAND	LDGE						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value	Limit	Verdict
•••••			/		(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-44.08	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-43.73	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-42.91	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-46.62	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-43.62	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-43.48	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-46.8	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-46.68	-20	Pass

Band Edge NVNT 1-DH5 2402MHz Ant1 No-Hopping Ref

			1		м	1[1]			2.73 dBm
20 dBm									205000 GHz
10 dBm					M	2[1]			-22.25 dBm)000000
0 dBm									
-10 dBm									
-20 dBmD1	-17.127	dBm							M2
-30 dBm									
-40 dBm			M4	ب المبادية .				M3 al	
-40 UBIII 	yally yally	warrhyter	white - have	arra ca ann vi	rahathan pantan da	annorman frage	huh Mr huhan	1 minikistori 11 min	un volu i v
-60 dBm									
-70 dBm									
Start 2.306 GI Marker	Hz			1001	pts			Stop	2.406 GHz
Type Ref M1	Trc	X-value 2.402	e 05 GHz	Y-value 2.73 dB	Funct	tion	Fun	ction Result	t[
M2 M3	1	2	2.4 GHz 39 GHz	-22.25 dBi -47.36 dBi	m				
M4	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	-41.21 dBi	H5 240		Ant1 Ho	pping R	ef
M4 Ban Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A		ant1 Ho		₩ 3.27 dBm
M4 Ban Spectrum Ref Level 27. Att SGL Count 800	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	ant1 Ho		♥
M4 Ban Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Ban Spectrum Ref Level 27. Att SGL Count 800 ● 1Pk Max 20 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm 0 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Ban Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm 0 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 P1Pk Max 20 dBm 10 dBm -10 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Ban Spectrum Ref Level 27. Att SGL Count 800 ● 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 P1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 O dBm 10 dBm -10 dBm -20 dBm -30 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT	Ant1 Ho		
M4 Spectrum Ref Level 27. Att SGL Count 800 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	d Edg	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240 Mode A	uto FFT			₩ 3.27 dBm
M4 Spectrum Ref Level 27. Att SGL Count 800 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 62 dBm 40 dB 30/8000	2.34 ge(Hopp offset 7.	21 GHz ping) N ^v	VNT 1-D BW 100 kHz	H5 240	uto FFT	Ant1 Ho	2.405	₩ 3.27 dBm

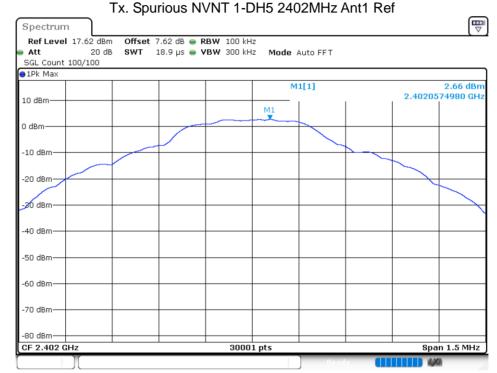
Ref Level 27 Att SGL Count 70	40 dB			RBW 100 kHz VBW 300 kHz	Mode Aut	to FFT				
●1Pk Max	0/700									
20 dBm					M1[]	1]		2 40	2.68 dBm 395000 GHz	
					M2[1]			-22.47 dBm	
10 dBm						1	I	2.40	000000 GHz	
0 dBm										
-10 dBm				+					1888	
-20 dBm-01	-16.725 c	lBm							M2	
-30 dBm										
-40 dBm			M4					M-1		
	W	monuman	and a solution	Wilson and the prover the prover	and the second state of the second	arminent pyphie	en any white	muchaum	AMMAAA	
-60 dBm										
-70 dBm	Hz			1001	ots			Ston	2.406 GHz	
Marker										
Type Ref M1	Trc	X-value 2.403	95 GHz	Y-value 2.68 dBm	Functio	on	Fun	ction Resul	lt	
M2	1	2	.4 GHz	-22.47 dBm -44.88 dBm	1 I					
M3 M4	1		87 GHz	-44.88 dBm -40.47 dBm						
Spectrum Ref Level 27 Att SGL Count 10	.60 dBm 40 dB	Edge N	60 dB 👄 R	-DH5 248	0MHz Ai		-Hoppi	ng Ref		
Spectrum Ref Level 27 Att SGL Count 10	Band E	Edge N	VNT 1-	-DH5 248	OMHz AI	o FFT	-Hoppi	ng Ref	3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10	Band E	Edge N	VNT 1-	-DH5 248	0MHz Ai	o FFT	o-Hoppi			
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm 0 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm -10 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm	
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi	2.48	3.86 dBm 005590 GHz	
Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi		3.86 dBm 005590 GHz]
Spectrum Ref Level 27 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band E	Edge N	VNT 1-	-DH5 248	0MHz Al	o FFT	p-Hoppi	2.48	3.86 dBm 005590 GHz	
Spectrum Ref Level 27 Att SGL Count 10 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Band E	Edge N	VNT 1-	-DH5 248	OMHz Al	o FFT	p-Hoppi	2.48	3.86 dBm 005590 GHz	
Spectrum Ref Level 27 Att SGL Count 10 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm	Band E	Edge N	VNT 1-	-DH5 248	OMHz Al	o FFT	p-Hoppi	2.48	3.86 dBm 005590 GHz	

