FCC Test Report Report No.: AGC11034230404FE04 **FCC ID** : 2AYHE-2303A **APPLICATION PURPOSE** : Original Equipment **PRODUCT DESIGNATION**: WiFi IP Camera BRAND NAME : Reolink **MODEL NAME** : E1 Outdoor Pro, T1 Outdoor Pro, TP4KW6 **APPLICANT**: Reolink Innovation Limited **DATE OF ISSUE** : May 12, 2023 **STANDARD(S)** : FCC Part 15 Subpart C §15.247 **REPORT VERSION**: V1.0 Attestation of Global Conclude (Shenzhen) Co., Ltd Page 2 of 130 # REPORT REVISE RECORD | Report Version | Revise Time | Issued Date | Valid Version | Notes | |----------------|-------------|--------------|---------------|-----------------| | V1.0 | / | May 12, 2023 | Valid | Initial Release | # **TABLE OF CONTENTS** | 1. VERIFICATION OF CONFORMITY | 5 | |--|----| | 2. GENERAL INFORMATION | 6 | | 2.1. PRODUCT DESCRIPTION | 6 | | 2.2. TABLE OF CARRIER FREQUENCYS | 7 | | 2.3. IEEE 802.11N MODULATION SCHEME | 8 | | 2.4. RELATED SUBMITTAL(S) / GRANT (S) | 9 | | 2.5. TEST METHODOLOGY | 9 | | 2.6. SPECIAL ACCESSORIES | 9 | | 2.7. EQUIPMENT MODIFICATIONS | 9 | | 2.8. ANTENNA REQUIREMENT | | | 2.9. DESCRIPTION OF AVAILABLE ANTENNAS | 10 | | 3. MEASUREMENT UNCERTAINTY | 11 | | 4. DESCRIPTION OF TEST MODES | 12 | | 5. SYSTEM TEST CONFIGURATION | 13 | | 5.1. CONFIGURATION OF EUT SYSTEM | 13 | | 5.2. EQUIPMENT USED IN EUT SYSTEM | 13 | | 5.3. SUMMARY OF TEST RESULTS | 13 | | 6. TEST FACILITY | 14 | | 7. RF OUTPUT POWER MEASUREMENT | 15 | | 7.1 MEASUREMENT LIMITS | 15 | | 7.2 MEASUREMENT PROCEDURE | 15 | | 7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 15 | | 7.4 MEASUREMENT RESULT | 16 | | 8. 6DB BANDWIDTH MEASUREMENT | 18 | | 8.1 MEASUREMENT LIMITS | 18 | | 8.2 MEASUREMENT PROCEDURE | 18 | | 8.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 18 | | 8.4 MEASUREMENT RESULTS | | | 9. CONDUCTED SPURIOUS EMISSION | 44 | | 9.1 MEASUREMENT LIMIT | 44 | | 9.2 MEASUREMENT PROCEDURE | | | 9.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | | | 9.4 MEASUREMENT RESULTS | | | 10. POWER SPECTRAL DENSITY | 73 | |---|-----| | 10.1 MEASUREMENT LIMITS | 73 | | 10.2 MEASUREMENT PROCEDURE | 73 | | 10.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 74 | | 10.4 MEASUREMENT RESULT | 74 | | 10.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 88 | | 10.4 MEASUREMENT RESULT | 89 | | 11. LINE CONDUCTED EMISSION TEST | 126 | | 11.1. LIMITS OF LINE CONDUCTED EMISSION TEST | 126 | | 11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST | 126 | | 11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST | 127 | | 11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST | 127 | | 11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST | 127 | | APPENDIX I: PHOTOGRAPHS OF TEST SETUP | 130 | | APPENDIX II: PHOTOGRAPHS OF EUT | 130 | ## 1. VERIFICATION OF CONFORMITY | Applicant | Reolink Innovation Limited | | | | |------------------------------|---|--|--|--| | Address | FLAT/RM 705 7/F FA YUEN COMMERCIAL BUILDING 75-77 FA YUEN
STREET MONG KOK KL Hong Kong | | | | | manufacturer | Reolink Innovation Limited | | | | | Address | FLAT/RM 705 7/F FA YUEN COMMERCIAL BUILDING 75-77 FA YUEN
