Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No. CTA22091401001

FCC ID. : 2AYHJ-T1

Compiled by

(position+printed name+signature).: File administrators Zoey Cao

Supervised by

(position+printed name+signature).: Project Engineer Amy Wen

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue: Sep. 22, 2022

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Dongguan Nuoyifan Technology Co.,Ltd.

Room 401, No.22, 3th Street, Jinqianling, Huangjiang Town, Dongguan,

Guangdong, China

Test specification....:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: Wireless Controller

Trade Mark..... N/A

Manufacturer...... Dongguan Nuoyifan Technology Co.,Ltd.

Model/Type reference: T1

Listed Models: N/A

Modulation: GFSK, Π/4DQPSK, 8DPSK

Frequency From 2402MHz to 2480MHz

Rating....... DC 3.7V From Battery and DC 5.0V From external circuit

Result.....: PASS

Page 2 of 50 Report No.: CTA22091401001

TEST REPORT

Equipment under Test Wireless Controller

T1 Model /Type

Listed Models N/A

Dongguan Nuoyifan Technology Co.,Ltd. Applicant

Address Room 401, No.22, 3th Street, Jinqianling, Huangjiang Town,

Dongguan, Guangdong, China

Manufacturer Dongguan Nuoyifan Technology Co.,Ltd.

Room 401, No.22, 3th Street, Jinqianling, Huangjiang Town, Address

Dongguan, Guangdong, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 50 Report No.: CTA22091401001

Contents

		Contents
	1	TEST STANDARDS 4
	C	GTIN
	The state of the s	CHMMARY
	2	<u>SUMMARY5</u>
	2.1	General Remarks 5 Product Description 5 Equipment Under Test 5
	2.2	Product Description 5
	2.3	Equipment Under Test 5
	2.4	Short description of the Equipment under Test (EUT) 5
	2.5	EUT operation mode 6
	2.6	Block Diagram of Test Setup 6
	2.7	Related Submittal(s) / Grant (s) 6
	2.8	Modifications 6
. 0		
1	_	
	<u>3</u>	TEST ENVIRONMENT 7
	3.1	Address of the test laboratory Test Facility 7
	3.2	Test Facility 7
	3.3	Environmental conditions 7
	3.4	Address of the test laboratory Test Facility Environmental conditions 7 Summary of measurement results Statement of the measurement uncertainty 8 Statements Used during the Test
	3.5	Statement of the measurement uncertainty 8
	3.6	Equipments Used during the Test 9
	<u>4</u>	TEST CONDITIONS AND RESULTS 10
	4.1	AC Power Conducted Emission 10
	4.2	Radiated Emission 10 Radiated Emission 13 Maximum Peak Output Power 19 20dB Bandwidth 20 Frequency Separation 24 Number of hopping frequency 26 Time of Occupancy (Dwell Time) 28
	4.3	Maximum Peak Output Power 19
	4.4	20dB Bandwidth 20
	4.5	Frequency Separation 24
	4.6	Number of hopping frequency 26
	4.7	Time of Occupancy (Dwell Time)
	4.8	Out-of-band Emissions 32
		Pseudorandom Frequency Hopping Sequence 41
	4.10	Antenna Requirement 42
		, Ca
CTATE	_	TEST SETUP PUSTING OF THE FILE
	<u>5</u>	TEST SETUP PHOTOS OF THE EUT 43
		CTA
	<u>6</u>	PHOTOS OF THE EUT 44
	<u>-</u>	
		CI
		CTA TESTING
C		
10		

Report No.: CTA22091401001 Page 4 of 50

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: CTA22091401001 Page 5 of 50

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Sep. 14, 2022
	311	
Testing commenced on	- CONTRACTOR	Sep. 14, 2022
Testing concluded on	:	Sep. 22, 2022

2.2 Product Description

Testing commenced on		Sep. 14, 2022	CIT	
Testing concluded on	:	Sep. 22, 2022	- Chi	CTA CTA
2.2 Product Descrip	ion			
Product Name:	Wireless (Controller		
Model/Type reference:	I1-STING			
Power supply:	DC 3.7V F	From Battery and DC 5.0	0V From external circuit	
Adapter information (Auxiliary test supplied by test Lab)	Input: AC	100-240V 50/60Hz	ATES	TATESTING
Hardware version:	V1.0		(EM	G
Software version:	V1.0			
Testing sample ID:				
Bluetooth :				
Supported Type:	Bluetooth	BR/EDR		C
Modulation:	GFSK, π/-	4DQPSK, 8DPSK	ESTIN	
Operation frequency:	2402MHz	~2480MHz	CTATA	
Channel number:	79		CVP	TA
Channel separation:	1MHz			CAN C
Antenna type:	PCB ante	enna		
Antenna gain:	-6.72032	dBi		
	Testing concluded on 2.2 Product Descript Product Name: Model/Type reference: Power supply: Adapter information (Auxiliary test supplied by test Lab) Hardware version: Software version: Testing sample ID: Bluetooth: Supported Type: Modulation: Operation frequency: Channel number: Channel separation: Antenna type:	Testing concluded on: 2.2 Product Description Product Name: Wireless Model/Type reference: T1 Power supply: DC 3.7V Adapter information (Auxiliary test supplied by test Lab) Hardware version: V1.0 Software version: V1.0 Testing sample ID: CTA2209 CTA2209 Bluetooth: Supported Type: Bluetooth Modulation: GFSK, T/ Operation frequency: 2402MHz Channel number: 79 Channel separation: 1MHz Antenna type: PCB anter	Testing concluded on : Sep. 22, 2022 2.2 Product Description Product Name: Wireless Controller Model/Type reference: T1 Power supply: DC 3.7V From Battery and DC 5. Adapter information (Auxiliary test supplied by test Lab) Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A Hardware version: V1.0 Software version: V1.0 Testing sample ID: CTA220914010-1# (Engineer sar CTA220914010-2# (Normal sample ID: CTA220914010-2# (Normal sample ID: CFSK, π/4DQPSK, 8DPSK) Operation frequency: 2402MHz~2480MHz Channel number: 79 Channel separation: 1MHz Antenna type: PCB antenna	Testing concluded on : Sep. 22, 2022 2.2 Product Description Product Name: Wireless Controller Model/Type reference: T1 Power supply: DC 3.7V From Battery and DC 5.0V From external circuit Adapter information (Auxiliary test supplied by test Lab) Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A Hardware version: V1.0 Software version: V1.0 Testing sample ID: CTA220914010-1# (Engineer sample) CTA220914010-2# (Normal sample) Bluetooth: Supported Type: Bluetooth BR/EDR Modulation: GFSK, π/4DQPSK, 8DPSK Operation frequency: 2402MHz~2480MHz Channel number: 79 Channel separation: 1MHz Antenna type: PCB antenna