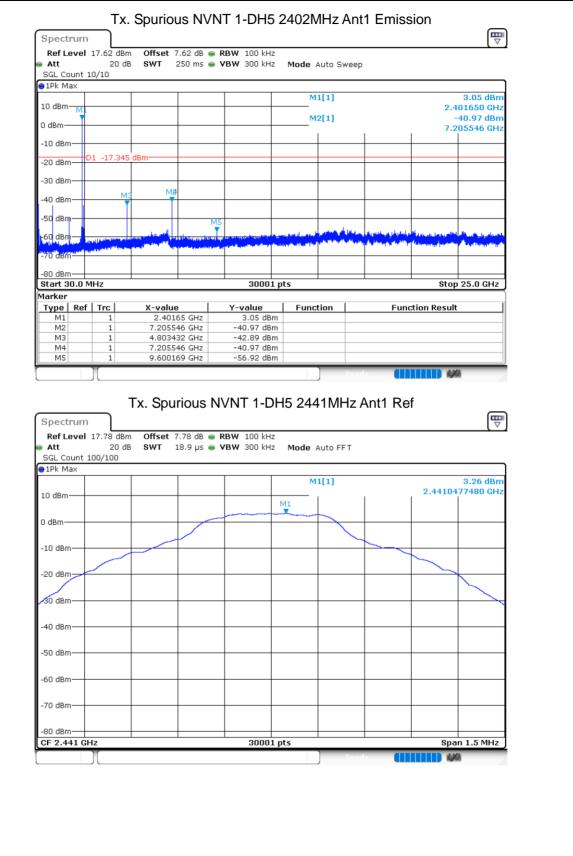
Att SGL Cour	l 27.60 dBm 40 dB it 100/100			RBW 100 kH: VBW 300 kH:		uto FFT				_
●1Pk Max					Mi	1[1]			3.85 dBm]
20 dBm—						2[1]			005000 GHz -39.06 dBm	z
10¦d∯m—									350000 GH2	
0 dBm										-
-10 dBm—	D1 -16.135	dBm								
-20 cBm—	01 10.100									1
-30 dBm— MB										1
	mathichedu	M3 margentum	Mul Multure	Marchan have	partilipromond	wilwwwww	ngudun Marri	monotor Mound	who who will have a	lr
-50 dBm—										1
-60 dBm—										1
-70 dBm— Start 2.4	76 GHz		I	1001	pts		1	Stop	2.576 GHz	E E
Marker _Type R	ef Trc	X-value		Y-value	Funct	ion	Func	tion Resul	t	J
M1 M2	1		05 GHz 35 GHz	3.85 dB -39.06 dB						
M3	1	2	2.5 GHz	-46.98 dB						
M4	1	2.48	35 GHz	-39.06 dB						1
M4 Spectru Ref Leve Att SGL Cour	Band Edg	ge(Hopp	Ding) N'		H5 248		Ant1 Hop	oping R	ef ₩	
M4 Spectru Ref Leve Att	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-D	H5 248 Mode Au		Ant1 Hop		4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-D	H5 248 Mode Au	uto FFT	Ant1 Hop		₹	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) N'	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 E Spectru Ref Leve Att SGL Cour PIPk Max 20 dBm- 10 dBm- 0 dBm-	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 E Spectru Ref Leve Att SGL Cour PIPk Max 20 dBm- 10 dBm- 0 dBm-	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm 10 dBm -10 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 E Spectru Ref Leve Att SGL Cour • 1PK Max 20 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 E Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 E Spectru Ref Leve Att SGL Cour ● 1Pk Max 20 dBm	Band Edg m I 27.60 dBm 40 dB	ge(Hopp	Ding) Ν' 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	H5 248 Mode Au	uto FFT	Ant1 Hop		4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm	Band Edg m 40 dB 40 dB 40 dB 40 dB 40 dB	ge(Hopp	Ding) Ν' 60 dB • R 8.9 μs • V		Mode Au	uto FFT	Ant1 Hop	2.479	4.34 dBm	- 1
M4 Spectru Ref Leve Att SGL Cour • 1Pk Max 20 dBm	Band Edg m 40 dB 40 dB 40 dB 40 dB 40 dB	ge(Hopp	Ding) Ν' 60 dB • R 8.9 μs • V	VNT 1-D BW 100 kHz BW 300 kHz	Mode Au	uto FFT		2.479	4.34 dBm 915280 GHz	- 1
M4 Spectru Ref Leve Att SGL Cour P1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm- -70 dBm-	Band Edg m 40 dB 40 dB 40 dB 40 dB 40 dB	ge(Hopp	Ding) Ν' 60 dB • R 8.9 μs • V		Mode Au	uto FFT		2.479	4.34 dBm 915280 GHz	- 1

