FCC Test Report Report No.: AGC11143221003FE06 **FCC ID** : 2AYLN-N104 **APPLICATION PURPOSE**: Original Equipment **PRODUCT DESIGNATION**: NewCube Mini PC **BRAND NAME** : JWIPC **MODEL NAME** : N104, N1040, N*******(*=A-Z, 0-9, character or blank) **APPLICANT**: JWIPC TECHNOLOGY CO., LTD. **DATE OF ISSUE** : Nov. 11, 2022 **STANDARD(S)** : FCC Part 15 Subpart E §15.407 **REPORT VERSION**: V1.0 Attestation of Global Edition (Shenzhen) Co., Ltd Page 2 of 190 # REPORT REVISE RECORD | Report Version | Revise Time | Issued Date | Valid Version | Notes | |----------------|-------------|---------------|---------------|-----------------| | V1.0 | / | Nov. 11, 2022 | Valid | Initial Release | # **TABLE OF CONTENTS** | 1. VERIFICATION OF CONFORMITY | 5 | |--|----| | 2. GENERAL INFORMATION | 6 | | 2.1. PRODUCT DESCRIPTION | 6 | | 2.2. TABLE OF CARRIER FREQUENCYS | 7 | | 2.3. RELATED SUBMITTAL(S) / GRANT (S) | 8 | | 2.4. TEST METHODOLOGY | 8 | | 2.5. SPECIAL ACCESSORIES | 8 | | 2.6. EQUIPMENT MODIFICATIONS | 8 | | 2.7. ANTENNA REQUIREMENT | 8 | | 2.8. DESCRIPTION OF AVAILABLE ANTENNAS | 9 | | 3. TEST ENVIRONMENT | 10 | | 3.1 ADDRESS OF THE TEST LABORATORY | 10 | | 3.2 TEST FACILITY | 10 | | 3.3 ENVIRONMENTAL CONDITIONS | 11 | | 3.4 MEASUREMENT UNCERTAINTY | 11 | | 3.5 LIST OF EQUIPMENTS USED | 12 | | 4. DESCRIPTION OF TEST MODES | | | 5. SYSTEM TEST CONFIGURATION | | | 5.1. CONFIGURATION OF EUT SYSTEM | | | 5.2. EQUIPMENT USED IN EUT SYSTEM | | | 5.3. SUMMARY OF TEST RESULTS | | | 6. RF OUTPUT POWER MEASUREMENT | | | 6.1 MEASUREMENT LIMITS | | | 6.2 MEASUREMENT PROCEDURE | | | 6.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | | | 6.4 MEASUREMENT RESULT | | | 7. 6DB&26DB BANDWIDTH MEASUREMENT | | | 7.1 MEASUREMENT LIMITS | | | 7.2 MEASUREMENT PROCEDURE | | | 7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | | | 7.4 MEASUREMENT RESULTS | | | 8. POWER SPECTRAL DENSITY MEASUREMENT | | | 8.1 MEASUREMENT LIMITS | | | 8.2 MEASUREMENT PROCEDURE | | | 8.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | | | 8.4 MEASUREMENT RESULT | 88 | | 9. CONDUCTED SPURIOUS EMISSION | 108 | |---|-----| | 9.1 MEASUREMENT LIMIT | 108 | | 9.2 MEASUREMENT PROCEDURE | 108 | | 9.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 108 | | 9.4 MEASUREMENT RESULTS | 109 | | 10. RADIATED EMISSION | 157 | | 10.1 LIMITS OF RADIATED EMISSION TEST | 157 | | 10.2 MEASUREMENT PROCEDURE | 158 | | 10.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 160 | | 10.4 MEASUREMENT RESULT | 161 | | 11. AC POWER LINE CONDUCTED EMISSION TEST | 186 | | 11.1. LIMITS OF LINE CONDUCTED EMISSION TEST | 186 | | 11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST | 186 | | 11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST | 187 | | 11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST | 187 | | 11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST | 188 | | APPENDIX I: PHOTOGRAPHS OF TEST SETUP | 190 | | APPENDIX II: PHOTOGRAPHS OF EUT | 190 | Page 5 of 190 ## 1. VERIFICATION OF CONFORMITY | JWIPC TECHNOLOGY CO., LTD. | |--| | 13/F, Building B, Haisong Edifice, Tairan 9th Road, Futian District, Shenzhen, China | | JWIPC TECHNOLOGY CO., LTD. | | 13/F, Building B, Haisong Edifice, Tairan 9th Road, Futian District, Shenzhen, China | | DONGGUAN SCD TECHNOLOGY CO., LTD. | | No.1 Longcheng 2nd Street, Qingxi Town, Dongguan City, Guangdong Province, China | | NewCube Mini PC | | JWIPC | | N104 | | N1040, N*******(*=A-Z, 0-9, character or blank) | | Different CPU models, memory hard disk capacity is different | | Oct. 08, 2022 | | Oct. 08, 2022~Nov. 11, 2022 | | No any deviation from the test method | | Normal | | Pass | | AGCRT-US-BGN/RF | | | #### We hereby certify that: The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with requirement of FCC Part 15 Rules requirement. Reviewed By Calvin Liu (Reviewer) Max Zhang Authorized Officer Ribo Zhang (Project Engineer) Nov. 11, 2022 Nov. 11, 2022 Page 6 of 190 #### 2. GENERAL INFORMATION ## 2.1. PRODUCT DESCRIPTION | | Control of the desired desire | | | |-----------------------|--|--|--| | Equipment Type | Outdoor access points Indoor access points | | | | | Fixed P2P access points Client devices | | | | Operation Frequency | ☐ U-NII 1:5150MHz~5250MHz ☐ U-NII 2A: 5250MHz~5350MHz | | | | | ☐ U-NII 2C:5470MHz~5725MHz ☐ U-NII 3: 5725MHz~5850MHz | | | | DFS Design Type | ☐ Master ☐ Slave with radar detection ☐ Slave without radar detection | | | | TPC Function | ☐ Yes ☐ No | | | | Hardware Version | IADPNS02-00 | | | | Software Version | Windows 11 | | | | | For 802.11a/n/ax-HT20-VHT20: 5180~5240MHz, 5745~5825MHz | | | | Test Frequency Range: | For 802.11n/ax-HT40-HE 40: 5190~5230MHz, 5755~5795MHz | | | | | For 802.11ac/ax-VHT80-HE80: 5210MHz, 5775MHz | | | | | IEEE 802.11a(HT20):12.19dBm; IEEE 802.11n(HT20):11.90dBm; | | | | | IEEE802.11n(HT40):11.59dBm; IEEE 802.11ac(VHT20):11.19dBm; | | | | Output Power | IEEE802.11ac(VHT40):10.65dBm; IEEE802.11ac(VHT80):10.02dBm; | | | | | IEEE802.11ax(HE20):10.28dBm; IEEE802.11ax(HE40):9.55dBm; | | | | | IEEE802.11ax(HE80):9.12dBm | | | | | IEEE 802.11nHT(20):14.66dBm;IEEE802.11n(HT40):14.24dBm | | | | 0 (2 (D | IEEE 802.11ac(VHT20):13.63dBm; IEEE802.11ac(VHT40):13.34dBm; | | | | Output Power_MIMO | IEEE802.11ac(VHT80):12.62dBm;IEEE802.11ax(HE20):12.99dBm; | | | | | IEEE802.11ax(HE40):12.18dBm;IEEE802.11ax(HE80):11.77dBm | | | | | 802.11a/n:(64-QAM, 16-QAM, QPSK, BPSK) OFDM | | | | Modulation | 802.11ac :(256-QAM, 64-QAM, 16-QAM, QPSK, BPSK) OFDM | | | | | 802.11ax :(1024-QAM,256-QAM, 64-QAM, 16-QAM, QPSK, BPSK) OFDMA | | | | | 802.11a: 6/9/12/18/24/36/48/54Mbps; | | | | Data Data | 802.11n: up to 300Mbps; | | | | Data Rate | 802.11ac: up to 866.6Mbps; | | | | | 802.11ax: up to 1201Mbps | | | | Novebou of about als | 7 channels of U-NII-1 Band | | | | Number of channels | 8 channels of U-NII-3 Band | | | | Antenna Designation | PIFA Antenna | | | | Antenna Gain | Refer to Chapter 2.8 of the report. | | | | Power Supply | DC 19V | | | | | | | | **Note**: Three adapters (DA-90J19, NB-65B19, SOY-1900342-327) and four CPU (I5-1235U, I3-1215U, I5-1240P, I7-1255U) were tested. The test records reported below are the worst results compared with other modes (DA-90J19 and I7-1255U). Page 7 of 190 #### 2.2. TABLE OF CARRIER FREQUENCYS #### For 5180~5240MHz: # 4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 36 | 5180 MHz | 44 | 5220 MHz | | 40 | 5200 MHz | 48 | 5240 MHz | # 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 38 | 5190 MHz | 46 | 5230 MHz | ## 1 channel is provided for 802.11ac (VHT80), 802.11ax (VHT80): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 42 | 5210 MHz | | | #### For 5745~5825MHz: # 5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 149 | 5745 MHz | 161 | 5805 MHz | | 153 | 5765 MHz | 165 | 5825 MHz | | 157 | 5785 MHz | | | # 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 151 | 5755 MHz | 159 | 5795 MHz | ## 1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 155 | 5775 MHz | | | Page 8 of 190 ## 2.3. RELATED SUBMITTAL(S) / GRANT (S) This submittal(s) (test report) is intended for **FCC ID: 2AYLN-N104** filing to comply with the FCC Part 15 requirements. #### 2.4. TEST METHODOLOGY | No. | Identity | Document Title | |-----|--------------------|---| | 1 | FCC 47 CFR Part 2 | Frequency allocations