

# RADIO TEST REPORT FCC ID: 2AYL6-SH005

| Product:      | ANC Bluetooth Headphones |
|---------------|--------------------------|
| Trade Mark:   | MOYO                     |
| Model No.:    | SH005                    |
| Family Model: | 7197-47BK, MHANC609      |
| Report No.:   | S20122802502001          |
| Issue Date:   | Jan 12. 2021             |

# Prepared for

Shenzhen Moyoworld electronics Development Limited 16th Floor, Building C6, HengFeng Industrial Park, No. 739 Zhou Shi Road, Bao'an District, Shenzhen, China

# Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-3699 5508 Website: http://www.ntek.org.cn





# TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

| 1 | TES                                           | ST RESULT CERTIFICATION                                                                                                                                                                                                                                                                                                                                                  | 3                                                        |  |  |
|---|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|
| 2 | 2 SUMMARY OF TEST RESULTS                     |                                                                                                                                                                                                                                                                                                                                                                          |                                                          |  |  |
| 3 | FAC                                           | CILITIES AND ACCREDITATIONS                                                                                                                                                                                                                                                                                                                                              | 5                                                        |  |  |
|   | 3.1<br>3.2<br>3.3                             | FACILITIES<br>LABORATORY ACCREDITATIONS AND LISTINGS<br>MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                          | 5                                                        |  |  |
| 4 | GE                                            | NERAL DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                 | 6                                                        |  |  |
| 5 | DES                                           | SCRIPTION OF TEST MODES                                                                                                                                                                                                                                                                                                                                                  | 8                                                        |  |  |
| 6 | SET                                           | UP OF EQUIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                               | 9                                                        |  |  |
|   | 6.1<br>6.2<br>6.3                             | BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM<br>SUPPORT EQUIPMENT<br>EQUIPMENTS LIST FOR ALL TEST ITEMS                                                                                                                                                                                                                                                                    | 9<br>10                                                  |  |  |
| 7 | TES                                           | ST REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                          | 13                                                       |  |  |
|   |                                               | CONDUCTED EMISSIONS TEST<br>RADIATED SPURIOUS EMISSION<br>NUMBER OF HOPPING CHANNEL<br>HOPPING CHANNEL SEPARATION MEASUREMENT<br>AVERAGE TIME OF OCCUPANCY (DWELL TIME)<br>20DB BANDWIDTH TEST<br>PEAK OUTPUT POWER<br>CONDUCTED BAND EDGE MEASUREMENT<br>SPURIOUS RF CONDUCTED EMISSION<br>ANTENNA APPLICATION<br>REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS | 16<br>25<br>26<br>27<br>29<br>30<br>31<br>32<br>33<br>34 |  |  |
| 8 | TES                                           | ST RESULTS                                                                                                                                                                                                                                                                                                                                                               |                                                          |  |  |
|   | 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7 | DWELL TIME<br>MAXIMUM CONDUCTED OUTPUT POWER<br>OCCUPIED CHANNEL BANDWIDTH<br>CARRIER FREQUENCIES SEPARATION<br>NUMBER OF HOPPING CHANNEL<br>BAND EDGE<br>CONDUCTED RF SPURIOUS EMISSION                                                                                                                                                                                 | 40<br>45<br>55<br>60<br>61                               |  |  |



# **1 TEST RESULT CERTIFICATION**

| Applicant's name:            | Shenzhen Moyoworld electronics Development Limited                                                              |  |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| Address:                     | 16th Floor, Building C6, HengFeng Industrial Park, No. 739 Zhou Shi<br>Road, Bao'an District, Shenzhen, China   |  |  |  |
| Manufacturer's Name:         | Shenzhen Moyoworld electronics Development Limited                                                              |  |  |  |
| Address:                     | : 16th Floor, Building C6, HengFeng Industrial Park, No. 739 Zhou Shi<br>Road, Bao'an District, Shenzhen, China |  |  |  |
| Product description          |                                                                                                                 |  |  |  |
| Product name:                | ANC Bluetooth Headphones                                                                                        |  |  |  |
| Model and/or type reference: | SH005                                                                                                           |  |  |  |
| Family Model:                | 7197-47BK, MHANC609                                                                                             |  |  |  |

Measurement Procedure Used:

| APPLICABLE STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| STANDARD/ TEST PROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TEST RESULT |  |
| FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart C<br>ANSI C63.10-2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Complied    |  |
| This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.<br>This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document. |             |  |

The test results of this report relate only to the tested sample identified in this report.

| Date of Test         | : | Dec 02. 2020 ~Jan 12, 2021 |  |
|----------------------|---|----------------------------|--|
| Testing Engineer     | : | John Lin                   |  |
|                      |   | (Allen Liu)                |  |
| Technical Manager    | : | Jason Chen<br>(Jason Chen) |  |
| Authorized Signatory | : | Alex                       |  |
|                      |   | (Alex Li)                  |  |
|                      |   |                            |  |
|                      |   |                            |  |
|                      |   |                            |  |



| FCC Part15 (15.247), Subpart C |                                |         |        |
|--------------------------------|--------------------------------|---------|--------|
| Standard Section               | Test Item                      | Verdict | Remark |
| 15.207                         | Conducted Emission             | PASS    |        |
| 15.209 (a)<br>15.205 (a)       | Radiated Spurious Emission     | PASS    |        |
| 15.247(a)(1)                   | Hopping Channel Separation     | PASS    |        |
| 15.247(b)(1)                   | Peak Output Power              | PASS    |        |
| 15.247(a)(iii)                 | Number of Hopping Frequency    | PASS    |        |
| 15.247(a)(iii)                 | Dwell Time                     | PASS    |        |
| 15.247(a)(1)                   | Bandwidth                      | PASS    |        |
| 15.247 (d)                     | Band Edge Emission             | PASS    |        |
| 15.247 (d)                     | Spurious RF Conducted Emission | PASS    |        |
| 15.203                         | Antenna Requirement            | PASS    |        |

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.



# **3 FACILITIES AND ACCREDITATIONS**

## 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

# 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                        |
|------------------|------------------------------------------------------------------------|
| CNAS-Lab.        | : The Laboratory has been assessed and proved to be in compliance with |
|                  | CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)                       |
|                  | The Certificate Registration Number is L5516.                          |
| IC-Registration  | The Certificate Registration Number is 9270A.                          |
|                  | CAB identifier:CN0074                                                  |
| FCC- Accredited  | Test Firm Registration Number: 463705.                                 |
|                  | Designation Number: CN1184                                             |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                         |
|                  | This laboratory is accredited in accordance with the recognized        |
|                  | International Standard ISO/IEC 17025:2005 General requirements for     |
|                  | the competence of testing and calibration laboratories.                |
|                  | This accreditation demonstrates technical competence for a defined     |
|                  | scope and the operation of a laboratory quality management system      |
|                  | (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).         |
| Name of Firm     | : Shenzhen NTEK Testing Technology Co., Ltd.                           |
| Site Location    | : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang       |
|                  | Street, Bao'an District, Shenzhen 518126 P.R. China.                   |

# 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature                         | ±0.5°C      |
| 8   | Humidity                            | ±2%         |
| 9   | All emissions, radiated(9KHz~30MHz) | ±6dB        |



# 4 GENERAL DESCRIPTION OF EUT

| Product Feature and Specification                                        |  |  |  |
|--------------------------------------------------------------------------|--|--|--|
| ANC Bluetooth Headphones                                                 |  |  |  |
| ΜΟΥΟ                                                                     |  |  |  |
| 2AYL6-SH005                                                              |  |  |  |
| SH005                                                                    |  |  |  |
| S201228025002                                                            |  |  |  |
| 7197-47BK, MHANC609                                                      |  |  |  |
| All the model are the same circuit and RF module, except the model name. |  |  |  |
| Operating Frequency 2402MHz~2480MHz                                      |  |  |  |
| Modulation GFSK, π/4-DQPSK, 8-DPSK                                       |  |  |  |
| 79 Channels                                                              |  |  |  |
| PCB Antenna                                                              |  |  |  |
| 0 dBi                                                                    |  |  |  |
| DC 3.7V/ 400mAh from battery or DC 5V from Adapter.                      |  |  |  |
| N/A                                                                      |  |  |  |
| J33-A2-AC6955F                                                           |  |  |  |
| AC6955F_ANC Bluetooth Headphones_EQ                                      |  |  |  |
|                                                                          |  |  |  |

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.



# **Revision History**

|                 | •       |                         |              |
|-----------------|---------|-------------------------|--------------|
| Report No.      | Version | Description             | Issued Date  |
| S20122802502001 | Rev.01  | Initial issue of report | Jan 12, 2021 |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 |         |                         |              |
|                 | J       |                         |              |



# 5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for  $\pi$ /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

#### Carrier Frequency and Channel list:

| Channel | Frequency(MHz) |
|---------|----------------|
| 0       | 2402           |
| 1       | 2403           |
|         |                |
| 39      | 2441           |
| 40      | 2442           |
|         |                |
| 77      | 2479           |
| 78      | 2480           |

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

| For AC Conducted Emission |                     |  |
|---------------------------|---------------------|--|
| Final Test Mode           | Description         |  |
| Mode 1                    | 2-DH3 CH39(2441MHz) |  |
|                           |                     |  |

Note: AC power line Conducted Emission was tested under maximum output power.

|                 | For Radiated Test Cases |  |  |  |
|-----------------|-------------------------|--|--|--|
| Final Test Mode | Description             |  |  |  |
| Mode 1          | 2-DH3 CH39(2441MHz)     |  |  |  |
| Mode 2          | CH00(2402MHz)           |  |  |  |
| Mode 3          | CH39(2441MHz)           |  |  |  |
| Mode 4          | CH78(2480MHz)           |  |  |  |

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

| For Conducted Test Cases |                                                                            |  |  |  |
|--------------------------|----------------------------------------------------------------------------|--|--|--|
| Final Test Mode          | Description                                                                |  |  |  |
| Mode 2                   | CH00(2402MHz)                                                              |  |  |  |
| Mode 3                   | CH39(2441MHz)                                                              |  |  |  |
| Mode 4                   | CH78(2480MHz)                                                              |  |  |  |
| Mode 5 Hopping mode      |                                                                            |  |  |  |
| Note: The engineering    | test program was provided and the EUT was programmed to be in continuously |  |  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.



| 6 SETUP OF EQUIPMENT UNDER TEST                                                                                                                                                                                              |                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM<br>For AC Conducted Emission Mode                                                                                                                                             |                         |
| C-1 AC PLUG<br>Adapter Adapter                                                                                                                                                                                               |                         |
| For Radiated Test Cases                                                                                                                                                                                                      |                         |
| EUT                                                                                                                                                                                                                          |                         |
| For Conducted Test Cases                                                                                                                                                                                                     |                         |
| Measurement C-2 EUT                                                                                                                                                                                                          |                         |
| Note: 1. The temporary antenna connector is soldered on the PCB board in order to<br>and this temporary antenna connector is listed in the equipment list.<br>2. EUT built-in battery-powered, the battery is fully-charged. | perform conducted tests |
|                                                                                                                                                                                                                              |                         |



### 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Model/Type No. | Series No. | Note        |
|------|-----------|----------------|------------|-------------|
| AE-1 | Adapter   | N/A            | N/A        | Peripherals |
|      |           |                |            |             |
|      |           |                |            |             |
|      |           |                |            |             |
|      |           |                |            |             |

| Item | Cable Type | Shielded Type | Ferrite Core | Length |
|------|------------|---------------|--------------|--------|
| C-1  | USB Cable  | NO            | NO           | 1.0m   |
| C-2  | RF Cable   | YES           | NO           | 0.1m   |
|      |            |               |              |        |
|      |            |               |              |        |
|      |            |               |              |        |

#### Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



# 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

| Radiation& Conducted | Test equ | uipment |
|----------------------|----------|---------|
|----------------------|----------|---------|

|      |                                             | col equipment   |                 |                   |                  |                     |                           |
|------|---------------------------------------------|-----------------|-----------------|-------------------|------------------|---------------------|---------------------------|
| Item | Kind of<br>Equipment                        | Manufacturer    | Type No.        | Serial No.        | Last calibration | Calibrated<br>until | Calibrati<br>on<br>period |
| 1    | Spectrum<br>Analyzer                        | Aglient         | E4407B          | MY45108040        | 2020.05.11       | 2021.05.10          | 1 year                    |
| 2    | Spectrum<br>Analyzer                        | Agilent         | N9020A          | MY49100060        | 2020.07.13       | 2021.07.12          | 1 year                    |
| 3    | Spectrum<br>Analyzer                        | R&S             | FSV40           | 101417            | 2020.07.13       | 2021.07.12          | 1 year                    |
| 4    | Test Receiver                               | R&S             | ESPI7           | 101318            | 2020.05.11       | 2021.05.10          | 1 year                    |
| 5    | Bilog Antenna                               | TESEQ           | CBL6111D        | 31216             | 2020.04.11       | 2021.04.10          | 1 year                    |
| 6    | 50Ω Coaxial<br>Switch                       | Anritsu         | MP59B           | 6200983705        | 2020.05.11       | 2023.05.10          | 3 year                    |
| 7    | Horn Antenna                                | EM              | EM-AH-1018<br>0 | 2011071402        | 2020.04.11       | 2021.04.10          | 1 year                    |
| 8    | Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK | BBHA 9170       | 803               | 2020.07.13       | 2021.07.12          | 1 year                    |
| 9    | Amplifier                                   | EMC             | EMC051835<br>SE | 980246            | 2020.07.13       | 2021.07.12          | 1 year                    |
| 10   | Active Loop<br>Antenna                      | SCHWARZBE<br>CK | FMZB 1519<br>B  | 055               | 2020.07.13       | 2021.07.12          | 1 year                    |
| 11   | Power Meter                                 | DARE            | RPR3006W        | 15I00041SN<br>084 | 2020.07.13       | 2021.07.12          | 1 year                    |
| 12   | Test Cable<br>(9KHz-30MHz)                  | N/A             | R-01            | N/A               | 2019.08.6        | 2022.08.05          | 3 year                    |
| 13   | Test Cable<br>(30MHz-1GHz)                  | N/A             | R-02            | N/A               | 2019.08.6        | 2022.08.05          | 3 year                    |
| 14   | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-03            | N/A               | 2019.06.28       | 2022.06.27          | 3 year                    |
| 15   | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-04            | N/A               | 2020.04.11       | 2021.04.10          | 1 year                    |
| 16   | Filter                                      | TRILTHIC        | 2400MHz         | 29                | 2020.07.13       | 2021.07.12          | 1 year                    |
| 17   | temporary<br>antenna<br>connector<br>(Note) | NTS             | R001            | N/A               | N/A              | N/A                 | N/A                       |

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list



| AC Co | AC Conduction Test equipment   |                 |           |            |                  |                     |                    |
|-------|--------------------------------|-----------------|-----------|------------|------------------|---------------------|--------------------|
| Item  | Kind of<br>Equipment           | Manufacturer    | Type No.  | Serial No. | Last calibration | Calibrated<br>until | Calibration period |
| 1     | Test Receiver                  | R&S             | ESCI      | 101160     | 2020.05.11       | 2021.05.10          | 1 year             |
| 2     | LISN                           | R&S             | ENV216    | 101313     | 2020.04.11       | 2021.04.10          | 1 year             |
| 3     | LISN                           | SCHWARZBE<br>CK | NNLK 8129 | 8129245    | 2020.05.11       | 2021.05.10          | 1 year             |
| 4     | 50Ω Coaxial<br>Switch          | ANRITSU<br>CORP | MP59B     | 6200983704 | 2020.05.11       | 2023.05.10          | 3 year             |
| 5     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C01       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |
| 6     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C02       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |
| 7     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C03       | N/A        | 2020.05.11       | 2023.05.10          | 3 year             |

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.



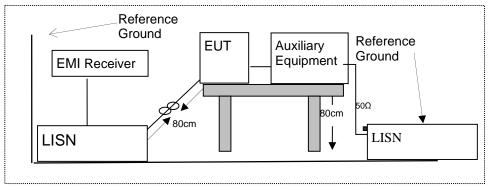
# 7 TEST REQUIREMENTS

# 7.1 CONDUCTED EMISSIONS TEST

## 7.1.1 Applicable Standard

According to FCC Part 15.207(a)

### 7.1.2 Conformance Limit


| Frequency (MHz) | Conducted Emission Limit |         |  |
|-----------------|--------------------------|---------|--|
| Frequency(MHz)  | Quasi-peak               | Average |  |
| 0.15-0.5        | 66-56*                   | 56-46*  |  |
| 0.5-5.0         | 56                       | 46      |  |
| 5.0-30.0        | 60                       | 50      |  |

Note: 1. \*Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

# 7.1.3 Test Configuration



# 7.1.4 Test Procedure

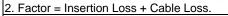
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

# 7.1.5 Test Results

Pass




## 7.1.6 Test Results

| EUT:           | ANC Bluetooth Headphones        | Model Name :       | SH005                  |
|----------------|---------------------------------|--------------------|------------------------|
| Temperature:   | 20 °C                           | Relative Humidity: | 38%                    |
| Pressure:      | 1010hPa                         | Phase :            | L                      |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Lest Mode.         | 2-DH3<br>CH39(2441MHz) |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Domorik |
|-----------|---------------|----------------|--------------|--------|--------|---------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark  |
| 0.4260    | 11.40         | 9.55           | 20.95        | 47.33  | -26.38 | AVG     |
| 0.4380    | 20.29         | 9.55           | 29.84        | 57.10  | -27.26 | peak    |
| 0.5740    | 12.05         | 9.55           | 21.60        | 46.00  | -24.40 | AVG     |
| 0.5780    | 20.88         | 9.55           | 30.43        | 56.00  | -25.57 | peak    |
| 0.9180    | 5.36          | 9.56           | 14.92        | 46.00  | -31.08 | AVG     |
| 1.2059    | 15.80         | 9.56           | 25.36        | 56.00  | -30.64 | peak    |
| 2.8380    | 2.30          | 9.60           | 11.90        | 46.00  | -34.10 | AVG     |
| 2.9060    | 13.39         | 9.60           | 22.99        | 56.00  | -33.01 | peak    |

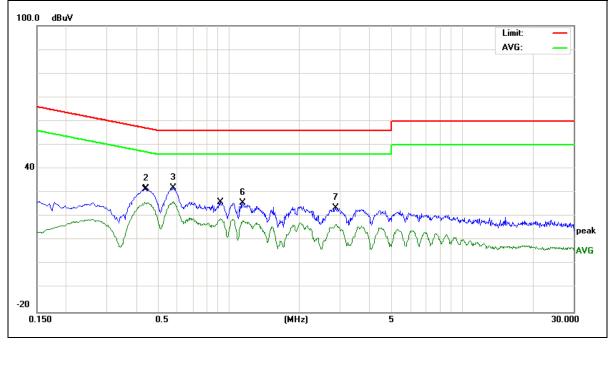
Remark:

1. All readings are Quasi-Peak and Average values.








| EUT:           | ANC Bluetooth Headphones        | Model Name :       | SH005                  |
|----------------|---------------------------------|--------------------|------------------------|
| Temperature:   | 20 ℃                            | Relative Humidity: | 38%                    |
| Pressure:      | 1010hPa                         | Phase :            | N                      |
| Test Voltage : | DC 5V from Adapter AC 120V/60Hz | Last Moda.         | 2-DH3<br>CH39(2441MHz) |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Domorik |
|-----------|---------------|----------------|--------------|--------|--------|---------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark  |
| 0.4340    | 16.60         | 9.54           | 26.14        | 47.18  | -21.04 | AVG     |
| 0.4420    | 22.08         | 9.54           | 31.62        | 57.02  | -25.40 | peak    |
| 0.5780    | 22.61         | 9.54           | 32.15        | 56.00  | -23.85 | peak    |
| 0.5780    | 16.90         | 9.54           | 26.44        | 46.00  | -19.56 | AVG     |
| 0.9220    | 9.63          | 9.55           | 19.18        | 46.00  | -26.82 | AVG     |
| 1.1420    | 16.28         | 9.55           | 25.83        | 56.00  | -30.17 | peak    |
| 2.8699    | 14.13         | 9.59           | 23.72        | 56.00  | -32.28 | peak    |
| 2.8699    | 7.25          | 9.59           | 16.84        | 46.00  | -29.16 | AVG     |

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.