2.3 Equipment Under Test

TATES			(6	5
2.3 Equipment Under Test		ESTING		
Power supply system utilise	d	CTA		CT
Power supply voltage	: C	230V / 50 Hz	0	120V / 60Hz
	С	12 V DC	0	24 V DC
	•	Other (specified in bla	ank below)	

DC 3.7V From Battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Wireless Controller.

For more details, refer to the user's manual of the EUT.


Report No.: CTA22091401001 Page 6 of 50

EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

	provided to the EUT and Channel 00/39/78 were sele	ected to test.	
		TESTING	
	Operation Frequency:		
	Channel	Frequency (MHz)	
	Operation Frequency: Channel 00 01 : 38 39 40 : 77 78	2402	
	01	2403	
	ETING		
TATE	38	2440	
CIL	39	2441	
7	40	2442	
		ESTIN	
	77	2479	G
	78	2480	

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 50 Report No.: CTA22091401001

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C
remperature.	23 0
Humidity:	46 %
	TES!"
Atmospheric pressure:	950-1050mbar
onducted testing:	
Temperature:	25 ° C

Conducted testing:

Conducted testing.	
Temperature:	25 ° C
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
CTATES.	CTATESTING

Page 8 of 50 Report No.: CTA22091401001

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel	Reco In Re		Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK 8DPSK	Lowest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK		Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK		Compliant

Remark:

- The measurement uncertainty is not included in the test result. 1.
- 2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

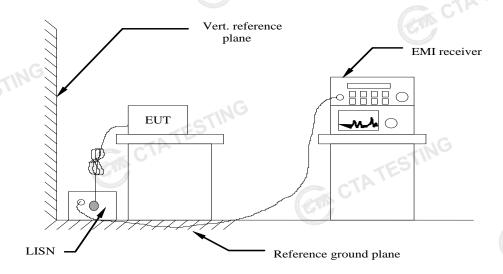
Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CTA22091401001 Page 9 of 50

3.6 Equipments Used during the Test


	(2)					
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2022/08/03	2023/08/02
	LISN	R&S	ENV216	CTA-314	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2022/08/03	2023/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2022/08/03	2023/08/02
TE	Spectrum Analyzer	Agilent	N9020A	CTA-301	2022/08/03	2023/08/02
CTATE	Spectrum Analyzer	R&S	FSP	CTA-337	2022/08/03	2023/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2022/08/03	2023/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2022/08/03	2023/08/02
	Universal Radio Communication	CMW500	R&S	CTA-302	2022/08/03	2023/08/02
3	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2022/08/03	2023/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2024/08/06
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2024/08/06
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2024/08/06
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2022/08/03	2023/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2022/08/03	2023/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2022/08/03	2023/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2022/08/03	2023/08/02
CTATE	Automated filter bank	Tonscend	JS0806-F	CTA-404	2022/08/03	2023/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2022/08/03	2023/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2022/08/03	2023/08/02
·	6.7		CTP CTP	TES		ATESTING
					CAN C.	

Report No.: CTA22091401001 Page 10 of 50

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

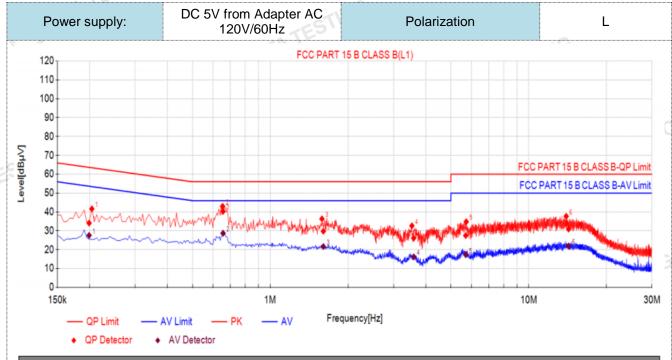
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

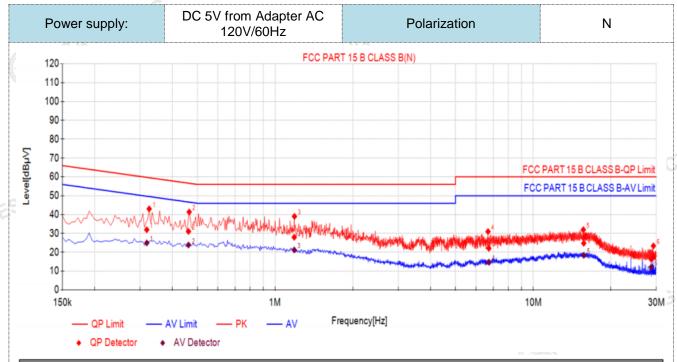
Fraguency range (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				