and radio treaty matters; general rules and regulations | | 2 | FCC 47 CFR Part 15 | Radio Frequency Devices | | 3 | ANSI C63.10-2013 | American National Standard for Testing Unlicensed Wireless Devices | | 4 | KDB 662911 | 662911 D01 Multiple Transmitter Output v02r01 | | 5 | KDB 789033 | 789033 D02 General U-NII Test Procedures New Rules v02r01 | #### 2.5. SPECIAL ACCESSORIES Refer to section 5.2. #### 2.6. EQUIPMENT MODIFICATIONS Not available for this EUT intended for grant. #### 2.7. ANTENNA REQUIREMENT #### **Standard Requirement** #### 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antennathat uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a brokenantenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### **EUT Antenna:** The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna refer to Section 2.8 of the report Page 9 of 190 #### 2.8. DESCRIPTION OF AVAILABLE ANTENNAS | Antenna | Frequency | TX | Bandwidth | Max Peak Gain (dBi) | | Max
Directional Gain | |---------|---|-------------------------|-----------|---------------------|-------|-------------------------| | Type | Band (MHz) | Paths (MHz) Ant 1 Ant 2 | | Paths | (dBi) | | | | 5G WIFI PIFA Antenna List (5GHz 2*2 MIMO) | | | | | | | PIFA | PIFA 5150 ~ 5250 2 20,40,80 4.77 4.39 | | | | | 7.78 | | Antenna | 5725 ~ 5850 | 2 | 20,40,80 | 4.95 | 5.31 | 8.32 | Note 1: The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11n/ac/ax mode. Note 2: The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated. If all antennas have the same gain, Gant, Directional gain = Gant + Array Gain, where Array Gain is as follows. For power spectral density (PSD) measurements on devices: Array Gain = 10 log (Nant/ Nss) dB = 3.01; For power measurements on IEEE 802.1devices: Array Gain = 0 dB for $N_{ANT} \le 4$; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥40 MHz for any NANT; Array Gain = 5 log(Nant/Nss) dB or 3 dB, whichever is less, for 20 MHz channel widths with Nant ≥ 5. If antenna gains are not equal, Directional gain may be calculated by using the formulas applicable to equal gain antennas with Gant set equal to the gain of the antenna having the highest gain. Page 10 of 190 #### 3. TEST ENVIRONMENT #### 3.1 ADDRESS OF THE TEST LABORATORY Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd. Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China #### 3.2 TEST FACILITY The test facility is recognized, certified, or accredited by the following organizations: ## CNAS-Lab Code: L5488 Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories. ### A2LA-Lab Cert. No.: 5054.02 Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. ## FCC-Registration No.: 975832 Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832. ## IC-Registration No.: 24842 (CAB identifier: CN0063) Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842. Page 11 of 190 ## 3.3 ENVIRONMENTAL CONDITIONS | | NORMAL CONDITIONS | EXTREME CONDITIONS | |---------------------------------|-------------------|--------------------| | Temperature range (°C) | 15 - 35 | -20 - 50 | | Relative humidty range | 20 % - 75 % | 20 % - 75 % | | Pressure range (kPa) | 86 - 106 | 86 - 106 | | Power supply | DC 19.0V | | | Note The Edward Towns of the LE | | | Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer. #### 3.4 MEASUREMENT UNCERTAINTY The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% | Item | Measurement Uncertainty | |---|----------------------------| | Uncertainty of Conducted Emission for AC Port | $U_c = \pm 3.1 \text{ dB}$ | | Uncertainty of Radiated Emission below 1GHz | $U_c = \pm 4.0 \text{ dB}$ | | Uncertainty of Radiated Emission above 1GHz | $U_c = \pm 4.8 \text{ dB}$ | | Uncertainty of total RF power, conducted | $U_c = \pm 0.8 \text{ dB}$ | | Uncertainty of RF power density, conducted | $U_c = \pm 2.6 \text{ dB}$ | | Uncertainty of spurious emissions, conducted | U _c = ±2 % | | Uncertainty of Occupied Channel Bandwidth | $U_c = \pm 2.7 \%$ | Page 12 of 190 ## 3.5 LIST OF EQUIPMENTS USED ## TEST EQUIPMENT OF CONDUCTED EMISSION TEST | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |---------------|--------------|---------|-----------|---------------|---------------| | TEST RECEIVER | R&S | ESPI | 101206 | Aug. 04, 2022 | Aug. 03, 2023 | | LISN | R&S | ESH2-Z5 | 100086 | Jun. 08, 2022 | Jun. 07, 2023 | | Test software | R&S | ES-K1 | Ver.V1.71 | N/A | N/A | #### **TEST EQUIPMENT OF RADIATED EMISSION TEST** | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |--------------------------------------|----------------|--------------|------------|---------------|---------------| | TEST
RECEIVER | R&S | ESCI | 10096 | Mar. 28, 2022 | Mar. 27, 2023 | | EXA Signal
Analyzer | Aglient | N9010A | MY53470504 | Aug. 04, 2022 | Aug. 03, 2023 | | Power sensor | Aglient | U2021XA | MY54110007 | Mar. 04, 2022 | Mar. 02, 2023 | | 5GHz Fliter | EM Electronics | 5150-5880MHz | N/A | N/A | N/A | | Attenuator | ZHINAN | E-002 | N/A | Sep. 01, 2022 | Aug. 31, 2023 | | Horn antenna | SCHWARZBECK | BBHA 9170 | #768 | Oct. 31, 2021 | Oct. 30, 2023 | | Active loop
antenna
(9K-30MHz) | ZHINAN | ZN30900C | 18051 | Mar. 12, 2022 | Mar. 11, 2023 | | Double-Ridged
Waveguide
Horn | ETS LINDGREN | 3117 | 00034609 | Apr. 23, 2021 | Apr. 22, 2023 | | Broadband
Preamplifier | ETS LINDGREN | 3117PA | 00225134 | Sep. 01, 2022 | Aug. 31, 2023 | | ANTENNA | SCHWARZBECK | VULB9168 | 494 | Jan. 08, 2021 | Jan. 07, 2023 | | Test software | Tonscend | JS32-RE | Ver.2.5 | N/A | N/A | ## 4. DESCRIPTION OF TEST MODES | Mode | Available channel | Tested channel | Modulation | Date rate
(Mbps) | |-------------------|-------------------------------------|--------------------------|------------|---------------------| | 802.11a/n/ac/ax20 | 36,40,44,48,
149,153,157,161,165 | 36,40,48,
149,157,165 | OFDM/OFDMA | 6Mbps/MCS0 | | 802.11n/ac/ax40 | 38,46,151,159 | 38,46, 151,159 | OFDM/OFDMA | MCS0 | | 802.11ac/ax80 | 42, 155 | 42, 155 | OFDM/OFDMA | MCS0 | #### Note: - 1. The EUT has been set to operate continuously on tested channel individually, and the EUT is operating at its maximum duty cycle>or equal 98%. - 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data. Page 14 of 190 # 5. SYSTEM TEST CONFIGURATION ## **5.1. CONFIGURATION OF EUT SYSTEM** #### **5.2. EQUIPMENT USED IN EUT SYSTEM** | Item | Equipment | Model No. | ID or Specification | Remark | |------|-----------------|-----------------|--|--------| | 1 | NewCube Mini PC | N104 | 2AYLN-N104 | EUT | | 2 | Adapter 1 | DA-90J19 | Input: AC 100-240V 50-60Hz, 1.5A Max
Output: DC 19V 4.74A | AE | | 3 | Adapter 2 | NB-65B19 | Input: AC 100-240V 50-60Hz, 1.5A Max
Output: DC 19V 3.42A | AE | | 4 | Adapter 3 | SOY-1900342-327 | Input: AC 100-240V 50-60Hz, 1.5A Max
Output: DC 19V 3.42A | AE | # **5.3. SUMMARY OF TEST RESULTS** | Item | FCC Rules | Description Of Test | Result | |------|-----------------------|----------------------------------|--------| | 1 | §15.203 | Antenna Equipment | Pass | | 2 | §15.407(a/1/2/3) | RF Output Power | Pass | | 3 | §15.407(e) | 6dB Bandwidth Measurement | Pass | | 4 | §2.1049 | 26dB bandwidth Measurement | Pass | | 5 | §15.407(a/1/2/3) | Power Spectral Density | Pass | | 6 | §15.407(b)(1/2/3/4/5) | Conducted Spurious Emission | Pass | | 7 | §15.407(b)(1/2/3/4/5) | Radiated Emission& Band Edge | Pass | | 8 | §15.407(b)(6) | AC Power Line Conducted Emission | Pass | Page 15 of 190 #### 6. RF OUTPUT POWER MEASUREMENT #### **6.1 MEASUREMENT LIMITS** | Operation Band | | EUT Category | LIMIT | | | |----------------|-------------|-----------------------------------|---|--|---------------------------------------| | U-NII-1 | | Outdoor Access Point | 1 Watt (30 dBm) (Max. e.i.r.p < 125mW(21 dBm) at any elevation angle above 30 degrees as measured from the horizon) | | | | J | | Fixed point-to-point Access Point | 1 Watt (30 dBm) | | | | | | Indoor Access Point | 1 Watt (30 dBm) | | | | | \boxtimes | Client devices | 250mW (23.98 dBm) | | | | U-NII-2A | | / | 250mW (23.98 dBm) or 11 dBm+10 log B* | | | | U-NII-2C | / | | / | | 250mW (23.98 dBm) or 11 dBm+10 log B* | | U-NII-3 | _ | / | 1 Watt (30 dBm) | | | Note: Where B is the 26dB emission bandwidth in MHz. #### **6.2 MEASUREMENT PROCEDURE** Method PM is Measurement using an RF average power meter. The procedure for this method is as follows: - 1. The testing follows the ANSI C63.10 Section 12.3.3.1 - 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied: - 3. The EUT is configured to transmit continuously, or to transmit with a constant duty cycle. - 4. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level. - 5. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five. - Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - 7. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter. - 8. Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}. - 9. Record the test results in the report. # 6.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) ## **6.4 MEASUREMENT RESULT** | | Test Data of Conducted Output Power for band 5.15-5.25 GHz-ANT 1 | | | | | | |------------|--|---------------------|--------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Limits (dBm) | Pass or Fail | | | | | 5180 | 12.03 | 23.98 | Pass | | | | 802.11a | 5200 | 12.19 | 23.98 | Pass | | | | | 5240 | 12.04 | 23.98 | Pass | | | | | 5180 | 11.79 | 23.98 | Pass | | | | 802.11n20 | 5200 | 11.90 | 23.98 | Pass | | | | | 5240 | 11.88 | 23.98 | Pass | | | | 802.11n40 | 5190 | 11.52 | 23.98 | Pass | | | | 002.111140 | 5230 | 11.59 | 23.98 | Pass | | | | | 5180 | 11.01 | 23.98 | Pass | | | | 802.11ac20 | 5200 | 11.19 | 23.98 | Pass | | | | | 5240 | 11.00 | 23.98 | Pass | | | | 802.11ac40 | 5190 | 10.65 | 23.98 | Pass | | | | 602.11ac40 | 5230 | 10.59 | 23.98 | Pass | | | | 802.11ac80 | 5210 | 10.02 | 23.98 | Pass | | | | | 5180 | 10.19 | 23.98 | Pass | | | | 802.11ax20 | 5200 | 10.28 | 23.98 | Pass | | | | | 5240 | 10.25 | 23.98 | Pass | | | | 802.11ax40 | 5190 | 9.55 | 23.98 | Pass | | | | 002.11ax40 | 5230 | 9.54 | 23.98 | Pass | | | | 802.11ax80 | 5210 | 9.12 | 23.98 | Pass | | | Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. | | Test Data of Conducted Output Power for band 5.15-5.25 GHz-ANT 2 | | | | | | |-------------------------|--|---------------------|--------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Limits (dBm) | Pass or Fail | | | | | 5180 | 11.65 | 23.98 | Pass | | | | 802.11a | 5200 | 11.48 | 23.98 | Pass | | | | | 5240 | 11.00 | 23.98 | Pass | | | | | 5180 | 11.50 | 23.98 | Pass | | | | 802.11n20 | 5200 | 11.31 | 23.98 | Pass | | | | | 5240 | 10.72 | 23.98 | Pass | | | | 802.11n40 | 5190 | 10.92 | 23.98 | Pass | | | | 002.111140 | 5230 | 10.20 | 23.98 | Pass | | | | | 5180 | 10.14 | 23.98 | Pass | | | | 802.11ac20 | 5200 | 9.97 | 23.98 | Pass | | | | | 5240 | 9.33 | 23.98 | Pass | | | | 802.11ac40 | 5190 | 9.99 | 23.98 | Pass | | | | 002.11a040 | 5230 | 9.38 | 23.98 | Pass | | | | 802.11ac80 | 5210 | 9.15 | 23.98 | Pass | | | | | 5180 | 9.76 | 23.98 | Pass | | | | 802.11ax20 | 5200 | 9.54 | 23.98 | Pass | | | | | 5240 | 9.02 | 23.98 | Pass | | | | 802.11ax40 | 5190 | 8.76 | 23.98 | Pass | | | | 002.118X 4 0 | 5230 | 8.19 | 23.98 | Pass | | | | 802.11ax80 | 5210 | 8.36 | 23.98 | Pass | | | | | Test Data of Conducte | ed Output Power for band 5.15 | -5.25 GHz-MIMO | | |-------------|-----------------------|-------------------------------|----------------|--------------| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Limits (dBm) | Pass or Fail | | | 5180 | 14.66 | 23.98 | Pass | | 802.11n20 | 5200 | 14.63 | 23.98 | Pass | | | 5240 | 14.35 | 23.98 | Pass | | 802.11n40 | 5190 | 14.24 | 23.98 | Pass | | 802.111140 | 5230 | 13.96 | 23.98 | Pass | | | 5180 | 13.61 | 23.98 | Pass | | 802.11ac20 | 5200 | 13.63 | 23.98 | Pass | | | 5240 | 13.26 | 23.98 | Pass | | 802.11ac40 | 5190 | 13.34 | 23.98 | Pass | | 802.118040 | 5230 | 13.04 | 23.98 | Pass | | 802.11ac80 | 5210 | 12.62 | 23.98 | Pass | | | 5180 | 12.99 | 23.98 | Pass | | 802.11ax20 | 5200 | 12.94 | 23.98 | Pass | | | 5240 | 12.69 | 23.98 | Pass | | 902 44 0 40 | 5190 | 12.18 | 23.98 | Pass | | 802.11ax40 | 5230 | 11.93 | 23.98 | Pass | | 802.11ax80 | 5210 | 11.77 | 23.98 | Pass | | Test Data of Conducted Output Power for band 5.725-5.85 GHz-ANT 1 | | | | | | |---|--|-------|--------------|--------------|--| | Test Mode | Test Channel Average Power (MHz) (dBm) | | Limits (dBm) | Pass or Fail | | | | 5745 | 10.55 | 30 | Pass | | | 802.11a | 5785 | 10.85 | 30 | Pass | | | | 5825 | 10.53 | 30 | Pass | | | | 5745 | 10.41 | 30 | Pass | | | 802.11n20 | 5785 | 10.60 | 30 | Pass | | | | 5825 | 10.43 | 30 | Pass | | | 802.11n40 | 5755 | 10.11 | 30 | Pass | | | 002.111140 | 5795 | 10.24 | 30 | Pass | | | | 5745 | 9.71 | 30 | Pass | | | 802.11ac20 | 5785 | 9.82 | 30 | Pass | | | | 5825 | 9.53 | 30 | Pass | | | 802.11ac40 | 5755 | 9.06 | 30 | Pass | | | 802.118040 | 5795 | 9.19 | 30 | Pass | | | 802.11ac80 | 5775 | 8.51 | 30 | Pass | | | | 5745 | 9.44 | 30 | Pass | | | 802.11ax20 | 5785 | 9.64 | 30 | Pass | | | | 5825 | 9.43 | 30 | Pass | | | 902 11 ov 40 | 5755 | 8.70 | 30 | Pass | | | 802.11ax40 | 5795 | 8.77 | 30 | Pass | | | 802.11ax80 | 5775 | 8.17 | 30 | Pass | | | Test Data of Conducted Output Power for band 5.725-5.85 GHz-ANT 2 | | | | | | |---|-----------------------|---------------------|--------------|--------------|--| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Limits (dBm) | Pass or Fail | | | | 5745 | 10.52 | 30 | Pass | | | 802.11a | 5785 | 11.02 | 30 | Pass | | | | 5825 | 10.34 | 30 | Pass | | | | 5745 | 10.32 | 30 | Pass | | | 802.11n20 | 5785 | 10.84 | 30 | Pass | | | | 5825 | 10.21 | 30 | Pass | | | 802.11n40 | 5755 | 9.86 | 30 | Pass | | | 002.111140 | 5795 | 10.12 | 30 | Pass | | | | 5745 | 9.72 | 30 | Pass | | | 802.11ac20 | 5785 | 10.25 | 30 | Pass | | | | 5825 | 9.67 | 30 | Pass | | | 802.11ac40 | 5755 | 9.01 | 30 | Pass | | | 802.11ac40 | 5795 | 9.42 | 30 | Pass | | | 802.11ac80 | 5775 | 8.32 | 30 | Pass | | | | 5745 | 9.30 | 30 | Pass | | | 802.11ax20 | 5785 | 10.00 | 30 | Pass | | | | 5825 | 9.43 | 30 | Pass | | | 802.11ax40 | 5755 | 8.65 | 30 | Pass | | | 002.118X 4 0 | 5795 | 9.06 | 30 | Pass | | | 802.11ax80 | 5775 | 8.04 | 30 | Pass | | | Test Data of Conducted Output Power for band 5.725-5.85 GHz-MIMO | | | | | | | |--|-----------------------|-------|----|--------------|--|--| | Test Mode | Test Channel
