5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$ ，traceable to the Internationally Accepted Guides to Measurement Uncertainty．

5．1 RETURN LOSS

The following uncertainties apply to the return loss measurement：

Frequency band	Expanded Uncertainty on Return Loss
$400-6000 \mathrm{MHz}$	0.08 LIN

5．2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements：

Length（mm）	Expanded Uncertainty on Length
$0-300$	0.20 mm

5．3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI／IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements．

Scan Volume	Expanded Uncertainty
1 g	$19 \%(\mathrm{SAR})$
10 g	$19 \%(\mathrm{SAR})$

6 CALIBRATION MEASUREMENT RESULTS

6．1 RETURN LOSS

Page：5／11
Template＿ACR．DDD．N．YY．MVGB．ISSUE＿SAR Reference Waveguide $v G$
This document shall not be reproduced，except in full or in part，without the written approval of MVG．The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG．

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.15	-8	$21.17 \Omega+13.26 \mathrm{j} \Omega$
5400	-13.75	-8	$68.57 \Omega+6.68 \mathrm{j} \Omega$
5600	-16.65	-8	$35.76 \Omega-2.15 \mathrm{j} \Omega$
5800	-14.30	-8	$54.74 \Omega+18.27 \mathrm{j} \Omega$

6.2 MECHANICAL DIMENSIONS

Frequency (MHz)	L (mm)		W (mm)		Lf $(\mathbf{m m})$		Wf $_{\mathrm{f}}(\mathrm{mm})$	
	Required	Measured	Required	Measured	Required	Measured	Required	Measured
5800	$40.39 \pm$	-	$20.19 \pm$	-	$81.03 \pm$	-	$61.98 \pm$	-

Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

SAR REFERENCE WAVEGUIDE CALIBRATION REPORT
Ref：ACR． 60.10 .21 MVGB．A

Measurement Condition

Software	OPENSAR V5				
Phantom	SN 13／09 SAM68				
Probe	SN 41／18 EPGO333				
Liquid	Head Liquid Values 5200 MHz eps＇$: 34.06$ sigma $: 4.70$ Head Liquid Values 5400 MHz eps＇$: 33.39$ sigma ： 4.91 Head Liquid Values 5600 MHz eps＇$: 32.77$ sigma ： 5.13 Head Liquid Values 5800 MHz eps＇$: 32.40$ sigma $: 5.34$				
Distance between dipole waveguide and liquid	0 mm				
Area scan resolution	$\mathrm{dx}=8 \mathrm{~mm} / \mathrm{dy}=8 \mathrm{~mm}$				
Zoon Scan Resolution	dx $=4 \mathrm{~mm} / \mathrm{dy}=4 \mathrm{~m} / \mathrm{dz}=2 \mathrm{~mm}$				
Frequency	5200 MHz				
	5400 MHz				
	5600 MHz				
5800 MHz		$	$	Input power	20 dBm
:---	:---				
Liquid Temperature	$20+/-1{ }^{\circ} \mathrm{C}$				
Lab Temperature	$20+/-1{ }^{\circ} \mathrm{C}$				
Lab Humidity	$30-70 \%$				

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε_{r})		Conductivity (σ) s / m	
	required	measured	required	measured
5000	$36.2 \pm 10 \%$		$4.45 \pm 10 \%$	
5100	$36.1 \pm 10 \%$		$4.56 \pm 10 \%$	
5200	$36.0 \pm 10 \%$	34.06	$4.66 \pm 10 \%$	4.70
5300	$35.9 \pm 10 \%$		$4.76 \pm 10 \%$	
5400	$35.8 \pm 10 \%$	33.39	$4.86 \pm 10 \%$	4.91
5500	$35.6 \pm 10 \%$		$4.97 \pm 10 \%$	
5600	$35.5 \pm 10 \%$	32.77	$5.07 \pm 10 \%$	5.13
5700	$35.4 \pm 10 \%$		$5.17 \pm 10 \%$	
5800	$35.3 \pm 10 \%$	32.40	$5.27 \pm 10 \%$	5.34
5900	$35.2 \pm 10 \%$		$5.38 \pm 10 \%$	
6000	$35.1 \pm 10 \%$		$5.48 \pm 10 \%$	

7.2 MEASUREMENT RESULT

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by Satimo, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Frequency (MHz)	1 g SAR $(\mathrm{W} / \mathrm{kg})$		10 g SAR $(\mathrm{W} / \mathrm{kg})$	
	required	measured	required	measured
5200	159.00	$162.34(16.23)$	56.90	$55.42(5.54)$
5400	166.40	$168.48(16.85)$	58.43	$57.03(5.70)$
5600	173.80	$174.92(17.49)$	59.97	$58.63(5.86)$
5800	181.20	$178.89(17.89)$	61.50	$59.32(5.93)$

SAR MEASUREMENT PLOTS @ 5200 MHz

SAR MEASUREMENT PLOTS @ 5400 MHz

SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 9/11

SAR MEASUREMENT PLOTS @ 5800 MHz

lac- 1 MRA
ACCREDITED

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	MVG	SN-13/09-SAM68	Nalidated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde \& Schwarz ZVM	100203	05/2019	05/2022
Network Analyzer Calibration kit	Rohde \& Schwarz ZV-Z235	101223	05/2019	05/2022
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde \& Schwarz SMB	106589	04/2019	04/2022
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	05/2019	05/2022
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H 1	44220687	05/2020	05/2023

Page: 11/11

<Justification of the extended calibration>

If dipoles are verified in return loss (<-20dB, within 20% of prior calibration for below 3 GHz , and $<-8 \mathrm{~dB}$, within 20% of prior calibration for 5 GHz to 6 GHz), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.
<Head 2450MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-23.18	-	56.30	-	Mar. 01, 2021
-23.39	0.91	56.342	0.042	Feb. 28, 2022

The return loss is $<-20 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

HaC=MIRA
ACCREDITED
<Head 5200MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-9.15	-	21.17	-	Mar. 01, 2021
-9.1819	0.35	21.191	0.021	Feb. 28, 2022

The return loss is $<-8 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

Dipole Verification Data

ACCREDITED
<Head 5800MHz>

Return Loss (dB)	Delta (\%)	Impedance	Delta(ohm)	Date of Measurement
-14.30	-	54.74	-	Mar. 01, 2021
-14.349	0.34	55.115	0.375	Feb. 28, 2022

The return loss is $<-8 \mathrm{~dB}$, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.

END

