

Global United Technology Services Co., Ltd.

Report No.: GTS202109000191F01

TEST REPORT

HANSHOW TECHNOLOGY CO.,LTD. **Applicant:**

Building 1 (IF podium building and 4F) and Building 5 (7F) in **Address of Applicant:**

Jiaxing Photovolta High-tech Park, No. 1288 Kanghe Rd.,

Xiuzhou District, Jiaxing, Zhejiang, China

HANSHOW TECHNOLOGY CO.,LTD. **Manufacturer/ Factory:**

Building 1 (IF podium building and 4F) and Building 5 (7F) in Address of

Manufacturer/ Factory: Jiaxing Photovolta High-tech Park, No. 1288 Kanghe Rd.,

Xiuzhou District, Jiaxing, Zhejiang, China

Equipment Under Test (EUT)

Product Name: digital signage

Model No.: Lumina Aqua-1010

FCC ID: 2AYMH-LUMINA-1010

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

September 22, 2021 Date of sample receipt:

September 23-27, 2021 Date of Test:

September 27, 2021 Date of report issued:

Test Result: PASS *

Authorized Signature:

Laboratory Manager

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description		
00	September 27, 2021	Original		
	11111111111			
1111111111	777777777	111111111		

Prepared By:	Tiger Chen	Date:	September 27, 2021
	Project Engineer		
Check By:	(Johnson lust	Date:	September 27, 2021
	Reviewer		

3 Contents

		Page
1 C	OVER PAGE	1
2 V	ERSION	2
3 C	ONTENTS	3
	EST SUMMARY	
5 G	ENERAL INFORMATION	5
5.1	GENERAL DESCRIPTION OF EUT	5
5.2	Test Mode	7
5.3	DESCRIPTION OF SUPPORT UNITS	7
5.4	DEVIATION FROM STANDARDS	
5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
5.6	TEST FACILITY	
5.7	TEST LOCATION	
5.8	ADDITIONAL INSTRUCTIONS	
6 T	EST INSTRUMENTS LIST	8
7 T	EST RESULTS AND MEASUREMENT DATA	10
7.1	ANTENNA REQUIREMENT	10
7.2	CONDUCTED EMISSIONS	
7.3	CONDUCTED PEAK OUTPUT POWER	
7.4	CHANNEL BANDWIDTH	
7.5	POWER SPECTRAL DENSITY	
7.6	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	.6.1 Conducted Emission Method	
7.	.6.2 Radiated Emission Method	18
8 T	EST SETUP PHOTO	33
9 E	UT CONSTRUCTIONAL DETAILS	

4 Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
Channel Bandwidth & 99% OCB	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	3.44dB	(1)	
Note (1): The measurement uncert	tainty is for coverage factor of	k=2 and a level of confidence of 9	95%.

5 General Information

5.1 General Description of EUT

Product Name:	digital signage
Model No.:	Lumina Aqua-1010
Test sample(s) ID:	GTS202109000191-1
Sample(s) Status	Engineer sample
S/N:	218010089010400913
Hardware Version:	V1.0
Software Version:	RC6
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS)
	802.11g/802.11n(HT20):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	0dBi
Power supply:	DC 12V

Operation Frequency each of channel							
Channel Frequency Channel		Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz	8 8 9	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Total about 1	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

F	Mode	802.11b	802.11g	802.11n(HT20)	
5	Data rate	1Mbps	6Mbps	6.5Mbps	11111

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
HANSHUO	AC/DC ADAPTOR	DCT24W120200EU-A0	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer	
Power level setup	Default	

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Radi	iated Emission:			777		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022	
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 24 2021	June. 23 2022	
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022	

RF Conducted Test:								
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022		
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022		
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022		
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022		
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022		
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022		

Gene	ral used equipment:	2 2 2 2				
Item	Test Equipment	Manufacturer Model No.		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