### 7.2 RADIATED SPURIOUS EMISSION

#### 7.2.1 Applicable Standard

#### According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

#### 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| MHz                 | MHz                                                                                                                                                                                                                              | GHz                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 16.42-16.423        | 399.9-410                                                                                                                                                                                                                        | 4.5-5.15                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 16.69475-16.69525   | 608-614                                                                                                                                                                                                                          | 5.35-5.46                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 16.80425-16.80475   | 960-1240                                                                                                                                                                                                                         | 7.25-7.75                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 25.5-25.67          | 1300-1427                                                                                                                                                                                                                        | 8.025-8.5                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 37.5-38.25          | 1435-1626.5                                                                                                                                                                                                                      | 9.0-9.2                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 73-74.6             | 1645.5-1646.5                                                                                                                                                                                                                    | 9.3-9.5                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| 74.8-75.2           | 1660-1710                                                                                                                                                                                                                        | 10.6-12.7                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 123-138             | 2200-2300                                                                                                                                                                                                                        | 14.47-14.5                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 149.9-150.05        | 2310-2390                                                                                                                                                                                                                        | 15.35-16.2                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 156.52475-156.52525 | 2483.5-2500                                                                                                                                                                                                                      | 17.7-21.4                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 156.7-156.9         | 2690-2900                                                                                                                                                                                                                        | 22.01-23.12                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 162.0125-167.17     | 3260-3267                                                                                                                                                                                                                        | 23.6-24.0                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 167.72-173.2        | 3332-3339                                                                                                                                                                                                                        | 31.2-31.8                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 240-285             | 3345.8-3358                                                                                                                                                                                                                      | 36.43-36.5                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 322-335.4           | 3600-4400                                                                                                                                                                                                                        | (2)                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                     |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                     | MHz<br>16.42-16.423<br>16.69475-16.69525<br>16.80425-16.80475<br>25.5-25.67<br>37.5-38.25<br>73-74.6<br>74.8-75.2<br>123-138<br>149.9-150.05<br>156.52475-156.52525<br>156.7-156.9<br>162.0125-167.17<br>167.72-173.2<br>240-285 | MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358 |  |  |  |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength ( $\mu$ V/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)                 | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 24000/F(KHz)                | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                          | 29.5                    | 30                   |
| 30-88                        | 100                         | 40                      | 3                    |
| 88-216                       | 150                         | 43.5                    | 3                    |
| 216-960                      | 200                         | 46                      | 3                    |
| Above 960                    | 500                         | 54                      | 3                    |

Limits of Radiated Emission Measurement(Above 1000MHz)

| Frequency(MHz) | Class B (dBuV/m) (at 3M) |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHZ) | PEAK                     | AVERAGE |  |
| Above 1000     | 74                       | 54      |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

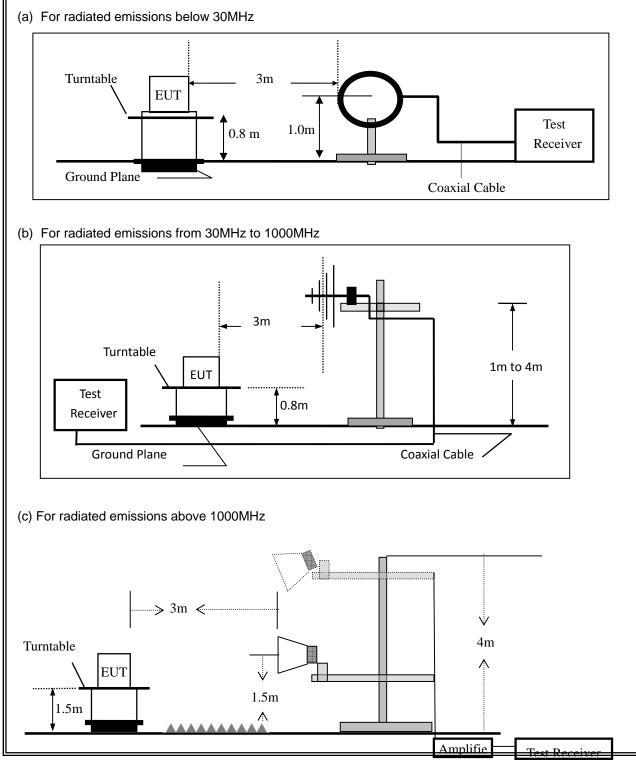
Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);




Limit line=Specific limits(dBuV) + distance extrapolation factor.

# 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

# 7.2.4 Test Configuration





#### 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| eee ale lenething epecalarit analyzer eetange | -                                                 |
|-----------------------------------------------|---------------------------------------------------|
| Spectrum Parameter                            | Setting                                           |
| Attenuation                                   | Auto                                              |
| Start Frequency                               | 1000 MHz                                          |
| Stop Frequency                                | 10th carrier harmonic                             |
| RB / VB (emission in restricted band)         | 1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

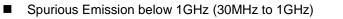
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported



| During the radiated emission test, the Spectrum Analyzer was set with the following configurations: |          |                      |                 |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|----------|----------------------|-----------------|--|--|--|--|
| Frequency Band (MHz)                                                                                | Function | Resolution bandwidth | Video Bandwidth |  |  |  |  |
| 30 to 1000                                                                                          | QP       | 120 kHz              | 300 kHz         |  |  |  |  |
| Ab avec 4000                                                                                        | Peak     | 1 MHz                | 1 MHz           |  |  |  |  |
| Above 1000                                                                                          | Average  | 1 MHz                | 1 MHz           |  |  |  |  |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

## 7.2.6 Test Results

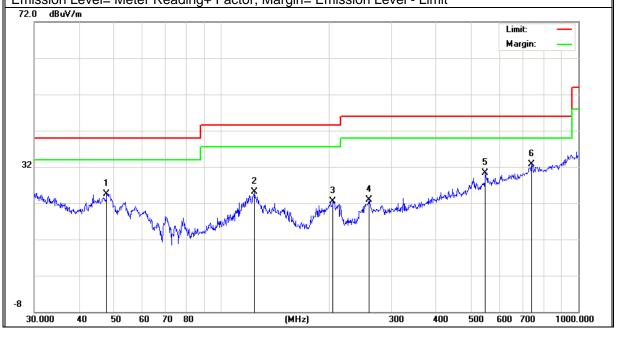

| <ul> <li>Spurious Emission below 30MHz (9KHz to 30MHz)</li> </ul> |  | Spurious | Emission | below 30MHz | (9KHz to 3 | 60MHz) |
|-------------------------------------------------------------------|--|----------|----------|-------------|------------|--------|
|-------------------------------------------------------------------|--|----------|----------|-------------|------------|--------|

| EUT:         | ANC Bluetooth Headphones | Model No.:         | SH005     |
|--------------|--------------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃              | Relative Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4        | Test By:           | Allen Liu |
|              |                          |                    |           |

| Freq. | Ant.Pol. | Emission L | .evel(dBuV/m) | Limit 3 | m(dBuV/m) | Over | r(dB) |
|-------|----------|------------|---------------|---------|-----------|------|-------|
| (MHz) | H/V      | PK         | AV            | PK      | AV        | PK   | AV    |
|       |          |            |               |         |           |      |       |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.






| All the modulation modes have been tested, and the worst result was report as below: |                          |                    |                     |  |  |
|--------------------------------------------------------------------------------------|--------------------------|--------------------|---------------------|--|--|
| EUT:                                                                                 | ANC Bluetooth Headphones | Model Name :       | SH005               |  |  |
| Temperature:                                                                         | <b>23</b> ℃              | Relative Humidity: | 55%                 |  |  |
| Pressure:                                                                            | 1010hPa                  | Test Mode:         | 2-DH3 CH39(2441MHz) |  |  |
| Test Voltage :                                                                       | DC 3.7V                  |                    |                     |  |  |

| Polar | Frequency | Meter<br>Reading | Factor | Emission<br>Level | Limits   | Margin | Remark |
|-------|-----------|------------------|--------|-------------------|----------|--------|--------|
| (H/V) | (MHz)     | (dBuV)           | (dB)   | (dBuV/m)          | (dBuV/m) | (dB)   |        |
| V     | 47.8260   | 13.57            | 10.84  | 24.41             | 40.00    | -15.59 | peak   |
| V     | 124.1330  | 12.98            | 12.20  | 25.18             | 43.50    | -18.32 | peak   |
| V     | 205.6751  | 12.69            | 9.83   | 22.52             | 43.50    | -20.98 | peak   |
| V     | 259.2338  | 8.16             | 14.80  | 22.96             | 46.00    | -23.04 | peak   |
| V     | 549.0195  | 7.81             | 22.53  | 30.34             | 46.00    | -15.66 | peak   |
| V     | 739.6604  | 7.69             | 25.11  | 32.80             | 46.00    | -13.20 | peak   |

#### Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit





| Polar       | Frequency                               | Meter<br>Reading                                                                                                                                                                                                                    | Factor                    | Emission<br>Level | Limits          | Margin            | Remark   |
|-------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|-----------------|-------------------|----------|
| (H/V)       | (MHz)                                   | (dBuV)                                                                                                                                                                                                                              | (dB)                      | (dBuV/m)          | (dBuV/m)        | (dB)              |          |
| Н           | 148.9625                                | 11.87                                                                                                                                                                                                                               | 11.98                     | 23.85             | 43.50           | -19.65            | peak     |
| Н           | 261.0583                                | 10.70                                                                                                                                                                                                                               | 14.85                     | 25.55             | 46.00           | -20.45            | peak     |
| Н           | 340.7817                                | 11.13                                                                                                                                                                                                                               | 16.19                     | 27.32             | 46.00           | -18.68            | peak     |
| Н           | 552.8832                                | 6.57                                                                                                                                                                                                                                | 22.54                     | 29.11             | 46.00           | -16.89            | peak     |
| H<br>Remark | 851.0353                                | 7.09                                                                                                                                                                                                                                | 26.22                     | 33.31             | 46.00           | -12.69            | peak     |
|             |                                         |                                                                                                                                                                                                                                     |                           |                   |                 | Limit:<br>Margin: | _        |
| 32          | Munu Munu Munu Munu Munu Munu Munu Munu | Maganda Managana Mana<br>Managana Managana Mana | 1<br>Martin Martin Martin |                   | 3<br>www.handow |                   | 5        |
| 8           | 40 50 6                                 | D 70 80                                                                                                                                                                                                                             | (MH                       |                   | 300 400         | 500 600 700       | 1000.000 |



| EUT:          | ANC           | C Bluetoo     | th Headph         | ones I           | Nodel No.:            | SHO      | 05           |      |            |  |
|---------------|---------------|---------------|-------------------|------------------|-----------------------|----------|--------------|------|------------|--|
| Temperature   | e: 20 °       | С             |                   |                  | Relative<br>Humidity: | 48%      | 8%           |      |            |  |
| Test Mode:    | Mod           | le2/Mode      | 3/Mode4           | 1                | Fest By:              | Alle     | n Liu        |      |            |  |
| All the modul | ation mode    | es have b     | een tested        | l, and the       | worst result          | was repo | ort as belov | V:   |            |  |
| Frequency     | Read<br>Level | Cable<br>loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level     | Limits   | Margin       | Rema | rk Commen  |  |
| (MHz)         | (dBµV)        | (dB)          | dB/m              | (dB)             | (dBµV/m)              | (dBµV/m  | ) (dB)       |      |            |  |
|               |               |               | Low Chann         | el (2402 N       | IHz)(8-DPSK)          | Above 1  | G            |      |            |  |
| 4804          | 68.81         | 5.21          | 35.59             | 44.30            | 65.31                 | 74.00    | -8.69        | Pk   | Vertical   |  |
| 4804          | 45.11         | 5.21          | 35.59             | 44.30            | 41.61                 | 54.00    | -12.39       | AV   | Vertical   |  |
| 7206          | 70.99         | 6.48          | 36.27             | 44.60            | 69.14                 | 74.00    | -4.86        | Pk   | Vertical   |  |
| 7206          | 49.05         | 6.48          | 36.27             | 44.60            | 47.20                 | 54.00    | -6.80        | AV   | Vertical   |  |
| 4804          | 69.66         | 5.21          | 35.55             | 44.30            | 66.12                 | 74.00    | -7.88        | Pk   | Horizontal |  |
| 4804          | 48.68         | 5.21          | 35.55             | 44.30            | 45.14                 | 54.00    | -8.86        | AV   | Horizontal |  |
| 7206          | 68.88         | 6.48          | 36.27             | 44.52            | 67.11                 | 74.00    | -6.89        | Pk   | Horizontal |  |
| 7206          | 46.22         | 6.48          | 36.27             | 44.52            | 44.45                 | 54.00    | -9.55        | AV   | Horizontal |  |
|               |               |               | Mid Channe        | el (2441 M       | Hz)( 8-DPSK)          | Above 1  | G            |      |            |  |
| 4882          | 70.57         | 5.21          | 35.66             | 44.20            | 67.24                 | 74.00    | -6.76        | Pk   | Vertical   |  |
| 4882          | 50.72         | 5.21          | 35.66             | 44.20            | 47.39                 | 54.00    | -6.61        | AV   | Vertical   |  |
| 7323          | 69.14         | 7.10          | 36.50             | 44.43            | 68.31                 | 74.00    | -5.69        | Pk   | Vertical   |  |
| 7323          | 50.91         | 7.10          | 36.50             | 44.43            | 50.08                 | 54.00    | -3.92        | AV   | Vertical   |  |
| 4882          | 70.29         | 5.21          | 35.66             | 44.20            | 66.96                 | 74.00    | -7.04        | Pk   | Horizontal |  |
| 4882          | 49.47         | 5.21          | 35.66             | 44.20            | 46.14                 | 54.00    | -7.86        | AV   | Horizontal |  |
| 7323          | 70.76         | 7.10          | 36.50             | 44.43            | 69.93                 | 74.00    | -4.07        | Pk   | Horizontal |  |
| 7323          | 50.42         | 7.10          | 36.50             | 44.43            | 49.59                 | 54.00    | -4.41        | AV   | Horizontal |  |
|               |               | ŀ             | ligh Channe       | el (2480 M       | Hz)( 8-DPSK           | ) Above  | 1G           |      |            |  |
| 4960          | 69.1          | 5.21          | 35.52             | 44.21            | 65.62                 | 74.00    | -8.38        | Pk   | Vertical   |  |
| 4960          | 48.35         | 5.21          | 35.52             | 44.21            | 44.87                 | 54.00    | -9.13        | AV   | Vertical   |  |
| 7440          | 70.26         | 7.10          | 36.53             | 44.60            | 69.29                 | 74.00    | -4.71        | Pk   | Vertical   |  |
| 7440          | 46.45         | 7.10          | 36.53             | 44.60            | 45.48                 | 54.00    | -8.52        | AV   | Vertical   |  |
| 4960          | 68.79         | 5.21          | 35.52             | 44.21            | 65.31                 | 74.00    | -8.69        | Pk   | Horizontal |  |
| 4960          | 50.81         | 5.21          | 35.52             | 44.21            | 47.33                 | 54.00    | -6.67        | AV   | Horizontal |  |
| 7440          | 69            | 7.10          | 36.53             | 44.60            | 68.03                 | 74.00    | -5.97        | Pk   | Horizontal |  |
| 7440          | 49.15         | 7.10          | 36.53             | 44.60            | 48.18                 | 54.00    | -5.82        | AV   | Horizontal |  |

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.





Report No.: S20122802502001

| Spurious     | Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz |               |                   |                  |                      |          |          |       |          |            |
|--------------|----------------------------------------------------------------------|---------------|-------------------|------------------|----------------------|----------|----------|-------|----------|------------|
| EUT:         | ANC Bluet                                                            | ooth Hea      | adphones          | Model            | No.:                 | SH       | 1005     |       |          |            |
| Temperature  | : <b>20</b> ℃                                                        |               |                   | Relativ          | Relative Humidity: 4 |          | 48%      |       |          |            |
| Test Mode:   | Mode2/ Mo                                                            | de4           |                   | Test B           | sy:                  | AI       | len Liu  |       |          |            |
| All the modu | lation mode                                                          | s have b      | een teste         |                  |                      | lt was r | eport as | belc  | w:       |            |
| Frequency    | Meter<br>Reading                                                     | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level    | Limit    | s Ma     | irgin | Detector | Comment    |
| (MHz)        | (dBµV)                                                               | (dB)          | dB/m              | (dB)             | (dBµV/m)             | (dBµV/   | /m) (o   | B)    | Туре     |            |
|              |                                                                      |               | 3Mbp              | os(8-DPSK        | ()- Non-hop          | ping     |          |       |          |            |
| 2310.00      | 68.51                                                                | 2.97          | 27.80             | 43.80            | 55.48                | 74       | -18      | 3.52  | Pk       | Horizontal |
| 2310.00      | 50.6                                                                 | 2.97          | 27.80             | 43.80            | 37.57                | 54       | -16      | 6.43  | AV       | Horizontal |
| 2310.00      | 70.24                                                                | 2.97          | 27.80             | 43.80            | 57.21                | 74       | -16      | 6.79  | Pk       | Vertical   |
| 2310.00      | 50.93                                                                | 2.97          | 27.80             | 43.80            | 37.90                | 54       | -16      | 6.10  | AV       | Vertical   |
| 2390.00      | 70.46                                                                | 3.14          | 27.21             | 43.80            | 57.01                | 74       | -16      | 6.99  | Pk       | Vertical   |
| 2390.00      | 47.51                                                                | 3.14          | 27.21             | 43.80            | 34.06                | 54       | -19      | 9.94  | AV       | Vertical   |
| 2390.00      | 70.57                                                                | 3.14          | 27.21             | 43.80            | 57.12                | 74       | -16      | 6.88  | Pk       | Horizontal |
| 2390.00      | 50.14                                                                | 3.14          | 27.21             | 43.80            | 36.69                | 54       | -17      | 7.31  | AV       | Horizontal |
| 2483.50      | 70.86                                                                | 3.58          | 27.70             | 44.00            | 58.14                | 74       | -15      | 5.86  | Pk       | Vertical   |
| 2483.50      | 47.63                                                                | 3.58          | 27.70             | 44.00            | 34.91                | 54       | -19      | 9.09  | AV       | Vertical   |
| 2483.50      | 69.39                                                                | 3.58          | 27.70             | 44.00            | 56.67                | 74       | -17      | 7.33  | Pk       | Horizontal |
| 2483.50      | 45.04                                                                | 3.58          | 27.70             | 44.00            | 32.32                | 54       | -2′      | 1.68  | AV       | Horizontal |
|              |                                                                      |               | 31                | Mbps(8-DF        | PSK)- hoppin         | g        |          |       |          |            |
| 2310.00      | 68.43                                                                | 2.97          | 27.80             | 43.80            | 55.40                | 74       | -18      | 3.60  | Pk       | Horizontal |
| 2310.00      | 46.7                                                                 | 2.97          | 27.80             | 43.80            | 33.67                | 54       | -20      | ).33  | AV       | Horizontal |
| 2310.00      | 69.2                                                                 | 2.97          | 27.80             | 43.80            | 56.17                | 74       | -17      | 7.83  | Pk       | Vertical   |
| 2310.00      | 48.73                                                                | 2.97          | 27.80             | 43.80            | 35.70                | 54       | -18      | 3.30  | AV       | Vertical   |
| 2390.00      | 70.46                                                                | 3.14          | 27.21             | 43.80            | 57.01                | 74       | -16      | 6.99  | Pk       | Vertical   |
| 2390.00      | 50.92                                                                | 3.14          | 27.21             | 43.80            | 37.47                | 54       | -16      | 6.53  | AV       | Vertical   |
| 2390.00      | 68.79                                                                | 3.14          | 27.21             | 43.80            | 55.34                | 74       | -18      | 3.66  | Pk       | Horizontal |
| 2390.00      | 49.36                                                                | 3.14          | 27.21             | 43.80            | 35.91                | 54       | -18      | 3.09  | AV       | Horizontal |
| 2483.50      | 69.59                                                                | 3.58          | 27.70             | 44.00            | 56.87                | 74       | -17      | 7.13  | Pk       | Vertical   |
| 2483.50      | 48.85                                                                | 3.58          | 27.70             | 44.00            | 36.13                | 54       | -17      | 7.87  | AV       | Vertical   |
| 2483.50      | 70.6                                                                 | 3.58          | 27.70             | 44.00            | 57.88                | 74       | -16      | 6.12  | Pk       | Horizontal |
| 2483.50      | 48.19                                                                | 3.58          | 27.70             | 44.00            | 35.47                | 54       | -18      | 3.53  | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



