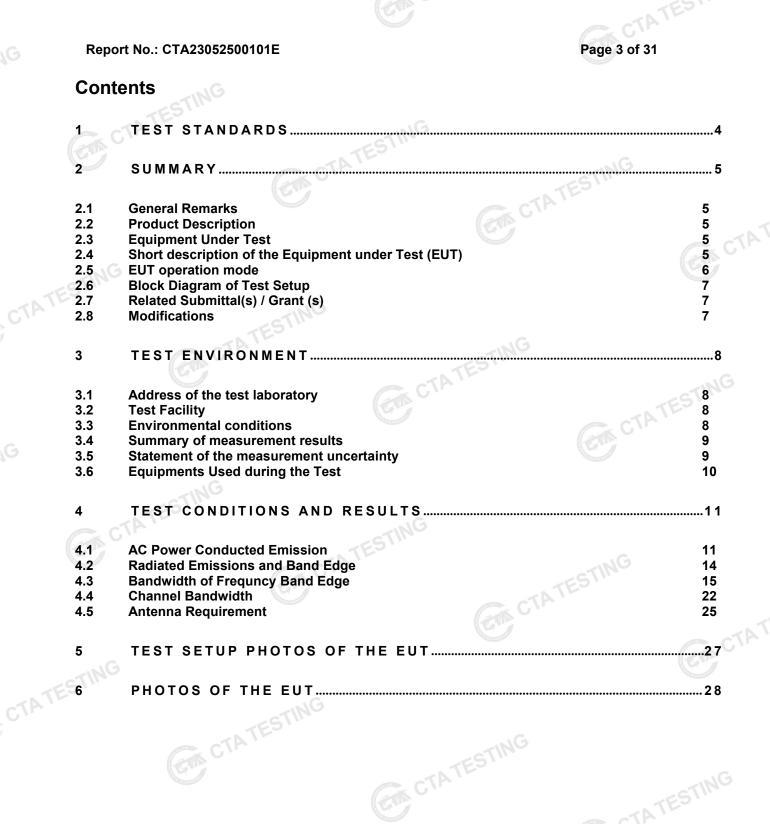


Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China


	PART 15 SUBPART C TEST RE	PORT
	FCC PART 15.249	ESTING
Report Reference No FCC ID		TATES
Compiled by (position+printed name+sign	ature): File administrators Kevin Liu	kevim. Line
Supervised by (position+printed name+sign	ature): Project Engineer Kevin Liu	kevin Line kevin Line Eric Wang
Approved by (position+printed name+sign	ature): RF Manager Eric Wang	Erric Wang
Date of issue	: May 25, 2023	TIM
Testing Laboratory Name	Shenzhen CTA Testing Technology	Co., Ltd.
	Room 106, Building 1, Yibaolai Industr Fuhai Street, Bao'an District, Shenzher	ial Park, Qiaotou Community,
Applicant's name	Shenzhen Warsong Technology Co.	, Ltd.
Address	Floor 15, Building 1, Nanshan Zhiyuan Liuxian Avenue, Nanshan District, She	
Test specification	TESTING	
Standard	FCC CFR Title 47 Part 15 Subpart C ANSI C63.10:2013	Section 15.249
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibili from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context.	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibili	owner and source of the ty for and will not assume
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description Trade Mark	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description Trade Mark	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc : Wireless Gaming Controller : BIGBIG WON : Shenzhen Warsong Technology Co., L	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc : Wireless Gaming Controller : BIGBIG WON : Shenzhen Warsong Technology Co., L	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc : Wireless Gaming Controller : BIGBIG WON : Shenzhen Warsong Technology Co., L : Rainbow2 Pro : Rainbow2 lite, Rainbow2	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc : Wireless Gaming Controller : BIGBIG WON : Shenzhen Warsong Technology Co., L : Rainbow2 Pro : Rainbow2 lite, Rainbow2	owner and source of the ty for and will not assume ced material due to its
This publication may be repro Shenzhen CTA Testing Tech material. Shenzhen CTA Tes liability for damages resulting placement and context. Equipment description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Frequency	hnology Co., Ltd. All rights reserved. oduced in whole or in part for non-commercial p nology Co., Ltd. is acknowledged as copyright ting Technology Co., Ltd. takes no responsibilit from the reader's interpretation of the reproduc : Wireless Gaming Controller : BIGBIG WON : Shenzhen Warsong Technology Co., L : Rainbow2 Pro : Rainbow2 lite, Rainbow2 : GFSK	owner and source of the ty for and will not assume ced material due to its