(MHz) | | | Pass or Fail | | | | | 5745 | 13.55 | 30 | Pass | | | | 802.11n20 | 5785 | 13.95 | 30 | Pass | | | | | 5825 | 13.45 | 30 | Pass | | | | 802.11n40 | 5755 | 13.38 | 30 | Pass | | | | 802.111140 | 5795 | 13.73 | 30 | Pass | | | | | 5745 | 13.33 | 30 | Pass | | | | 802.11ac20 | 5785 | 13.00 | 30 | Pass | | | | | 5825 | 13.19 | 30 | Pass | | | | 802.11ac40 | 5755 | 12.73 | 30 | Pass | | | | 802.11ac40 | 5795 | 13.05 | 30 | Pass | | | | 802.11ac80 | 5775 | 12.61 | 30 | Pass | | | | | 5745 | 12.05 | 30 | Pass | | | | 802.11ax20 | 5785 | 12.32 | 30 | Pass | | | | | 5825 | 11.43 | 30 | Pass | | | | 802.11ax40 | 5755 | 11.69 | 30 | Pass | | | | 002.118X 4 0 | 5795 | 11.93 | 30 | Pass | | | | 802.11ax80 | 5775 | 11.12 | 30 | Pass | | | Page 22 of 190 ### 7. 6DB&26DB BANDWIDTH MEASUREMENT #### 7.1 MEASUREMENT LIMITS The minimum 6dB bandwidth shall be at least 500 kHz. #### 7.2 MEASUREMENT PROCEDURE - 7.2.1 -6dB bandwidth (DTS bandwidth) Test setting: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on operation frequency individually. - 3. Set RBW = 100kHz. - 4. Set the VBW ≥3*RBW. Detector = Peak. Trace mode = max hold. - 5. Measure the maximum width of the emission that is 6 dB down from the peak of the emission. - 7.2.2 99% occupied bandwidth test setting: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually. - 3. Set Span = approximately 1.5 to 5 times the OBW, centered on a nominal channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak - 4. Set SPA Trace 1 Max hold, then View. - 7.2.3 -26dB Bandwidth test setting: - 1. Set RBW = approximately 1% of the emission bandwidth. - 2. Set the VBW > RBW. - 3. Detector = Peak. - 4. Trace mode = max hold. - 5. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%. Note: The EUT was tested according to KDB 789033 for compliance to FCC 47CFR 15.407 requirements. ## 7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) Page 23 of 190 #### 7.4 MEASUREMENT RESULTS | Test Data of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz-ANT 1 | | | | | | |--|-----------------------|---------------------------------|--------------------------|-----------------|--------------| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -26dB Bandwidth
(MHz) | Limits
(MHz) | Pass or Fail | | | 5180 | 16.525 | 22.196 | N/A | Pass | | 802.11a | 5200 | 16.512 | 22.328 | N/A | Pass | | | 5240 | 16.510 | 22.221 | N/A | Pass | | | 5180 | 17.651 | 22.219 | N/A | Pass | | 802.11n20 | 5200 | 17.647 | 23.218 | N/A | Pass | | | 5240 | 17.631 | 22.547 | N/A | Pass | | 802.11n40 | 5190 | 35.981 | 42.663 | N/A | Pass | | 002.111140 | 5230 | 35.988 | 42.483 | N/A | Pass | | | 5180 | 17.613 | 21.909 | N/A | Pass | | 802.11ac20 | 5200 | 17.631 | 23.324 | N/A | Pass | | | 5240 | 17.664 | 22.417 | N/A | Pass | | 802.11ac40 | 5190 | 35.978 | 42.450 | N/A | Pass | | 802.11ac40 | 5230 | 35.959 | 42.551 | N/A | Pass | | 802.11ac80 | 5210 | 75.024 | 83.432 | N/A | Pass | | | 5180 | 18.844 | 22.849 | N/A | Pass | | 802.11ax20 | 5200 | 18.825 | 23.023 | N/A | Pass | | | 5240 | 18.873 | 22.917 | N/A | Pass | | 802.11ax40 | 5190 | 37.532 | 42.821 | N/A | Pass | | 0U2.118X 4 U | 5230 | 37.555 | 41.115 | N/A | Pass | | 802.11ax80 | 5210 | 76.497 | 81.317 | N/A | Pass | | Test Data of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz-ANT 2 | | | | | | |--|-----------------------|---------------------------------|--------------------------|-----------------|--------------| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -26dB Bandwidth
(MHz) | Limits