| E | UT:                     |        | ANC E         | Bluetooth             | n Headpho         | ones            | Model No.:   |        | SH005   | 5          |          |            |
|---|-------------------------|--------|---------------|-----------------------|-------------------|-----------------|--------------|--------|---------|------------|----------|------------|
| Т | Temperature: 20 °C      |        |               | Relative<br>Humidity: | 48%               |                 |              |        |         |            |          |            |
| Т | Test Mode: Mode2/ Mode4 |        |               |                       | Test By:          |                 | Allen L      | _iu    |         |            |          |            |
|   | All the modul           | lation | modes         | s have b              | een testeo        | d, and th       | ne worst res | ult wa | is repo | rt as belc | w:       |            |
|   | Frequency               |        | ading<br>əvel | Cable<br>Loss         | Antenna<br>Factor | Pream<br>Factor |              | Li     | imits   | Margin     | Detector | Comment    |
|   | (MHz)                   | (dl    | 3μV)          | (dB)                  | dB/m              | (dB)            | (dBµV/m)     | (dB    | βµV/m)  | (dB)       | Туре     |            |
|   | 3260                    | 7(     | 0.02          | 4.04                  | 29.57             | 44.70           | 58.93        |        | 74      | -15.07     | Pk       | Vertical   |
|   | 3260                    | 46     | 6.97          | 4.04                  | 29.57             | 44.70           | 35.88        |        | 54      | -18.12     | AV       | Vertical   |
|   | 3260                    | 69     | 9.67          | 4.04                  | 29.57             | 44.70           | 58.58        |        | 74      | -15.42     | Pk       | Horizontal |
|   | 3260                    | 49     | 9.41          | 4.04                  | 29.57             | 44.70           | 38.32        |        | 54      | -15.68     | AV       | Horizontal |
|   | 3332                    | 68     | 3.15          | 4.26                  | 29.87             | 44.40           | 57.88        |        | 74      | -16.12     | Pk       | Vertical   |
|   | 3332                    | 45     | 5.04          | 4.26                  | 29.87             | 44.40           | 34.77        |        | 54      | -19.23     | AV       | Vertical   |
|   | 3332                    | 70     | 0.83          | 4.26                  | 29.87             | 44.40           | 60.56        |        | 74      | -13.44     | Pk       | Horizontal |
|   | 3332                    | 47     | 7.61          | 4.26                  | 29.87             | 44.40           | 37.34        |        | 54      | -16.66     | AV       | Horizontal |
|   | 17797                   | 57     | 7.96          | 10.99                 | 43.95             | 43.50           | 69.40        |        | 74      | -4.60      | Pk       | Vertical   |
|   | 17797                   | 34     | 4.89          | 10.99                 | 43.95             | 43.50           | 46.33        |        | 54      | -7.67      | AV       | Vertical   |
|   | 17788                   | 59     | 9.99          | 11.81                 | 43.69             | 44.60           | 70.89        |        | 74      | -3.11      | Pk       | Horizontal |
|   | 17788                   | 38     | 3.86          | 11.81                 | 43.69             | 44.60           | 49.76        |        | 54      | -4.24      | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.



#### 7.3 NUMBER OF HOPPING CHANNEL

#### 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

#### 7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

#### 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.3.6 Test Results

| EUT:         | ANC Bluetooth Headphones | Model No.:            | SH005     |
|--------------|--------------------------|-----------------------|-----------|
| Temperature: | 20 ()                    | Relative<br>Humidity: | 48%       |
| Test Mode:   | Mode 5(1Mbps)            | Test By:              | Allen Liu |



### 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

#### 7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.4.6 Test Results

| EUT:         | ANC Bluetooth Headphones | Model No.:         | SH005     |
|--------------|--------------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃              | Relative Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4        | Test By:           | Allen Liu |



## 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

#### 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

#### 7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

#### 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW  $\geq$  1MHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.



#### 7.5.6 Test Results

| EUT:         | ANC Bluetooth Headphones | Model No.:            | SH005     |
|--------------|--------------------------|-----------------------|-----------|
| Temperature: | 20 (                     | Relative<br>Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4        | Test By:              | Allen Liu |

Test data reference attachment.

Note:

A Period Time = (channel number)\*0.4 DH1 Dwell time: Reading \* (1600/2)\*31.6/(channel number) DH3 Dwell time: Reading \* (1600/4)\*31.6/(channel number) DH5 Dwell time: Reading \* (1600/6)\*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time



#### 7.6 20DB BANDWIDTH TEST

#### 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.6.2 Conformance Limit

No limit requirement.

#### 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.6.6 Test Results

| EUT:         | ANC Bluetooth Headphones | Model No.:            | SH005     |
|--------------|--------------------------|-----------------------|-----------|
| Temperature: | 20 ()                    | Relative<br>Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4        | Test By:              | Allen Liu |



## 7.7 PEAK OUTPUT POWER

#### 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

#### 7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

#### 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  the 20 dB bandwidth of the emission being measured VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

# 7.7.6 Test Results

| EUT:         | ANC Bluetooth Headphones | Model No.:         | SH005     |
|--------------|--------------------------|--------------------|-----------|
| Temperature: | <b>20</b> ℃              | Relative Humidity: | 48%       |
| Test Mode:   | Mode2/Mode3/Mode4        | Test By:           | Allen Liu |



#### 7.8 CONDUCTED BAND EDGE MEASUREMENT

#### 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

#### 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

#### 7.8.6 Test Results

| EUT:         | ANC Bluetooth Headphones | Model No.:         | SH005     |
|--------------|--------------------------|--------------------|-----------|
| Temperature: | 20 °C                    | Relative Humidity: | 48%       |
| Test Mode:   | Mode2 /Mode4/ Mode 5     | Test By:           | Allen Liu |



## 7.9 SPURIOUS RF CONDUCTED EMISSION

#### 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

#### 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

#### 7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.



## 7.10 ANTENNA APPLICATION

#### 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 0dBi). It comply with the standard requirement.



#### 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

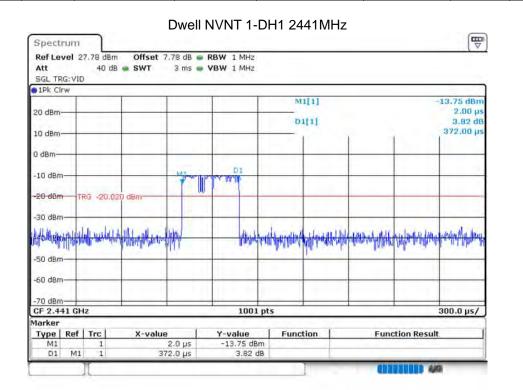
# 7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

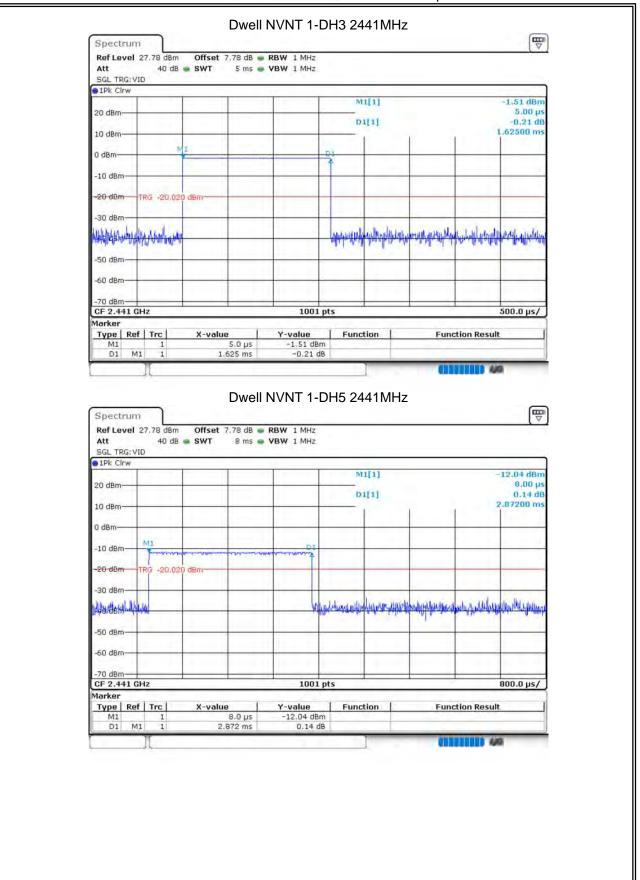
# 7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

#### 

# 8 TEST RESULTS

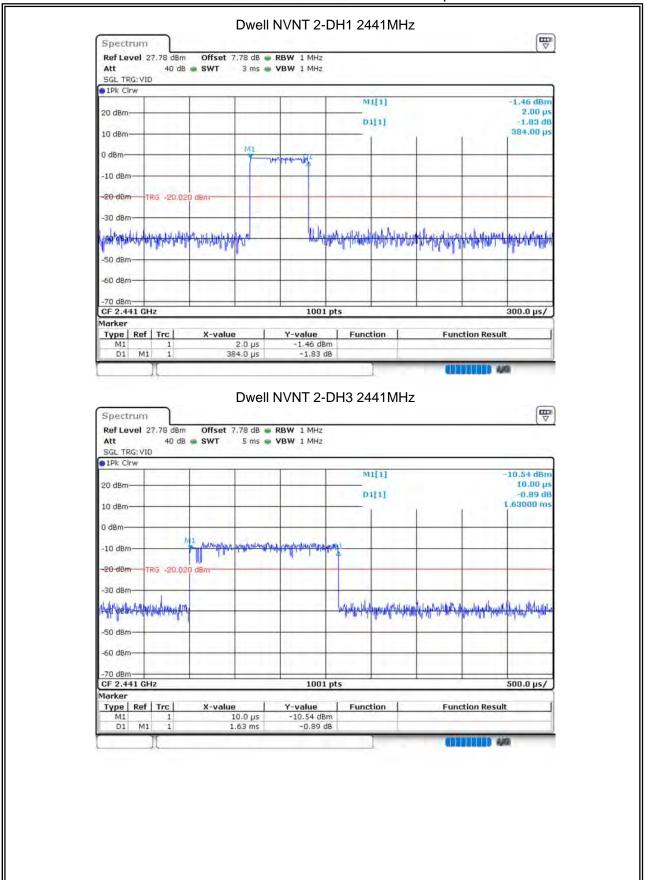

## 8.1 **DWELL TIME**

| Condition | Mode  | Frequency | Pulse Time | Total Dwell | Period Time | Limit | Verdict |
|-----------|-------|-----------|------------|-------------|-------------|-------|---------|
| Condition | woue  | (MHz)     | (ms)       | Time (ms)   | (ms)        | (ms)  | verdict |
| NVNT      | 1-DH1 | 2441      | 0.372      | 119.04      | 31600       | 400   | Pass    |
| NVNT      | 1-DH3 | 2441      | 1.625      | 260         | 31600       | 400   | Pass    |
| NVNT      | 1-DH5 | 2441      | 2.872      | 306.347     | 31600       | 400   | Pass    |
| NVNT      | 2-DH1 | 2441      | 0.384      | 122.88      | 31600       | 400   | Pass    |
| NVNT      | 2-DH3 | 2441      | 1.63       | 260.8       | 31600       | 400   | Pass    |
| NVNT      | 2-DH5 | 2441      | 2.872      | 306.347     | 31600       | 400   | Pass    |
| NVNT      | 3-DH1 | 2441      | 0.372      | 119.04      | 31600       | 400   | Pass    |
| NVNT      | 3-DH3 | 2441      | 1.63       | 260.8       | 31600       | 400   | Pass    |
| NVNT      | 3-DH5 | 2441      | 2.88       | 307.2       | 31600       | 400   | Pass    |





