

TEST REPORT

Report No.:	BCTC2405392672-1E			
Applicant:	REOLINK INNOVATION LIMITED			
Product Name:	Video Doorbell			
Test Model:	Reolink Doorbell Battery			
Tested Date:	2024-05-16 to 2024-06-04			
Issued Date:	2024-06-05			
She	enzhen BCTC Testing Co., Ltd.			
No.: BCTC/RF-EMC-005	Page: 1 of 68 Edition: B.2			

FCC ID: 2AYHE-2403D

Product Name:	Video Doorbell
Trademark:	reolink
Model/Type reference:	Reolink Doorbell Battery D340B
Prepared For:	REOLINK INNOVATION LIMITED
Address:	FLAT/RM 705 7/F FA YUEN COMMERCIAL BUILDING 75-77 FA YUEN STREET MONG KOK KL HONG KONG
Manufacturer:	REOLINK INNOVATION LIMITED
Address:	FLAT/RM 705 7/F FA YUEN COMMERCIAL BUILDING 75-77 FA YUEN STREET MONG KOK KL HONG KONG
Factory:	Shenzhen Reolink Technology Co., Ltd.
Address:	2-4th Floor, Building 2, YuanLing Industrial Park, ShangWu, Shiyan Street, Bao'an District, Shenzhen, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-05-16
Sample tested Date:	2024-05-16 to 2024-06-04
Issue Date:	2024-06-05
Report No.:	BCTC2405392672-1E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is WIFI-2.4GHz band radio test report.
Tested	

Tested by: Yave

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

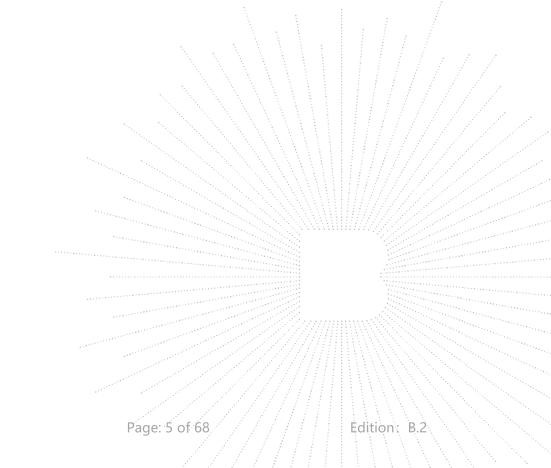
The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test	Report Declaration Pa	ge
1.	Version	5
2.	Test Summary	
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	8
4.3	Support Equipment	9
4.4	Channel List	9
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	10
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	11
5.2	Test Instrument Used	11
6.	Conducted Emissions	13
6.1	Block Diagram Of Test Setup	13
6.2	Limit	13
6.3	Test procedure	13
6.4	EUT operating Conditions	13
6.5	Test Result	
7.	Radiated Emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT Operating Conditions	
7.5	Test Result	-
8.	Radiated Band Emission Measurement And Restricted Bands Of Operation	
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	
8.4	EUT Operating Conditions	
8.5	Test Result	
9.	Power Spectral Density Test	
9.1	Block Diagram Of Test Setup	
9.2	Limit	29
9.3	Limit Test procedure EUT Operating Conditions Test Result	
9.4 0.5	EUT Operating Conditions	
9.5	Pendwidth Teet	
10. 10.1	Bandwidth Test Block Diagram Of Test Setup Limit EUT Operating Conditions	
10.1	Limit	ວ0 ວດ
10.2	Test procedure	
10.3	ELIT Operating Conditions	۵۵ عد
10.4	Test Result	
10.5	Peak Output Power Test	
11.		4 3

11.1 Block Diagram Of Test Setup	
11.2 Limit	43
11.3 Test Procedure	
11.4 EUT Operating Conditions	43
11.5 Test Result	
12. 100 kHz Bandwidth Of Frequency Band Edge	
12.1 Block Diagram Of Test Setup	45
12.2 Limit	45
12.3 Test Procedure	45
12.4 EUT Operating Conditions	45
12.5 Test Result	45
13. Duty Cycle Of Test Signal	61
13.1 Standard Requirement	
13.2 Formula	61
13.3 Test Procedure	61
13.4 Test Result	61
14. Antenna Requirement	64
14.1 Limit	
14.1 Test Result	64
15. EUT Photographs	65
16. EUT Test Setup Photographs	66

(Note: N/A Means Not Applicable)


No.: BCTC/RF-EMC-005

Page: 4 of 68

1. Version

Report No.	Issue Date	Description	Approved
BCTC2405392672-1E	2024-06-05	Original	Valid

No.: BCTC/RF-EMC-005

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	15.207	PASS
2	6dB Bandwidth	15.247 (a)(2)	PASS
3	Peak Output Power	15.247 (b)	PASS
4	Radiated Spurious Emission	15.247 (d)	PASS
5	Power Spectral Density	15.247 (e)	PASS
6	Restricted Band of Operation	15.205	PASS
7	Band Edge (Out of Band Emissions)	15.247 (d)	PASS
8	Antenna Requirement	15.203	PASS

Page: 6 of 68

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty	
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB	
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB	
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB	
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB	
5	Conducted Emission (150kHz-30MHz)	U=3.20dB	
6	Conducted Adjacent channel power	U=1.38dB	
7	Conducted output power uncertainty Above 1G	U=1.576dB	
8	Conducted output power uncertainty below 1G	U=1.28dB	
9	humidity uncertainty	U=5.3%	
10	Temperature uncertainty	.U=0.59°C	

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	Reolink Doorbell Battery D340B
Model differences:	All models are the same circuit and RF module, but the model name and color are different.
Hardware Version:	V1.0
Software Version:	V1.0
Operation Frequency:	802.11b/g/n20MHz:2412~2462 MHz
Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6Mbps 802.11n Up to 75Mbps
Type of Modulation:	OFDM/DSSS
Number Of Channel:	802.11b/g/n20MHz:11 CH
Antenna installation:	Internal antenna
	2.55 dBi
Antenna Gain:	Remark: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.
Ratings:	DC 5V from adapter/DC 3.6V from battery
Adapter Information:	Model: DCT12W120100US-B0 Input: 100-240V~50/60Hz 0.3A max. Output: DC 12.0V 1.0A

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Page: 8 of 68

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Video Doorbell	reolink	Reolink Doorbell Battery	N/A	EUT
E-2	Adapter				

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	N/A	N/A	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

	Channel List for 802.11b/g/n(20)				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	02	2417	03	2422
04	2427	05	2432	06	2437
07	2442	08	2447	09	2452
10	2457	11	2462		

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

For All Mode	Description	Modulation Type
Mode 1	CH 01	
Mode 2	CH 06	802.11b
Mode 3	CH 11	
Mode 4	CH 01	
Mode 5	CH 06	802.11g
Mode 6	CH 11	
Mode 7	CH 01	
Mode 8	CH 06	802.11n20
Mode 9	CH 11	
Mode 10	WIFI Link (Conducted emission and Radiated emission)	

Notes:

1. The measurements are performed at the highest, middle, lowest available channels.

2. The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

3. According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup"

11Mbps for 802.11b,6Mbps for 802.11g,13Mbps for 802.11n(H20), 54Mbps for 802.11n(H40)

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	CMD	
Frequency	2412 MHz 2437 MHz 2462 MHz	
Parameters		

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

Conducted Emissions Test								
Equipment	Last Cal.	Next Cal.						
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025			
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025			
Software	Frad	EZ-EMC	EMC-CON 3A1	١	١			
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025			

	Connaizbook	110200011	01020	1110, 2021	may 10, 2020					
		-								
	RF Conducted Test									
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.					
Power meter	Keysight	E4419	١	May 16, 2024	May 15, 2025					
Power Sensor (AV)	Keysight	E9300A	I	May 16, 2024	May 15, 2025					
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025					
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025					
Radio frequency control box	MAIWEI	MW100-RFC B	1							