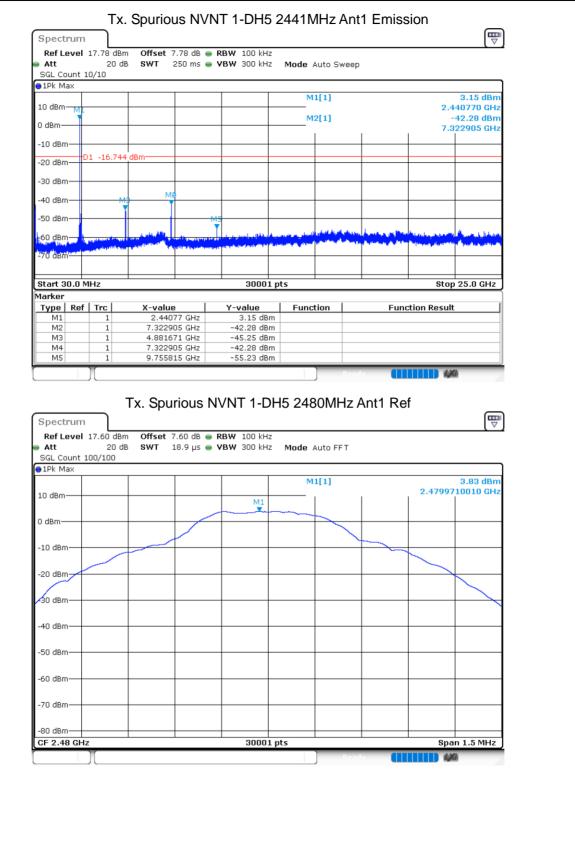
-20 dBm									
-10 dBm					_ ́ ∖				
0 dBm				M1	h				
20 dBm									
					M	1[1]		2.40	3.34 dBm 184020 GHz
Spectrum Ref Level Att SGL Count 1Pk Max	n 27.62 dBm 40 dB	Offset 7	.62 dB 😑 I	-DH5 24 RBW 100 kH2 VBW 300 kH2	z		o-Hoppi	ng Ref	
M4		2.49	89 GHz	-42.28 df) Rea	ody 🕕	1111	<u>a</u>
Marker Type Re M1 M2 M3 M4	1 1 1	2.48	95 GHz 35 GHz 2.5 GHz	Y-value 3.91 df -42.68 df -43.25 df	Bm Bm	tion	Fun	ction Resul	t
-70 dBm	6 GHz		1	100	1 pts			Stop	2.576 GHz
-50 dBm -60 dBm									
	mana	MAB	murthany	homenous	yorky warmy	gravitudurtersatur	munullyuu	which with auch	a manual and an and
-20 cBm— -30 cBm—									
-µp dBm—	D1 -15.665	dBm							
) dem									
🗚 dBm ——					M	2[1]			-42.68 dBm 350000 GHz
					M	1[1]		2.47	3.91 dBm 795000 GHz