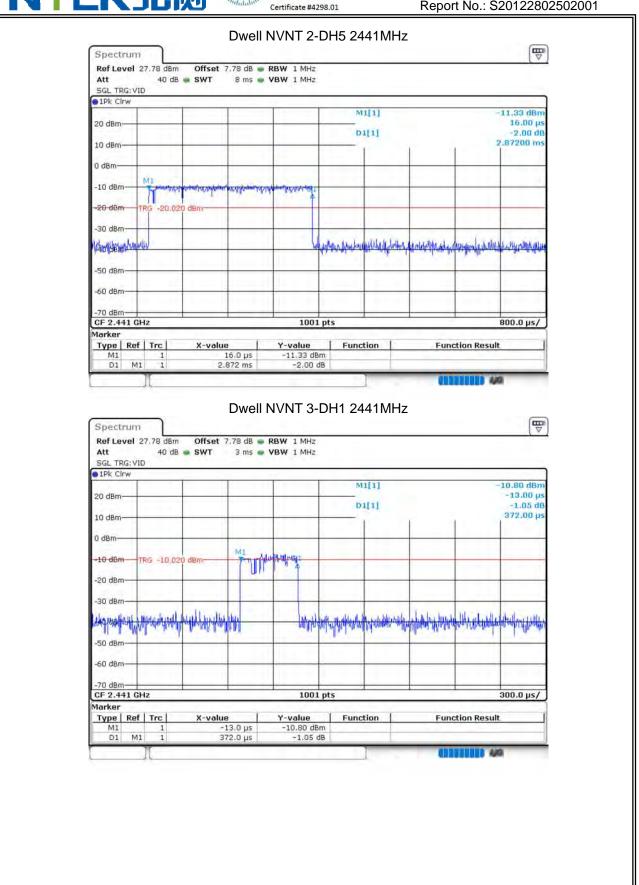





ACCREDITED

Certificate #4298.01

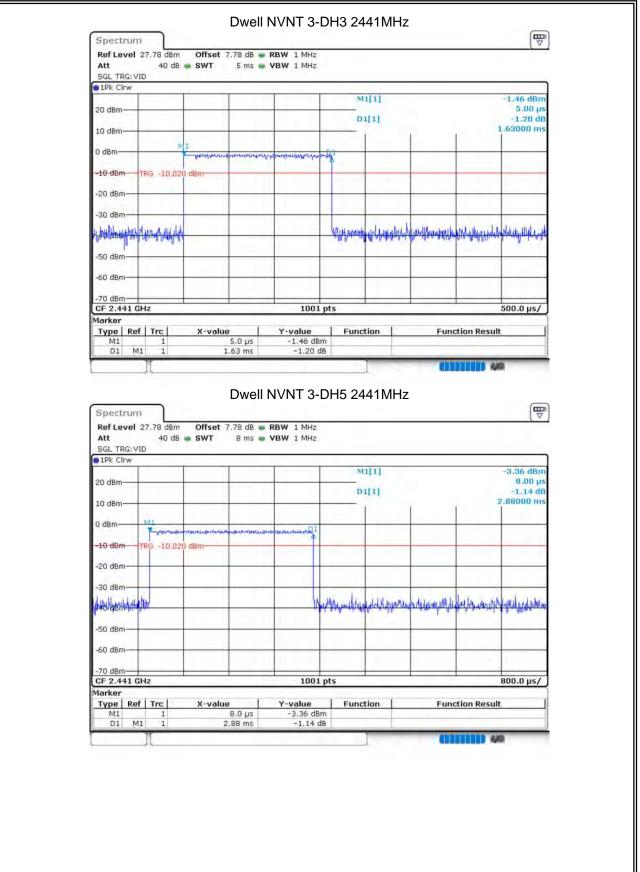







ACCREDITED





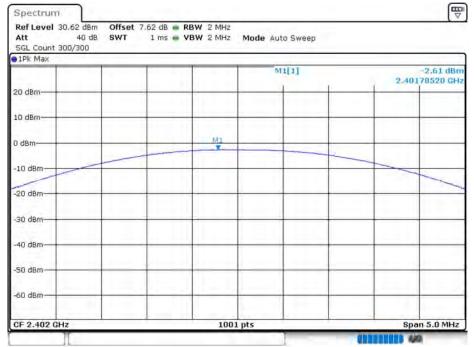



ACCREDITED

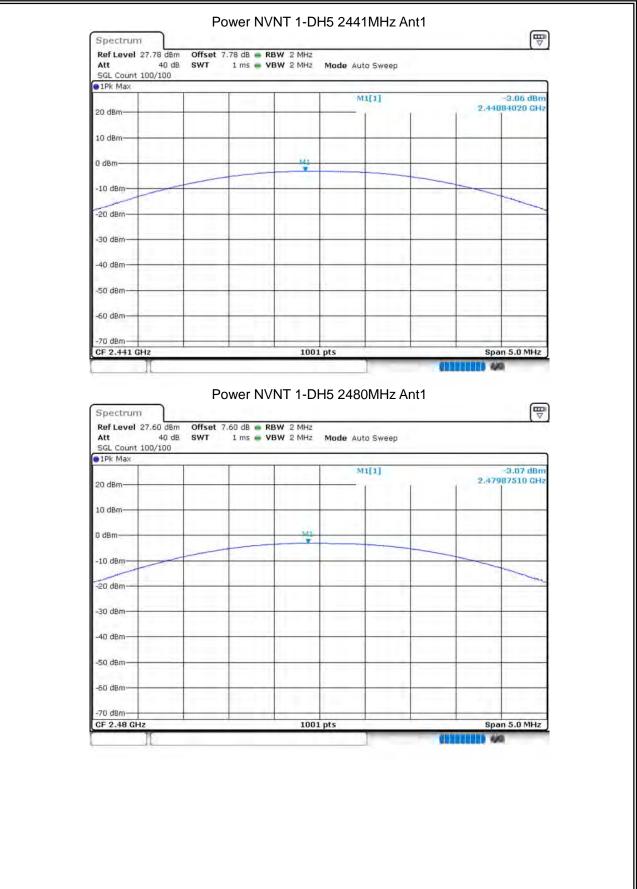







ACCREDITED

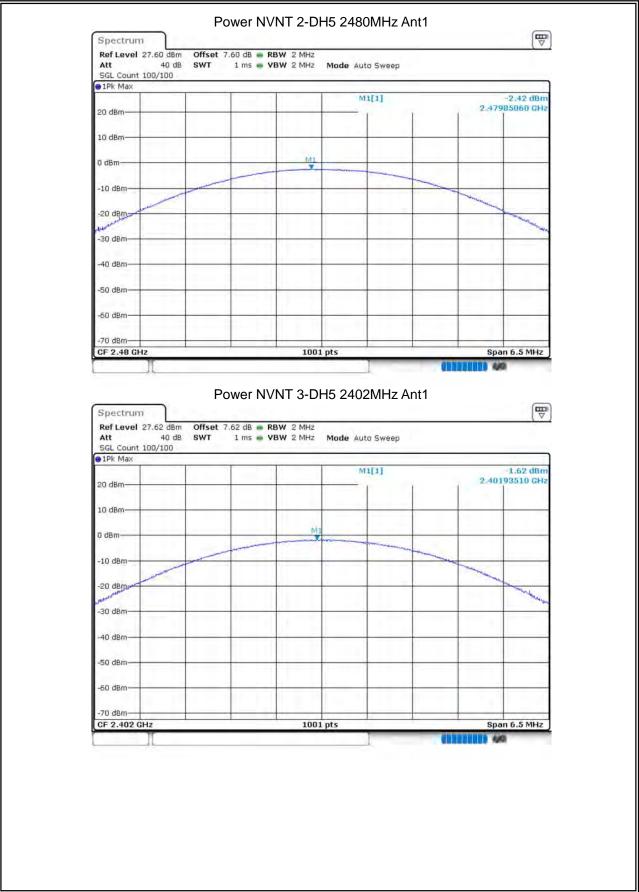



## 8.2 MAXIMUM CONDUCTED OUTPUT POWER

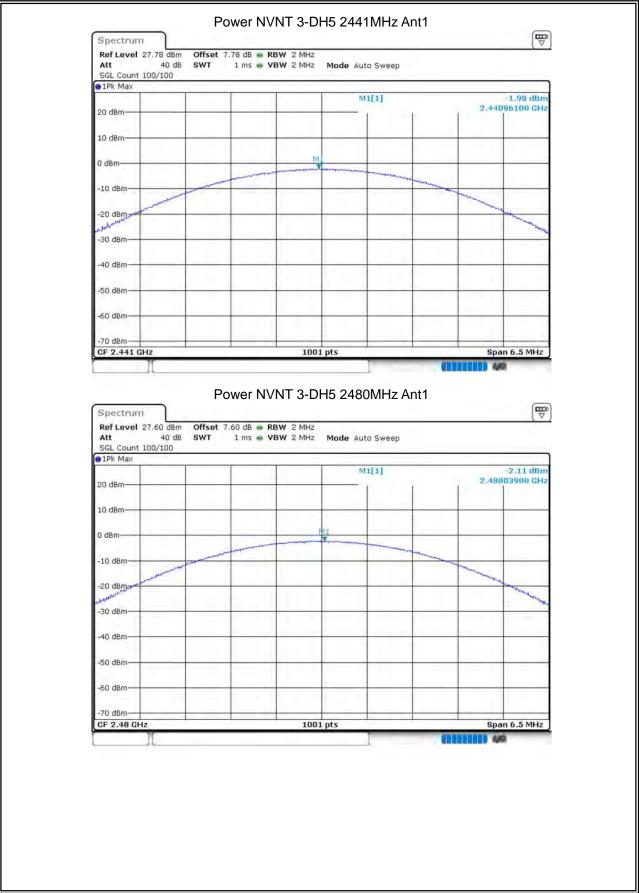
| Condition | Mode  | Frequency (MHz) | Antenna | Power (dBm) | Limit (dBm) | Verdict |
|-----------|-------|-----------------|---------|-------------|-------------|---------|
| NVNT      | 1-DH5 | 2402            | Ant 1   | -2.61       | 30          | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | -3.056      | 30          | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | -3.072      | 30          | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | -1.99       | 21          | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | -2.435      | 21          | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | -2.418      | 21          | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | -1.62       | 21          | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | -1.98       | 21          | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | -2.109      | 21          | Pass    |

### Power NVNT 1-DH5 2402MHz Ant1







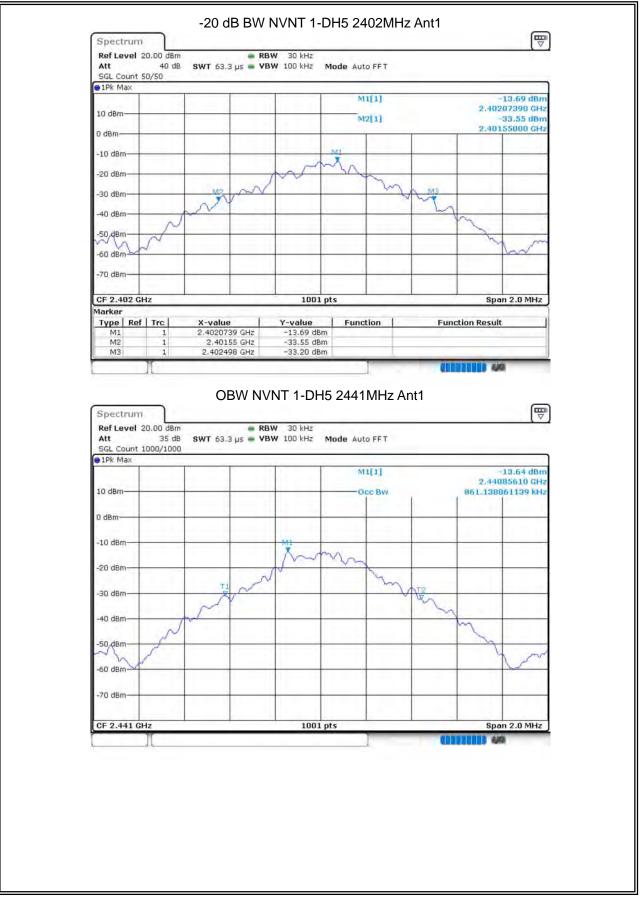










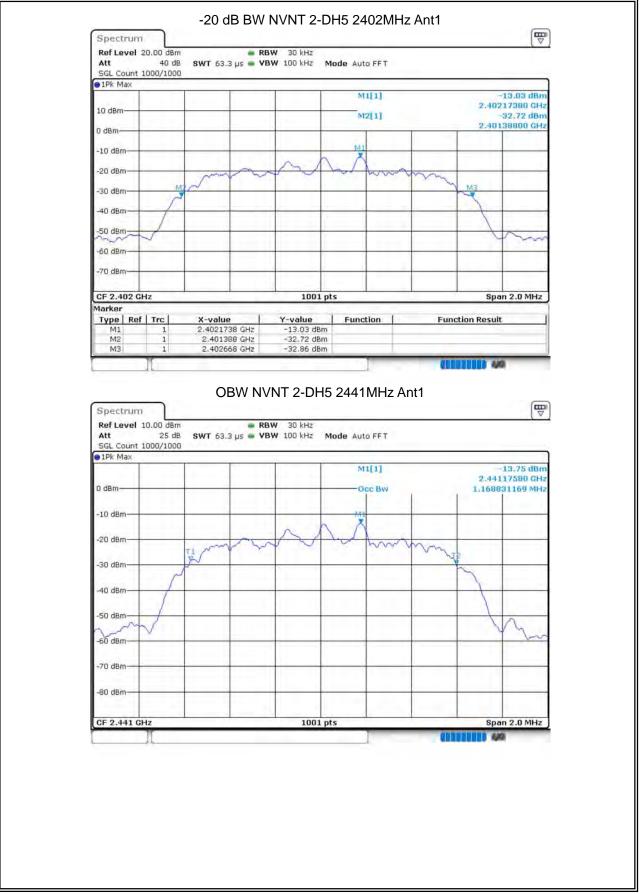

# 8.3 OCCUPIED CHANNEL BANDWIDTH


| 0.0 000011 |       |                    |         |        |           |              |         |
|------------|-------|--------------------|---------|--------|-----------|--------------|---------|
|            |       | Fraguanay          |         | 99%    | -20 dB    | Limit -20 dB |         |
| Condition  | Mode  | Frequency<br>(MHz) | Antenna | OBW    | Bandwidth | Bandwidth    | Verdict |
|            |       |                    |         | (MHz)  | (MHz)     | (MHz)        |         |
| NVNT       | 1-DH5 | 2402               | Ant 1   | 0.8871 | 0.948     | 0            | Pass    |
| NVNT       | 1-DH5 | 2441               | Ant 1   | 0.8611 | 0.948     | 0            | Pass    |
| NVNT       | 1-DH5 | 2480               | Ant 1   | 0.8591 | 0.946     | 0            | Pass    |
| NVNT       | 2-DH5 | 2402               | Ant 1   | 1.1728 | 1.28      | 0            | Pass    |
| NVNT       | 2-DH5 | 2441               | Ant 1   | 1.1688 | 1.282     | 0            | Pass    |
| NVNT       | 2-DH5 | 2480               | Ant 1   | 1.1768 | 1.314     | 0            | Pass    |
| NVNT       | 3-DH5 | 2402               | Ant 1   | 1.1808 | 1.288     | 0            | Pass    |
| NVNT       | 3-DH5 | 2441               | Ant 1   | 1.1788 | 1.292     | 0            | Pass    |
| NVNT       | 3-DH5 | 2480               | Ant 1   | 1.1788 | 1.286     | 0            | Pass    |