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Tel:+86-755 2322 5875 E-mail:cta@cta-test.cn Web:http://www.cta-test.cn

Page 2 of 31

CTATESTING	TEST	REPORT		
CTA		TING		
Equipment under Test	: Wireless Gar	ning Controller	CTATESTING	
Model /Type	: Rainbow2 Pr	•	CIM	
Listed Models	: Rainbow2 lite	e, Rainbow2		
Applicant	: Shenzhen W	arsong Technology C	o., Ltd.	
Address		lding 1, Nanshan Zhiy ue, Nanshan District,	o uan Chongwen Park, N Shenzhen	No. 3370
		G		
Manufacturer	: Shenzhen W	arsong Technology C	o., Ltd.	ATEST
Address		lding 1, Nanshan Zhiy ue, Nanshan District,	uan Chongwen Park, N Shenzhen	No. 3370
CTATES Test Re	esult:	rING	PASS	
	CIA		STING	
The test report merely			GTATES	
It is not permitted to co laboratory.	py extracts of these tes	result without the wil		lesi
ATA	TES			
GTA CTA		TESTIN		
		CTATESTIN		
			GIA CT	TEC
CTATESTING				

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.249</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz and 24.0-24.25 GHz <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		TESTING	
Date of receipt of test sample		May 05, 2023	
Testing commenced on	Cer.	May 05, 2023	CT
Testing concluded on	:	May 23, 2023	G

2.2 Product Description

Testing commenced on	: May 05, 2023
Testing concluded on	: May 23, 2023
2.2 Product Descrip	tion
Product Description:	Wireless Gaming Controller
Model/Type reference:	Rainbow2 Pro
Listed Models:	Rainbow2 lite, Rainbow2
Model Different.:	PCB board, structure and internal of these model(s) are the same,So no additional models were tested.
Power supply:	DC 3.7V From Battery and DC 5V From External circuit
Adapter information (Auxiliary test supplied by testing Lab):	N/A
Testing sample ID:	CTA23052500101-1# (Engineer sample) CTA23052500101-2# (Normal sample)
2.4G	
Supported type:	2.4G
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Ceramic antenna
Antenna gain:	1.6 dBi

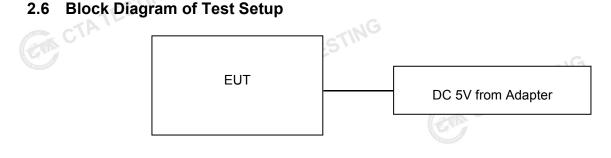
2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Test Power supply system utilised	k		TATESTING	
Power supply voltage	:	0	230V / 50 Hz) 120V / 60Hz
		0	12 V DC C	24 V DC
		•	Other (specified in blank below	v)
			DC 5V From external circuit	(P) and

2.4 Short description of the Equipment under Test (EUT)

This is a 2.4G Wireless Gaming Controller. For more details, refer to the user's manual of the EUT. CTATES


2.5 EUT operation mode

The Applicant provides communication tools software(Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing . There are 40 channels provided to the EUT and Channel 1/19/39 were selected to test. CTA TES

Operation Frequency:

Operation	Frequency:	CTA CVI	
	Channel	Frequency (MHz)	-TP
	00	2402	0.
-ING	01	2404	
TEST	02	2406	
CTAIL	TING	÷	
	19	2440	
	C	STING	
	37	2476	2
	38	2478	
	39	2480	
		CIN CIN	1
6		_	

Channel	Frequency
The lowest channel	2402 MHz
The middle channel	2440 MHz
The Highest channel	2480 MHz
GA CTA	GIA CTATESTING

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: CTATESTING Radiated Emission:

Temperature:	Contid	23 ° C
		9
Humidity:	And Washington Cold State	44 %
Atmospheric pressure:		950-1050mbar

AC Main Conducted testing: CTATES

Temperature:	24 ° C]
	. 6	
Humidity:	47 %	
TES		C
Atmospheric pressure:	950-1050mbar	TING
		TESI
conducted testing:	in the	TP '
Tomporaturo	24 ° C	

Conducted testing:

Temperature:	24 ° C
	Company of the second sec
Humidity:	46 %
Atmospheric pressure:	950-1050mbar
GA CTATESTING	CTA TESTING

Summary of measurement results 3.4

Standard				
Section	Test Item	Judgment	Remark	
FCC part 15.203	Antenna requirement	PASS	(P)	CTAT
FCC part 15.207	AC Power Line Conducted Emission	PASS		
FCC part 15.249	Fundamental &Radiated Spurious Emission Measurement	PASS		
FCC part 15.215	20dB Channel Bandwidth	PASS		
FCC part 15.205	Band Edge	PASS		
Remark:			CTATES	
. The measurement u	ncertainty is not included in the test result.		GV	