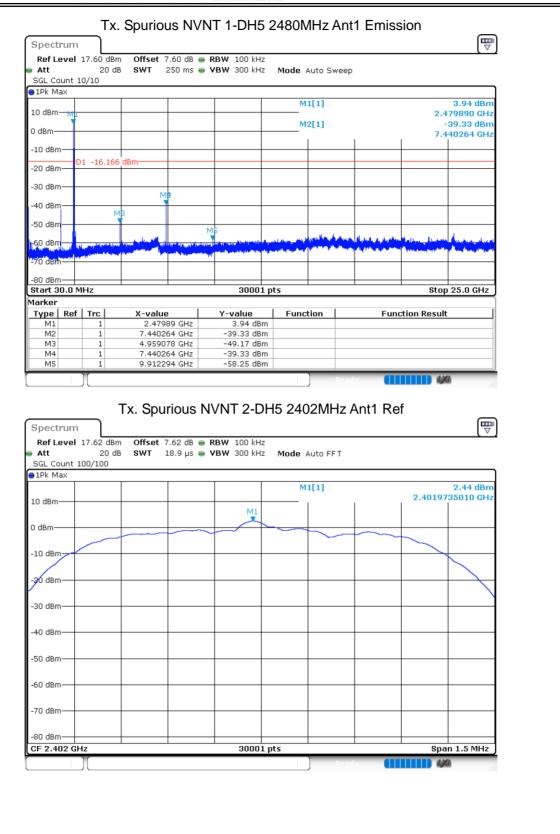
SGL Count 10	0/100								
20 dBm					2.10 dBm				
					M2[1]				195000 GHz -22.36 dBm
10 dBm							1	2.40	DOOOOD GHZ
0 dBm									
-10 dBm	16.660	dD er							
-20 dBm	16.660	ubm [.]							M2/
-30 dBm			M4						
-40 dBm			· ·	highermalkey				M3	
-50 dBm	MUNYAN	when when the	Jumps		and the age of the second s	MARIANA	Munun	ILMANA, MULA ~	100 or
-60 dBm									
-70 dBm									
Start 2.306 G Marker	Hz			1001	pts			Stop	2.406 GHz
Type Ref	Trc 1	X-valu	e	Y-value 2.10 dBr	Funct	ion	Fui	nction Resul	t
			2.4 GHz	-22.36 dBr					
M2	1								
M3 M4	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr -40.28 dBr VNT 2-D BW 100 kHz BW 300 kHz	H5 2402		Ant1 Ho	opping R	ef (♥
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au		Ant1 Ho		₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT	Ant1 Ho		
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT	Ant1 Ho		₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm 0 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm 0 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 IPk Max 20 dBm 10 dBm -10 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Bar Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 17 9 1Pk Max 20 dBm 0 10 dBm 0 -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 M4 M4 Spectrum Ref Level 27 Att SGL Count 80 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 nd Edg 7.62 dBm 40 dB	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT			₩ 7 3.20 dBm
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 10 1Pk Max 20 20 dBm 10 10 dBm 0 -10 dBm -20 -30 dBm -30 dBm -50 dBm -60 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz BW 300 kHz	Mode Au	uto FFT		2.40	3.20 dBm 383820 GHz
M3 M4 Bar Spectrum Ref Level 27 Att SGL Count 80 10 ● 1Pk Max 20 20 dBm 10 10 dBm -10 -10 dBm -20 -30 dBm -30 dBm -50 dBm -60 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2.34 ge(Hop 0ffset 7	.39 GHz ₩04 GHz ping) N .62 dB ● R	-46.71 dBr -40.28 dBr VNT 2-D BW 100 kHz	Mode Au	uto FFT		2.40	3.20 dBm 393820 GHz