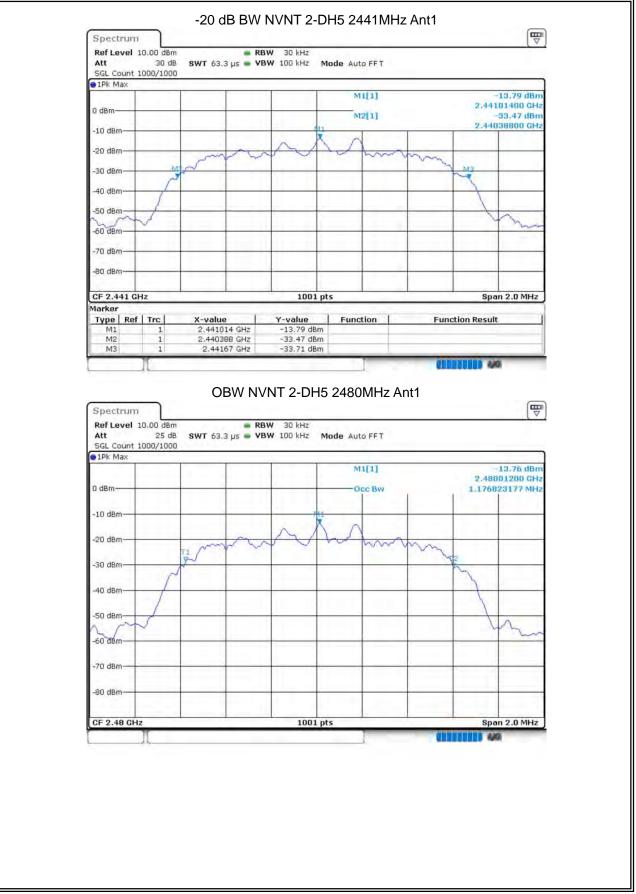




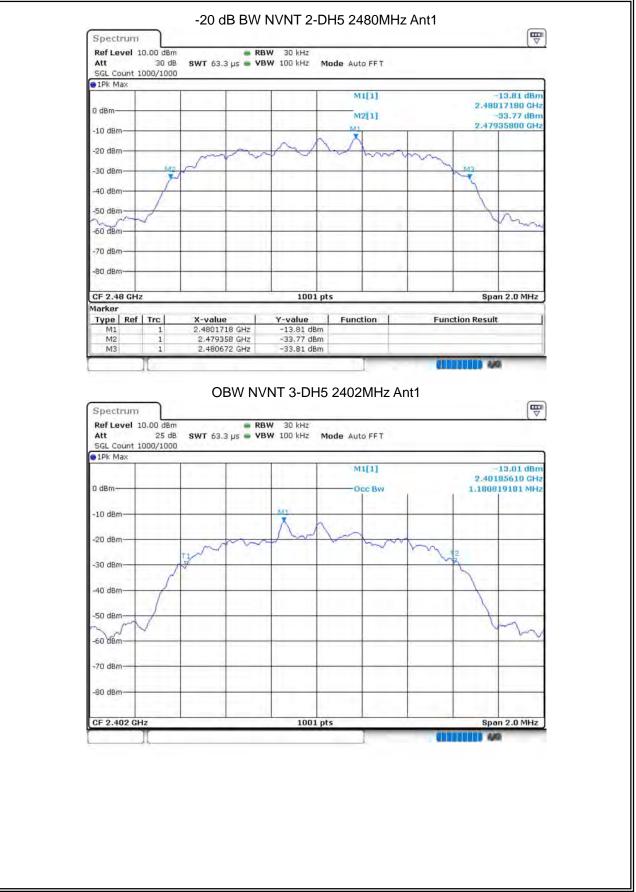


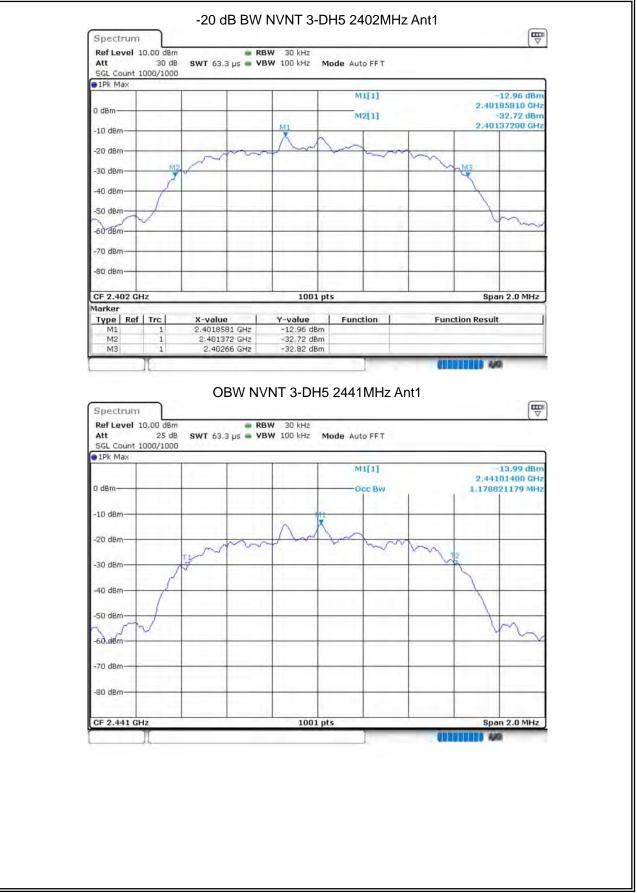


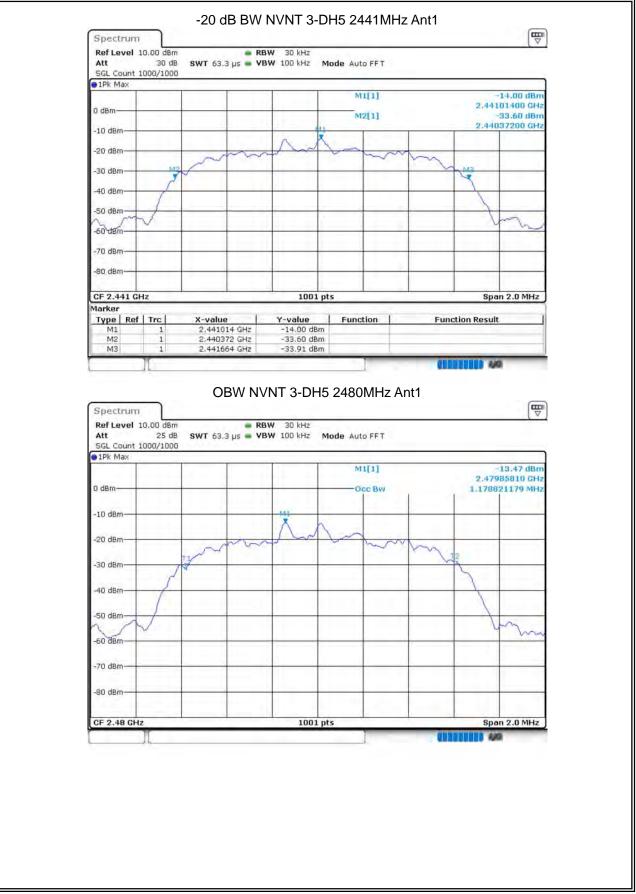


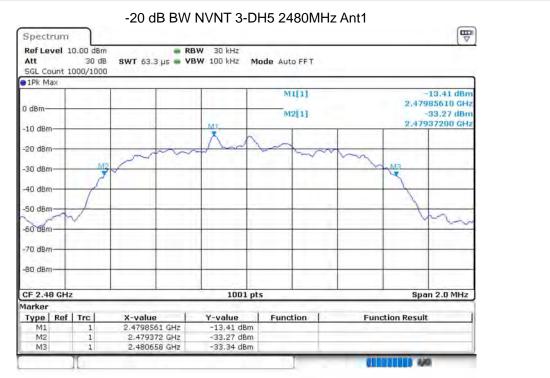




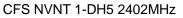


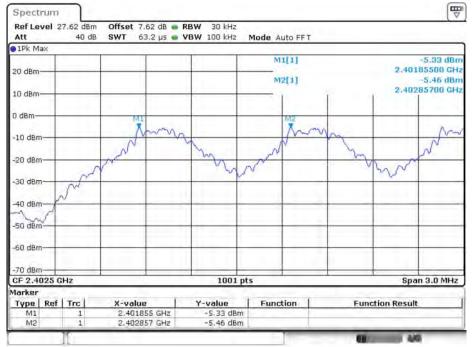





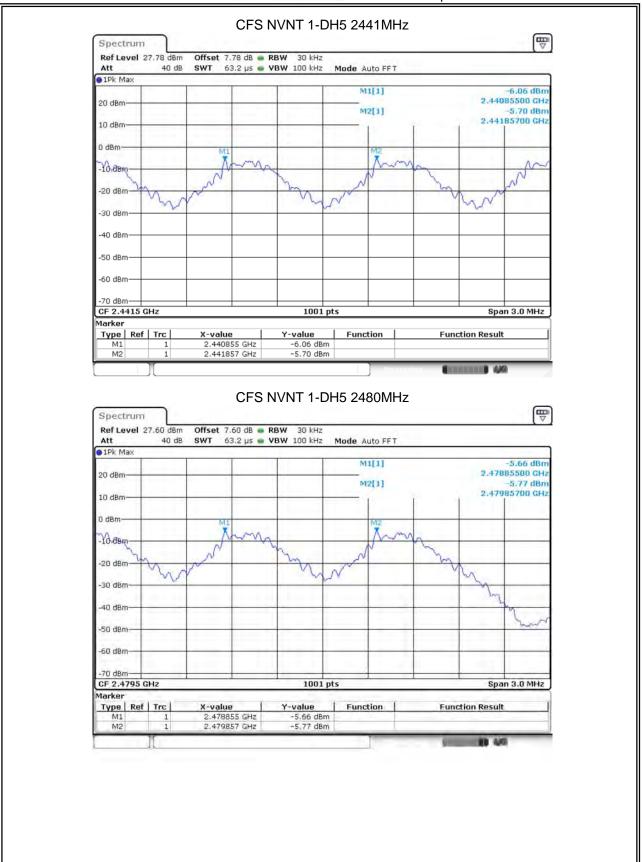




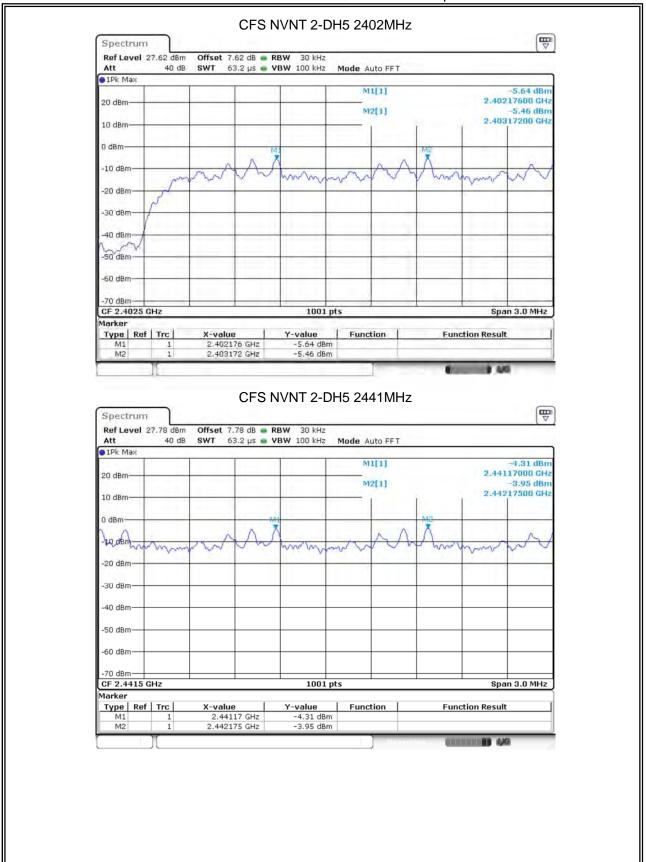







# 8.4 CARRIER FREQUENCIES SEPARATION

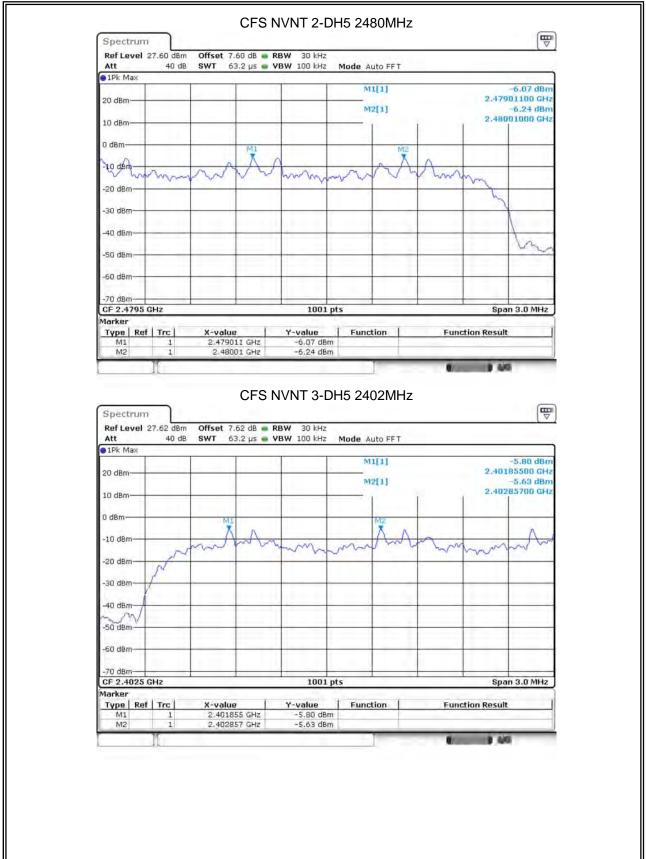
| Condition | Mode  | Hopping Freq1<br>(MHz) | Hopping Freq2<br>(MHz) | HFS<br>(MHz) | Limit<br>(MHz) | Verdict |
|-----------|-------|------------------------|------------------------|--------------|----------------|---------|
| NVNT      | 1-DH5 | 2401.855               | 2402.857               | 1.002        | 0.948          | Pass    |
| NVNT      | 1-DH5 | 2440.855               | 2441.857               | 1.002        | 0.948          | Pass    |
| NVNT      | 1-DH5 | 2478.855               | 2479.857               | 1.002        | 0.946          | Pass    |
| NVNT      | 2-DH5 | 2402.176               | 2403.172               | 0.996        | 0.853          | Pass    |
| NVNT      | 2-DH5 | 2441.17                | 2442.175               | 1.005        | 0.855          | Pass    |
| NVNT      | 2-DH5 | 2479.011               | 2480.01                | 0.999        | 0.876          | Pass    |
| NVNT      | 3-DH5 | 2401.855               | 2402.857               | 1.002        | 0.859          | Pass    |
| NVNT      | 3-DH5 | 2440.855               | 2441.857               | 1.002        | 0.861          | Pass    |
| NVNT      | 3-DH5 | 2478.855               | 2479.857               | 1.002        | 0.857          | Pass    |





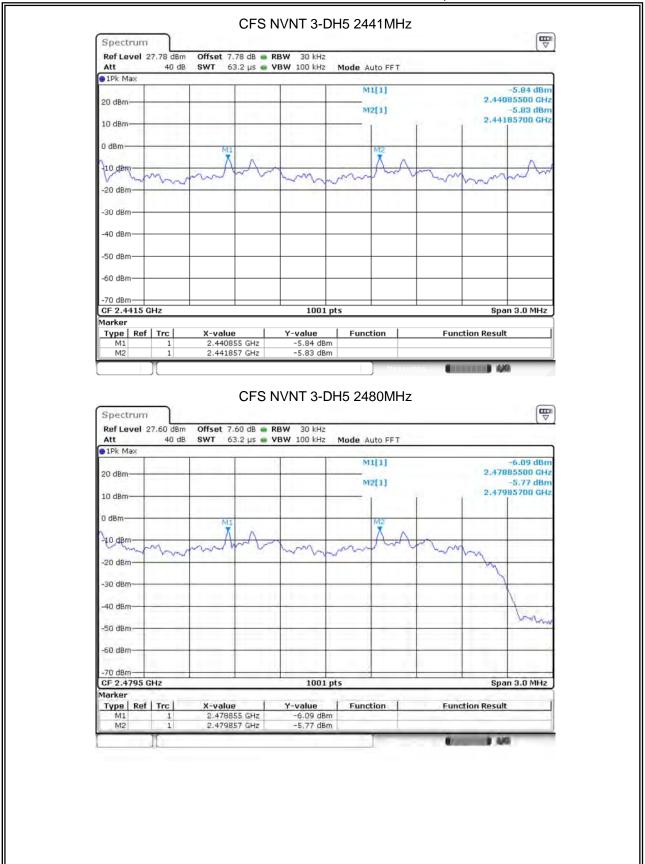






ACCREDITED






ACCREDITED





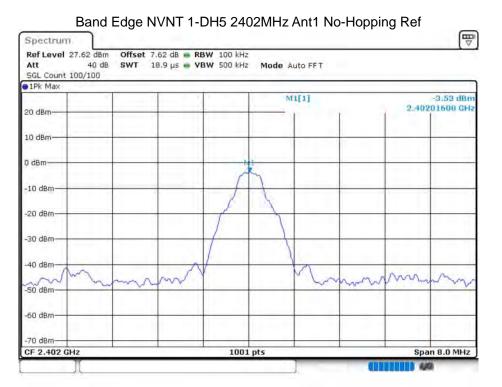
ACCREDITED





ACCREDITED

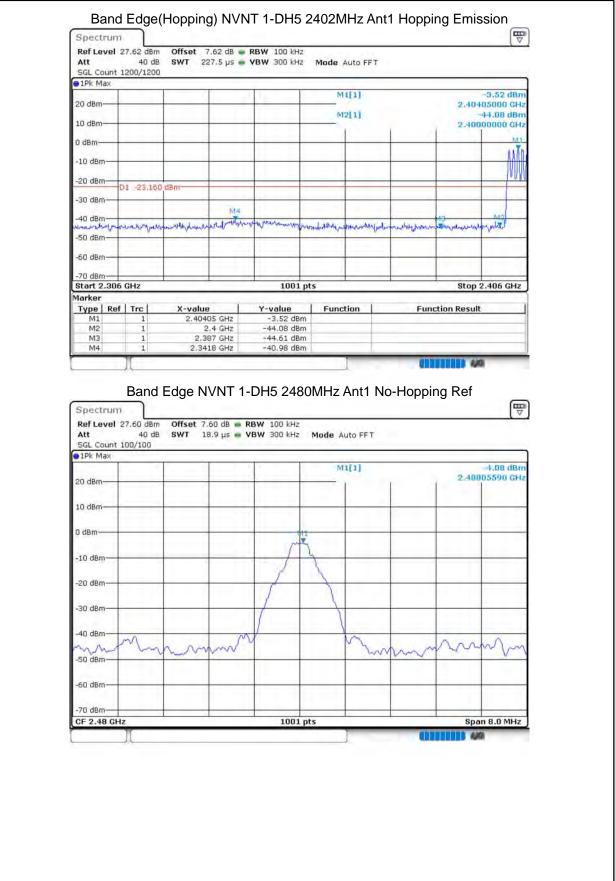



٦

| Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz           Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count 5000/5000         1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NVNT         1-DH5         79         15         Pass           Hopping No. NVNT 1-DH5 2402MHz           Spectrum           Ref Level 27.62 dB         RBW 100 kHz           Att 40 dB         SWT 1 ms VBW 300 kHz           Mode Auto Sweep           SGL Count 5000/S000           MI[1]         -3.65 dB           MI[1]         -3.65 dB           O'Bem         MI[1]         -3.65 dB           O'Bem         MI[1]         -3.65 dB           -10 SB         MI[1]         -3.65 dB           -10 SB         -10 SB               -10 SB <td c<="" th=""><th>NVNT</th><th>1-DH5</th><th></th><th></th><th>4 5</th><th>Deee</th><th></th></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <th>NVNT</th> <th>1-DH5</th> <th></th> <th></th> <th>4 5</th> <th>Deee</th> <th></th> | NVNT                                    | 1-DH5                                   |                                          |           | 4 5       | Deee      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|-----------|-----------|-----------|--|
| Spectrum         C           Ref Level 27.62 dB         Offset 7.62 dB         RBW 100 kHz           Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count S000/S000         Ims         VBW 300 kHz         Mode Auto Sweep         -3.65 dB           1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spectrum         C           Ref Level 27.62 dB         Offset 7.62 dB         RBW 100 kHz           Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count S000/S000         Ims         VBW 300 kHz         Mode Auto Sweep         -3.65 dB           1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                                         |                                         |                                          | 15        | Pass      |           |  |
| Spectrum         The second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spectrum         The second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       |                                         |                                         |                                          |           |           |           |  |
| Ref Level         27.62 dBm         Offset         7.62 dB         RBW 100 kHz           Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count 5000/5000         Ims         VBW 300 kHz         Mode Auto Sweep         -3.65 dB           1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ref Level         27.62 dBm         Offset         7.62 dB         RBW 100 kHz           Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count 5000/5000         Ims         VBW 300 kHz         Mode Auto Sweep         -3.65 dB           1Pk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Construmen                                                                            | Hopping N                               | 0. NVN I 1-I                            | JH5 2402                                 | IVIHZ     |           | G         |  |
| Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count S000/S000         Ims         VBW 300 kHz         Mu[1]         -3.65 dBn           20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Att         40 dB         SWT         1 ms         VBW 300 kHz         Mode Auto Sweep           SGL Count S000/S000         Ims         VBW 300 kHz         Mu[1]         -3.65 dBn           20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       | set 7.62 dB 🖷 RI                        | 3W 100 kHz                              |                                          | _         |           |           |  |
| • 1Pk Max         -3.65 dBr           20 dBm         M1[1]         -3.65 dBr           10 dBm         M2[1]         3.84 dBr           0'dBm         2.4799930 GH         M2           -10 dBm         -2.4799930 GH         M2           -20 dBm         -2.4799930 GH         M2           -10 dBm         -2.4799930 GH         M2           -20 dBm         -402         -402           -30 dBm         -402         -402           -50 dBm         -402         -402           -50 dBm         -402         -402           -70 dBm         -402         -402           -70 dBm         -402         -403           -70 dBm         -403         -403           -70 dBm         -70 dBm         -700           -70 dBm         -700 dBm         -700 dBm           -70 dBm         -700 dBm         -700 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 1Pk Max         -3.65 dBr           20 dBm         M1[1]         -3.65 dBr           10 dBm         M2[1]         3.84 dBr           0'dBm         2.4799930 GH         M2           -10 dBm         -24 dBr         -24 dBr           -20 dBm         -3.65 dBr         -3.84 dBr           -20 dBm         -2479930 GH         -42           -20 dBm         -42         -479930 GH           -20 dBm         -42         -44           -20 dBm         -42         -44           -30 dBm         -44         -44           -50 dBm         -50 dBm         -50 dBm           -50 dBm         -50 dBm         -50 dBm           -70 dBm         -50 dBm         -50 dBm           -70 dBm         -50 dBm         -50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Att 40 dB SW                                                                          |                                         |                                         | de Auto Swee                             | P.        |           |           |  |
| 20 dBm     2.4920040 GH       10 dBm     -3.84 dBr       10 dBm     2.4799930 GH       -10 dBm     412       -20 dBm     412       -30 dBm     412       -30 dBm     -412       -50 dBm     -412       -70 dBm     -412<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 dBm     2.4020040 GH       10 dBm     -3.84 dBr       10 dBm     2.4799930 GH       0'38m     412       -10 dBm     412       -20 dBm     412       -30 dBm     412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                                         |                                         | Mile?                                    |           |           | o ce de   |  |
| 10 dBm       2.4799930 GH         0 dBm       442         -10 dBm       442         -20 dBm       442         -30 dBm       -47         -30 dBm       -48         -50 dBm       -48         -60 dBm       -48         -70 dBm       -50 dBm         -70 dBm       -70 dBm         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 dBm       2.4799930 GH         0 dBm       442         -10 dBm       442         -20 dBm       442         -30 dBm       -47         -30 dBm       -48         -50 dBm       -48         -60 dBm       -48         -70 dBm       -50 dBm         -70 dBm       -70 dBm         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 dBm                                                                                |                                         |                                         | _                                        |           | 2.40      | 20040 GH  |  |
| -10 B97<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-70 | -10 B97<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-70 | 10 dBm-                                                                               | _                                       |                                         | MZ[1]                                    | T.        | 2.47      |           |  |
| -10 BM<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-60 dBm<br>-70  | -10 BM<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-60 dBm<br>-70  | 0/g8m-                                                                                |                                         |                                         |                                          |           |           | 142       |  |
| -50 dBm<br>+0 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>Start 2.4 GHz<br>Type Ref Trc X-value Y-value Function Result<br>M1 1 2.402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70 | - LANARARARARARARARARARARARARARARARARARARA                                            | ANA ADADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | MAMAMAM                                 |                                          | AAAAAAAAA | MANANANA  | AAAAA     |  |
| -50 dBm<br>+0 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70 dBm<br>Start 2.4 GHz<br>Type Ref Trc X-value Y-value Function Result<br>M1 1 2.402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-60 dBm<br>-70 | TATAAN                                                                                | ALAOMAN AAAAA                           | A MANA MANA MANA MANA MANA MANA MANA MA | (I A A A A A A A A A A A A A A A A A A A | INTERNER  | MAAAAAAAA | WW        |  |
| H0 dBm         -50 dBm         -50 dBm         -60 dBm           -60 dBm         -60 dBm         -60 dBm         -60 dBm           -70 dBm         -60 dBm         -60 dBm         -60 dBm           -70 dBm         -70 dBm         -70 dBm         -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H0 dBm         -50 dBm         -50 dBm         -50 dBm           -50 dBm         -60 dBm         -60 dBm         -60 dBm           -70 dBm         -60 dBm         -60 dBm         -60 dBm           -70 dBm         -70 dBm         -70 dBm         -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                       |                                         |                                         |                                          |           |           |           |  |
| -50 dBm<br>-60 dBm<br>-70 dBm<br>-70 dBm<br>Start 2.4 GHz<br>Type Ref Trc X-value Y-value Function Function Result<br>M1 1 2.402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -50 dBm<br>-60 dBm<br>-60 dBm<br>-70 dBm<br>Start 2.4 GHz 1001 pts Stop 2.4935 GHz<br>Marker<br>Type Ref Trc X-value Y-value Function Function Result<br>M1 1 2.402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                       |                                         |                                         |                                          |           |           | 1         |  |
| -60 dBm<br>-70 dBm<br>Start 2.4 GHz 1001 pts Stop 2.4835 GHz<br>Marker<br>Type Ref Trc X-value Y-value Function Function Result<br>M1 1 2:402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -60 dBm<br>-70 dBm<br>Start 2.4 GHz 1001 pts Stop 2.4835 GHz<br>Marker<br>Type Ref Trc X-value Y-value Function Function Result<br>M1 1 2:402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j#0 dBm-                                                                              |                                         |                                         |                                          |           |           | her       |  |
| TO dBm-         1001 pts         Stop 2.4835 GHz           Start 2.4 GHz         1001 pts         Stop 2.4835 GHz           Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2:402004 GHz         -3.65 dBm         Function         Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TO dBm-         1001 pts         Stop 2.4835 GHz           Start 2.4 GHz         1001 pts         Stop 2.4835 GHz           Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2:402004 GHz         -3.65 dBm         Function         Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -50 dBm                                                                               |                                         |                                         |                                          |           |           |           |  |
| Start 2.4 GHz         1001 pts         Stop 2.4835 GHz           Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.402004 GHz         -3.65 dBm         Function         Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Start 2.4 GHz         1001 pts         Stop 2.4835 GHz           Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.402004 GHz         -3.65 dBm         Function         Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -60 dBm                                                                               |                                         |                                         |                                          | -         | -         |           |  |
| Marker         Year         Year         Function         Function Result           M1         1         2.402004 GHz         -3.65 dBm         -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marker         Year         Year         Function         Function Result           M1         1         2.402004 GHz         -3.65 dBm         -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | _                                       |                                         | -                                        | -         |           | 1005 011  |  |
| M1 1 2:402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1 1 2:402004 GHz -3.65 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marker                                                                                | -                                       | 1001 pts                                |                                          |           | Stop 2    | .4033 GH2 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                    |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                         |                                         |                                          |           |           |           |  |



## 8.6 BAND EDGE


| 0.0 DANUEU | GE    |                    |         |                 |                    |                |         |
|------------|-------|--------------------|---------|-----------------|--------------------|----------------|---------|
| Condition  | Mode  | Frequency<br>(MHz) | Antenna | Hopping<br>Mode | Max Value<br>(dBc) | Limit<br>(dBc) | Verdict |
| NVNT       | 1-DH5 | 2402               | Ant 1   | No-Hopping      | -38.29             | -20            | Pass    |
| NVNT       | 1-DH5 | 2402               | Ant 1   | Hopping         | -37.82             | -20            | Pass    |
| NVNT       | 1-DH5 | 2480               | Ant 1   | No-Hopping      | -37.85             | -20            | Pass    |
| NVNT       | 1-DH5 | 2480               | Ant 1   | Hopping         | -39.3              | -20            | Pass    |
| NVNT       | 2-DH5 | 2402               | Ant 1   | No-Hopping      | -38.01             | -20            | Pass    |
| NVNT       | 2-DH5 | 2402               | Ant 1   | Hopping         | -36.93             | -20            | Pass    |
| NVNT       | 2-DH5 | 2480               | Ant 1   | No-Hopping      | -37.81             | -20            | Pass    |
| NVNT       | 2-DH5 | 2480               | Ant 1   | Hopping         | -38.36             | -20            | Pass    |
| NVNT       | 3-DH5 | 2402               | Ant 1   | No-Hopping      | -38.13             | -20            | Pass    |
| NVNT       | 3-DH5 | 2402               | Ant 1   | Hopping         | -37.21             | -20            | Pass    |
| NVNT       | 3-DH5 | 2480               | Ant 1   | No-Hopping      | -39.56             | -20            | Pass    |
| NVNT       | 3-DH5 | 2480               | Ant 1   | Hopping         | -39.08             | -20            | Pass    |