MTS 8310

5.2 Test Instrument Used

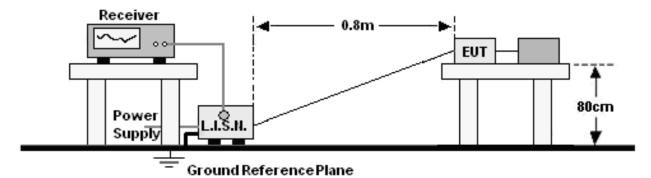
Software

MAIWEI

ľ

Ţ

	Radiated Emissions Test (966 Chamber01)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.				
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026				
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025				
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025				
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025				
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024				
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024				
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 16, 2024	May 15, 2025				
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024				
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025				
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024				
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025				
Software	Frad	EZ-EMC	FA-03A2 RE	1	\				


No.: BCTC/RF-EMC-005

Page: 12 of 68

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (d	dBuV)
Frequency (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

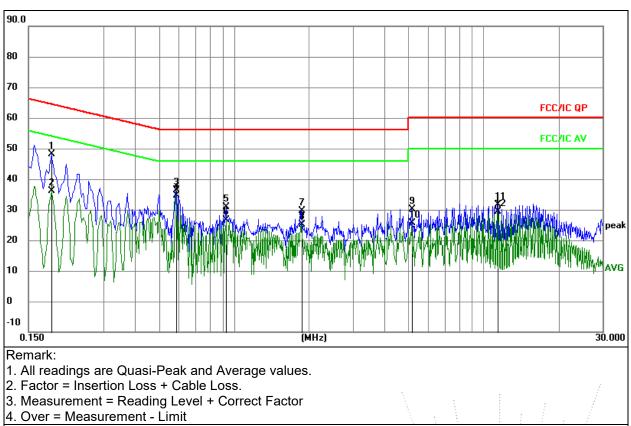
6.3 Test procedure

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

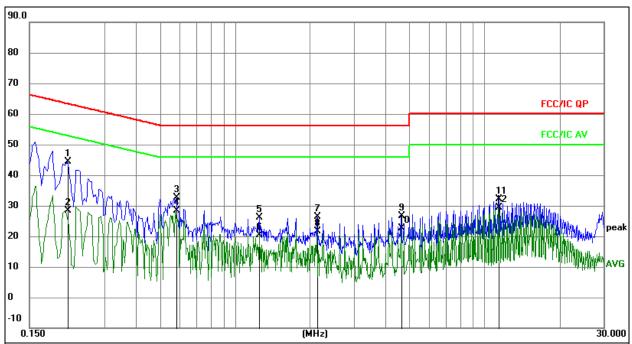
c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 10	Polarization :	L



4. 0vei	- Measul		IIL					1
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1860	28.34	19.80	48.14	64.21	-16.07	QP
2		0.1860	16.27	19.80	36.07	54.21	-18.14	AVG
3		0.5865	16.59	19.84	36.43	56.00	-19.57	QP
4	*	0.5865	14.85	19.84	34.69	46.00	-11.31	AVG
5		0.9285	10.98	19.92	30.90	56.00	-25.10	QP
6		0.9285	6.68	19.92	26.60	46.00	-19.40	AVG
7		1.8600	9.80	19.95	29.75	56.00	-26.25	QP
8		1.8600	5.14	19.95	25.09	46.00	-20.91	AVG
9		5.1450	9.67	20.39	30.06	60.00	-29.94	QP
10		5.1450	5.36	20.39	25.75	50.00	-24.25	AVG
11		11.4180	11.64	19.88	31.52	60.00	-28.48	QP
12		11.4180	9.53	19.88	29.41	50.00	-20.59	AVG

No.: BCTC/RF-EMC-005

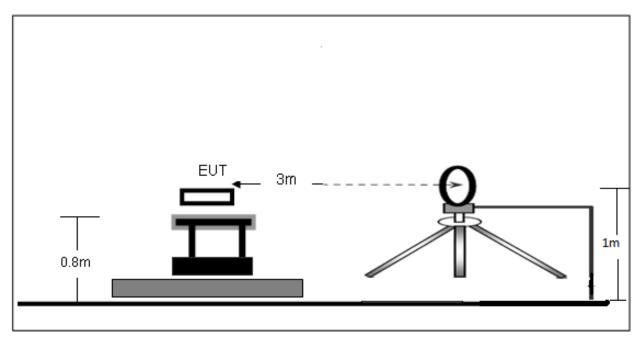
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 10	Polarization :	Ν

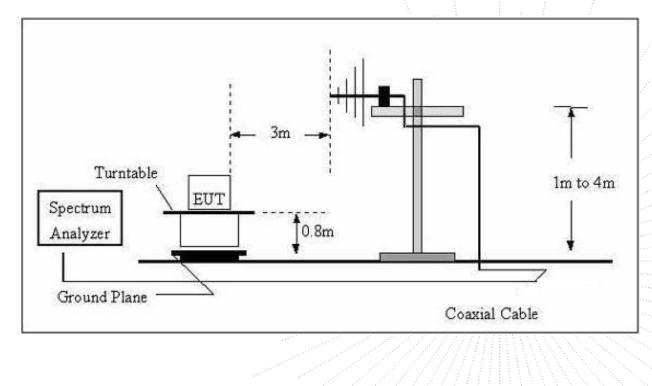
Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

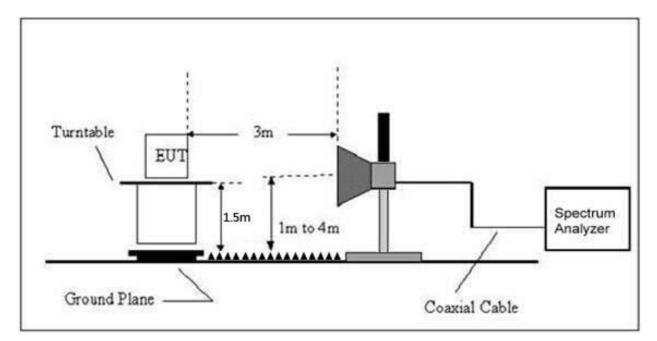
3. Measurement = Reading Level + Correct Factor
4. Over = Measurement - Limit


4.	Over -	- Measul	ement - Lin	IIL					é.
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz		dB	dBuV	dBuV	dB	Detector
	1		0.2130	24.60	19.83	44.43	63.09	-18.66	QP
	2		0.2130	8.62	19.83	28.45	53.09	-24.64	AVG
	3		0.5820	12.79	19.84	32.63	56.00	-23.37	QP
	4	*	0.5820	8.61	19.84	28.45	46.00	-17.55	AVG
	5		1.2525	6.26	19.95	26.21	56.00	-29.79	QP
	6		1.2525	0.37	19.95	20.32	46.00	-25.68	AVG
	7		2.1345	6.41	20.00	26.41	56.00	-29.59	QP
	8		2.1345	1.67	20.00	21.67	46.00	-24.33	AVG
	9		4.6410	6.14	20.51	26.65	56.00	-29.35	QP
	10		4.6410	2.18	20.51	22.69	46.00	-23.31	AVG
	11		11.4225	12.24	19.88	32.12	60.00	-27.88	QP
	12		11.4225	9.40	19.88	29.28	50.00	-20.72	AVG


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)	
Frequency (MHZ)	Peak	Average
Above 1000		54

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

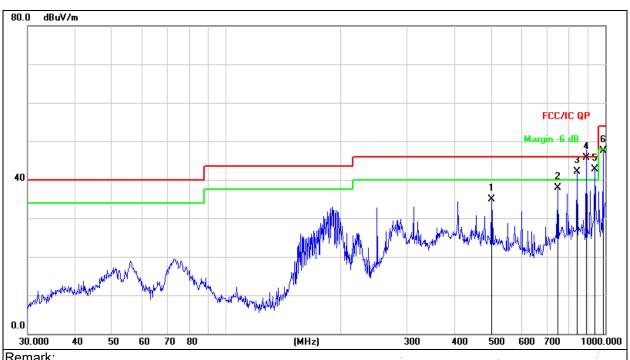
Below 30MHz

Temperature:	26 ℃	Relative Humidity: 54%	
Pressure:	101KPa	Test Voltage : AC 120V/60Hz	
Test Mode:	Mode 10	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
		terra and the second		PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Between 30MHz – 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	AC 120V/60Hz
Test Mode:	Mode 10	Polarization :	Horizontal

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
Measurement = Reading Level + Correct Factor