- The measurement uncertainty is not included in the test result. 1.
- We tested all test mode and recorded worst case in report 2.
- 3. "N/A" denotes test is not applicable in this Test Report

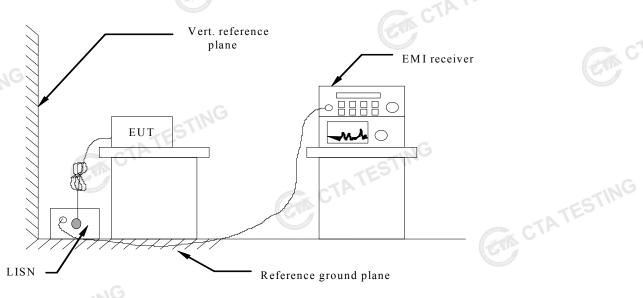
3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.82 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	
Radiated Emission	1~18GHz	5.14 dB	(1)	
Radiated Emission	18-40GHz	5.38 dB	(1)	ING
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	STIL
Transmitter power conducted	1~40GHz	0.57 dB	(1)	TES
Conducted spurious emission	1~40GHz	1.60 dB	(1)]
OBW	1~40GHz	25 Hz 🏑	(1)	

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. CTATEST


3.6 **Equipments Used during the Test**

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02	
LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02	
EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02	
EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02	
Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02	
Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02	
Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02	
Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02	
Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02	
Temperature and humidity meter	G Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02	
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2022/08/03	2023/08/02	
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2022/08/03	2023/08/02	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2022/08/03	2023/08/02	
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2022/08/03	2023/08/02	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02	
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02	
Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02	
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02	
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02	
Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02	
Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02	
	G Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02	

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

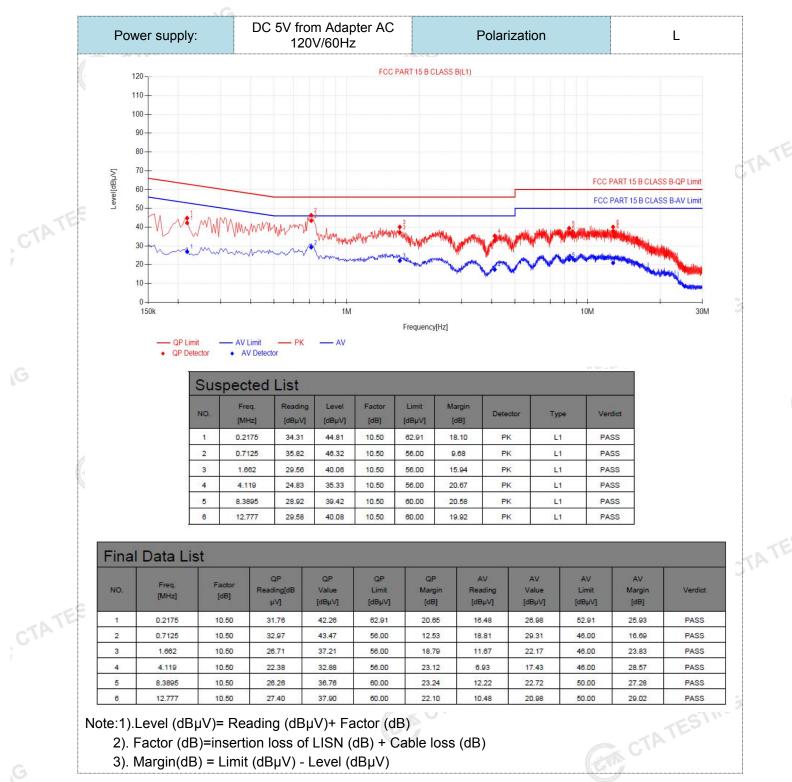
3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

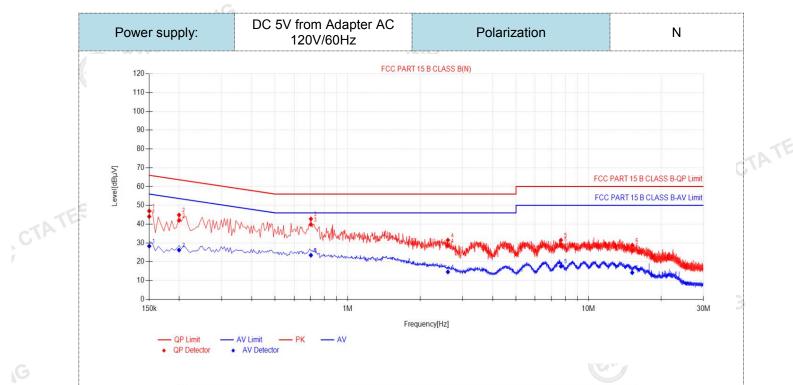
7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. 8 During the above scans, the emissions were maximized by cable manipulation.


AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency rang		Limit (dBuV)				
Frequency rang		Quasi-peak	Average			
0.15-0.5		66 to 56*	56 to 46*			
0.5-5		56	46			
5-30		60	50			
* Decreases with the loga	rithm of the frequer	ıcy.				
TEST RESULTS	Gen C1	CA C	TATESTING			

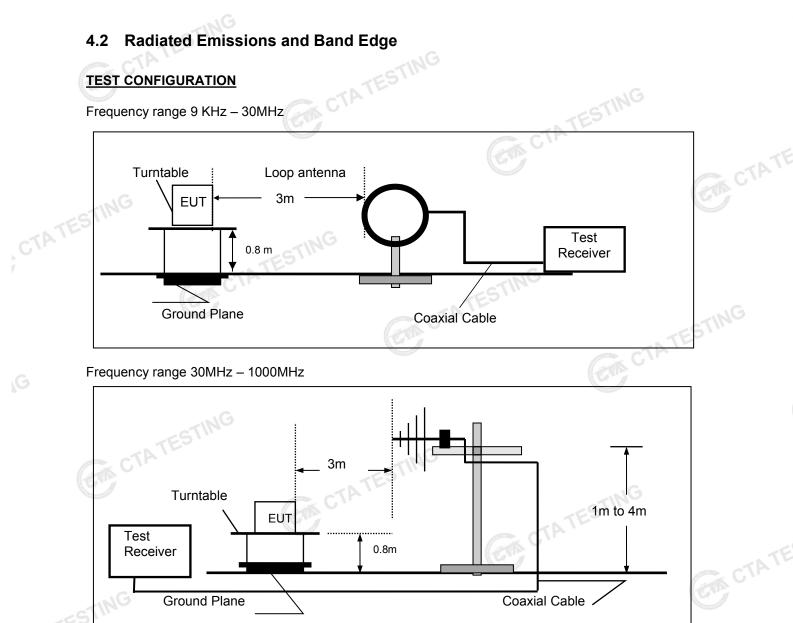
TEST RESULTS


Page 12 of 31

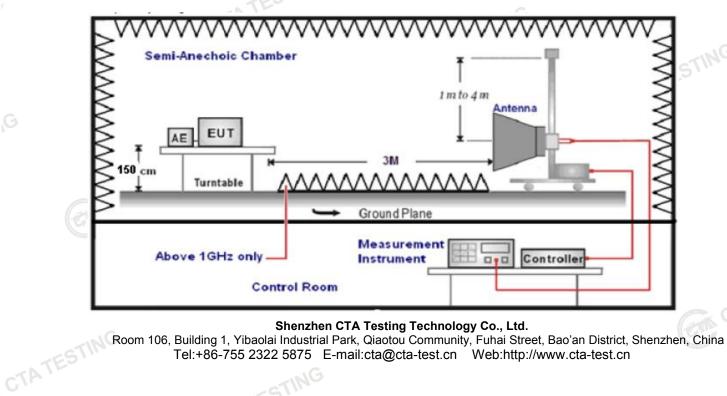
3). Margin(dB) = Limit (dBµV) - Level (dBµV)

Page 13 of 31

TATE



Suspected List											
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Detector	Туре	Verdict		
1	0.15	36.49	46.99	10.50	66.00	19.01	PK	N	PASS		
2	0.1995	34.39	44.89	10.50	63.63	18.74	PK	N	PASS		
3	0.7035	32.28	42.78	10.50	56.00	13.22	PK	N	PASS		
4	2.607	20.99	31.49	10.50	56.00	24.51	PK	N	PASS		
5	7.683	21.01	31.51	10.50	60.00	28.49	PK	N	PASS		
6	15.1935	18.35	28.85	10.50	60.00	31.15	PK	N	PASS		


Final Data List

1	A REAL PROPERTY AND A REAL											
TATE	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
61	1	0.15	10.50	33.56	44.06	66.00	21.94	17.82	28.32	56.00	27.68	PASS
	2	0.1995	10.50	31.46	41.96	63.63	21.67	15.71	26.21	53.63	27.42	PASS
	3	0.7035	10.50	29.35	39.85	56.00	16.15	12.96	23.46	46.00	22.54	PASS
	4	2.607	10.50	18.06	28.56	56.00	27.44	4.08	14.58	46.00	31.42	PASS
	5	7.683	10.50	18.87	29.37	60.00	30.63	7.06	17.56	50.00	32.44	PASS
	6	15.1935	10.50	15.41	25.91	60.00	34.09	3.69	14.19	50.00	35.81	PASS

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) = Limit (dBµV) Level (dBµV) CTATESTING

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz. The distance between test antenna and EUT as following table states: 6.