TEST RESULTS

Remark:

1. All modes of GFSK, $\Pi/4$ DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA22091401001

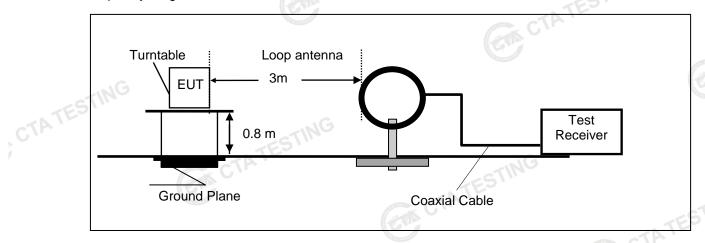

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.1991	10.50	23.60	34.10	63.65	29.55	17.08	27.58	53.65	26.07	PASS	
2	0.6567	10.50	29.81	40.31	56.00	15.69	18.23	28.73	46.00	17.27	PASS	
3	1.6050	10.50	19.27	29.77	56.00	26.23	11.17	21.67	46.00	24.33	PASS	
4	3.5891	10.50	15.62	26.12	56.00	29.88	5.70	16.20	46.00	29.80	PASS	
5	5.7070	10.50	17.01	27.51	60.00	32.49	6.84	17.34	50.00	32.66	PASS	
6	14.2754	10.50	20.42	30.92	60.00	29.08	11.48	21.98	50.00	28.02	PASS	NA
lote:1)	.QP Value	e (dBµV):	= QP Rea	ading (dl	3μV)+ Fa	actor (dB	5)				ETA	

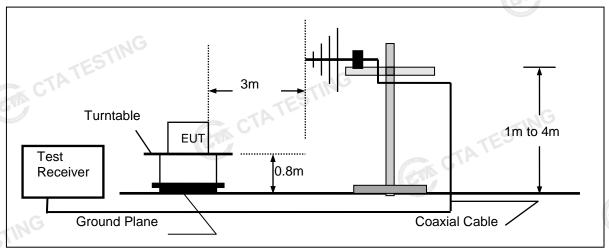
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTA TESTING

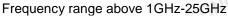
Page 12 of 50 Report No.: CTA22091401001

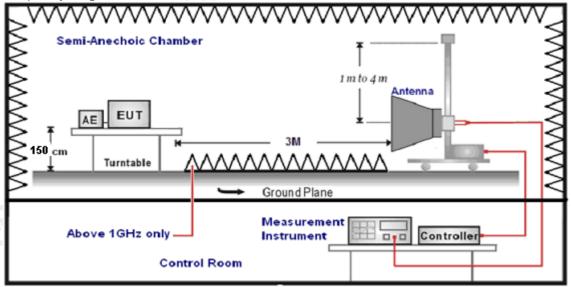
Fina	l Data Lis	t										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dΒμV]	QP Limit [dBµV]	QP Margin [dB]	ΑV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.3185	10.50	21.46	31.96	59.75	27.79	14.47	24.97	49.75	24.78	PASS	
2	0.4621	10.50	20.56	31.06	56.65	25.59	13.36	23.86	46.65	22.79	PASS	
3	1.1874	10.50	17.49	27.99	56.00	28.01	10.73	21.23	46.00	24.77	PASS	
4	6.7353	10.50	11.59	22.09	60.00	37.91	4.27	14.77	50.00	35.23	PASS	
5	15.7055	10.50	14.28	24.78	60.00	35.22	7.91	18.41	50.00	31.59	PASS	
6	28.6825	10.50	5.80	16.30	60.00	43.70	1.65	12.15	50.00	37.85	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBµV) - QP Value (dBµV)												TAT
 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dBμV) - QP Value (dBμV) 												
3). QP	Margin(dB) = QP Li	imit (dBµ	V) - QP	Value (d	BµV)						
4)	. AVMargir	n(dB) = A	V Limit (dBµV) -	AV Value	e (dBµV)						


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTA TESTING

Page 13 of 50 Report No.: CTA22091401001


Radiated Emission 4.2


TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA22091401001 Page 14 of 50

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows.	STING	
FS = RA + AF + CL - AG	CTATES	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
RA = Reading Amplitude	AG = Amplifier Gain	G
AF = Antenna Factor	(CV)	

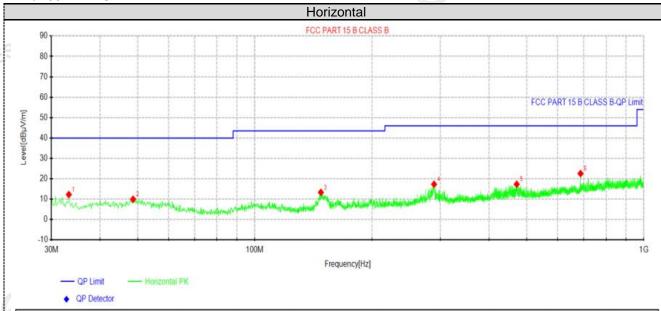
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