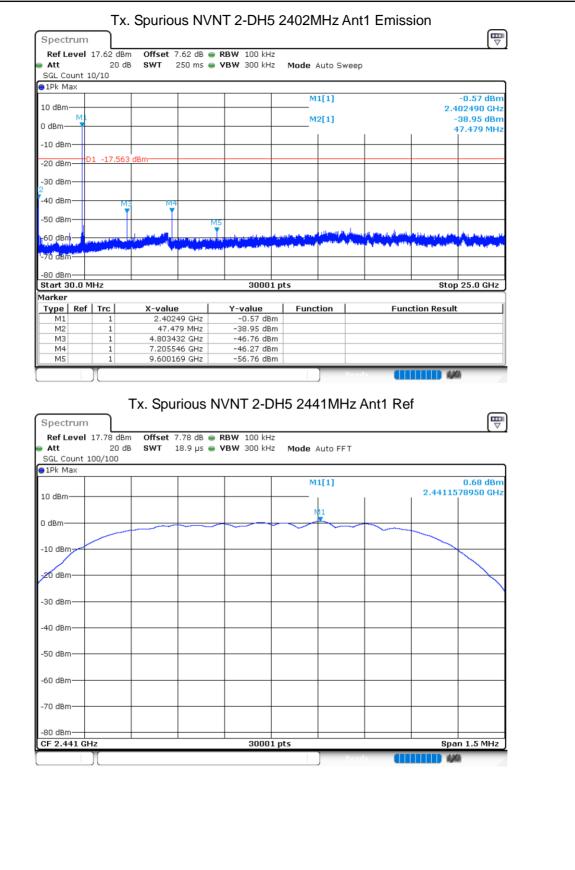
●1Pk Max	40 dB 1000/1000	SWT 22	27.5 µs 👄	VBW 300 kHz	Mode /	Auto FFT				
		1			M	1[1]			3.14 dBm	
20 dBm								495000 GHz		
10 dBm					2[1]] -24.51 dBm 2.40000000 GM				
0 dBm									AL A	
-10 dBm									41n0	
-20 dBm	01 -16.803	dBm							M2	
-30 dBm									T	
			M4					МЗ	All	
-40 dBm	round	aberdayanakana	al with many have	manuthing	www.whiley	www.wory.uks	howwww.		wind	
-50 dBm										
-60 dBm										
-70 dBm Start 2.306	CU-			1001	nte			01	2.406 GHz	
Marker	GHZ			1001	pts			stop	2.406 GHZ	
Type Ref	Trc 1	X-value	95 GHz	Y-value 3.14 dBn	Funct	tion	Fun	ction Resul	t	
M2	1	2	.4 GHz	-24.51 dBn	n					
M3 M4	1		39 GHz 26 GHz	-43.93 dBn -40.29 dBn						
	100/100				MODE A	uto FFT				
	100/100								4.34 dBm	
	100/100					uto FFT 1[1]		2.47	4.34 dBm 998400 GHz	
●1Pk Max	100/100			М1				2.47		
• 1Pk Max 20 dBm 10 dBm	100/100							2.479		
● 1Pk Max 20 dBm								2.479		
• 1Pk Max 20 dBm 10 dBm								2.479		
1Pk Max 20 dBm 10 dBm 0 dBm								2.479		
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm								2.479		
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm								2.479		
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	<u></u>					1[1]			998400 GHz	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm			~~~			1[1]		2.479	998400 GHz	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm						1[1]			998400 GHz	
1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm						1[1]			998400 GHz	
1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm					M	1[1]			998400 GHz	
1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm					M	1[1]		Spa	998400 GHz	