· .		anitenna anu Eur as ioliowing tabi	
	Test Frequency range	Test Antenna Type	Test Distance
	9KHz-30MHz	Active Loop Antenna	3
	30MHz-1GHz	Ultra-Broadband Antenna	3
	1GHz-18GHz	Double Ridged Horn Antenna	3
ß	18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Octaing test receiver/spe	contain as following table states.	
Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Average Value: RBW=1MHz/VBW=10Hz,	Peak
ING	Sweep time=Auto	
	Test Frequency range 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz	9KHz-150KHz RBW=200Hz/VBW=3KHz,Sweep time=Auto 150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto 30MHz-1GHz RBW=120KHz/VBW=1000KHz,Sweep time=Auto 1GHz-40GHz Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto 1GHz-40GHz Average Value: RBW=1MHz/VBW=10Hz,

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor	(Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain	G
AF = Antenna Factor		G

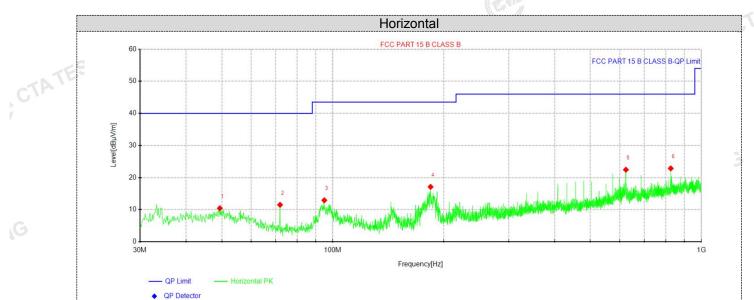
Transd=AF +CL-AG

CTATESTIN RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


Page 16 of 31

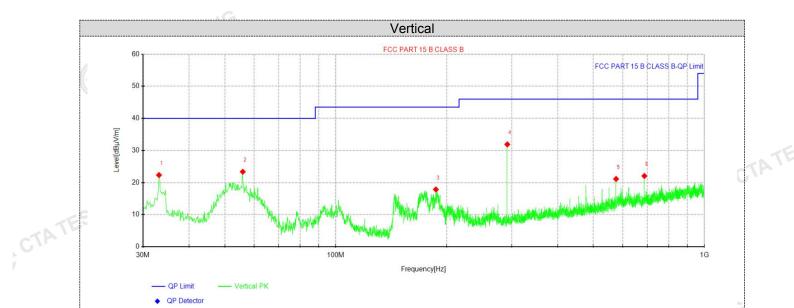
TATE

TEST RESULTS

- Remark:
- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2.4G were tested at Low, Middle, and High channel and recorded worst mode at 2.4G 1Mpbs.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Suspected Data Lis


Susp	ected Data	LIST							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	49.4	26.55	10.44	-16.11	40.00	29.56	100	360	Horizontal
2	71.9525	32.49	11.52	-20.97	40.00	28.48	100	199	Horizontal
3	94.8688	32.09	12.92	-19.17	43.50	30.58	100	360	Horizontal
4	184.23	37.38	17.10	-20.28	43.50	26.40	100	88	Horizontal
5	624.003	34.62	22.44	-12.18	46.00	23.56	100	63	Horizontal
6	825.885	33.18	22.86	-10.32	46.00	23.14	100	260	Horizontal

CTATE Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB) CTA TESTING
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTATE

CIA

Suspected Data List

CTATESTING

NO.	[MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1 3	33.1525	40.52	22.34	-18.18	40.00	17.66	100	112	Vertical
2 5	55.9475	40.71	23.37	-17.34	40.00	16.63	100	355	Vertical
3 1	186.897	37.95	17.85	-20.10	43.50	25.65	100	18	Vertical
4 2	292.021	49.36	31.90	-17.46	46.00	14.10	100	69	Vertical
5 5	575.988	34.00	21.13	-12.87	46.00	24.87	100	337	Vertical
6 6	687.538	33.80	22.06	-11.74	46.00	23.94	100	103	Vertical