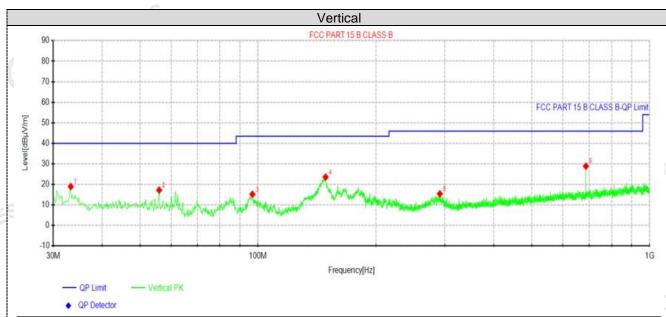

Report No.: CTA22091401001 Page 15 of 50

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



	Suspe	ected Data	List							
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	33.2738	30.45	12.29	-18.16	40.00	27.71	100	2	Horizontal
	2	48.6725	26.15	9.99	-16.16	40.00	30.01	100	250	Horizontal
	3	147.855	35.12	13.36	-21.76	43.50	30.14	100	357	Horizontal
	4	288.99	34.84	17.33	-17.51	46.00	28.67	100	196	Horizontal
3	5	471.228	32.08	17.33	-14.75	46.00	28.67	100	196	Horizontal
	6	687.538	34.34	22.60	-11.74	46.00	23.40	100	120	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 16 of 50 Report No.: CTA22091401001

Suspe	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.2738	37.11	18.95	-18.16	40.00	21.05	100	284	Vertical
2	55.9475	34.59	17.25	-17.34	40.00	22.75	100	238	Vertical
3	96.8088	34.05	15.19	-18.86	43.50	28.31	100	142	Vertical
4	148.825	45.32	23.56	-21.76	43.50	19.94	100	340	Vertical
5	291.293	32.91	15.44	-17.47	46.00	30.56	100	249	Vertical
6	687.538	40.63	28.89	-11.74	46.00	17.11	100	359	Vertical

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA22091401001 Page 17 of 50

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	ncy(MHz)):	24	.02	Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	60.29	PK	74	13.71	64.56	32.33	5.12	41.72	-4.27
4804.00	44.83	AV	54	9.17	49.10	32.33	5.12	41.72	-4.27
7206.00	53.05	PK	74	20.95	53.57	36.6	6.49	43.61	-0.52
7206.00			54	11.27	43.25	36.6	6.49	43.61	-0.52

	Freque	ncy(MHz)):	24	02	Pola	arity:	VERTICAL		
	Frequency (MHz)	(MHz) Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Ī	4804.00	58.39	PK	74	15.61	62.66	32.33	5.12	41.72	-4.27
Ī	4804.00	42.48	AV	54	11.52	46.75	32.33	5.12	41.72	-4.27
Ī	7206.00	50.72	PK	74	23.28	51.24	36.6	6.49	43.61	-0.52
Ī	7206.00	40.38	AV	54	13.62	40.90	36.6	6.49	43.61	-0.52

Freque	ncy(MHz)	:	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	MHz) Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	4882.00 59.75 PK		74	14.25	63.63	32.6	5.34	41.82	-3.88
4882.00	44.89	AV	54	9.11	48.77	32.6	5.34	41.82	-3.88
7323.00			74	20.99	53.12	36.8	6.81	43.72	-0.11
7323.00 42.74 AV		AV	54 11.26		42.85	36.8	6.81 43.72		-0.11
			Carlo U				-67111		

Freque	ncy(MHz)	:	24	41	Pola	arity:	VERTICAL		
Frequency (MHz)	' '		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	57.89	PK	74	16.11	61.77	32.6	5.34	41.82	-3.88
4882.00	42.60	AV	54	11.40	46.48	32.6	5.34	41.82	-3.88
7323.00	50.66	PK	74	23.34	50.77	36.8	6.81	43.72	-0.11
7323.00	40.32	ΑV	54	13.68	40.43	36.8	6.81	43.72	-0.11

Frequency(MHz):			2480		Polarity:		HORIZONTAL		AL
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	59.58	PK	74	14.42	62.66	32.73	5.66	41.47	-3.08
4960.00	44.90	AV	54	9.10	47.98	32.73	5.66	41.47	-3.08
7440.00	54.17	PK	74	19.83	53.72	37.04	7.25	43.84	0.45
7440.00	43.03	PK	54	10.97	42.58	37.04	7.25	43.84	0.45

		1G							
Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	57.51	PK	74	16.49	60.59	32.73	5.66	41.47	-3.08
4960.00	42.65	AV	54	11.35	45.73	32.73	5.66	41.47	-3.08
7440.00	51.84	PK	74	22.16	51.39	37.04	7.25	43.84	0.45
7440.00	40.97	PK	54	13.03	40.52	37.04	7.25	43.84	0.45

Page 18 of 50 Report No.: CTA22091401001

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Frequency(MHz):		24	2402		Polarity:		IORIZONTA	\L	
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.47	PK	74	13.53	70.89	27.42	4.31	42.15	-10.42
2390.00	43.51	AV	54	10.49	53.93	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.25	PK	74	15.75	68.67	27.42	4.31	42.15	-10.42
2390.00	41.16	AV	54	12.84	51.58	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2480 Polarity:		HORIZONTAL				
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	59.87	PK	74	14.13	69.98	27.7	4.47	42.28	-10.11
2483.50	41.84	AV	54	12.16	51.95	27.7	4.47	42.28	-10.11
Frequency(MHz):		2480		Pola	rity:		VERTICAL		
Freque	ncy(MHz)	:	24	00	1 010	uity.			
Frequency (MHz)	Emis	sion	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency	Emis	sion vel	Limit	Margin	Raw Value	Antenna Factor	Factor	Pre- amplifier	Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- CTA TESTING 5. The other emission levels were very low against the limit.

Report No.: CTA22091401001 Page 19 of 50

Maximum Peak Output Power

Limit -

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-7.41		TES!
GFSK	39	-7.93	20.97	Pass
	78	-7.21		
-114	G 00	-7.01		
π/4DQPSK	39	-7.49	20.97	Pass
CIA	78	-7.52		
	00	-7.70	TING	
8DPSK	39	-7.41	20.97	Pass
	78	-7.76	CIL	

Note: 1.The test results including the cable lose.