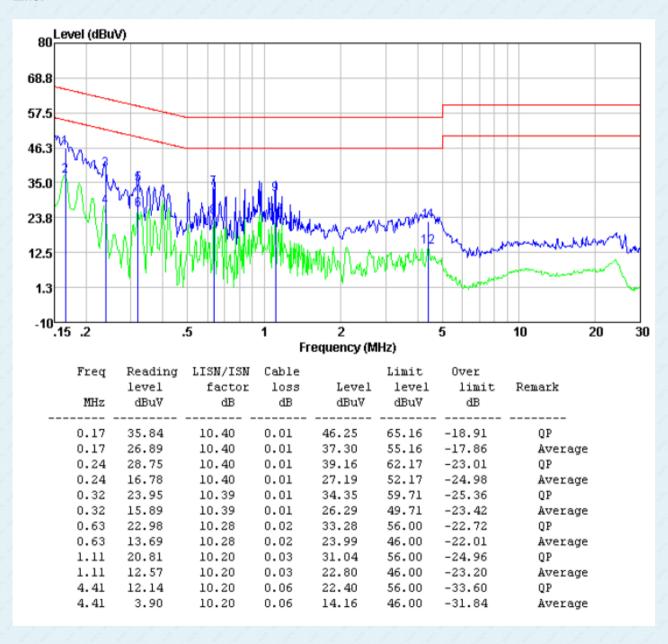
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, reference to the appendix II for details

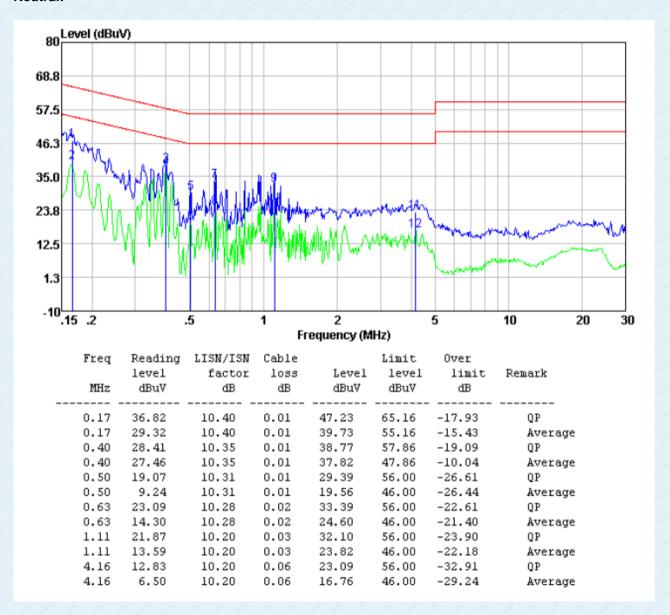
7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Limit:	Frequency range (MHz)	nit (dBuV)					
		Quasi-peak		erage			
	0.15-0.5	66 to 56*		to 46*			
	0.5-5	56		46			
	5-30	60		50			
Test setup:	* Decreases with the logarithm	n of the frequency.					
	LISN AUX Equipment E.U.T EMI Receiver Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs)						
Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hn termination. (Please refer to photographs).	are connected to the network (L.I.S.N. edance for the mean also connected to n/50uH coupling in the block diagrar). This provide asuring equipr the main pow npedance with m of the test so	es a ment. ver through a n 50ohm etup and			
Test procedure:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 2. The peripheral devices are LISN that provides a 50ohn termination. (Please refer to	are connected to the network (L.I.S.N. edance for the mean also connected to n/50uH coupling in the block diagram of the maximum emall of the interface). This provide asuring equipment the main power in the main power pedance with most the test second conducted in the release of the provided in the release of the provided in the provided i	es a ment. ver through a n 500hm etup and d lative be changed			
Test procedure: Test Instruments:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hn termination. (Please refer to photographs). 3. Both sides of A.C. line are o interference. In order to find positions of equipment and	are connected to the network (L.I.S.N. edance for the means of the block diagram checked for maximal the maximum emall of the interface 2013 on conducted). This provide asuring equipment the main power in the main power pedance with most the test second conducted in the release of the provided in the release of the provided in the provided i	es a ment. ver through a n 500hm etup and d lative be changed			
	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe 2. The peripheral devices are LISN that provides a 500hn termination. (Please refer to photographs). 3. Both sides of A.C. line are o interference. In order to find positions of equipment and according to ANSI C63.10:2	re connected to the network (L.I.S.N. edance for the means also connected to n/50uH coupling in the block diagrams the maximum emall of the interface 2013 on conducted). This provide asuring equipment the main power in the main power pedance with most the test second conducted in the release of the provided in the release of the provided in the provided i	es a ment. ver through a n 500hm etup and d lative be changed			
Test Instruments:	Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling imped 2. The peripheral devices are LISN that provides a 500hn termination. (Please refer to photographs). 3. Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details	re connected to the network (L.I.S.N. edance for the mean also connected to n/50uH coupling in the block diagram checked for maximum emall of the interface 2013 on conducted). This provide asuring equipment the main power in the main power pedance with most the test second conducted in the release of the provided in the release of the provided in the provided i	es a ment. ver through a n 500hm etup and d lative be changed			


Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

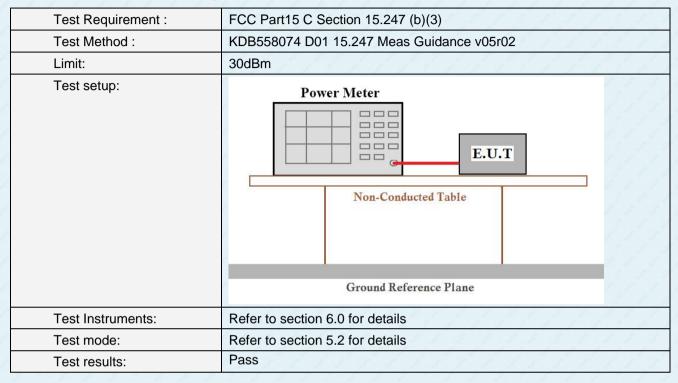
Measurement data

Report No.: GTS202109000191F01


Line:

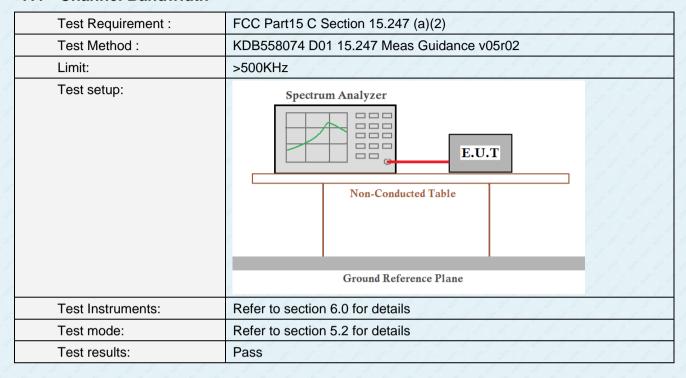
Neutral:

Report No.: GTS202109000191F01

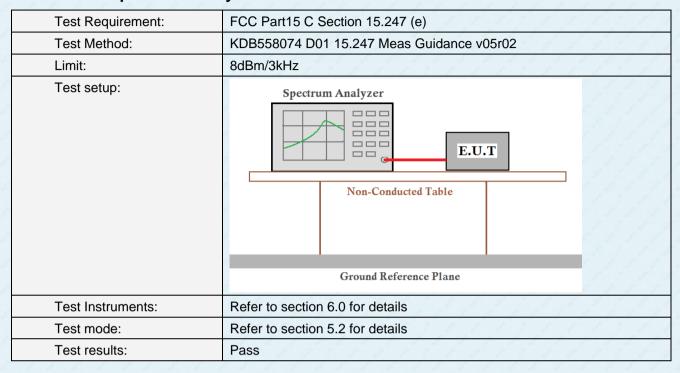


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.


7.3 Conducted Peak Output Power

Measurement Data: The detailed test data see Appendix


7.4 Channel Bandwidth

Measurement Data: The detailed test data see Appendix

7.5 Power Spectral Density

Measurement Data: The detailed test data see Appendix

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6 Spurious Emission in Non-restricted & restricted Bands