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

For 1GHz to 25GHz

	Eroquopov/MI	J -).		K (above 1) 2402		Peak value		
	Frequency(MI	-				Peak value	-	I
Frequence (MHz)	Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit	polarizatior
AD INTER	(dBuV)	(dB/m)	(dB)	(dB)	· ,		(dB)	Martiaal
4804.00		21.52	3.52	33.12	47.18	74	-26.82	Vertical
4804.00		23.65	4.56	33.08	52.38	74	-21.62	Horizontal
7206.00		25.58	6.15	33.57	46.69	74	-27.31	Vertical
7206.00		27.68	6.98	33.26	44.56	74	-29.44	Horizontal
Average	value:							
Frequence	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
. ,	(dBuV)	(dB/m)	(dB)	(dB)	· · ·	· ,	(dB)	
4804.00	43.65	21.52	3.52	33.12	35.57	54	-18.43	Vertical
4804.00) 41.45	23.65	4.56	33.08	36.58	54	-17.42	Horizontal
7206.00) 37.53	25.58	6.15	33.57	35.69	54	-18.31	Vertical
7206.00) 31.25	27.68	6.98	33.26	32.65	54	-21.35	Horizontal
	and the second second				A			
		1_\.		2440	r.		Deelevel	TESTI
	Frequency(MI		Cabla	2440			Peak valu	
Frequence	cy Read Level	Antenna Factor	Cable	Preamp	Level	Limit Line	Over Limit	nolorizatio
(MHz)	(dBuV)	(dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4880.00				33.27	46.76	74		Vertical
		21.78	3.58			74 74	-27.24	
4880.00		24.15	4.57	33.87	47.1		-26.9	Horizonta
7320.00		26.04	6.24	33.19	42.75	74 74	-31.25	Vertical
7320.00	2	27.98	7.18	33.68	43.53	/4	-30.47	Horizontal
Average			5	EST	1			
Frequence	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
. ,	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4880.00		21.78	3.58	33.27	38.73	G 54	-15.27	Vertical
4880.00		24.15	4.57	33.87	36.44	54	-17.56	Horizonta
7320.00	36.53	26.04	6.24	33.19	35.62	54	-18.38	Vertical
7320.00) 31.46	27.98	7.18	33.68	32.94	54	-21.06	Horizontal
5711	Frequency(MI	42).	G	2480			Peak valu	
	Doad	Antenna	Cable	Preamp			Over	
Frequence	Level	Factor	Loss	Factor	Level	Limit Line	Limit	polarization
(MHz)	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4960.00		22.56	4.17	33.75	49.71	74	-24.29	Vertical
4960.00		24.78	5.36	33.17	51.64	74	-24.29	Horizonta
7440.00		27.14	6.97	33.62	47.73	74	-26.27	Vertical
7440.00		28.16	7.65	33.58	47.73	74	-20.27	Horizonta
		20.10	1.00	00.00	40.4	14	-20.0	nonzonia
Average		Antonna	Cable	Dracing			0	1
Frequence	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	n al - nim - ti
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	polarization
. ,	(dBuV)	(dB/m)	(dB)	(dB)	· · · ·	· · ·	(dB)	
4960.00		22.56	4.17	33.75	39.81	54	-14.19	Vertical
		0470	E 00	0047	39.61	54	-14.39	Horizontal
4960.00		24.78	5.36	33.17				
	37.49	24.78 27.14 28.16	6.97 7.65	33.62 33.58	37.98 33.5	54 54	-16.02	Vertical Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