Page 20 of 50 Report No.: CTA22091401001

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

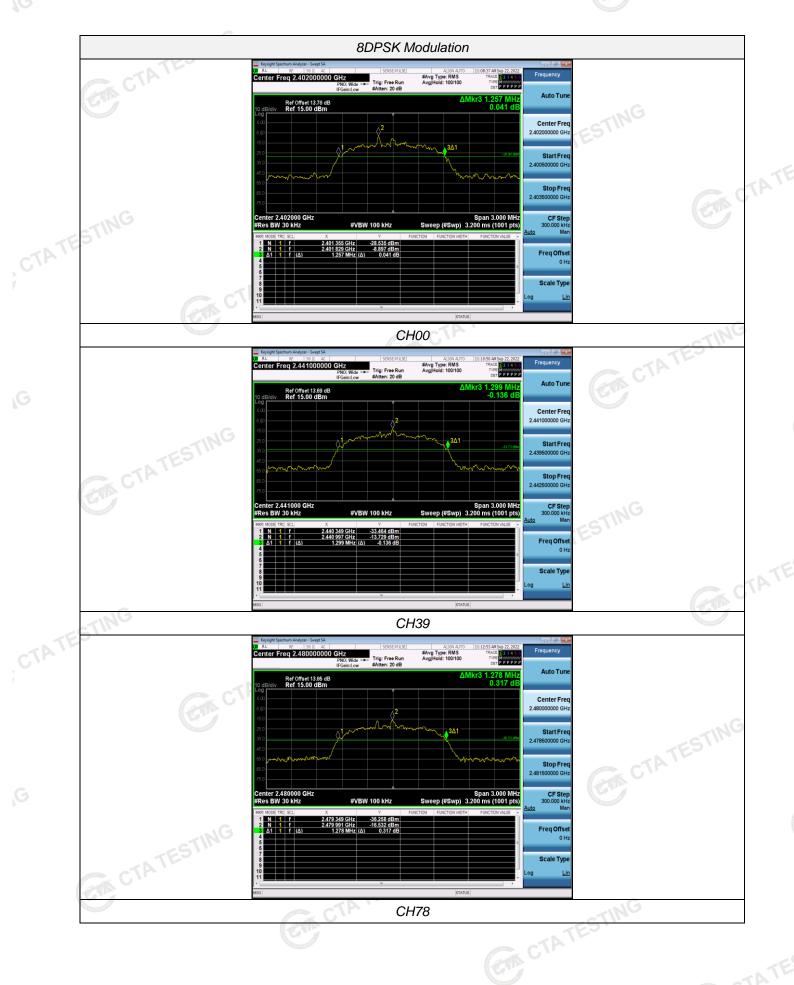
The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results


Test Results		ANALYZER	CTATESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
ING	CH00	1.023	
GFSK	CH39	0.951	-
CTA	CH78	1.029	
	CH00	1.275	NG
π/4DQPSK	CH39	1.341	Pass
	CH78	1.281	
	CH00	1.257	
8DPSK	CH39	1.299	C C
ING	CH78	1.278	- CALL

Test plot as follows:


Page 21 of 50 Report No.: CTA22091401001

Page 22 of 50 Report No.: CTA22091401001

Page 23 of 50 Report No.: CTA22091401001

Report No.: CTA22091401001 Page 24 of 50

Frequency Separation

LIMIT

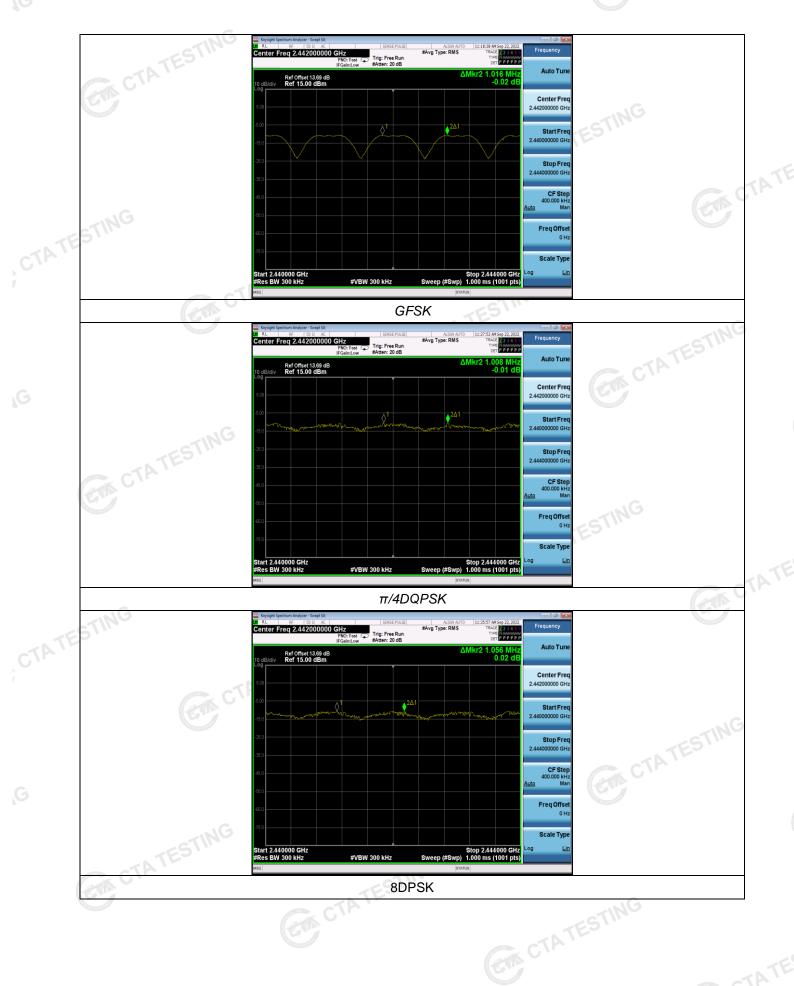
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