3. Over = Measurement - Limit

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		501.1788	43.59	-8.65	34.94	46.00	-11.06	QP
2		750.1082	42.93	-4.99	37.94	46.00	-8.06	QP
3	ļ	842.1295	46.11	-4.05	42.06	46.00	-3.94	QP
4	*	888.0308	49.00	-3.33	45.67	46.00	-0.33	QP
5	ļ	938.8324	45.78	-2.98	42.80	46.00	-3.20	QP
6		986.0715	50.09	-2.52	47.57	54.00	-6.43	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	AC 120V/60Hz
Test Mode:	Mode 10	Polarization :	Vertical

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

J. Over – Measurement - Linit	3. Ove	er = Measu	irement - Limit	Ł
-------------------------------	--------	------------	-----------------	---

No.	M۴	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		185.1379	53.09	-16.82	36.27	43.50	-7.23	QP
2	*	250.3011	56.80	-14.28	42.52	46.00	-3.48	QP
3	İ	480.5276	50.98	-9.10	41.88	46.00	-4.12	QP
4		625.0779	45.22	-6.59	38.63	46.00	-7.37	QP
5	İ	750.1082	47.50	-4.99	42.51	46.00	-3.49	QP
6	İ	888.0108	45.67	-3.33	42.34	46.00	-3.66	QP
								1

Between 1GHz – 25GHz

802.11b

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре		
Low channel:2412MHz									
V	4824.00	68.68	-19.95	48.73	74.00	-25.27	PK		
V	4824.00	59.78	-19.95	39.83	54.00	-14.17	AV		
V	7236.00	58.39	-14.14	44.25	74.00	-29.75	PK		
V	7236.00	49.38	-14.14	35.24	54.00	-18.76	AV		
Н	4824.00	66.89	-19.95	46.94	74.00	-27.06	PK		
Н	4824.00	56.55	-19.95	36.60	54.00	-17.40	AV		
Н	7236.00	56.39	-14.14	42.25	74.00	-31.75	PK		
Н	7236.00	48.92	-14.14	34.78	54.00	-19.22	AV		
			Middle chan	nel:2437MHz					
V	4874.00	66.40	-19.85	46.55	74.00	-27.45	PK		
V	4874.00	57.44	-19.85	37.59	54.00	-16.41	AV		
V	7311.00	55.69	-13.93	41.76	74.00	-32.24	PK		
V	7311.00	45.90	-13.93	31.97	54.00	-22.03	AV		
Н	4874.00	63.60	-19.85	43.75	74.00	-30.25	PK		
Н	4874.00	52.93	-19.85	33.08	54.00	-20.92	AV		
Н	7311.00	53.55	-13.93	39.62	74.00	-34.38	PK		
Н	7311.00	46.46	-13.93	32.53	54.00	-21.47	AV		
			High chann	el:2462MHz					
V	4924.00	68.90	-19.75	49.15	74.00	-24.85	PK		
V	4924.00	59.40	-19.75	39.65	54.00	-14.35	AV		
V	7386.00	60.83	-13.72	47.11	74.00	-26.89	PK		
V	7386.00	51.33	-13.72	37.61	54.00	-16.39	AV		
Н	4924.00	66.84	-19.75	47.09	74.00	-26.91	PK		
Н	4924.00	57.73	-19.75	37.98	54.00	-16.02	AV		
Н	7386.00	59.11	-13.72	45,39	74.00	-28.61	PK		
Н	7386.00	50.12	-13.72	36.40	54.00	-17.60	AV		

Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier,

Over= Measurement – Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

				.11g					
Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector		
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре		
Low channel:2412MHz									
V	4824.00	69.56	-19.95	49.61	74.00	-24.39	PK		
V	4824.00	58.84	-19.95	38.89	54.00	-15.11	AV		
V	7236.00	60.82	-14.14	46.68	74.00	-27.32	PK		
V	7236.00	51.19	-14.14	37.05	54.00	-16.95	AV		
Н	4824.00	66.30	-19.95	46.35	74.00	-27.65	PK		
Н	4824.00	55.92	-19.95	35.97	54.00	-18.03	AV		
Н	7236.00	59.41	-14.14	45.27	74.00	-28.73	PK		
Н	7236.00	52.23	-14.14	38.09	54.00	-15.91	AV		
			Middle chan	nel:2437MHz					
V	4874.00	67.06	-19.85	47.21	74.00	-26.79	PK		
V	4874.00	59.97	-19.85	40.12	54.00	-13.88	AV		
V	7311.00	56.67	-13.93	42.74	74.00	-31.26	PK		
V	7311.00	47.87	-13.93	33.94	54.00	-20.06	AV		
Н	4874.00	63.87	-19.85	44.02	74.00	-29.98	PK		
Н	4874.00	53.00	-19.85	33.15	54.00	-20.85	AV		
Н	7311.00	53.97	-13.93	40.04	74.00	-33.96	PK		
Н	7311.00	45.04	-13.93	31.11	54.00	-22.89	AV		
			High chann	el:2462MHz					
V	4924.00	69.46	-19.75	49.71	74.00	-24.29	PK		
V	4924.00	59.21	-19.75	39.46	54.00	-14.54	AV		
V	7386.00	62.22	-13.72	48.50	74.00	-25.50	PK		
V	7386.00	51.71	-13.72	37.99	54.00	-16.01	AV		
Н	4924.00	68.11	-19.75	48.36	74.00	-25.64	PK		
Н	4924.00	58.18	-19.75	38.43	54.00	-15.57	AV		
Н	7386.00	60.59	-13.72	46.87	74.00	-27.13	PK		
Н	7386.00	52.98	-13.72	39,26	54.00	-14.74	AV		

Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement – Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

			802. ⁻	11n20	•		
Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			Low chann	el:2412MHz			
V	4824.00	70.80	-19.95	50.85	74.00	-23.15	PK
V	4824.00	60.71	-19.95	40.76	54.00	-13.24	AV
V	7236.00	60.25	-14.14	46.11	74.00	-27.89	PK
V	7236.00	50.29	-14.14	36.15	54.00	-17.85	AV
Н	4824.00	65.90	-19.95	45.95	74.00	-28.05	PK
Н	4824.00	56.09	-19.95	36.14	54.00	-17.86	AV
Н	7236.00	58.74	-14.14	44.60	74.00	-29.40	PK
Н	7236.00	50.71	-14.14	36.57	54.00	-17.43	AV
			Middle chan	nel:2437MHz			
V	4874.00	67.63	-19.85	47.78	74.00	-26.22	PK
V	4874.00	58.98	-19.85	39.13	54.00	-14.87	AV
V	7311.00	57.96	-13.93	44.03	74.00	-29.97	PK
V	7311.00	49.90	-13.93	35.97	54.00	-18.03	AV
Н	4874.00	66.00	-19.85	46.15	74.00	-27.85	PK
Н	4874.00	55.53	-19.85	35.68	54.00	-18.32	AV
Н	7311.00	55.69	-13.93	41.76	74.00	-32.24	PK
Н	7311.00	48.28	-13.93	34.35	54.00	-19.65	AV
			High chann	el:2462MHz			
V	4924.00	70.38	-19.75	50.63	74.00	-23.37	PK
V	4924.00	60.03	-19.75	40.28	54.00	-13.72	AV
V	7386.00	61.50	-13.72	47.78	74.00	-26.22	PK
V	7386.00	51.15	-13.72	37.43	54.00	-16.57	AV
Н	4924.00	69.00	-19.75	49.25	74.00	-24.75	PK
Н	4924.00	59.77	-19.75	40.02	54.00	-13.98	AV
Н	7386.00	58.70	-13.72	44.98	74.00	-29.02	PK
Н	7386.00	51.50	-13.72	37.78	54.00	-16.22	AV

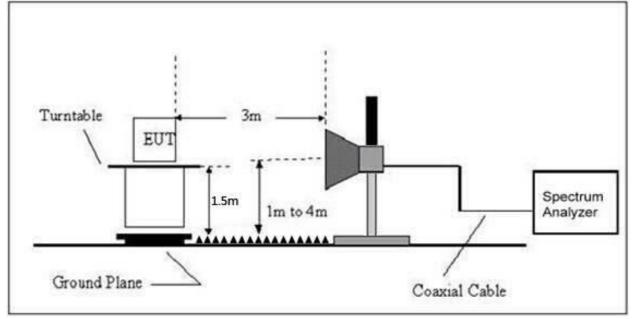
Remark:

1.Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement – Limit

2.If peak below the average limit, the average emission was no test.