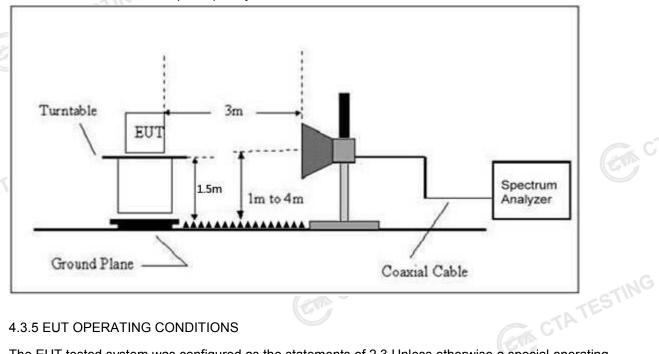
BANDWIDTH OF FREQUENCY BAND EDGE

FCC Part15 C	Section 15.208	and 15.20)5		
ANSI C63.10: 2	2013		TATES	•	
				band's	
(2310MHz to 2	500MHz) data	was showe	ed		
Measurement I	Distance: 3m				ALK .
Frequency	Detector	RBW	VBW	Value	
Above	Peak	1MHz	3MHz	Peak	
1GHz	Average	1MHz	3MHz	Average	
	ANSI C63.10: All of the restric (2310MHz to 2 Measurement Frequency Above	ANSI C63.10: 2013 All of the restrict bands were (2310MHz to 2500MHz) data Measurement Distance: 3m Frequency Detector Above Peak	ANSI C63.10: 2013 All of the restrict bands were tested, only (2310MHz to 2500MHz) data was showe Measurement Distance: 3m Frequency Detector RBW Above Peak 1MHz	All of the restrict bands were tested, only the worst bands (2310MHz to 2500MHz) data was showed. Measurement Distance: 3m Frequency Detector RBW VBW Above Peak 1MHz 3MHz	ANSI C63.10: 2013 All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed. Measurement Distance: 3m Frequency Detector RBW VBW Above Peak 1GHz IMHz

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation

4.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:


- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

and performed pretest to three orthogonal axis. The worst case emissions were reported

4.3.3 DEVIATION FROM TEST STANDARD No deviation

4.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

4.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating Ja ir condition is specified in the follows during the testing.

C				2402MHz	2				
		Cast	ALD	Peak value	e:		TING		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2310	53.84	21.25	3.26	33.14	45.21	74	-28.79	Horizontal	ATA
2400	55.27	21.75	3.54	33.42	47.14	74	-26.86	Horizontal	0.1
2310	53.16	21.25	3.26	33.14	44.53	74	-29.47	Vertical	
2400	52.15	21.75	3.54	33.42	44.02	74	-29.98	Vertical]

		TATES		Average val	ue:	.G	-	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310	51.17	21.25	3.26	33.14	42.54	54	-11.46	Horizontal
2400	45.34	21.75	3.54	33.42	37.21	54	-16.79	Horizontal
2310	43.19	21.25	3.26	33.14	34.56	54	-19.44	Vertical
2400	37.63	21.75	3.54	33.42	29.5	54	-24.5	Vertical

2480MHz

	2400	37.63	21.75	3.54	33.42	29.5	54	-24.5	Vertical	
		STINC								-
	GA CTA				2480MHz Peak value					
	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
	2483.5	57.47	22.12	3.65	33.54	49.7	74	-24.3	Horizontal	
	2500	55.19	22.35	3.98	33.27	48.25	74	-25.75	Horizontal	TD
	2483.5	53.17	22.12	3.65	33.54	45.4	74	-28.6	Vertical	GV
	2500	57.36	22.35	3.98	33.27	50.42	74	-23.58	Vertical	
	Average value:									
CTA.	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
	2483.5	51.07	22.12	3.65	33.54	43.3	54	-10.7	Horizontal	
	2500	43.36	22.35	3.98	33.27	36.42	54	-17.58	Horizontal	3
	2483.5	45.33	22.12	3.65	33.54	37.56	54	-16.44	Vertical]
	2500	34.64	22.35	3.98	33.27	27.7	54	-26.3	Vertical	

Remark: Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor All of the restriction bands were tested, and only the data of worst case was exhibited. CTATES'

Measurement data: Field Strength of The Fundamental Signal

	Peak value:				ESTINC					
	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
	2402	104.15	22.55	3.25	33.45	96.50	114	-17.5	Vertical	
	2402	103.65	22.55	3.25	33.45	96.00	114	-18	Horizontal	AX
	2440	102.54	23.05	3.36	33.15	95.80	114	-18.2	Vertical]
	2440	97.33	23.05	3.36	33.15	90.59	114	-23.41	Horizontal]
CTATE	2480	96.27	23.57	3.67	33.68	89.83	114	-24.17	Vertical]
	2480	94.15	23.57	3.67	33.68	87.71	114	-26.29	Horizontal]
	Average value:								-	
	Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
	2402	90.33	22.55	3.25	33.45	82.68	94	-11.32	Vertical]
	2402	83.42	22.55	3.25	33.45	75.77	94	-18.23	Horizontal]
	2440	87.14	23.05	3.36	33.15	80.4	94	-13.6	Vertical]

33.15

33.68

33.68

78.61

76.71

77.21

94

94

94

-15.39

-17.29

-16.79

Horizontal

Vertical

Horizontal

Remark:

2440

2480

2480

85.35

83.15

83.65

23.05

23.57

23.57

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

3.36

3.67

3.67

4.4 **Channel Bandwidth**

G VII	TINC	
Test Requirement:	FCC Part15 C Section 15.215	. G
Test Method:	ANSI C63.10: 2013	STING
4.4.1 Applied procedures / lim	iit (e	CTATES