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						

Measurement Data: The detailed test data see Appendix

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 17 of 33

7.6.2 Radiated Emission Method

FCC Part15 C Section 15.209							
ANSI C63.10:2013							
9kHz to 25GHz							
Measurement Distance: 3m						1 1 1 1 1	
Frequency	Frequency Detector			V VBW		Value	
9KHz-150KHz	Quas	i-peak	200H	lz	600Hz	Quasi-peak	
150KHz-30MHz	Quas	i-peak	9KH:	z	30KHz	Quasi-peak	
30MHz-1GHz	Quas	i-peak	120KH	Ηz	300KHz	Quasi-peak	
Above 1CHz	Pe	eak	1MH	z	3MHz	Peak	
Above 1GHZ	Pe	eak	1MH	z	10Hz	Average	
Frequency		Limit (u\	//m)	Va	lue	Measurement Distance	
0.009MHz-0.490M	Hz 2	2400/F(k	(Hz)	QP		300m	
0.490MHz-1.705M	Hz 2	24000/F(KHz)	QP		30m	
1.705MHz-30MH	z	30	1 1	QP		30m	
30MHz-88MHz		100		QP			
88MHz-216MHz		150	20	QP		3m	
216MHz-960MH	z	200	1	QP			
960MHz-1GHz		500	QP Average		(P		
Above 1GHz		500			rage		
Above Toriz		5000) 5	Peak			
	 	< 3m >	st Antenna	MHz			
	ANSI C63.10:2013 9kHz to 25GHz Measurement Distar Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz Above 1GHz Frequency 0.009MHz-0.490M 0.490MHz-1.705M 1.705MHz-30MH 30MHz-88MHz 88MHz-216MHz 216MHz-960MH 960MHz-1GHz Above 1GHz For radiated emiss	FCC Part15 C Section 15.2 ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Det 9KHz-150KHz Quas 150KHz-30MHz Quas 30MHz-1GHz Quas Above 1GHz Frequency 0.009MHz-0.490MHz 0.490MHz-1.705MHz 21.705MHz-30MHz 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz For radiated emissions free	FCC Part15 C Section 15.209	Section 15.209	FCC Part15 C Section 15.209	FCC Part15 C Section 15.209	

Report No.: GTS202109000191F01 Test Antenna < 1m ... 4m EUT. Turn Table < 80cm > Turn Table Preamplifier. For radiated emissions above 1GHz Test Antenna+ < 1m ... 4m > EUT. Tum Table -150cm Receiver+ Preamplifier-Test Procedure: The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:

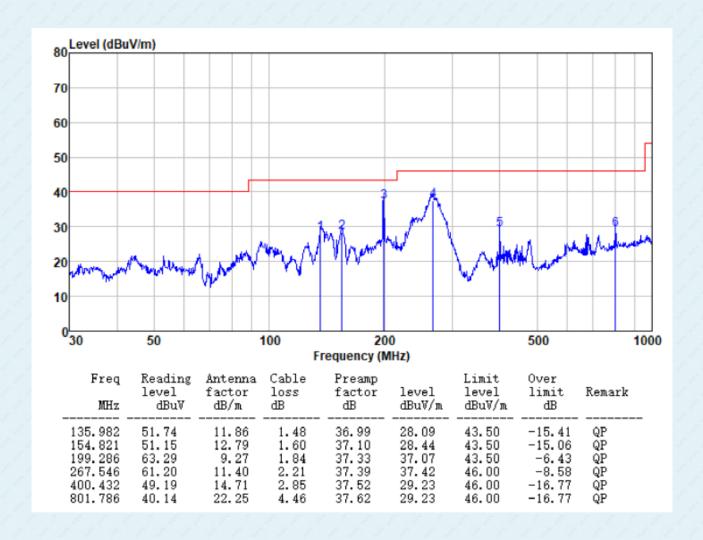
Refer to section 6.0 for details

		Report No.: G15202109000191F01						
Test mode:	Refer to s	Refer to section 5.2 for details						
Test voltage:	AC120V 60Hz					1111		
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		
Test results:	Pass			E F F				

Remarks:

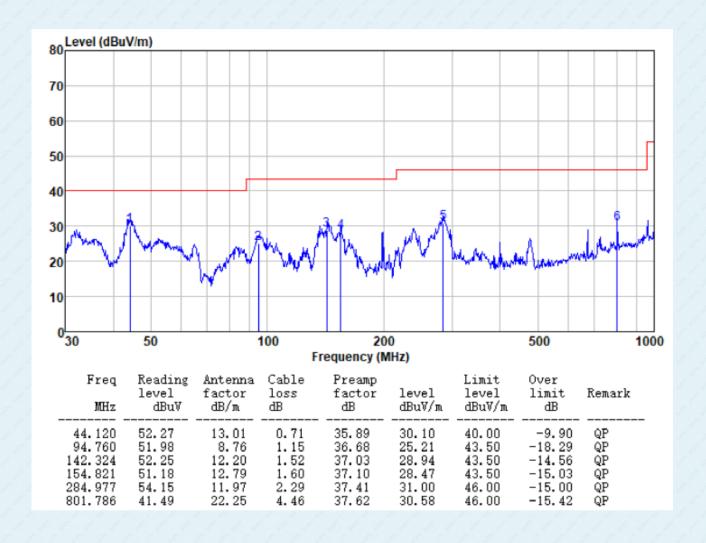
- 1. Only show the worst case 802.11b test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

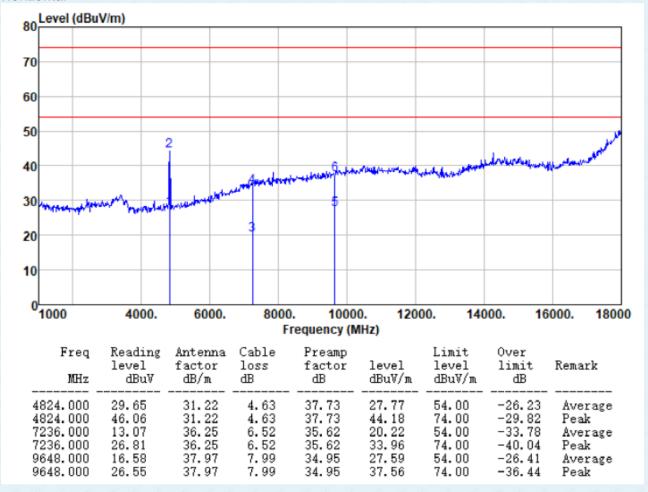
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz


Horizontal:

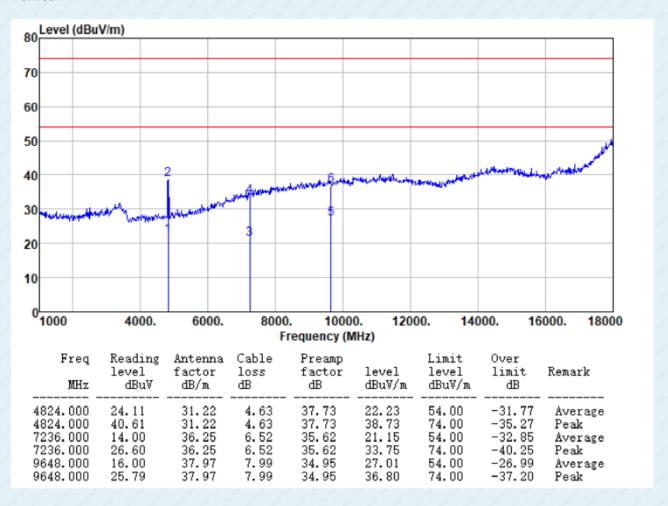
Vertical:

Report No.: GTS202109000191F01

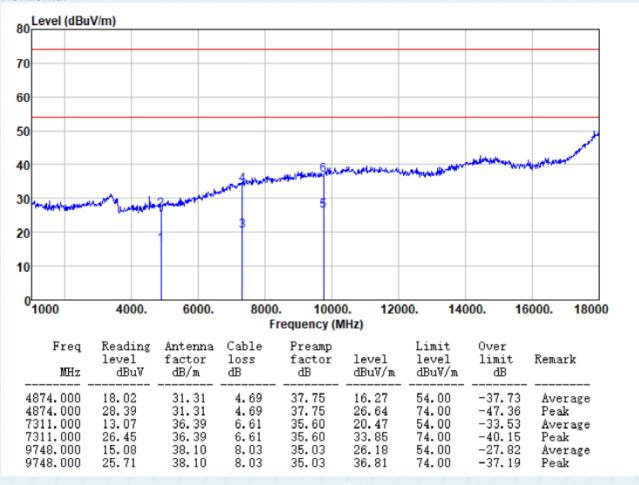


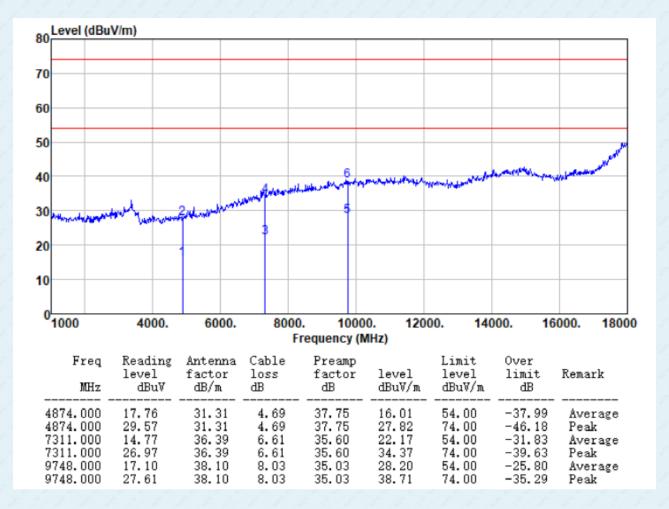
Unwanted Emissions in non-restricted Frequency Bands

■ Above 1GHz

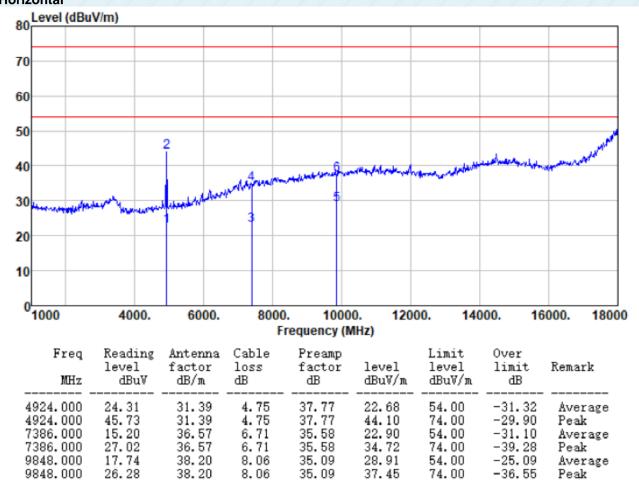

Test mode:	802.11b	Test channel:	Lowest
------------	---------	---------------	--------