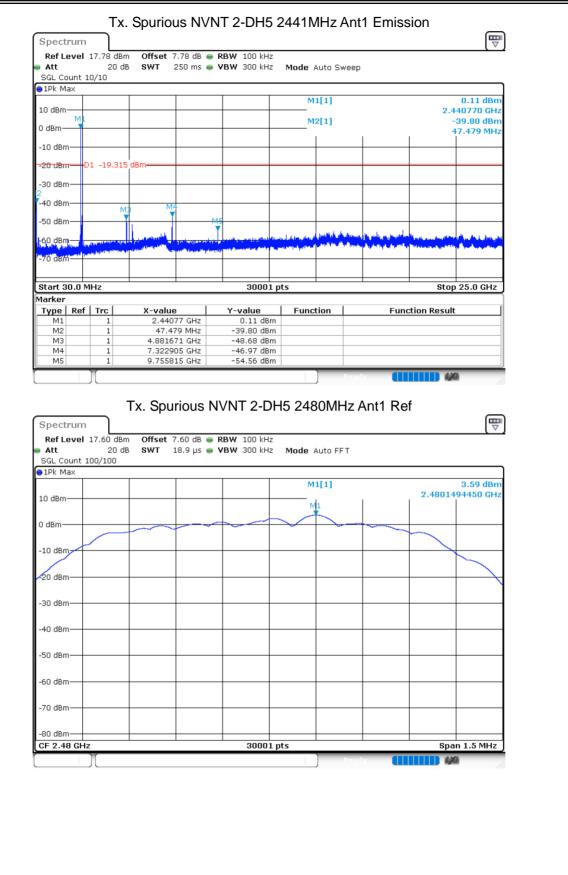

●1Pk Max	100/100										
20 dBm					м	1[1]		2.470	2.65 dBm 2.47995000 GHz		
					м	2[1]			-43.90 dBm		
10 dBm						I	1	2.483	350000 GHz		
0 dBm											
-10 cBm	D1 -15.659	dBm									
-20 dBm											
-30 d8m											
40 dBm		MO	and the set that an	hul	1			a Battabard			
-50 dBm	HUR HANNING HUR	Hanley Marthurson	Water and	whilehearthere	_{ᢦ৵} ᢛᡢᢐᢧᡃᡘ᠉ᢜ᠇᠈ᡃᡌᢑᢂ	front live year	hand the stand	allowed and a set of a	Munnut		
-60 dBm											
-70 dBm											
Start 2.476	GHz			1001	pts	•	·	Stop	2.576 GHz		
Marker Type Ref	Trc	X-valu		Y-value	Func	tion 📋	Fund	tion Result	t]		
	1	2 470	995 GHz	2.65 dB							
M1 M2	1			-43.90 dB	m						
		2.48	835 GHz 2.5 GHz 839 GHz	-43.90 dB -44.80 dB -42.47 dB	m						
M2 M3 M4 Ba Spectrum Ref Level 3 Att	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Pping) N 7.60 dB	-44.80 dB	0H5 248		Ant1 Ho	pping R	ef		
M2 M3 M4 Ba Spectrum Ref Level 3	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Pping) N 7.60 dB	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho	pping R			
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 16 • 1Pk Max	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Pping) N 7.60 dB	-44.80 dB -42.47 dB	0H5 248 Mode A		dv Ant1 Ho		_		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 6	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Pping) N 7.60 dB	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 16 • 1Pk Max	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Pping) N 7.60 dB	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 10 e1Pk Max 20 dBm 10 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 4 • 1Pk Max 20 dBm 10 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level 3 Att SGL Count 10 e1Pk Max 20 dBm 10 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count f O dBm 10 dBm 10 dBm -10 dBm -20 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Spectrum Ref Level 3 Att SGL Count 6 9 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count f O dBm 10 dBm 10 dBm -10 dBm -20 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count (PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm	ļ	
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count (• 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count (10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count (The Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 1 1 27.60 dBm 40 dB	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	0H5 248 Mode A	uto FFT	Ant1 Ho		₩ ▼ 4.23 dBm		
M2 M3 M4 Ba Spectrum Ref Level : Att SGL Count : PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 1 1 27.60 dBm 40 dB 8000/8000	2.48 2.48 ge(Hop Offset 7	835 GHZ 2.5 GHZ 839 GHZ Фріпд) N 7.60 dB • 1 18.9 µs • 1	-44.80 dB -42.47 dB	Mode A	uto FFT	Ant1 Ho	2.476	4.23 dBm 984120 GHz		