TEST RESULTS		CTATES CTATES	-	TESTING	
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH38	1.016	25KHz or 2/3*20dB	Pass	
Gran	CH39	1.016	bandwidth	Pass	
π/4DQPSK	CH38	1 000	25KHz or 2/3*20dB	Door	
II/4DQPSK	CH39	1.008	bandwidth	Pass	
8DPSK	CH38	1.056	25KHz or 2/3*20dB	Door	
ODPSK	CH39	1.050	bandwidth	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 25 of 50 Report No.: CTA22091401001

Report No.: CTA22091401001 Page 26 of 50

Number of hopping frequency

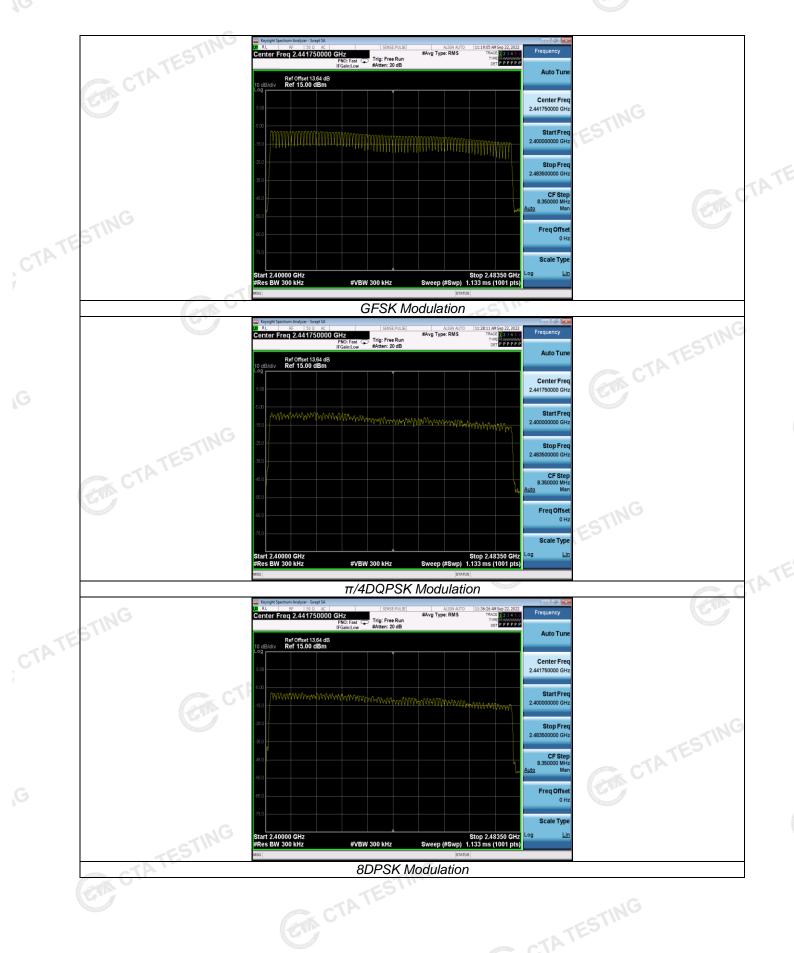
<u>Lim</u>it

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTAT	STING	
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Page 27 of 50 Report No.: CTA22091401001

Report No.: CTA22091401001 Page 28 of 50

Time of Occupancy (Dwell Time)

Limit

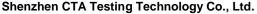
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