3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e.The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor	Measure- ment (dBuV/m)	me	sure- ent V/m)	Over	Result		
			(ubuv/iii)	(dB)	PK	PK	AV	PK			
	Low Channel 2412MHz										
	Н	2390.00	72.62	-25.43	47.19	74.00	54.00	-26.81	PASS		
	Н	2400.00	76.01	-25.40	50.61	74.00	54.00	-23.39	PASS		
	V	2390.00	73.26	-25.43	47.83	74.00	54.00	-26.17	PASS		
802.11b	V	2400.00	74.97	-25.40	49.57	74.00	54.00	-24.43	PASS		
002.110		High Channel 2462MHz									
	Н	2483.50	73.06	-25.15	47.91	74.00	54.00	-26.09	PASS		
	Н	2500.00	70.14	-25.10	45.04	74.00	54.00	-28.96	PASS		
	V	2483.50	73.52	-25.15	48.37	74.00	54.00	-25.63	PASS		
	V	2500.00	70.88	-25.10	45.78	74.00	54.00	-28.22	PASS		
				Low Chanr	nel 2412MHz						
	Н	2390.00	72.61	-25.43	47.18	74.00	54.00	-26.82	PASS		
	Н	2400.00	75.52	-25.40	50.12	74.00	54.00	-23.88	PASS		
	V	2390.00	73.23	-25.43	47.80	74.00	54.00	-26.20	PASS		
802.11g	V	2400.00	74.23	-25.40	48.83	74.00	54.00	-25.17	PASS		
002.11g				High Chan	nel 2462MHz						
	Н	2483.50	73.04	-25.15	47.89	74.00	54.00	-26.11	PASS		
	Н	2500.00	68.74	-25.10	43.64	74.00	54.00	-30.36	PASS		
	V	2483.50	71.60	-25.15	46.45	74.00	54.00	-27.55	PASS		
	V	2500.00	68.67	-25.10	43.57	74.00	54.00	-30.43	PASS		

Remark:

1. Measurement = Reading Level + Correct Factor,

Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier,

Over= Measurement - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Page: 27 of 68

Test mode		Olar Frequency	Reading Level Factor	Factor (dBuV/m)		Measure- ment (dBuV/m)		Over	Result	
			(dBuV/m)	(dB)	PK	PK	AV	PK		
		Low Channel 2412MHz								
	Н	2390.00	72.80	-25.43	47.37	74.00	54.00	-26.63	PASS	
	Н	2400.00	76.02	-25.40	50.62	74.00	54.00	-23.38	PASS	
	V	2390.00	71.83	-25.43	46.40	74.00	54.00	-27.60	PASS	
802.11	V	2400.00	74.82	-25.40	49.42	74.00	54.00	-24.58	PASS	
n20		High Channel 2462MHz								
	Н	2483.50	72.31	-25.15	47.16	74.00	54.00	-26.84	PASS	
	Н	2500.00	70.35	-25.10	45.25	74.00	54.00	-28.75	PASS	
	V	2483.50	70.08	-25.15	44.93	74.00	54.00	-29.07	PASS	
	V	2500.00	68.48	-25.10	43.38	74.00	54.00	-30.62	PASS	

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier,

Over= Measurement - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005

Page: 28 of 68

9. **Power Spectral Density Test**

9.1 Block Diagram Of Test Setup

9.2 Limit

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS			

Limits Of Radiated Emission Measurement (Above 1000MHz)

9.3 Test procedure

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: 3 kHz
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.

10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

9.4 **EUT Operating Conditions**

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Note: Power Spectral Density(dBm)=Reading+Cable Loss

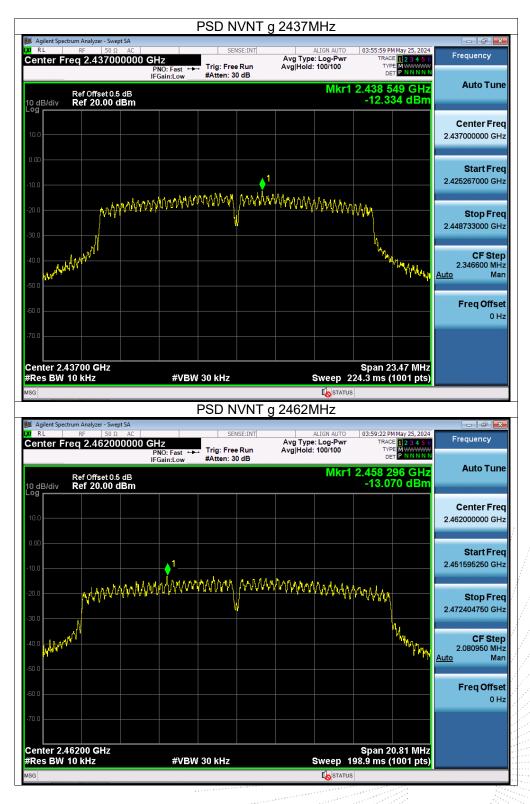
No.: BCTC/RF-EMC-005

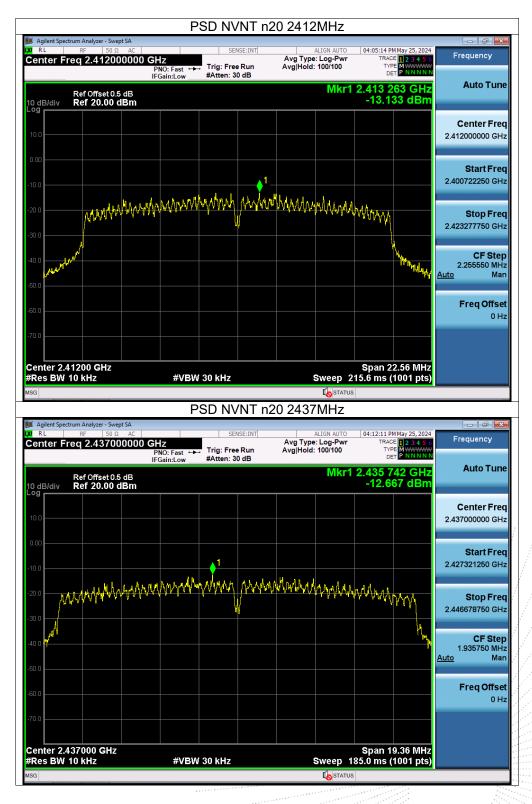
Page: 29 of 68

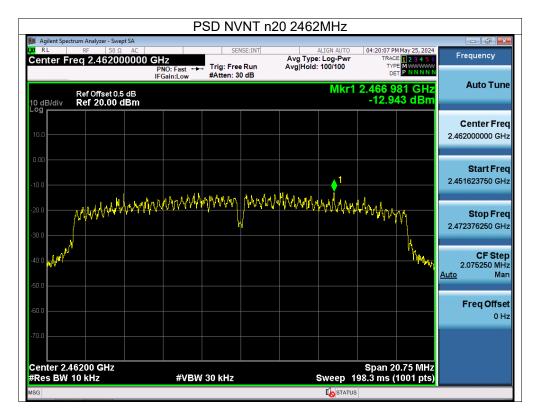
9.5 Test Result

Temperature:	Temperature:26 °C		Relativ	e Humidity:	54%	
Pressure: 101KPa		KPa	Test Voltage:		DC 5V	
Condition	Mode	Frequency	Power Spectral Density (dBm/10kHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
NVNT	b	2412 MHz	-9.37	-14.60	8	PASS
NVNT	b	2437 MHz	-10.12	-15.35	8	PASS
NVNT	b	2462 MHz	-9.85	-15.08	8	PASS
NVNT	g	2412 MHz	-11.77	-17.00	8	PASS
NVNT	g	2437 MHz	-12.33	-17.56	8	PASS
NVNT	g	2462 MHz	-13.07	-18.30	8	PASS
NVNT	n20	2412 MHz	-13.13	-18.36	8	PASS
NVNT	n20	2437 MHz	-12.67	-17.90	8	PASS
NVNT	n20	2462 MHz	-12.94	-18.17	8	PASS
		log(3KHz/RBW i y(dBm/3kHz)= P			Hz) + Correction	Factor