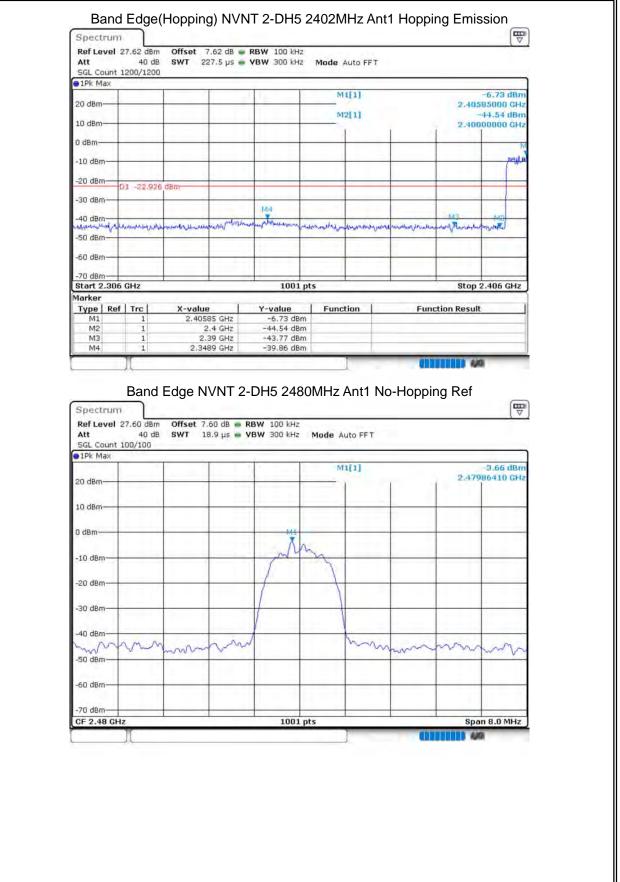
| •••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GHZ<br>dBm<br>GHZ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 10 dBm     M2[1]     -45.94       10 dBm     2.40000000       0 dBm     9       -10 dBm     9       -20 dBm     01 -23.528 dBm       -30 dBm     60       -30 dBm     60       -40 dBm     60       -40 dBm     60       -30 dBm     60       -30 dBm     60       -40 dBm     60       -40 dBm     60       -40 dBm     60       -50 dBm     60       -70 dBm     1001 pts       Start 2.306 GHz     100                                                                                                                                                                                                                                                                                                                                      |                   |
| D dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-40 dBm<br>-40 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm<br>-70 dBm<br>M1 1 2.40205 GHz<br>1001 pts<br>Stop 2.406 C<br>Marker<br>Type Ref Trc X-value<br>M1 1 2.40205 GHz<br>-3.52 dBm<br>M3 1 2.39 GHz<br>-3.52 dBm<br>M4 1 2.34 GHz<br>-3.52 dBm<br>M4 1 2.34 GHz<br>-45.94 dBm<br>M3 1 2.39 GHz<br>-45.94 dBm<br>M4 1 2.3422 GHz<br>-41.83 dBm<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| -10 dBm       -20 dBm       -10 -23.528 dBm       -10 -23.528 dBm         -30 dBm       -10 dBm       -10 -23.528 dBm       -10 -23.528 dBm         -40 dBm       -10 -23.528 dBm       -10 -23.528 dBm       -10 -23.528 dBm         -40 dBm       -10 -23.528 dBm       -10 -23.528 dBm       -10 -23.528 dBm         -40 dBm       -10 -23.528 dBm       -10 -23.528 dBm       -10 -23.528 dBm         -50 dBm       -10 -23.528 dBm       -10 -23.528 dBm       -10 -23.528 dBm         -50 dBm       -20 dBm       -3.62 dBm       Function       Function Result         -70 dBm       -10 -23.528 dBm       -3.62 dBm       Function Result       -10 -23.52 dBm         M1 1       2.4005 GHz       -3.62 dBm       Function Result       -10 -23.52 dBm       -41.83 dBm         M1 1       2.3422 GHz       -41.83 dBm       -41.83 dBm       -41.83 dBm       -41.83 dBm         M4       1       2.3422 GHz       -41.83 dBm       -41.83 dBm       -41.83 dBm       -41.83 dBm         M1 1       2.3422 GHz       -41.83 dBm       -4                                                                                                   |                   |
| -20 dBm         01 -23.528 dBm           -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t.                |
| O1         -23.528 dBm           -30 dBm         Id4           -40 dBm         Id4           -50 dBm         Id4           -70 dBm         Function Result           M1         1         2.40205 GHz           -3.62 dBm         Hittig           M2         1         2.39 GHz           M4         1         2.3422 GHz           -41.83 dBm         Id4           M1         2.3422 GHz <tr< td=""><td>ta</td></tr<>                                                                                                                                                                                                                                                                                                                                                | ta                |
| -40 dBm       M4       M4       M4       M3       M3       M3       M4       M3       M4       M3       M4       M3       M4       M3       M4       M4       M4       M3       M4       M4       M3       M4       M4       M4       M4       M3       M4                                                                                                                                                                                                                                                                                                                    | La                |
| 40 dbm       41 dbm       40 dbm       41 dbm       40 dbm       40 dbm       40 dbm       40 dbm       41 dbm                                                                                                                             | Le                |
| -60 dBm         Stop 2.406 C         Stop 2.406 C         Marker         Type Ref Trc       X -value       Function       Function Result         M1       1       2.40205 GHz       -3.62 dBm       Function       Function Result         M2       1       2.4 GHz       -45.94 dBm       Function       Function Result         M3       1       2.39 GHz       -45.91 dBm       Function       Function Result         M4       1       2.39 GHz       -45.71 dBm       Function       Function Result         Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref         Spectrum         Ref Level 27.62 dBm       Offset 7.62 dB       RBW 100 kHz         M1[1]       -2.166         M1[1]       -2.166         M1[1]       -2.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100-              |
| -70 dBm         Stort 2.306 GHz         1001 pts         Stop 2.406 G           Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.40205 GHz         -3.62 dBm         Function         Function Result           M2         1         2.4 GHz         -45.94 dBm         Here         Function Result           M3         1         2.39 GHz         -45.71 dBm         Here         Function Result           M4         1         2.3422 GHz         -41.83 dBm         Function Result         Function Result           M4         1         2.3422 GHz         -41.83 dBm         Function Result         Function Result           Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz         Ref         Stop 2.4000 kHz           Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz         Mode Auto FFT         SGL Count 8000/8000           IPk Max         M1[1]         9.426 f         9.426 f         9.426 f                                                                                                                                                                                                                                                                                                       |                   |
| Start 2.306 GHz         1001 pts         Stop 2.406 C           Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.40205 GHz         -3.62 dBm         Function         Function Result           M2         1         2.4 GHz         -45.94 dBm         Function         Function Result           M3         1         2.39 GHz         -45.71 dBm         Function         Function Result           M4         1         2.3422 GHz         -41.83 dBm         Function         Function Result           M4         1         2.3422 GHz         -41.83 dBm         Function Result         Function Result           M4         1         2.3422 GHz         -41.83 dBm         Function Result         Function Result           Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref         Spectrum         Function Result         Function Result           Spectrum         Start 40 dB         SWT 18.9 µs         VBW 300 kHz         Mode Auto FFT           SGL Count 8000/8000         First 40 dB         Surf 18.9 µs         M1[1]         Function First 60 for First 73.66 for First |                   |
| Marker         Type         Ref         Trc         X-value         Y-value         Function         Function Result           M1         1         2.40205 GHz         -3.62 dBm         Function         Function Result           M2         1         2.4 GHz         -45.94 dBm         Function         Function Result           M3         1         2.39 GHz         -45.94 dBm         Function         Function Result           M4         1         2.39 GHz         -41.83 dBm         Function         Function Result           M4         1         2.3422 GHz         -41.83 dBm         Function         Function Result           Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref         Function Result         Function Result         Function Result           Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz         Mode Auto FFT         SGL Count 8000/8000         FT           Fight Max         M1[1]         Fight Result         Fight Result         Fight Result         Fight Result                                                                                                                                                                                                                                                                                                                  | SH2               |
| M1         1         2.40205 GHz         -3.62 dBm           M2         1         2.4 GHz         -45.94 dBm           M3         1         2.39 GHz         -45.71 dBm           M4         1         2.3422 GHz         -41.83 dBm           MBand Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref           Spectrum           Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz           Att         40 dB         SWT 18.9 µs         VBW 300 kHz           MI[1]         -3.16 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| M3         1         2.39 GHz         -45.71 dBm           M4         1         2.3422 GHz         -41.83 dBm           Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref           Spectrum           Ref Level 27.62 dBm Offset 7.62 dB RBW 100 kHz           Att 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT           SGL Count 8000/8000           IPk Max         M1[1]         -3.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| M4         1         2.3422 GHz         -41.83 dBm           Band Edge(Hopping) NVNT 1-DH5 2402MHz Ant1 Hopping Ref           Spectrum           Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz           Att         40 dB         SWT 18.9 µs         VBW 300 kHz           Mode Auto FFT           SGL Count 8000/8000           IPk Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| Spectrum           Ref Level 27.62 dBm         Offset 7.62 dB         RBW 100 kHz           Att         40 dB         SWT         18.9 µs         VBW 300 kHz           SGL Count 8000/8000         Image: SGL Count 8000/8000         Image: SGL Count 8000/8000         Image: SGL Count 8000/8000           IPk Max         M1[1]         -3.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |
| 20.dBm 2.40517280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| 10 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| D dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                 |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                 |
| -20 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| -50 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| -70 dBm<br>CF 2.402 GHz 1001 pts Span 8.0 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1Hz               |



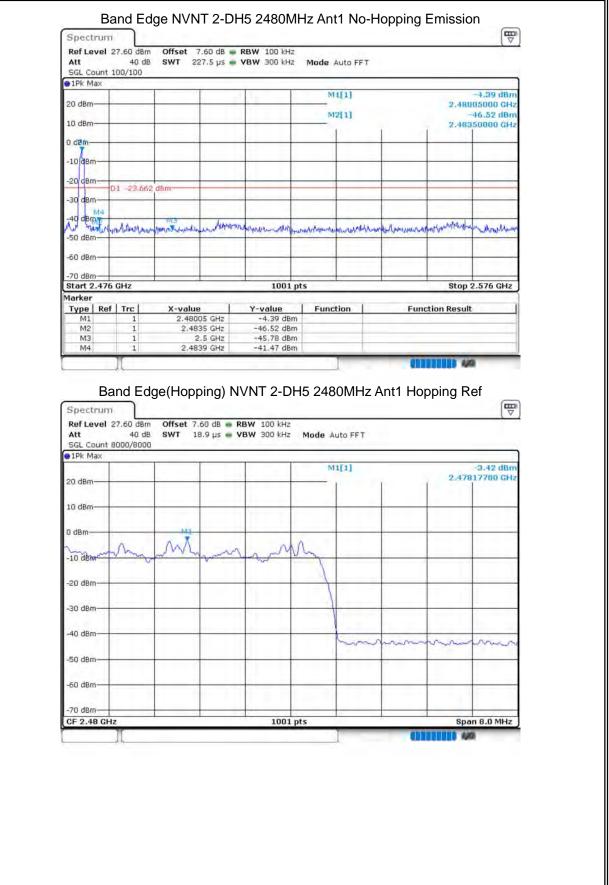




| Att<br>SGL Count 1<br>1Pk Max                                                                                                                                       | 40 dB<br>100/100                | 2.0.0             |                  | VBW 300 kH             | - moue                 | Auto FFT    |                  |            | 1                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------|------------------|------------------------|------------------------|-------------|------------------|------------|-----------------------------|
| 20 dBm                                                                                                                                                              |                                 |                   |                  | 1                      | M                      | 11[1]       |                  | 2.40       | -4.06 dBm<br>105000 GHz     |
|                                                                                                                                                                     |                                 |                   |                  |                        | M                      | 12[1]       |                  |            | -41.93 dBm                  |
| 10 dBm-                                                                                                                                                             |                                 |                   |                  |                        |                        | 1           | 1 1              | 2,48       | 350000 GHz                  |
| 0 dBm                                                                                                                                                               |                                 |                   |                  |                        |                        |             |                  |            |                             |
| -10 dBm                                                                                                                                                             |                                 |                   |                  |                        |                        |             |                  |            |                             |
| -20 dBm-0                                                                                                                                                           | 1 -24,079                       | dBm               |                  |                        |                        | -           | -                |            |                             |
| -30 cBm                                                                                                                                                             |                                 |                   |                  |                        |                        |             |                  |            |                             |
| -40 dBm                                                                                                                                                             | in the settle                   | M3 July a         | n bate way       | Munderword             | a un mar a taku ila ar | Ma Montal   | and and dis such | monthethe  | Welly a second starting the |
| -50 dBm                                                                                                                                                             | And A David                     | allocations of    |                  |                        |                        | a share a g | a to v v v v v v |            |                             |
| -60 dBm                                                                                                                                                             |                                 |                   |                  | -                      |                        | -           | -                |            |                             |
| -70 dBm-                                                                                                                                                            | CUS                             |                   |                  | 1001                   | nte                    | -           |                  | Pton       | 2.576 GHz                   |
| Marker                                                                                                                                                              | unz                             |                   |                  | 1001                   |                        |             |                  | acup       | 2.370 GH2                   |
| Type Ref<br>M1                                                                                                                                                      | Trc 1                           | X-value<br>2,4800 | 05 GHz           | Y-value<br>-4.06 dB    | Func                   | tion        | Func             | tion Resul |                             |
| M2<br>M3                                                                                                                                                            | 1                               | 2,483             | 35 GHz<br>.5 GHz | -41.93 dB<br>-46.86 dB | m                      |             |                  |            |                             |
| M4                                                                                                                                                                  | 1                               |                   | 35 GHz           | -41.93 dB              |                        |             |                  |            |                             |
|                                                                                                                                                                     | Л                               |                   |                  |                        |                        | ľ           | 01               |            | 0                           |
| Ba<br>Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max                                                                                                    | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | VNT 1-D                | Mode A                 | Auto FFT    | Ant1 Hop         | oping R    | (B)                         |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8                                                                                                                       | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | e end       | Ant1 Hop         |            |                             |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max                                                                                                          | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    | Ant1 Hop         |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                        | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm                                                                                                  | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm                                                                                        | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>- 10 dBm                                                                          | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                  | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>- 10 dBm                                                                          | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                  | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                               | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                                       | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                               | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>9 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm                      | 27.60 dBm<br>40 dB              | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  |            | -3.19 dBm                   |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>IPk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm             | 27.60 dBm<br>40 dB<br>3000/8000 | Offset 7.         | 60 dB 🖷 R        | <b>BW</b> 100 kHz      | Mode A                 | Auto FFT    | Ant1 Hop         | 2.47       | -3.19 dBm<br>/85810 GHz     |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm         | 27.60 dBm<br>40 dB<br>3000/8000 | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  | 2.47       | -3.19 dBm<br>/85810 GHz     |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm         | 27.60 dBm<br>40 dB<br>3000/8000 | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    |                  | 2.47       | -3.19 dBm<br>/85810 GHz     |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-60 dBm         | 27.60 dBm<br>40 dB<br>3000/8000 | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    | Ant1 Hop         | 2.47       | -3.19 dBm<br>/85810 GHz     |
| Spectrum<br>Ref Level 2<br>Att<br>SGL Count 8<br>IPk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-10 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm<br>-70 dBm | 27.60 dBm<br>40 dB<br>3000/8000 | Offset 7.         | 60 dB 🖷 R        | BW 100 kHz             | Mode A                 | Auto FFT    | Ant1 Hop         | 2.47       | -3.19 dBm<br>/85810 GHz     |




| Att<br>SGL Count 120                                                                                                                                                                                                                                       |                             | VI 227.5                | s ha 🖷 🗸    | VBW 300 kHz              | Mode 4   | Auto FFT    |              |                  |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------------|--------------------------|----------|-------------|--------------|------------------|--------------------------|
| 1Pk Max                                                                                                                                                                                                                                                    |                             |                         | 1.1         | 1                        | M        | 1[1]        |              |                  | -3.80 dBm                |
| 20 dBm                                                                                                                                                                                                                                                     |                             |                         |             |                          | M        | 2[1]        |              |                  | 695000 GHz<br>-43.25 dBm |
| 10 dBm-                                                                                                                                                                                                                                                    |                             |                         |             |                          | _        |             | 1            |                  | 350000 GHz               |
| 0 dBm-                                                                                                                                                                                                                                                     |                             |                         |             |                          |          |             |              |                  |                          |
| -10 dBm                                                                                                                                                                                                                                                    |                             |                         |             |                          |          |             |              |                  | -                        |
| -20 dBm-01                                                                                                                                                                                                                                                 | -23.189 dBm                 |                         |             |                          |          |             |              |                  | -                        |
| -30 cBm-                                                                                                                                                                                                                                                   | 23,103 UDIN                 |                         |             |                          | _        |             |              |                  |                          |
| -40 dBM2                                                                                                                                                                                                                                                   | N                           | 14                      | L4 billion  |                          |          | -           |              | there            | 1                        |
| -50 dBm                                                                                                                                                                                                                                                    | and the many all the states | a surger and the second | Variantinot | an remained was          | munultyd | Helminenter | howany where | property and the | apertanian and           |
| -60 dBm                                                                                                                                                                                                                                                    |                             |                         |             |                          |          |             |              | 1.1.1.           | 1                        |
|                                                                                                                                                                                                                                                            |                             |                         |             |                          |          |             |              |                  |                          |
| -70 dBm<br>Start 2.476 GH                                                                                                                                                                                                                                  | z                           | 1                       |             | 1001                     | pts      |             | 1.           | Stop             | 2.576 GHz                |
| Marker<br>Type   Ref   T                                                                                                                                                                                                                                   | incl 1                      | (-value                 | 1           | Y-value                  | Funct    | tion        | Fun          | ction Resul      | lt I                     |
| M1                                                                                                                                                                                                                                                         | 1                           | 2.47695 0               |             | -3.80 dBn                | n        |             | 1 un         | cion nesta       |                          |
| M2<br>M3                                                                                                                                                                                                                                                   | 1                           | 2,4835 (<br>2.5 (       | GHz         | -43.25 dBn<br>-44.13 dBn | n        |             |              |                  |                          |
| M4                                                                                                                                                                                                                                                         | 1                           | 2,4999 (                | GHZ         | -42.50 dBn               | n        | 1           |              | -                | -                        |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,<br>PIPk Max                                                                                                                                                                                            | 40 dB SV                    | fset 7.62               | dB 💼 RE     | BW 100 kHz<br>BW 300 kHz | Mode A   | uto FFT     |              |                  |                          |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,                                                                                                                                                                                                        | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | ond -       |              |                  | -3.28 dBm<br>200800 GHz  |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,<br>1Pk Max                                                                                                                                                                                             | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,<br>91Pk Max<br>20 dBm                                                                                                                                                                                  | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,<br>91Pk Max<br>20 dBm-<br>10 dBm-                                                                                                                                                                      | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           -10 dBm                                                                                                           | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,<br>1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           0 dBm                                                                                                             | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm                                                     | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz               | Mode A   | uto FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                       | 52 dBm Of<br>40 dB SV       | fset 7.62               | dB 💼 RE     | BW 100 kHz               | Mode A   | LID FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           ● IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm                   | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz               | Mode A   | LID FFT     |              |                  | -3.28 dBm                |
| Spectrum<br>Ref Level 27.6<br>Att<br>SGL Count 100,<br>● 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                                           | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz               | Mode A   | LID FFT     |              |                  | -3.28 dBm                |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm           -70 dBm | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz<br>BW 300 kHz | Mode Ar  | LID FFT     |              | 2.40             | -3.28 dBm<br>200800 GHz  |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm                   | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz               | Mode Ar  | LID FFT     |              | 2.40             | -3.28 dBm<br>200800 GHz  |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm           -70 dBm | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz<br>BW 300 kHz | Mode Ar  | uto FFT     |              | 2.40             | -3.28 dBm<br>200800 GHz  |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • IPk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm           -70 dBm | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz<br>BW 300 kHz | Mode Ar  | uto FFT     |              | 2.40             | -3.28 dBm<br>200800 GHz  |
| Spectrum           Ref Level 27.6           Att           SGL Count 100,           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -60 dBm           -70 dBm | 52 dBm Of<br>40 dB SV       | fset 7.62<br>VT 18.9    | dB 💼 RE     | BW 100 kHz<br>BW 300 kHz | Mode Ar  | uto FFT     |              | 2.40             | -3.28 dBm<br>200800 GHz  |