Spectrum Ref Level 2 Att SGL Count 1	40 dB			RBW 100 kH VBW 300 kH		Auto FF	Т			♥
1Pk Max						11[1]				2.53 dBm
20 dBm						11[1]			2.476	05000 GHz
					N	12[1]				44.50 dBm
10 dBm									2.483	50000 GHz
olidalar										
₽ /₽ ₽~										
-10 cBm										
	1 -15.770) dBm								
20 dBm		1								
-30 dBm										
-30 agm										
-40 dB	M4	МЗ							attled as the	
W W Low March	James with	mono	and and	which dependences	pharmanahaly	Journ Martin	mound	portunite	W. marker	mounder and her
-50 dBm										
-60 dBm										
OU UBIII										
-70 dBm										
Start 2.476	GHz			1001	pts				Stop	2.576 GHz
1arker										
Type Ref	Trc	X-value		Y-value		tion		Functio	n Result	:
M1	1		05 GHz	2.53 dB						
M2 M3	1		35 GHz	-44.50 dB						
M13	1	2	2.5 GHz	-43.32 dB -42.46 dB						


8.7 CONDL Condition	Mode	SPURIOUS EMISSION Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
				· · · ·	· · · /	
NVNT	1-DH5	2402	Ant 1	-43.62	-20	Pass
NVNT	1-DH5	2441	Ant 1	-45.54	-20	Pass
NVNT	1-DH5	2480	Ant 1	-43.16	-20	Pass
NVNT	2-DH5	2402	Ant 1	-41.39	-20	Pass
NVNT	2-DH5	2441	Ant 1	-40.47	-20	Pass
NVNT	2-DH5	2480	Ant 1	-43.73	-20	Pass
NVNT	2-DH5	2480	Ant 1	-43.73	-20	Pass







	Tx.	Spuriou	us NV	NT 2-DH	5 2480	MHz	Ant	1 Emiss	sion	_
Spectrum										
Ref Level	17.60 dBm	Offset 7	.60 dB	■ RBW 100 kH	z					
Att 🛛	20 dB	SWT :	250 ms (● VBW 300 kH	lz Mode	Auto S	veep			
SGL Count 1	.0/10									
●1Pk Max										
						M1[1]				0.34 dBm
10 dBm										79890 GHz
0 dBm						M2[1]				40.15 dBm 7.479 MHz
						1		I	1	7.479 MHZ
-10 dBm										
-20 dBm	1 -16.410	dBm								
-20 uBm										
-30 dBm										
2										
-40 dBm——		M	1							
-50 dBm	м									
-50 dBm	1			Ma						
60 dBm	A A A A A A A A A A A A A A A A A A A	and a starting the start of the	A VI STREET		الهافي والم	المخاطعة والمراج		and the second second second second	State of the second	Summer address
handler and a	and the second states of the second	the first indication of the last	فيغيب ويقافه	the part of the second s	the state of the s			a second second second second	and the second s	all and the state of the second state
-70 dBm										
-80 dBm										
Start 30.0 M	1Hz			3000	1 pts				Stop	25.0 GHz
Marker										
Type Ref	Trc	X-value	. 1	Y-value	Fu	nction	1	Func	tion Result	1
M1	1		39 GHz	0.34 dE						
M2	1	47.47	9 MHz	-40.15 dB	Sm					
MЗ	1	4.9590		-54.28 dE						
M4	1	7.4402		-44.59 dE						
M5	1	9.9122	94 GHz	-58.16 dE	Sm					
							-			

END OF REPORT