Page: 30 of 68







No.: BCTC/RF-EMC-005

Page: 35 of 68

10. Bandwidth Test

10.1 Block Diagram Of Test Setup

10.2 Limit

FCC Part15 (15.247) , Subpart C							
Section Test Item Limit Frequency Range (MHz)				Result			
15.247(a)(2)	Bandwidth	>= 500KHz (-6dB bandwidth)	2400-2483.5	PASS			

10.3 Test procedure

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

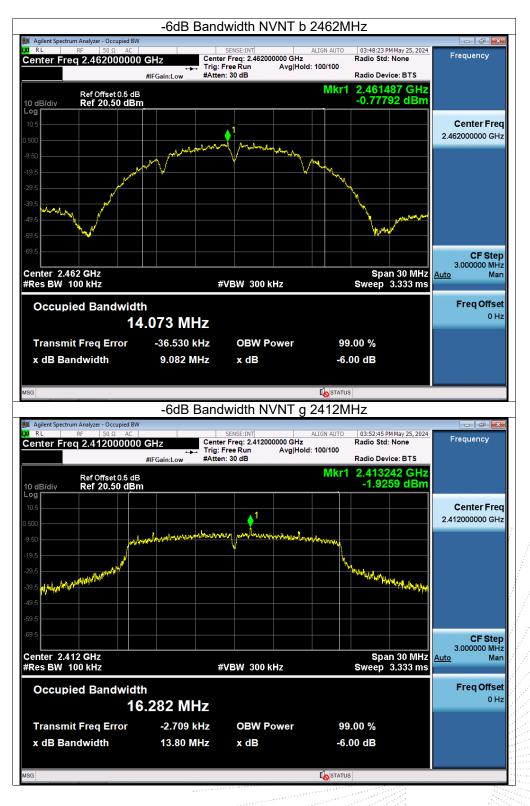
No.: BCTC/RF-EMC-005

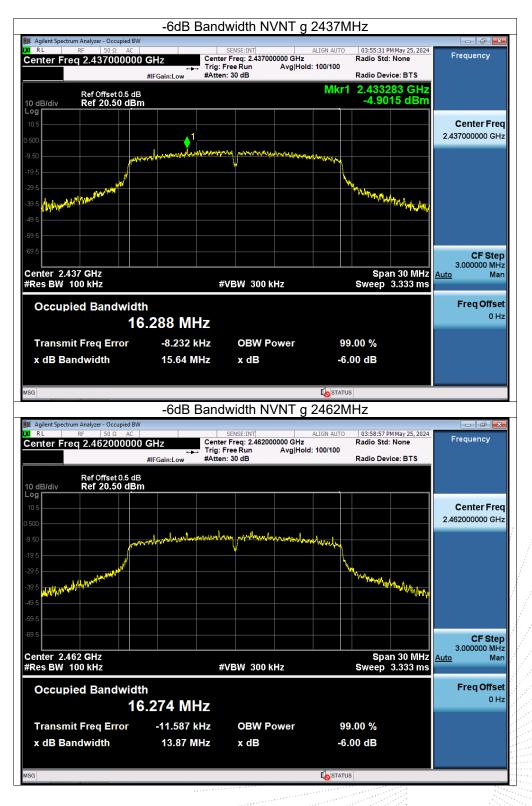
Page: 36 of 68

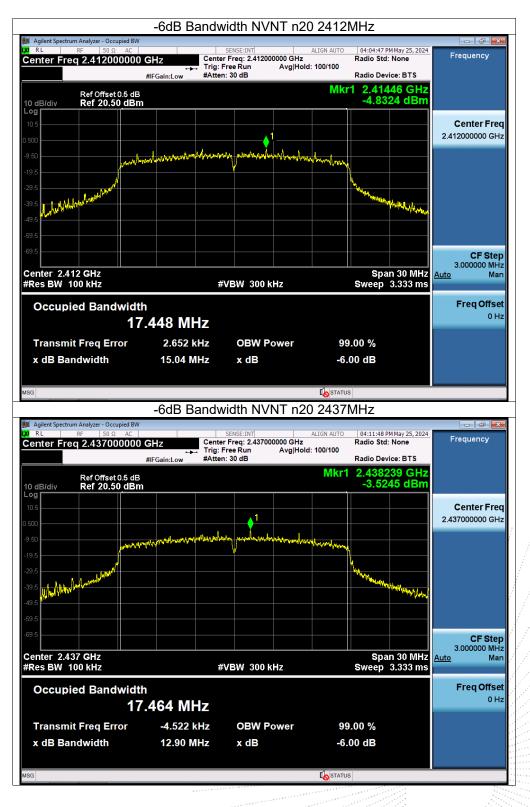
10.5 Test Result

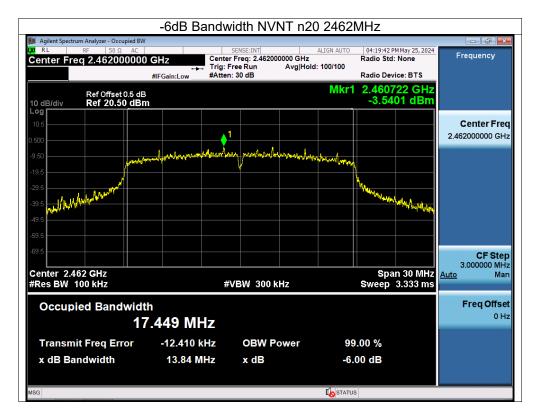
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage :	DC 5V

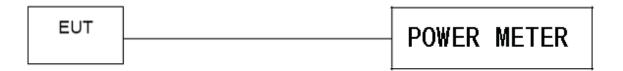
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	9.095	0.5	Pass
NVNT	b	2437	9.096	0.5	Pass
NVNT	b	2462	9.082	0.5	Pass
NVNT	g	2412	13.805	0.5	Pass
NVNT	g	2437	15.644	0.5	Pass
NVNT	g	2462	13.873	0.5	Pass
NVNT	n20	2412	15.037	0.5	Pass
NVNT	n20	2437	12.905	0.5	Pass
NVNT	n20	2462	13.835	0.5	Pass


Page: 37 of 68








No.: BCTC/RF-EMC-005

Page: 42 of 68

11. Peak Output Power Test

11.1 Block Diagram Of Test Setup

11.2 Limit

FCC Part15 (15.247) , Subpart C						
Section	ction Test Item Limit Frequency Range (MHz) Resu					
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

11.3 Test Procedure

a. The EUT was directly connected to the Power meter

11.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

No.: BCTC/RF-EMC-005

Page: 43 of 68

11.5 Test Result

Temperature:	26 ℃		Relative Humidity:	54%	
Pressure:	ressure: 101KPa		Test Voltage:		
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	12.17	30	Pass
NVNT	b	2437	11.37	30	Pass
NVNT	b	2462	11	30	Pass
NVNT	g	2412	10.49	30	Pass
NVNT	g	2437	9.86	30	Pass
NVNT	g	2462	8.97	30	Pass
NVNT	n20	2412	8.6	30	Pass
NVNT	n20	2437	8.48	30	Pass
NVNT	n20	2462	8.93	30	Pass

Page: 44 of 68

12. 100 kHz Bandwidth Of Frequency Band Edge

12.1 Block Diagram Of Test Setup

12.2 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

12.3 Test Procedure

Using the following spectrum analyzer setting:

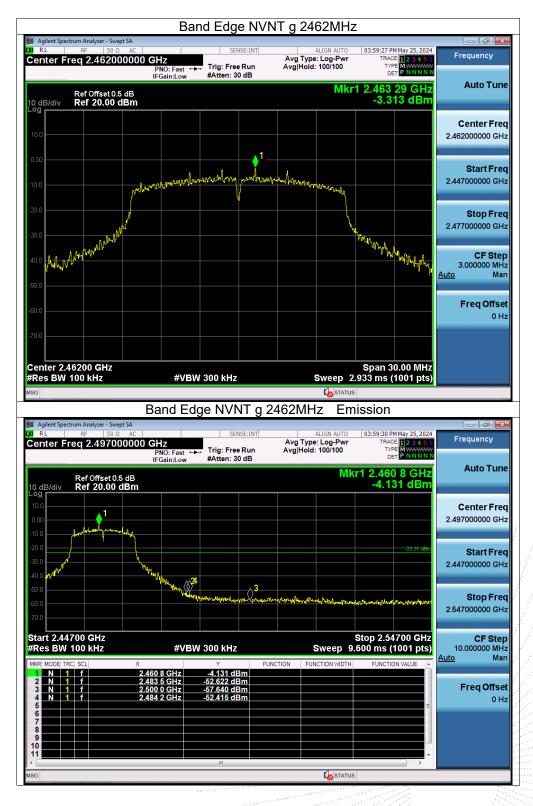
- a) Set the RBW = 100KHz.
- b) Set the VBW = 300KHz.
- c) Sweep time = auto couple.
- d) Detector function = peak.
- e) Trace mode = max hold.
- f) Allow trace to fully stabilize..