(MHz) | Pass or Fail | | | 5180 | 16.481 | 21.990 | N/A | Pass | | 802.11a | 5200 | 16.495 | 22.335 | N/A | Pass | | | 5240 | 16.505 | 22.639 | N/A | Pass | | | 5180 | 17.633 | 22.772 | N/A | Pass | | 802.11n20 | 5200 | 17.644 | 22.908 | N/A | Pass | | | 5240 | 17.633 | 22.467 | N/A | Pass | | 802.11n40 | 5190 | 35.987 | 42.512 | N/A | Pass | | 602.111140 | 5230 | 36.027 | 42.505 | N/A | Pass | | | 5180 | 17.633 | 22.299 | N/A | Pass | | 802.11ac20 | 5200 | 17.625 | 22.293 | N/A | Pass | | | 5240 | 17.637 | 22.395 | N/A | Pass | | 802.11ac40 | 5190 | 35.947 | 42.727 | N/A | Pass | | 802.118040 | 5230 | 35.984 | 42.578 | N/A | Pass | | 802.11ac80 | 5210 | 75.116 | 86.477 | N/A | Pass | | | 5180 | 18.861 | 22.727 | N/A | Pass | | 802.11ax20 | 5200 | 18.838 | 22.224 | N/A | Pass | | | 5240 | 18.803 | 22.954 | N/A | Pass | | 802.11ax40 | 5190 | 37.527 | 42.052 | N/A | Pass | | 002.118X 4 0 | 5230 | 37.567 | 42.377 | N/A | Pass | | 802.11ax80 | 5210 | 76.705 | 81.992 | N/A | Pass | | Test Data of Occupied Bandwidth and DTS Bandwidth for band 5.725-5.85 GHz-ANT 1 | | | | | | | |---|-----------------------|---------------------------------|------------------------|-----------------|--------------|--| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | DTS
Bandwidth (MHz) | Limits
(MHz) | Pass or Fail | | | | 5745 | 16.665 | 16.344 | 0.5 | Pass | | | 802.11a | 5785 | 16.707 | 16.337 | 0.5 | Pass | | | | 5825 | 16.668 | 16.335 | 0.5 | Pass | | | | 5745 | 17.810 | 17.582 | 0.5 | Pass | | | 802.11n20 | 5785 | 17.813 | 17.571 | 0.5 | Pass | | | | 5825 | 17.845 | 17.569 | 0.5 | Pass | | | 802.11n40 | 5755 | 36.340 | 36.343 | 0.5 | Pass | | | 802.111140 | 5795 | 36.316 | 36.351 | 0.5 | Pass | | | | 5745 | 17.829 | 17.596 | 0.5 | Pass | | | 802.11ac20 | 5785 | 17.826 | 17.558 | 0.5 | Pass | | | | 5825 | 17.826 | 17.584 | 0.5 | Pass | | | 802.11ac40 | 5755 | 36.331 | 36.351 | 0.5 | Pass | | | 602.11ac40 | 5795 | 36.326 | 36.319 | 0.5 | Pass | | | 802.11ac80 | 5775 | 75.019 | 72.512 | 0.5 | Pass | | | | 5180 | 18.982 | 18.718 | 0.5 | Pass | | | 802.11ax20 | 5200 | 19.015 | 18.572 | 0.5 | Pass | | | | 5240 | 19.054 | 18.785 | 0.5 | Pass | | | 802.11ax40 | 5190 | 37.843 | 37.891 | 0.5 | Pass | | | 002.118X40 | 5230 | 37.869 | 37.827 | 0.5 | Pass | | | 802.11ax80 | 5210 | 76.737 | 72.524 | 0.5 | Pass | | | Test Data of Occupied Bandwidth and DTS Bandwidth for band 5.725-5.85 GHz-ANT 2 | | | | | | |---|-----------------------|---------------------------------|------------------------|-----------------|--------------| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | DTS
Bandwidth (MHz) | Limits
(MHz) | Pass or Fail | | | 5745 | 16.682 | 16.346 | 0.5 | Pass | | 802.11a | 5785 | 16.705 | 16.353 | 0.5 | Pass | | | 5825 | 16.746 | 16.338 | 0.5 | Pass | | | 5745 | 17.849 | 17.595 | 0.5 | Pass | | 802.11n20 | 5785 | 17.805 | 17.580 | 0.5 | Pass | | | 5825 | 17.811 | 17.574 | 0.5 | Pass | | 802.11n40 | 5755 | 36.303 | 36.339 | 0.5 | Pass | | 602.111140 | 5795 | 36.342 | 36.349 | 0.5 | Pass | | | 5745 | 17.819 | 17.569 | 0.5 | Pass | | 802.11ac20 | 5785 | 17.838 | 17.551 | 0.5 | Pass | | | 5825 | 17.797 | 17.579 | 0.5 | Pass | | 802.11ac40 | 5755 | 36.337 | 36.352 | 0.5 | Pass | | 002.11a040 | 5795 | 36.313 | 36.360 | 0.5 | Pass | | 802.11ac80 | 5775 | 75.081 | 72.510 | 0.5 | Pass | | | 5180 | 19.041 | 18.440 | 0.5 | Pass | | 802.11ax20 | 5200 | 19.002 | 18.303 | 0.5 | Pass | | | 5240 | 19.084 | 18.676 | 0.5 | Pass | | 802.11ax40 | 5190 | 37.886 | 37.728 | 0.5 | Pass | | 002.11ax40 | 5230 | 37.847 | 37.842 | 0.5 | Pass | | 802.11ax80 | 5210 | 76.688 | 72.547 | 0.5 | Pass | ### Test Graphs of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. ## Test Graphs of Occupied Bandwidth for band 5.725-5.85 GHz Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. ## Test Graphs of DTS Bandwidth for band 5.725-5.85 GHz Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. ## Test Graphs of Occupied Bandwidth and -26dB Bandwidth for band 5.15-5.25 GHz Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.