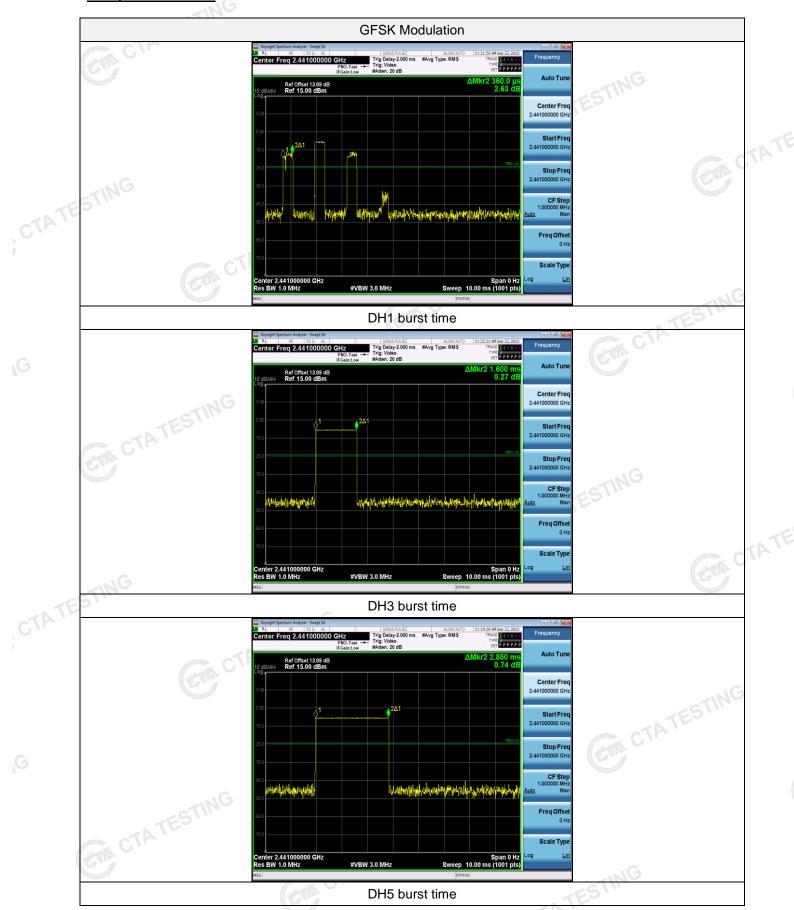
Test Configuration

Test Results

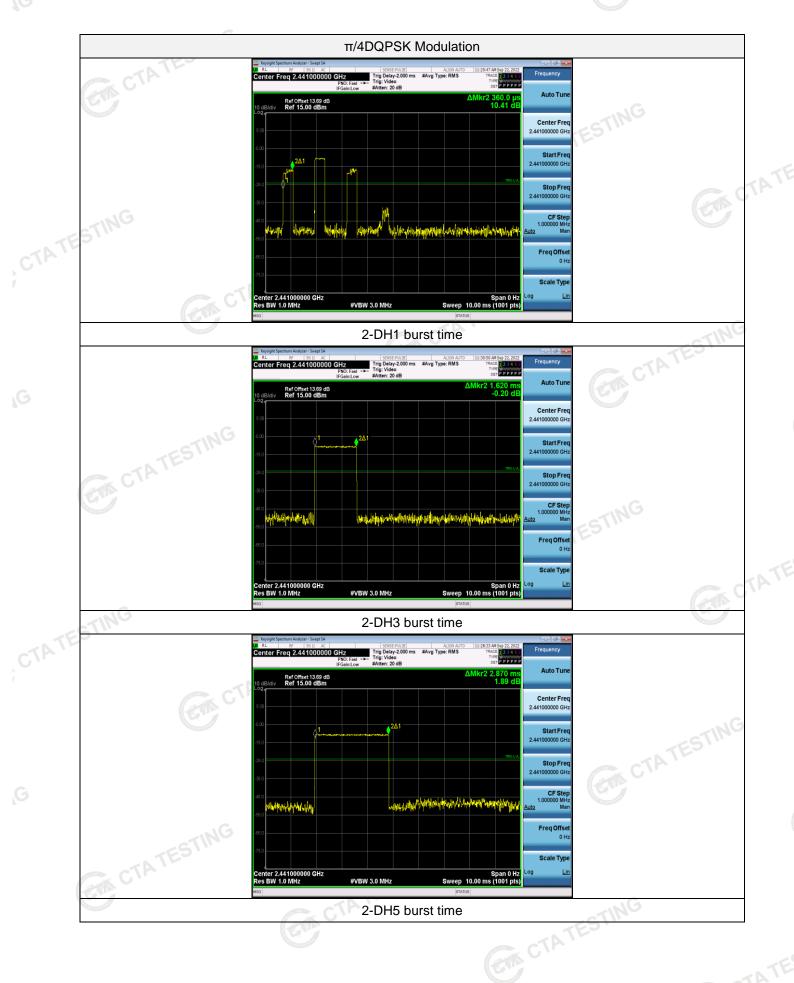

Test Results		(en	CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.36	0.115		
GFSK	DH3	1.60	0.256	0.40	Pass
TES	DH5	2.85	0.304		
CIL	2-DH1	0.36	0.115		
π/4DQPSK	2-DH3	1.62	0.259	0.40	Pass
	2-DH5	2.87	0.306	TESTIN	
	3-DH1	0.36	0.115	CTA	
8DPSK	3-DH3	1.61	0.258	0.40	Pass
	3-DH5	2.87	0.306		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

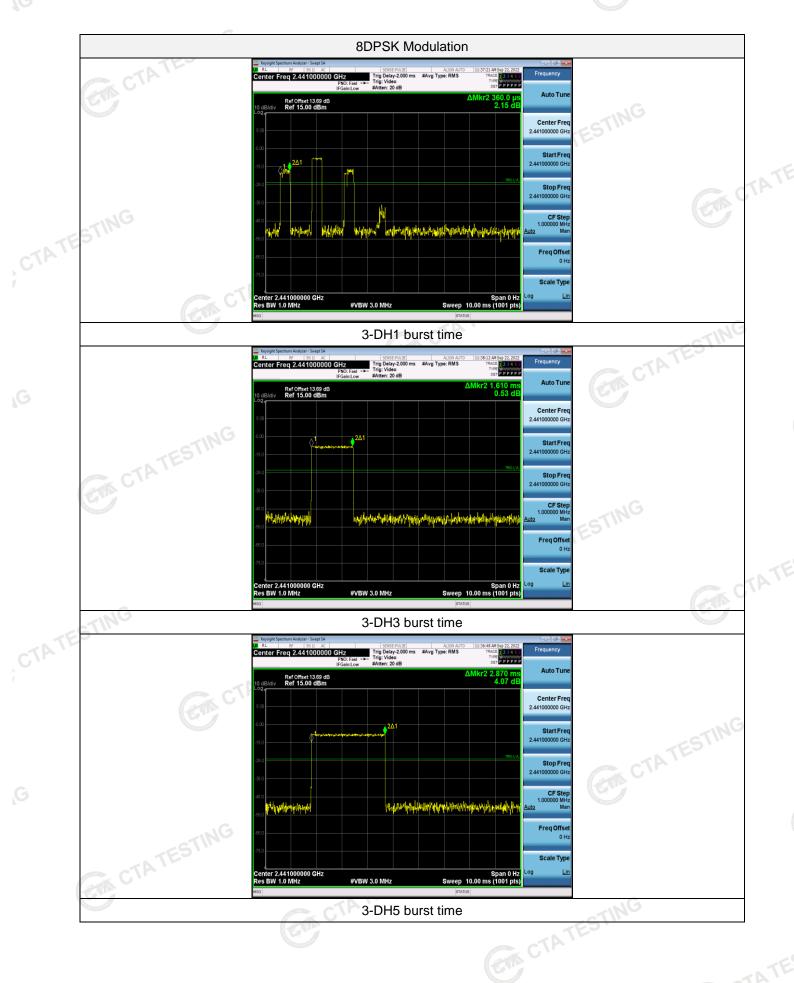
Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5