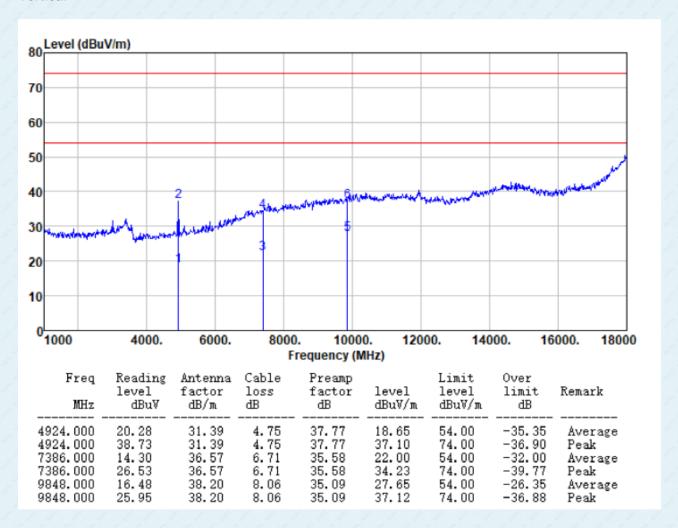
Horizontal


Vertical


Test mode: 802.11b Test channel: Middle

Horizontal

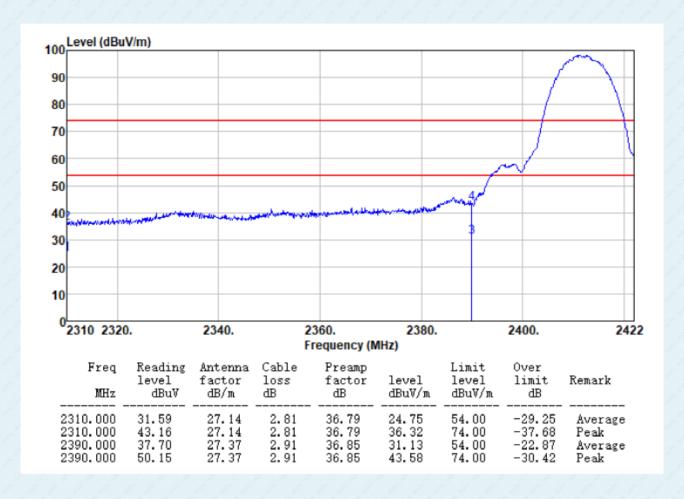

Vertical


Test mode: 802.11b Test channel: Highest

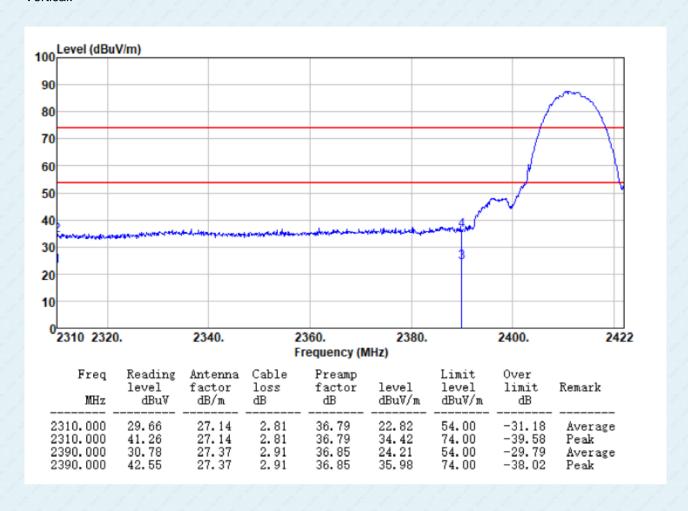
Horizontal

Vertical

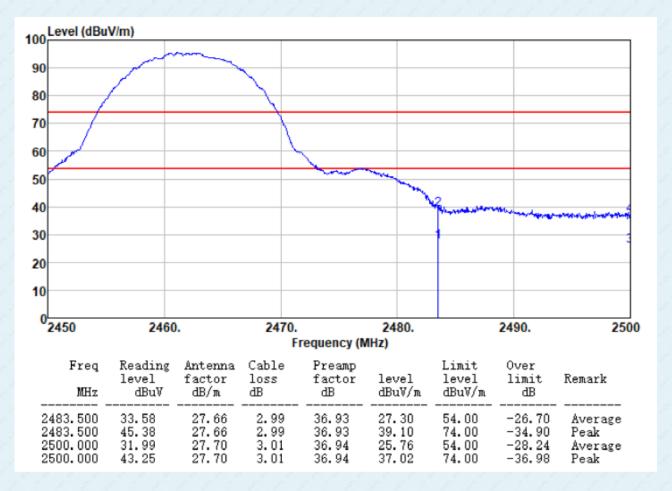
Notes:

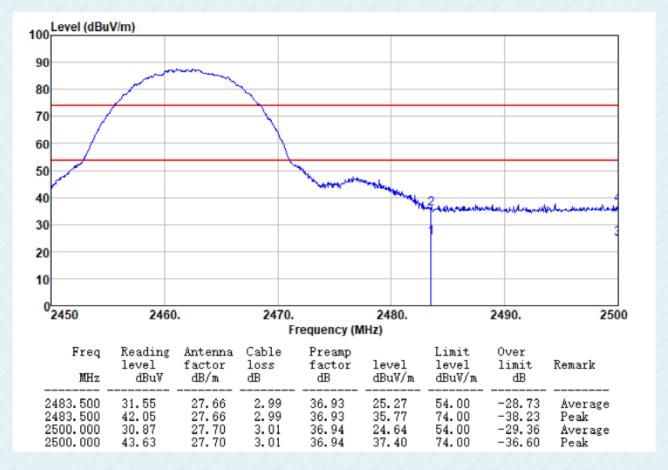

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Unwanted Emissions in restricted Frequency Bands


Test mode:	802.11b	Test channel:	Lowest

Horizontal:


Vertical:


Test mode: 802.11b Test channel: Highest

Horizontal:

Vertical:

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. all were test, only the ANT 1 test result recorded in the report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----