4.4.1 Applied procedures / limit

_				
	FCC Part15 (1	5.215) , Subpart C		
	Section	Test Item	Frequency Range (MHz)	Result
	15.215	Bandwidth	2400-2483.5	PASS
EST	F PROCEDURE	G	CTATESTIN	-TP

4.4.2 TEST PROCEDURE

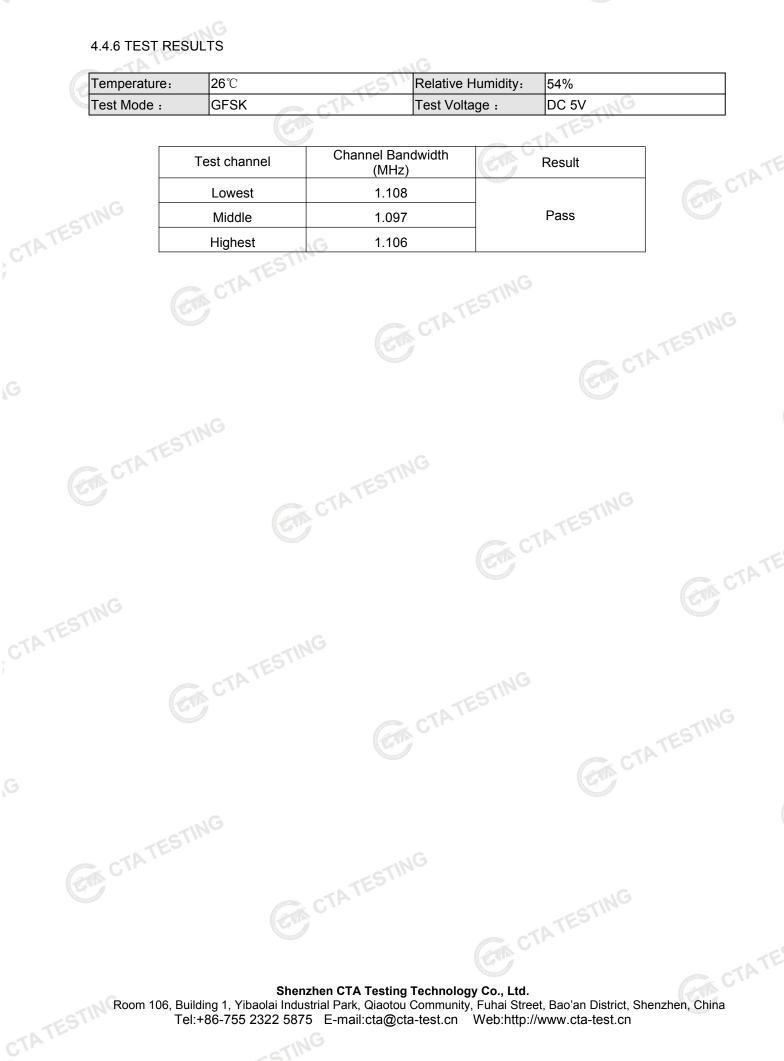
1. Set resolution bandwidth (RBW) = 1-5% or DTS BW, not to exceed 100 kHz.

- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum ... th level measured in the fundamental emission.

4.4.3 DEVIATION FROM STANDARD

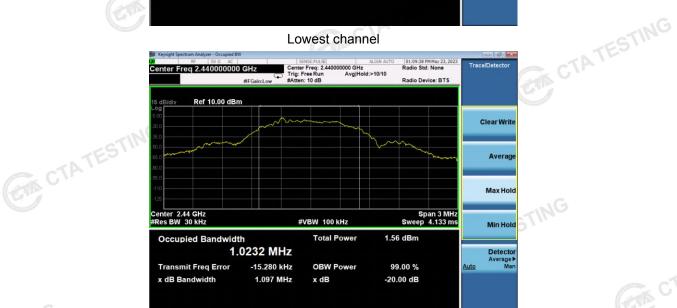
No deviation.


4.4.4 TEST SETUP

EUT		SPECTRUM
		ANALYZER
		CTA .
5 EUT OPERATION CONDITIONS	3	

4.4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.



Page 25 of 31

Lowest channel

Middle channel

Highest channel

Antenna Requirement 4.5

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the electrical connector is prohibited unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or

Antenna Connected Construction

The maximum gain of antenna was 1.6 dBi.

Remark: The antenna gain is provided by the customer , if the data provided by the customer is not accurate, CTATE Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

GA CTATESTIN

6 Photos of the EUT

Page 29 of 31

Page 30 of 31

Page 31 of 31