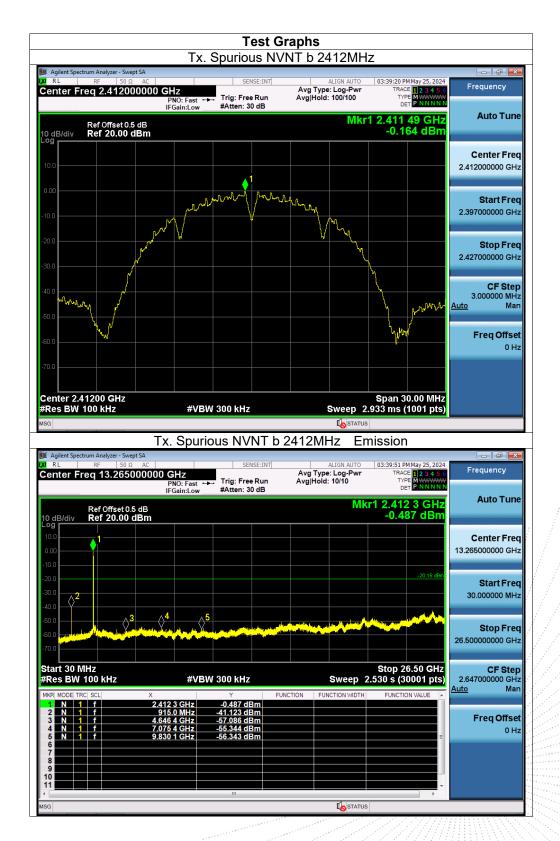
12.4 EUT Operating Conditions

The EUT tested system was configured as the statements of 4.6 Unless otherwise a special operating condition is specified in the follows during the testing. Note: Power Spectral Density(dBm)=Reading+Cable Loss

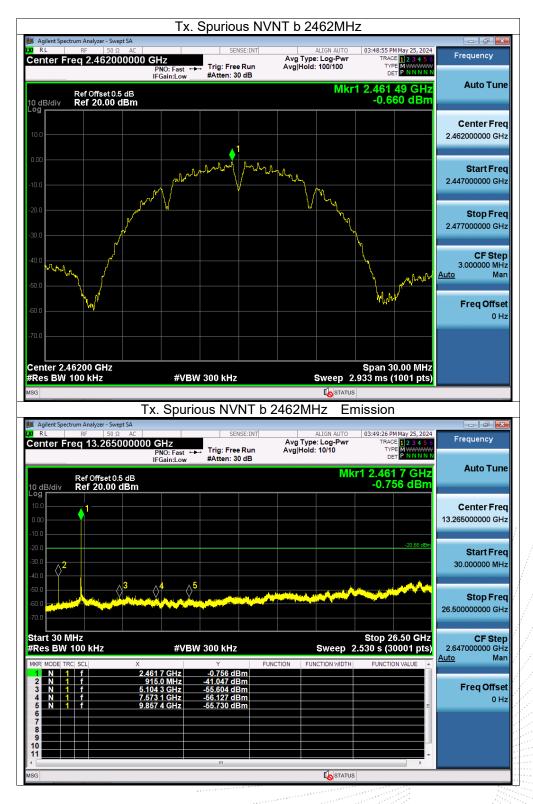
12.5 Test Result

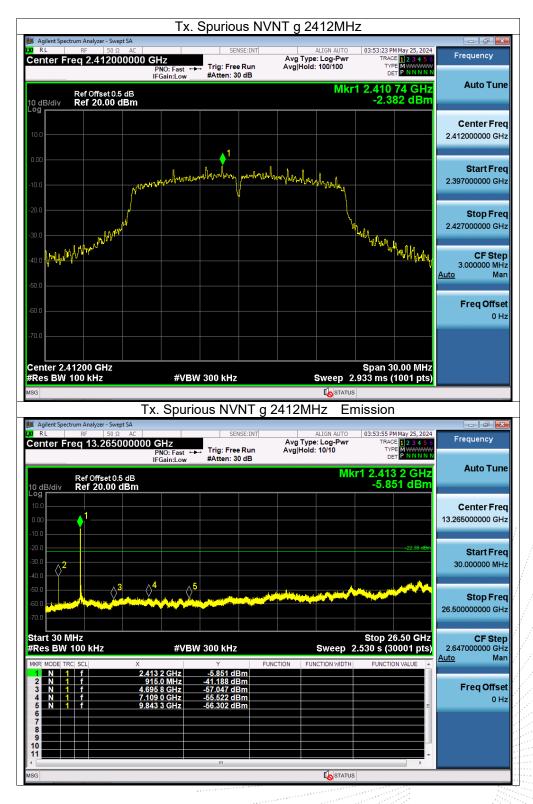
Temperature:	26 ℃	Relative Humidity: 54%
Pressure:	101KPa	Test Voltage: DC 5V