|                                                                                                                                                                                                                                                                                  | 0/100                            |                     |                  | VBW 300 kH                 |               | e Auto FFT              |                                                                                                                  |              |                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------|------------------|----------------------------|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------|--------------|----------------------|
| 20 dBm-                                                                                                                                                                                                                                                                          |                                  |                     | 1                | 1.1.                       |               | M1[1]                   |                                                                                                                  |              | 3.68 dBm<br>5000 GHz |
| 10 dBm-                                                                                                                                                                                                                                                                          |                                  |                     |                  |                            | -             | M2[1]                   |                                                                                                                  | -45          | 5.45 dBm<br>0000 GHz |
| 0 dBm                                                                                                                                                                                                                                                                            |                                  |                     |                  |                            |               |                         |                                                                                                                  |              | MI                   |
| -10 dBm                                                                                                                                                                                                                                                                          |                                  |                     |                  | -                          | -             | -                       |                                                                                                                  |              | Å                    |
| -20 dBm-                                                                                                                                                                                                                                                                         |                                  | 100 V               |                  | -                          | _             | -                       |                                                                                                                  |              |                      |
| -30 dBm-                                                                                                                                                                                                                                                                         | -23.285                          | dem-                |                  |                            | -             |                         |                                                                                                                  |              |                      |
| -40 dBm                                                                                                                                                                                                                                                                          | 1                                | Same                |                  | M14                        |               |                         |                                                                                                                  | MS           | 113                  |
| -50 dBm                                                                                                                                                                                                                                                                          | in the particular                | er-Unorthan Aspenne | within a country | Romathia and second and    | hipstructures | have a served war years | en and a start and a start and a start a | whenthereity | halo we              |
| -60 dBm                                                                                                                                                                                                                                                                          |                                  |                     |                  | -                          | -             | -                       |                                                                                                                  | _            |                      |
| -70 dBm                                                                                                                                                                                                                                                                          | 113                              |                     |                  | 100                        | 1 ote         |                         |                                                                                                                  | Ptop 0       | 406 GHz              |
| Marker                                                                                                                                                                                                                                                                           |                                  |                     |                  |                            | 1 pts         |                         |                                                                                                                  |              | 400 GH2              |
| Type Ref<br>M1                                                                                                                                                                                                                                                                   | 1                                |                     | 85 GHz           | Y-value<br>-3.68 dB        | Bm            | Inction                 | Funct                                                                                                            | ion Result   |                      |
| M2                                                                                                                                                                                                                                                                               | 1                                |                     | 39 GHz           | -45.45 de                  |               |                         |                                                                                                                  |              |                      |
| M3                                                                                                                                                                                                                                                                               |                                  |                     | 25 GHz           | -41.30 de                  |               |                         |                                                                                                                  |              |                      |
| M4                                                                                                                                                                                                                                                                               | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | IVNT 2-E                   | z             |                         | Ant1 Hop                                                                                                         |              | (B)                  |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max                                                                                                                                                                                                        | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             |                         | Ant1 Hop                                                                                                         | -5           |                      |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>5GL Count 80<br>• 1Pk Max<br>20 dBm                                                                                                                                                                                              | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | a Auto FFT              | Ant1 Hop                                                                                                         | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max                                                                                                                                                                                                        | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | a Auto FFT              | Ant1 Hop                                                                                                         | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>5GL Count 80<br>• 1Pk Max<br>20 dBm                                                                                                                                                                                              | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm-<br>10 dBm-                                                                                                                                                                                  | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | a Auto FFT              |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                           | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>• 10 dBm<br>• 10 dBm<br>• 10 dBm<br>• 20 dBm                                                                                                                                              | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm<br>-10 dBm                                                                                                                                                                | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 800<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                                                             | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 800<br>• 1Pk Max<br>20 dBm<br>• 10 dBm<br>• 10 dBm<br>• -10 dBm<br>• -20 dBm<br>• -30 dBm                                                                                                                              | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4           Spectrum           Ref Level 27           Att           SGL Count 80           •1Pk Max           20 dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm                                                                                     | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4<br>Ban<br>Spectrum<br>Ref Level 27<br>Att<br>SGL Count 80<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm<br>-50 dBm                                                                                                        | 1<br>nd Edg<br>.62 dBm<br>40 dB  | ge(Hopp             | oing) N          | RBW 100 kHz                | z             | M1[1]                   |                                                                                                                  | -5           | 2.93 dBm             |
| M4         Ban           Spectrum         Ref Level 27           Att         SGL Count 80           • 1Pk Max         20 dBm           • 1Pk Max         20 dBm           • 10 dBm         -           -20 dBm         -           -30 dBm         -           -50 dBm         - | 1<br>.62 dBm<br>40 dB<br>00/8000 | ge(Hopp             | oing) N          | RBW 100 kH2<br>VBW 300 kH2 | z             | M1[1]                   |                                                                                                                  | 2,40518      | 2.93 dBm             |



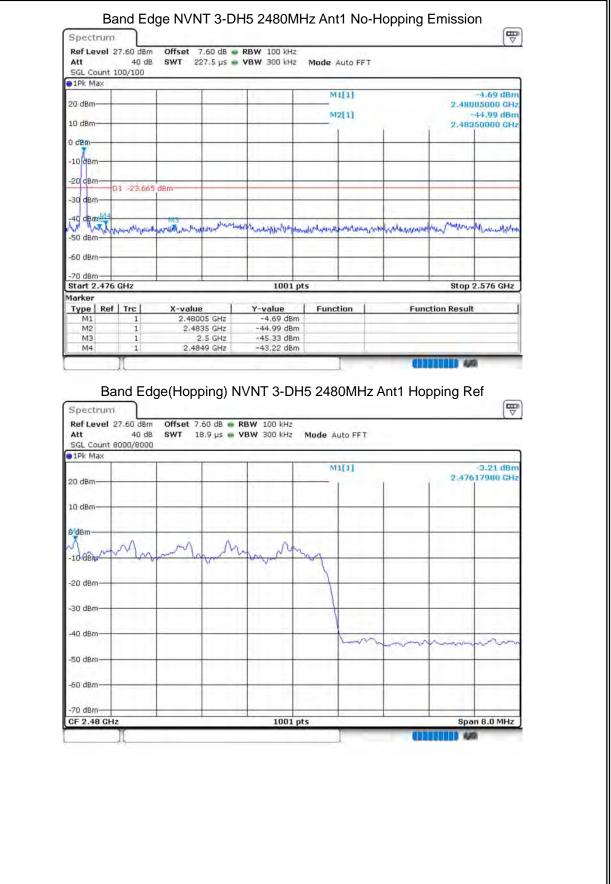








| SGL Count 100<br>1Pk Max        |              | SW1 22            | 27.5 µs 🖷 🕯           | /BW 300 kH             | 2 Mode /      | Auto FFT           |         |                       |                         |
|---------------------------------|--------------|-------------------|-----------------------|------------------------|---------------|--------------------|---------|-----------------------|-------------------------|
| 20 dBm-                         |              |                   |                       | 1                      | M             | 1[1]               |         | 2.48                  | ~6.65 dBm<br>105000 GHz |
|                                 |              |                   |                       | 11.2.12                | M             | 2[1]               |         |                       | -42.60 dBm              |
| 10 dBm                          |              |                   |                       |                        |               |                    | 1       | 2,483                 | 350000 GHz              |
| 0 dBm                           |              |                   |                       |                        |               |                    |         |                       |                         |
| MaldydBm-                       |              |                   |                       |                        |               |                    |         |                       |                         |
| -20 cBm-01                      | -23,419 de   | 10                |                       |                        |               | _                  |         |                       |                         |
| -30 d8m-                        | -20,419 (1   | 2111              |                       |                        |               |                    |         |                       |                         |
| -40 dBm                         | M4           | 112               | Marken                |                        |               |                    |         | 1 Marthau             |                         |
| -50 dBm                         | - May marked | www.www.un        | and the second second | Munderstand            | munina        | approximited house | andream | water annound         | the Dermonant of        |
|                                 |              |                   |                       | 11                     |               |                    |         |                       |                         |
| -60 dBm-                        |              |                   |                       |                        |               |                    |         |                       |                         |
| -70 dBm<br>Start 2.476 G        | Hz           |                   | -                     | 1001                   | pts           |                    |         | Stop                  | 2.576 GHz               |
| Marker                          |              |                   | - i                   |                        |               |                    |         |                       |                         |
| Type Ref<br>M1                  | 1            | X-value<br>2.4800 | 05 GHz                | Y-value<br>-6.65 dB    | Func<br>m     | tion               | Fund    | tion Result           | · · · · ·               |
| M2<br>M3                        | 1            |                   | 35 GHz<br>.5 GHz      | -42.60 dB<br>-44.48 dB |               | _                  |         |                       |                         |
| M4                              | 1            |                   | 59 GHz                | -41.78 dB              |               |                    |         |                       |                         |
| Att<br>SGL Count 300<br>1Pk Max |              | SWI 18            | 3.9 µs 🖷 VI           | BW 300 kHz             |               | 1[1]               |         |                       | -2.91 dBm               |
| 20 dBm                          |              |                   |                       |                        | $\rightarrow$ |                    | 1       | 2.401                 | 185610 GHz              |
| 10 dBm                          | -            |                   |                       |                        |               |                    |         |                       |                         |
| 0 dBm                           |              |                   |                       | MI                     |               |                    |         |                       |                         |
| -10 dBm                         | -            |                   |                       | V                      | M             | -                  | -       |                       |                         |
| -20 dBm                         | -            | -                 |                       | 1                      |               | -                  |         |                       |                         |
| -30 dBm                         |              |                   |                       |                        |               |                    |         |                       |                         |
| -40 dBm                         | 64.2         |                   | - mnl                 |                        |               | 1 A a              |         |                       |                         |
| -50 dBm                         | m            | www               | www                   |                        |               | with               | m       | m                     | mm                      |
|                                 |              |                   |                       |                        |               |                    |         |                       |                         |
| -60 dBm                         |              |                   |                       |                        |               |                    |         |                       |                         |
| -70 dBm                         |              |                   |                       | 1001                   | pts           |                    |         | Spa                   | n 8.0 MHz               |
|                                 | _            |                   |                       |                        |               |                    |         | In the log of the log | 6                       |
| -70 dBm                         |              |                   |                       |                        |               | J                  | (III    |                       | 0                       |
| -70 dBm                         |              |                   |                       |                        | -             | Ţ                  | (III)   |                       | 8                       |
| -70 dBm                         |              |                   |                       |                        |               | J                  | Q1      |                       | 0                       |



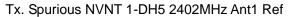

| SGL Count<br>1Pk Max                                                                                                                                                                                                                                               | 100/100                         | 10.4          |                                 |                      |                            |              |                 |                  |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------|---------------------------------|----------------------|----------------------------|--------------|-----------------|------------------|------------------------|
| 20 dBm-                                                                                                                                                                                                                                                            | _                               |               |                                 | 1.                   | M                          | il11         |                 |                  | -4.00 dBm<br>95000 GHz |
| 10 dBm                                                                                                                                                                                                                                                             |                                 |               |                                 |                      | M                          | 2[1]         |                 |                  | 45.62 dBm<br>00000 GHz |
| 0 dBm                                                                                                                                                                                                                                                              |                                 |               |                                 |                      |                            |              |                 |                  | MI                     |
| -10 dBm                                                                                                                                                                                                                                                            |                                 |               | _                               |                      |                            |              |                 |                  |                        |
| -20 dBm                                                                                                                                                                                                                                                            |                                 |               |                                 |                      |                            |              |                 |                  |                        |
| -30 dBm                                                                                                                                                                                                                                                            | 01 -22.908                      | dBm           |                                 |                      |                            |              | -               |                  |                        |
| -40 dBm                                                                                                                                                                                                                                                            |                                 |               | _                               | M4                   |                            | 11.0         |                 | MD               | 1972                   |
| -50 dBm                                                                                                                                                                                                                                                            | publication                     | nutury return | ndumentu                        | un and the show      | had a general and a second | name and the | manywheneverthe | malification and | way top                |
| -60 dBm                                                                                                                                                                                                                                                            |                                 |               |                                 |                      |                            |              |                 |                  |                        |
| -70 d8m-                                                                                                                                                                                                                                                           | -                               |               |                                 |                      |                            |              |                 |                  | 1.1.1                  |
| Start 2.306<br>Marker                                                                                                                                                                                                                                              | GHz                             |               |                                 | 100                  | 1 pts                      |              |                 | Stop 2           | 2.406 GHz              |
| Type   Ref                                                                                                                                                                                                                                                         |                                 | X-value       |                                 | Y-value              | Funct                      | tion         | Func            | tion Result      | 1                      |
| M1<br>M2                                                                                                                                                                                                                                                           | 1                               | 2.4019<br>2.  | 5 GHz<br>4 GHz                  | -4.00 d<br>-45.62 d  |                            |              |                 |                  |                        |
| M3<br>M4                                                                                                                                                                                                                                                           | 1                               | 2.3           | 9 GHz                           | -46.45 d<br>-41.04 d |                            | _            |                 |                  |                        |
| 144                                                                                                                                                                                                                                                                | 10                              | 2,000         |                                 | 41,04 0              | but 1                      | r            | anne            |                  |                        |
| Ba<br>Spectrum<br>Ref Level<br>Att<br>SGL Count<br>9 1Pk Max                                                                                                                                                                                                       | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | BW 100 kH            |                            | una)         | Ant1 Hop        | oping Re         | ef                     |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max                                                                                                                                                                                                             | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | BW 100 kH            | iz<br>Iz Mode Au           | una)         | Ant1 Hop        |                  | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count                                                                                                                                                                                                                          | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | BW 100 kH            | iz<br>Iz Mode Au           | uto FFT      | Ant1 Hop        |                  |                        |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max                                                                                                                                                                                                             | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | BW 100 kH            | iz<br>Iz Mode Au           | uto FFT      | Ant1 Hop        |                  | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm                                                                                                                                                                                                     | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | BW 100 kH            | iz<br>Iz Mode Au           | uto FFT      | Ant1 Hop        |                  | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                  | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | BW 100 kH            | iz<br>Iz Mode Au           | uto FFT      | Ant1 Hop        |                  | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm-<br>10 dBm-                                                                                                                                                                                         | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>0 dBm                                                                                                                                                                                  | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>- 10 dBm<br>- 10 dBm                                                                                                                                                                 | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                               | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>• 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm                                                                                                                                                        | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB 💼 R                       | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                               | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-20 dBm<br>-20 dBm                                                                                                                                    | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum           Ref Level           Att           SGL Count           ● 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm                   | 27.62 dBm<br>40 dB              | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> | 28 100 kH            | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum<br>Ref Level<br>Att<br>SGL Count<br>● 1Pk Max<br>20 dBm<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-30 dBm<br>-50 dBm                                                                                                                                  | 27.62 dBm<br>40 dB<br>8000/8000 | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> |                      | iz Mode Au                 | uto FFT      | Ant1 Hop        | 2.404            | -2.87 dBm              |
| Spectrum           Ref Level           Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 27.62 dBm<br>40 dB<br>8000/8000 | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> |                      | IZ Mode Ai                 | uto FFT      | h               | 2.404            | -2.87 dBm<br>86110 GHz |
| Spectrum           Ref Level           Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 27.62 dBm<br>40 dB<br>8000/8000 | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> |                      | IZ Mode Ai                 | uto FFT      | h               | 2.404            | -2.87 dBm<br>86110 GHz |
| Spectrum           Ref Level           Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 27.62 dBm<br>40 dB<br>8000/8000 | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> |                      | IZ Mode Ai                 | uto FFT      | h               | 2.404            | -2.87 dBm<br>86110 GHz |
| Spectrum           Ref Level           Att           SGL Count           • 1Pk Max           20 dBm           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -60 dBm           -70 dBm | 27.62 dBm<br>40 dB<br>8000/8000 | Offset 7.6    | i2 dB <b>R</b><br>9 µs <b>V</b> |                      | IZ Mode Ai                 | uto FFT      | h               | 2.404            | -2.87 dBm<br>86110 GHz |