Page 29 of 50 Report No.: CTA22091401001

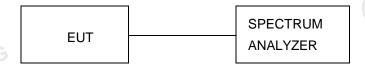

Test plot as follows:

Page 30 of 50 Report No.: CTA22091401001

Page 31 of 50 Report No.: CTA22091401001

Page 32 of 50 Report No.: CTA22091401001

Out-of-band Emissions

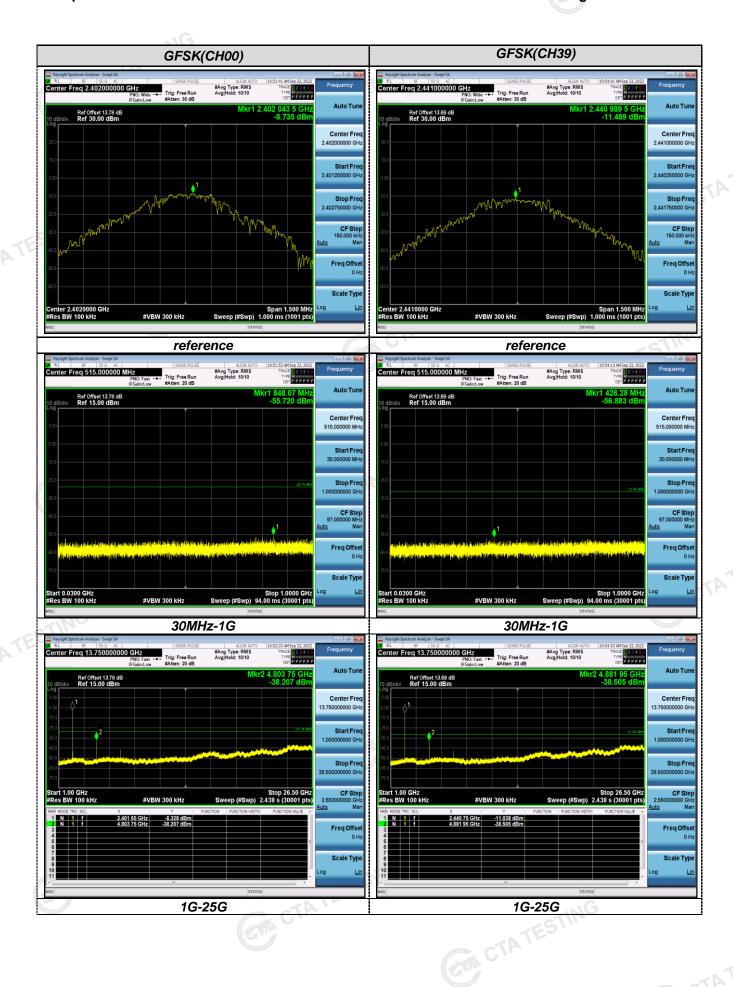

Limit (

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

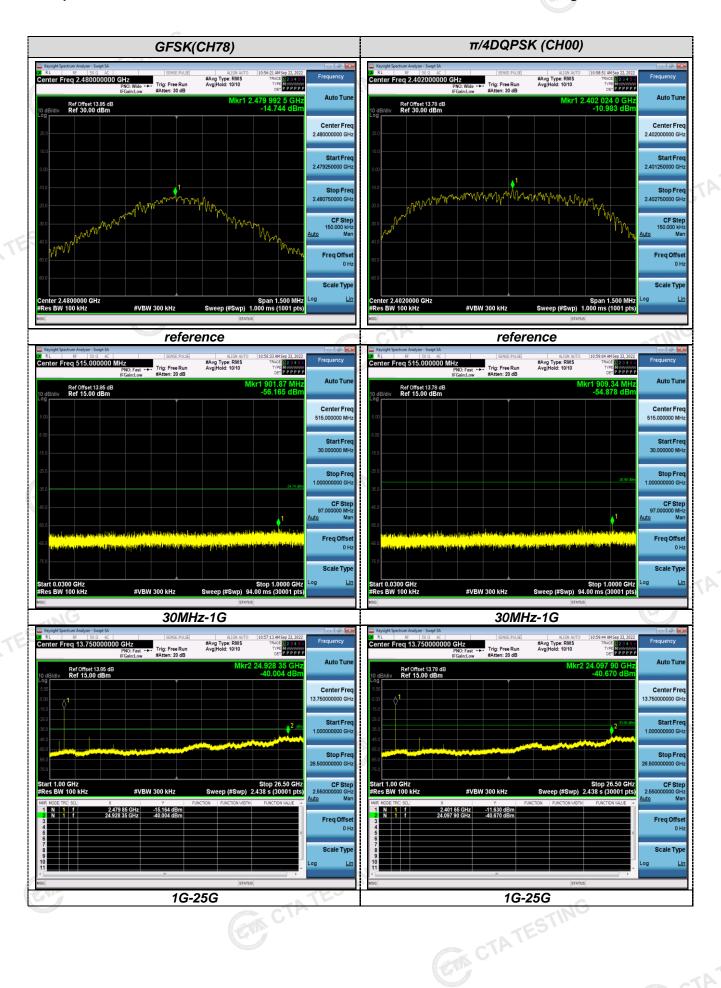
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

Page 34 of 50 Report No.: CTA22091401001