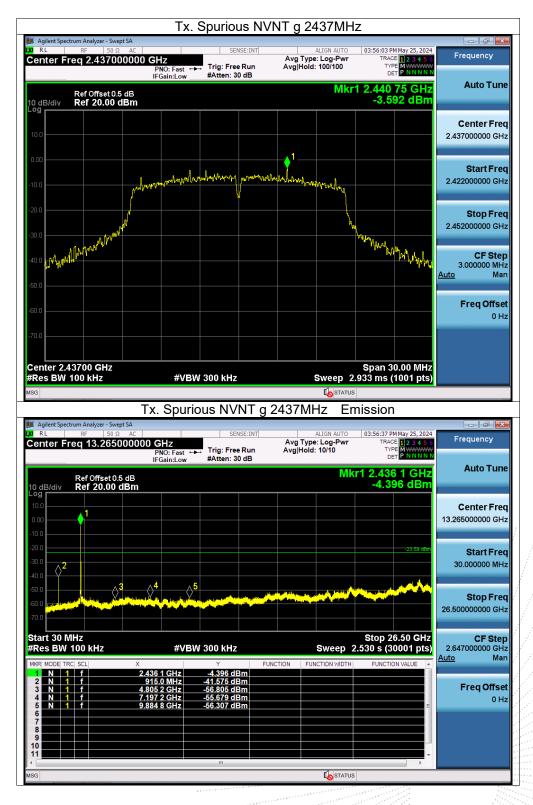


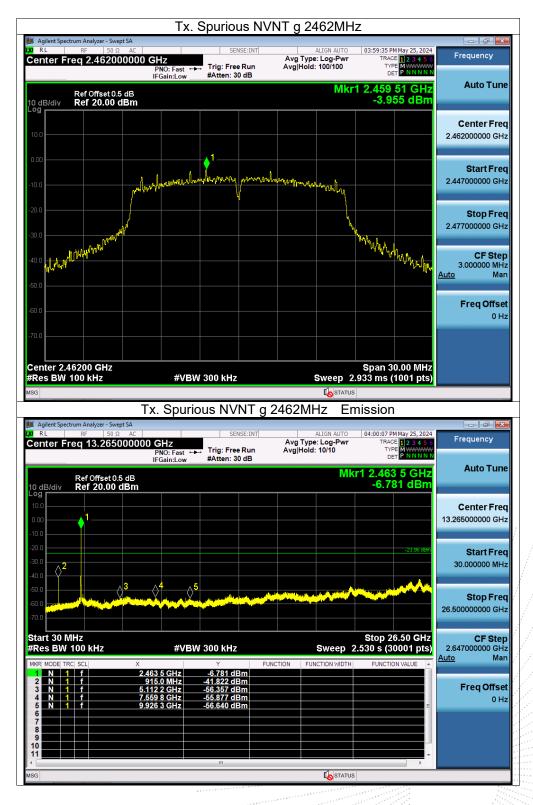


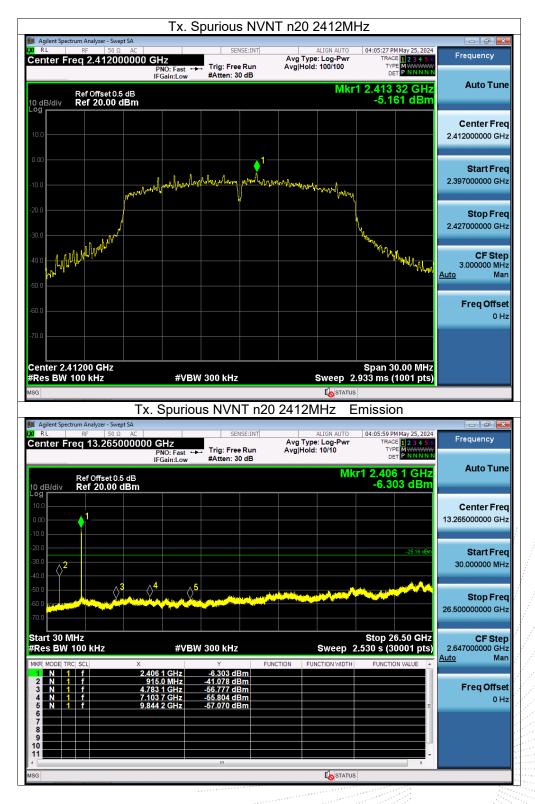


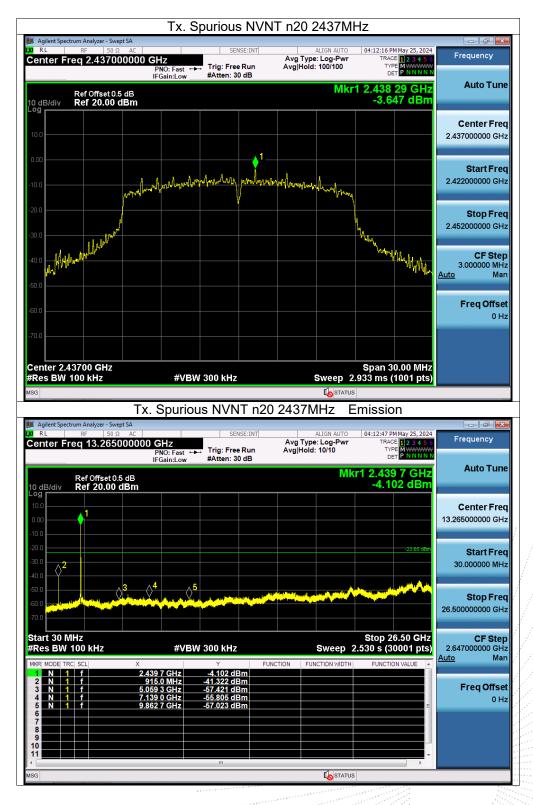


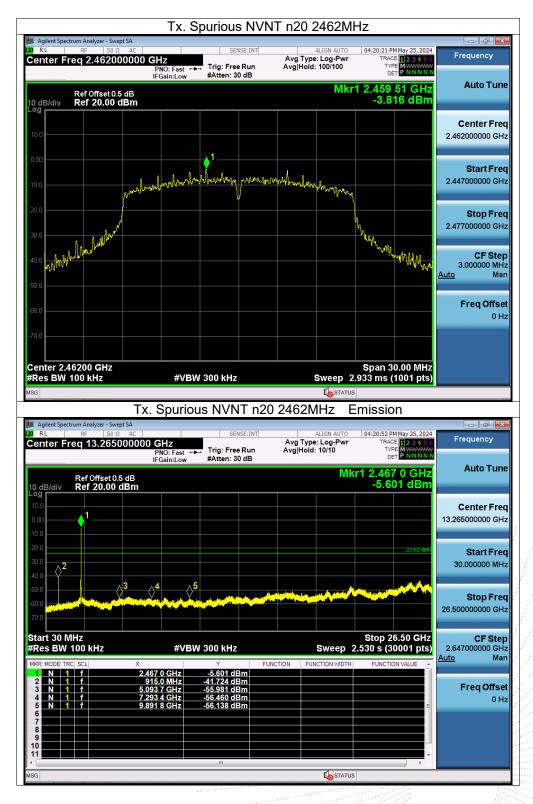












13. Duty Cycle Of Test Signal

13.1 Standard Requirement

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle.

All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

13.2 Formula

Duty Cycle = Ton / (Ton+Toff)

13.3 Test Procedure

- 1.Set span = Zero 2. RBW = 8MHz
- 2. RBW = 800 Hz3. VBW = 8 MHz,
- 4. Detector = Peak

13.4 Test Result

Duty Cycle:

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	100	0	0
NVNT	g	2412	100	0	0
NVNT	n20	2412	100	0	0