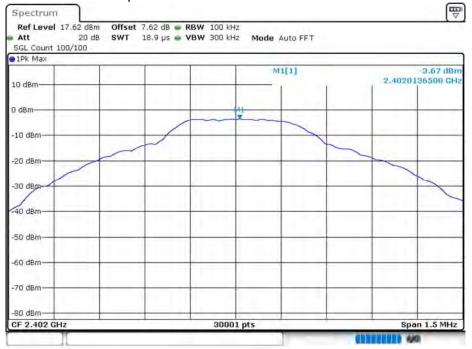


| 10 dBm     10 dBm     0 dBm     10 dBm     10 dBm     -10 dBm     -20 dBm     01 -22,872 -30 dBm                                                                                                                                  | 2.dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    | 11[1]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | -4.23 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 dBm                                                                                                                                                                                                                            | 2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 dBm<br>-10 dBm<br>-20 dBm<br>-20 dBm<br>-30 dBm                                                                                                                                                                                 | 2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 95000 GHz<br>13.58 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -10 dBm<br>-20 dBm 01 -22,872<br>-30 dBm                                                                                                                                                                                          | 2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    | 12[1]          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | 00000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -20 dBm-01 -22,872<br>-30 dBm-                                                                                                                                                                                                    | 2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 11 H                | _                  | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -20 dBm-01 -22,872<br>-30 dBm-                                                                                                                                                                                                    | 2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | MAN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -30 dBm                                                                                                                                                                                                                           | 2 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| St                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M4                    |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -40 dBm                                                                                                                                                                                                                           | menning more went                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | while chappendance is | all alleway to the | fully algorith | reparty entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mar Ballen Aren 16 | Man a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -50 dBm                                                                                                                                                                                                                           | The Part of the Pa |                       |                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -60 dBm                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | -                  | -              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -70 dBm                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | -                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Start 2.306 GHz                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                    | 001 pts            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stop 2             | .406 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1arker<br>Type   Ref   Trc                                                                                                                                                                                                        | X-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Y-value               | e   Fun            | tion           | Funct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion Result         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M1 1<br>M2 1                                                                                                                                                                                                                      | 2.40595 GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lz -4.23              | dBm                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3 1                                                                                                                                                                                                                              | 2.39 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hz -44.70             | dBm                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M4 1                                                                                                                                                                                                                              | 2,3424 Gł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hz -40.09             | dBm                | 1              | and the second se |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Spectrum<br>Ref Level 27.60 dBm<br>Att 40 dB<br>SGL Count 100/100<br>PPk Max                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T 3-DH5 2             | kHz                |                | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g Ref              | (The second seco |
| Spectrum<br>Ref Level 27.60 dBm<br>Att 40 dB<br>SGL Count 100/100<br>Pk Max                                                                                                                                                       | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    |                | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum<br>Ref Level 27.60 d8m<br>Att 40 d8<br>SGL Count 100/100                                                                                                                                                                 | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum<br>Ref Level 27.60 dBm<br>Att 40 dB<br>SGL Count 100/100<br>Pk Max                                                                                                                                                       | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL         Count         100/100           IPk Max         20 dBm         10 dBm                                                            | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           PPk Max         20 dBm                                                                                   | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL         Count         100/100           IPk Max         20 dBm         10 dBm                                                            | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max           20 dBm           10 dBm           -10 dBm                                              | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60           Att         40           SGL         Count           SGL         Count           100         Bm           100         Bm           -100         Bm           -200         Bm | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max           20 dBm           10 dBm           -10 dBm                                              | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60           Att         40           SGL         Count           SGL         Count           100         Bm           100         Bm           -100         Bm           -200         Bm | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max         20 dBm           10 dBm         0 dBm           -10 dBm                                  | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max         20 dBm           10 dBm                                                                  | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max         20 dBm           10 dBm         0 dBm           -10 dBm                                  | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max         20 dBm           20 dBm                                                                  | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B 🖷 RBW 100           | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Spectrum           Ref Level         27.60 dBm           Att         40 dB           SGL Count         100/100           IPk Max         20 dBm           10 dBm                                                                  | Offset 7.60 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B RBW 100             | kHz<br>kHz Mode    | Auto FFT       | -Hoppin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.480              | -3.66 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

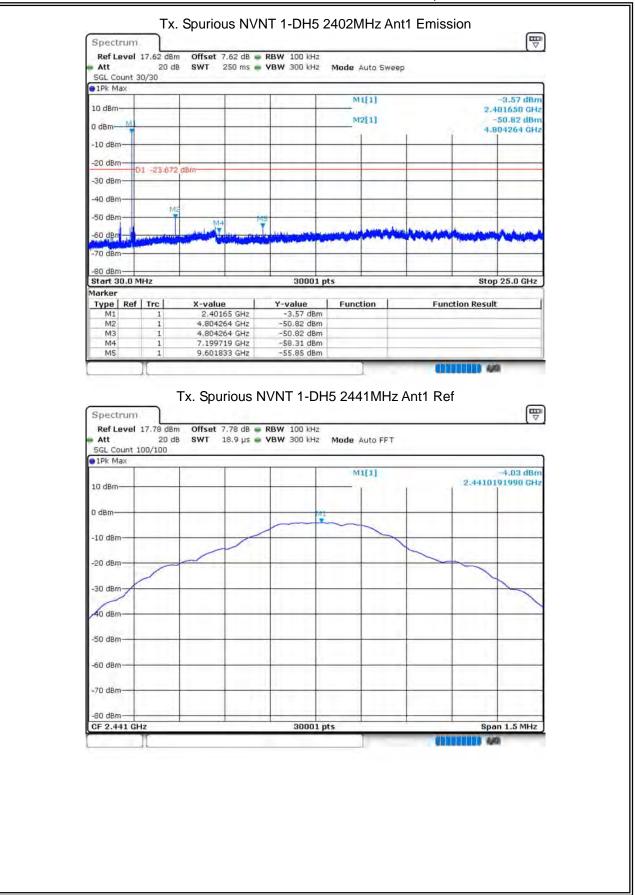




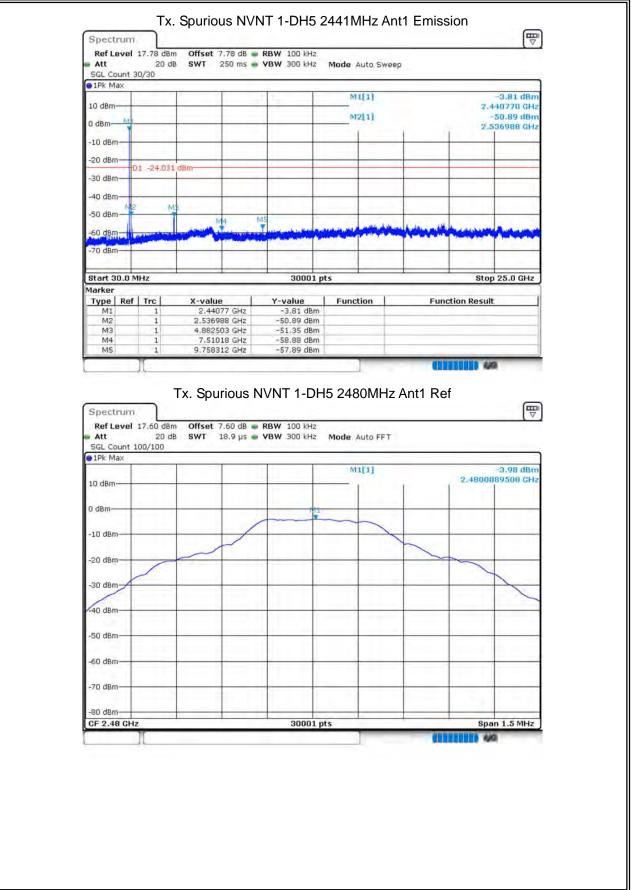




| M2[1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3.35 dBm<br>85000 GHz<br>-44.40 dBm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 0 dBm 2.47<br>0 dBm 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 885000 GHz                           |
| 0 dBm 2,48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| Here:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350000 GHz                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 T 2                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 20 dBm D1 -23.206 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |
| 40 dBmis Mp 143 have a subscription of the sub | Mr. Markanen                         |
| 50 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
| 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |
| 70 dBm-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.576 GHz                            |
| arker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| Type Ref Trc X-value Y-value Function Function Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |
| M1 1 2.47885 GHz -3.35 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| M2 1 2.4835 GHz -44.40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| M3 1 2.5 GHz -44.29 dBm<br>M4 1 2.4955 GHz -42.30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |

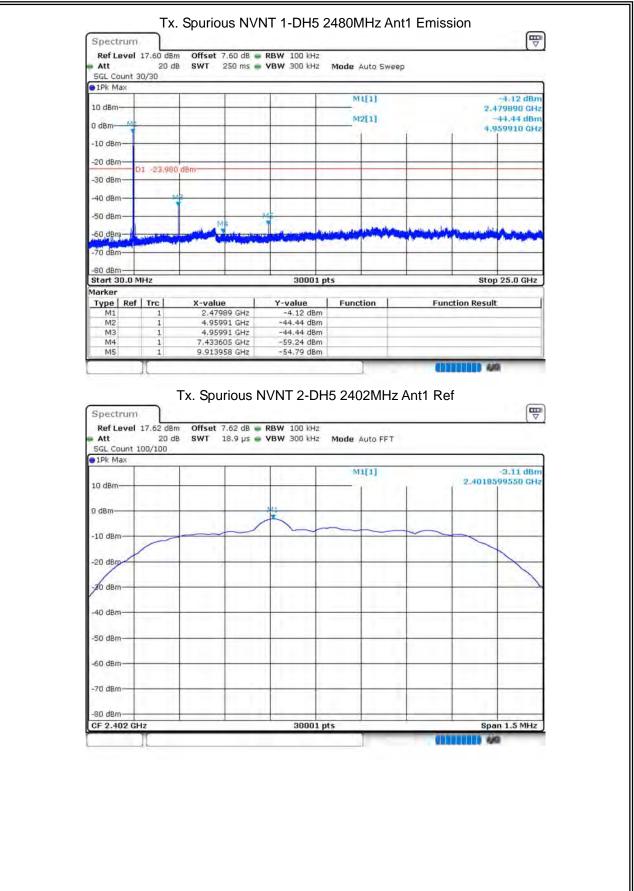



## 8.7 CONDUCTED RF SPURIOUS EMISSION

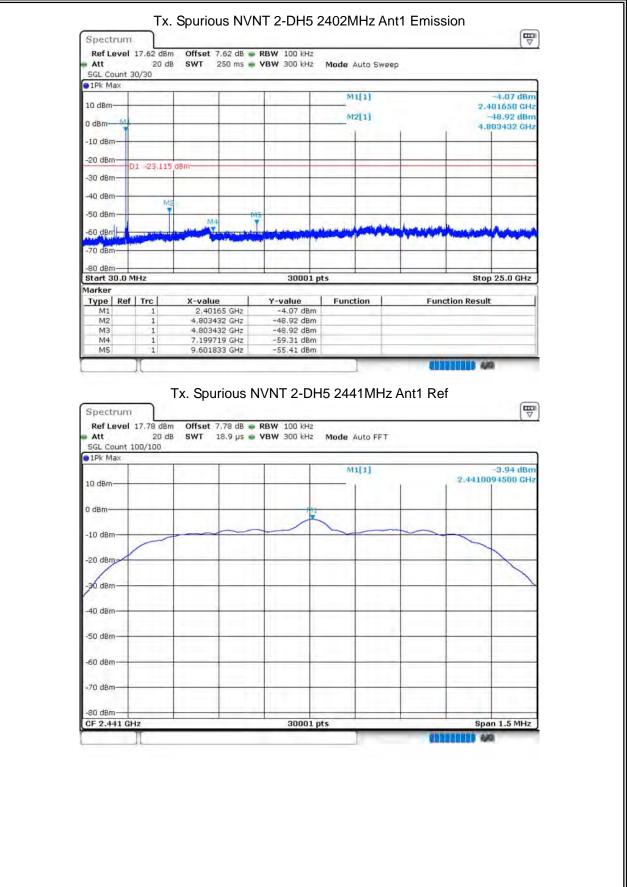
| Condition | Mode  | Frequency (MHz) | Antenna | Max Value (dBc) | Limit (dBc) | Verdict |
|-----------|-------|-----------------|---------|-----------------|-------------|---------|
| NVNT      | 1-DH5 | 2402            | Ant 1   | -47.15          | -20         | Pass    |
| NVNT      | 1-DH5 | 2441            | Ant 1   | -46.86          | -20         | Pass    |
| NVNT      | 1-DH5 | 2480            | Ant 1   | -40.46          | -20         | Pass    |
| NVNT      | 2-DH5 | 2402            | Ant 1   | -45.81          | -20         | Pass    |
| NVNT      | 2-DH5 | 2441            | Ant 1   | -47.28          | -20         | Pass    |
| NVNT      | 2-DH5 | 2480            | Ant 1   | -43.5           | -20         | Pass    |
| NVNT      | 3-DH5 | 2402            | Ant 1   | -50.45          | -20         | Pass    |
| NVNT      | 3-DH5 | 2441            | Ant 1   | -41.36          | -20         | Pass    |
| NVNT      | 3-DH5 | 2480            | Ant 1   | -39.13          | -20         | Pass    |



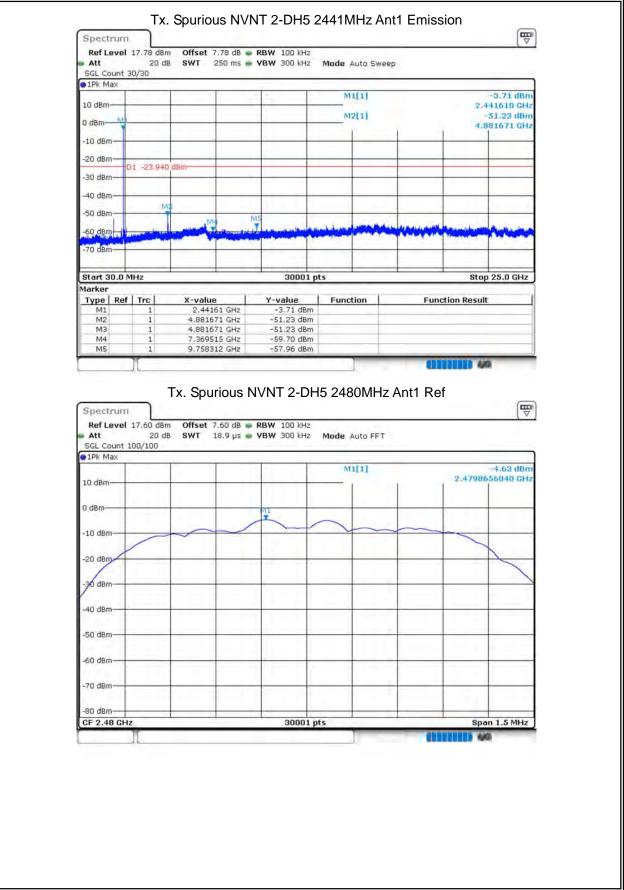


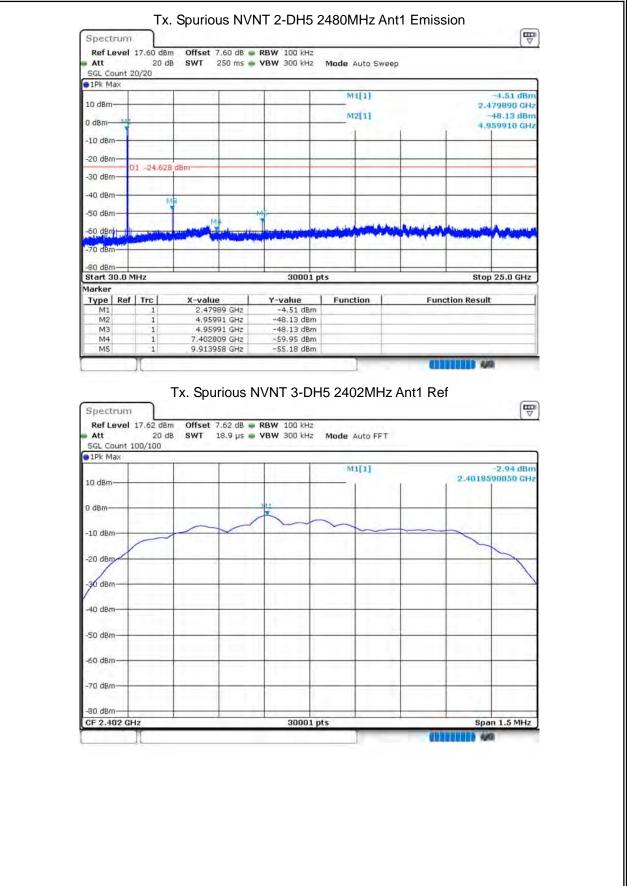


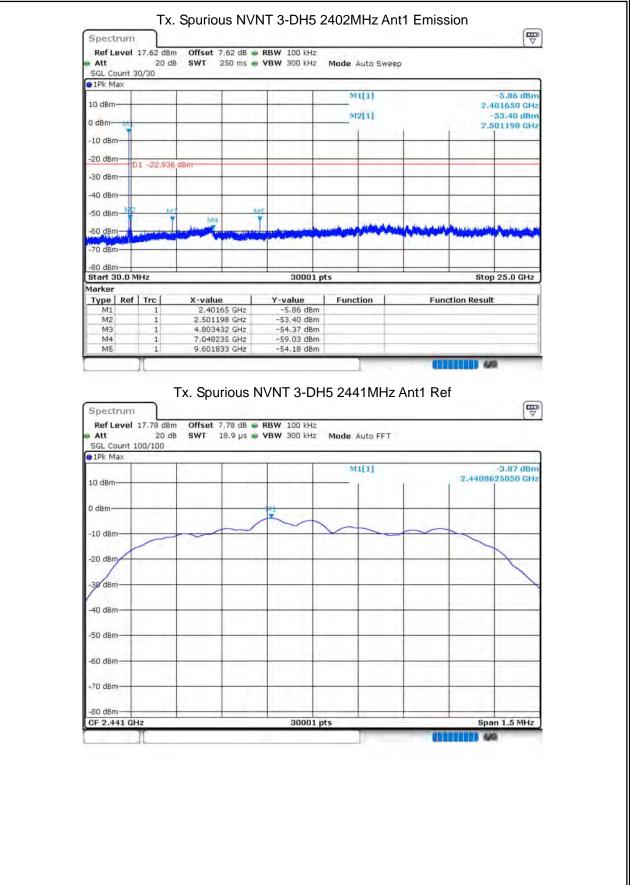


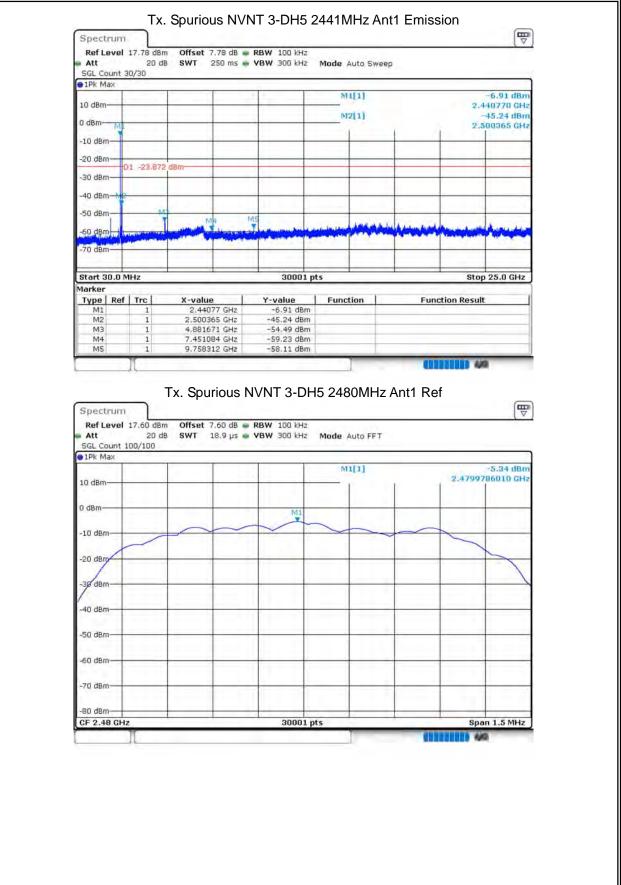


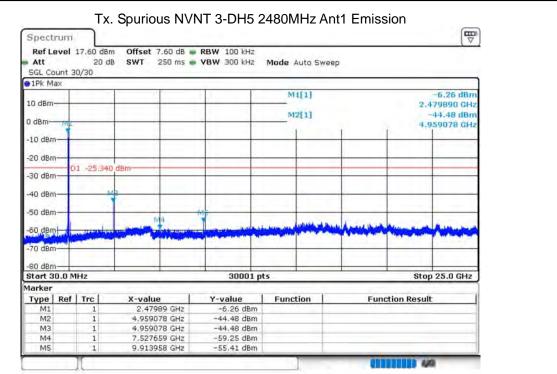

















END OF REPORT