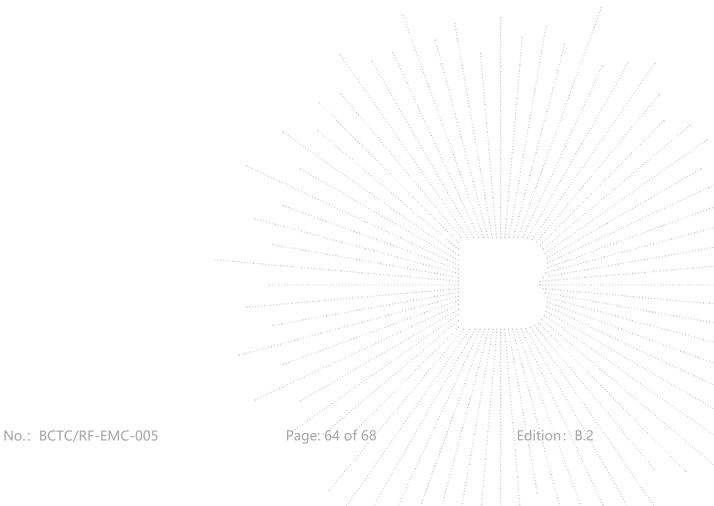
Page: 61 of 68

ilent Spectrum Analyzer - Swep					
RL RF 50 Ω enter Freq 2.412000	0000 GHz PN0: Fast ↔	Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	01:13:40 AM May 16, 2024 TRACE 123456 TYPE WWWWWW DET PNNNNN	Frequency
Ref Offset 2.53 0 dB/div Ref 20.00 d	IFGain:Low 9 dB	Fouren. ou GD		Mkr1 50.00 ms 9.24 dBm	Auto Tun
og		1			
0.0					Center Fre 2.412000000 GH
0.0					
0.0					Start Fre
0.0					2.412000000 GH
0.0					
0.0					Stop Fre
0.0					2.41200000 GF
enter 2.412000000 G				Span 0 Hz	CF Ste
es BW 8 MHz		V 8.0 MHz	-	10.0 ms (10001 pts)	8.000000 MH Auto Ma
1 N 1 t 2 M 1 t	× 50.00 ms	Y FL 9.24 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	
3					Freq Offse
5 <u> </u>					0 H
8					
9					
				×	
				>	
G			STATU	S	
		ty Cycle NVI	status NT g 2412MHz	S	
ilent Spectrum Analyzer - Sweg R L RF 50 Ω	pt SA AC		NT g 2412MHz Alignauto	S 2 01:14:56 AM May 16, 2024	Fraguaga
l <mark>lent Spectrum Analyzer - Sweg</mark> RL RF 50 Ω	pt SA AC 00000 GHz PN0: Fast ↔	SENSE:INT	NT g 2412MHz	S 01:14:56 AM May 16, 2024 TRACE 1234156 TYPE	Frequency
ilent Spectrum Analyzer - Swep RL RF 50 Ω enter Freq 2.412001	AC AC AC AC AC AC AC AC AC AC AC AC AC A	SENSE:INT	NT g 2412MHz Alignauto	S 2 01:14:56 AM May 16, 2024 TRACE 2 2 3 5 6 TYPE WWWWWW DET P.N.N.N.N.N	
RL RF 500 enter Freq 2.41200 Ref 0ffset 2.51 dB/div Ref 20.00 d	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	S 01:14:56 AM May 16, 2024 TRACE 1234156 TYPE	
RL RF 500 enter Freq 2.41200 Ref Offset 2.5 dB/div Ref 20.00 d	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tun
Ilent Spectrum Analyzer - Sweg RL RF SO Q enter Freq 2.412001 Ref Offset 2.55 dB/div Ref 20.00 d Q Q	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tun Center Fre
RL RF 50.92 enter Freq 2.412001 Ref Offset 2.53 BJdiv Ref 20.00 d 9 0.0	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	
RL RF 50.92 enter Freq 2.412001 Ref Offset 2.53 dB/div Ref 20.00 d 0 0 0 0	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tun Center Fre 2.412000000 GF Start Fre
RL RF 50.9 enter Freq 2.412001 Ref Offset 2.53 dB/div Ref 2000 d 0 0 0.0 0	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tun Center Fre 2.412000000 GH
RL RF 50.9 enter Freq 2.412001 Ref Offset 2.53 0 dB/div Ref 20.00 d 0 d Ref 20.00 d	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tun Center Fre 2.41200000 GH Start Fre 2.412000000 GH
RL Sectrum Analyzer - Swey RL RF 50.9 enter Freq 2.412001 Ref Offset 2.55 dB/div Ref 20.00 d 00 00 00 00 00 00 00 00 00 00 00 00 00 00	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tun Center Fre 2.41200000 GF Start Fre
RL Spectrum Analyzer Swe RL RF 50.9 enter Freq 2.412001 Ref Offset 2.5 dB/div Ref 20.00 d 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	AC AC PN0: Fast IFGain:Low 9 dB	SENSE:INT	NT g 2412MHz Alignauto	2 01:14:55 AM May 16, 2024 TRACE 2 24 5 6 TYPE WAYNING DET PINING N	Auto Tur Center Fre 2.41200000 GF Start Fre 2.41200000 GF Stop Fre
Ilent Spectrum Analyzer - Swep RL RF 50.9 enter Freq 2.41200 Ref Offset 2.55 Ref 20.00 d Odd B/div Ref 20.00 d Main and a state and a	Pt SA AC DO00 GHz PN0: Fast → IFGain:Low 9 dB Bm Hz	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	S 2 01:14:55 AM May 15, 2024 TRACE 12 23 4 5 G TYPE W.2004 0007 PUNIN N Mkr1 50.00 ms 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm	Auto Tun Center Fre 2.412000000 GH Start Fre 2.412000000 GH 2.412000000 GH CF Ste
Ret RF 50 @ enter Freq 2.41200 Ref Offset 2.53 0 dB/div Ref 2.000	Pt SA AC DOUO GHz PNO: Fast → IFGain:Low 9 dB Bm Hz Hz #VBV	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	S 2 101:14:55 AM May 15, 2024 TRACE 12 24 5 6 TYPE WARMAN DET PINNINN N Mkr1 50.00 ms 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm 0.0 ms (10001 pts)	Auto Tun Center Fre 2.41200000 GF Start Fre 2.41200000 GF Stop Fre
Ilent Spectrum Analyzer - Sweg RL RE 50 Q enter Freq 2.412000 50 Q Ref Offset 2.55 70 Q 0 dB/div Ref Offset 2.55 0 dB/div Ref 20.00 d 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.	Pt SA AC DO00 GHz PN0: Fast → IFGain:Low 9 dB Bm Hz	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	S 2 101:14:56 AM May 15, 2024 TRACE 12 2 4 5 6 TYPE WAYNAMAN DET PINNINN Mkr1 50.00 ms 9.32 dBm 9.32 dBm	Auto Tun Center Fre 2.412000000 GF Start Fre 2.412000000 GF 2.412000000 GF 2.412000000 GF 8.000000 MF 8.000000 MF Auto Ma
Ilent Spectrum Analyzer - Swey RL SD Q enter Freq 2.412001 Ref Offset 2.5 0 dB/div Ref 20.00 d 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pt SA AC DOUD GHz PN0: Fast → IFGain:Low 9 dB Bm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	S 2 101:14:55 AM May 15, 2024 TRACE 12 24 5 6 TYPE WARMAN DET PINNINN N Mkr1 50.00 ms 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm 0.0 ms (10001 pts)	Auto Tur Center Fre 2.412000000 GF 2.412000000 GF 2.412000000 GF 2.412000000 GF CF Ste 8.000000 MH Auto Ma
Ilent Spectrum Analyzer - Swer RL RF 50.9 enter Freq 2.41200 Ref Offset 2.5 Ref 2.6 old Addition Ref 2.000 d Addition old Addition Ref 2.6 Addition old Addition Ref 2.6 Addition old Addition Addition Addition	Pt SA AC DOUD GHz PN0: Fast → IFGain:Low 9 dB Bm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	S 2 101:14:55 AM May 15, 2024 TRACE 12 24 5 6 TYPE WARMAN DET PINNINN N Mkr1 50.00 ms 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm 0.0 ms (10001 pts)	Auto Tur Center Fre 2.412000000 GF 2.412000000 GF 2.412000000 GF 2.412000000 GF CF Ste 8.000000 MH Auto Ma
ilent Spectrum Analyzer - Swep RE So @ enter Freq 2.41200 Ref Offset 2.53 dB/div Ref Offset 2.53 dB/div Ref Offset 2.53 0 dB/div Ref 20.00 d 00 Colspan="2">Colspan="2" Colspan="2">Colspan="2">Colspan="2" Colspan="2">Colspan="2" Colspan="2"	Pt SA AC DOUD GHz PN0: Fast → IFGain:Low 9 dB Bm 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT Trig: Free Run #Atten: 30 dB	NT g 2412MHz	S 2 101:14:55 AM May 15, 2024 TRACE 12 24 5 6 TYPE WARMAN DET PINNINN N Mkr1 50.00 ms 9.32 dBm 9.32 dBm 9.32 dBm 9.32 dBm 0.0 ms (10001 pts)	Auto Tun Center Fre 2.412000000 GF Start Fre 2.412000000 GF 2.412000000 GF CF Ste 8.000000 MF

Duty Cycle NVNT n20 2412MHz							
Agilent Spectrum Analyzer - Swept SA							
X RL RF 50 Ω AC Center Freq 2.412000000 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	01:17:18 AM May 16, 2024 TRACE 123456	Frequency			
PNO: Fast IFGain:Lov			TYPE WWWWWWW DET P N N N N N				
			Mkr1 50.00 ms	Auto Tune			
Ref Offset 2.59 dB 10 dB/div Ref 20.00 dBm			6.29 dBm				
Log	1			Center Freq			
			t i sele di altre male de la cicle de la cica de senda.	2.412000000 GHz			
-10.0							
-20.0				Start Freg			
-30.0				2.412000000 GHz			
-40.0				2.412000000 0112			
-50.0				Oton From			
-60.0				Stop Freq 2.412000000 GHz			
-70.0				2.412000000 0112			
Center 2.412000000 GHz			Span 0 Hz	CF Step			
Res BW 8 MHz #V	'BW 8.0 MHz	Sweep 10	0.0 ms (10001 pts)	8.000000 MHz			
MKR MODE TRC SCL X		INCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man			
2	6.29 dBm			En a Official			
3				Freq Offset 0 Hz			
56				0112			
7							
9							
11			~ ~				
K MSG	IIII -	STATUS					

No.: BCTC/RF-EMC-005

Page: 63 of 68


14. Antenna Requirement

14.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

14.1 Test Result

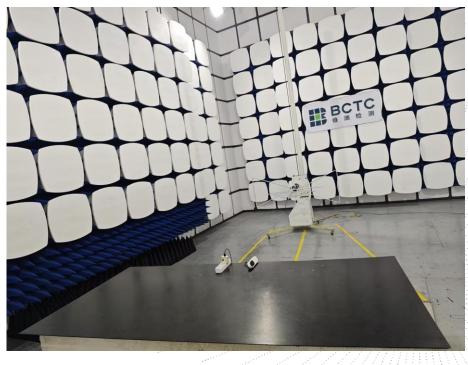
The EUT antenna is Internal antenna, fulfill the requirement of this section.

15. EUT Photographs

EUT Photo 1

EUT Photo 2

NOTE: Appendix-Photographs Of EUT Constructional Details



16. EUT Test Setup Photographs

Conducted Emissions Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Page: 66 of 68

No.: BCTC/RF-EMC-005

Page: 67 of 68

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 68 of 68