STREET MONG KOK KL Hong Kong | | | | | Factory | Shenzhen Reolink Technology Co., Ltd | | | | | Address | 2-4th Floor, Building 2, Yuanling Industrial Park, ShangWu, Shiyan Street, Bao'an District, Shenzhen, China | | | | | Product Designation | WiFi IP Camera | | | | | Brand Name | Reolink | | | | | Test Model | E1 Outdoor Pro | | | | | Series Model | T1 Outdoor Pro, TP4KW6 | | | | | Declaration of Difference | All the same except the model name | | | | | Date of receipt of test item | Apr. 23, 2023 | | | | | Date of test | Apr. 23, 2023~May 12, 2023 | | | | | Deviation | No any deviation from the test method | | | | | Condition of Test Sample | Normal | | | | | Test Result | Pass | | | | | Report Template | AGCRT-US-BGN/RF | | | | | | | | | | ## We hereby certify that: The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247. Page 6 of 130 # 2. GENERAL INFORMATION # 2.1. PRODUCT DESCRIPTION | Equipment Type | WLAN 2.4G | | | |------------------------------|--|--|--| | Frequency Band | 2400MHz ~ 2483.5MHz | | | | Operation Frequency | 2412MHz ~ 2462MHz | | | | Output Power (Average) | IEEE 802.11b:11.64dBm; IEEE 802.11g:10.49dBm; IEEE 802.11n(HT20):10.62dBm; IEEE 802.11n(HT40):10.73dBm | | | | Output Power (Peak) | IEEE 802.11b:13.85dBm; IEEE 802.11g:17.13dBm; IEEE 802.11n(HT20):16.91dBm; IEEE 802.11n(HT40):16.25dBm | | | | Output Power (MIMO- Average) | IEEE 802.11n(HT20):13.58dBm; IEEE 802.11n(HT40):13.61dBm | | | | Output Power (MIMO- Peak) | IEEE 802.11n(HT20):19.86dBm; IEEE 802.11n(HT40):19.21dBm | | | | Modulation | 802.11b:(DQPSK, DBPSK,CCK)DSSS
802.11g/n:(64-QAM,16-QAM,QPSK, BPSK)OFDM | | | | Data Rate | 802.11b:1/2/5.5/11Mbps
802.11g: 6/9/12/18/24/36/48/54Mbps
802.11n: up to 300Mbps | | | | Number of channels | 11 | | | | Hardware Version | N60C05 PWR32 | | | | Software Version | V1 | | | | Antenna Designation | FPC antenna (Comply with requirements of the FCC part 15.203) | | | | Antenna Gain | Please refer to report section 2.9 description | | | | Number of transmit chain | 2(802.11b/g/n all used two antennas,802.11n support MIMO) | | | | Power Supply | DC 12V by adapter | | | Page 7 of 130 ## 2.2. TABLE OF CARRIER FREQUENCYS ## For 2412-2462MHz: # 11 channels are provided for 802.11b/g/n(HT20)/ax(HE20): | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 01 | 2412 MHz | 02 | 2417 MHz | 03 | 2422 MHz | | 04 | 2427 MHz | 05 | 2432 MHz | 06 | 2437 MHz | | 07 | 2442 MHz | 08 | 2447 MHz | 09 | 2452 MHz | | 10 | 2457 MHz | 11 | 2462 MHz | | | # 7 channels are provided for 802.11n(HT40)/ax(HE40): | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------| | 01 | | 02 | | 03 | 2422 MHz | | 04 | 2427 MHz | 05 | 2432 MHz | 06 | 2437 MHz | | 07 | 2442 MHz | 08 | 2447 MHz | 09 | 2452 MHz | | 10 | | 11 | | | | Page 8 of 130 ## 2.3. IEEE 802.11N MODULATION SCHEME | MCS
Index | Nss | Modulation | R | R NBPSC | NCI | BPS | NDI | BPS | | ata
Mbps)
nsGl | |--------------|-----|------------|-----|---------|-------|-------|-------|-------|-------|----------------------| | | | | | | 20MHz | 40MHz | 20MHz | 40MHz | 20MHz | 40MHz | | 0 | 1 | BPSK | 1/2 | 1 | 52 | 108 | 26 | 54 | 6.5 | 13.5 | | 1 | 1 | QPSK | 1/2 | 2 | 104 | 216 | 52 | 108 | 13.0 | 27.0 | | 2 | 1 | QPSK | 3/4 | 2 | 104 | 216 | 78 | 162 | 19.5 | 40.5 | | 3 | 1 | 16-QAM | 1/2 | 4 | 208 | 432 | 104 | 216 | 26.0 | 54.0 | | 4 | 1 | 16-QAM | 3/4 | 4 | 208 | 432 | 156 | 324 | 39.0 | 81.0 | | 5 | 1 | 64-QAM | 2/3 | 6 | 312 | 648 | 208 | 432 | 52.0 | 108.0 | | 6 | 1 | 64-QAM | 3/4 | 6 | 312 | 648 | 234 | 489 | 58.5 | 121.5 | | 7 | 1 | 64-QAM | 5/6 | 6 | 312 | 648 | 260 | 540 | 65.0 | 135.0 | | Symbol | Explanation | | | |--------|---|--|--| | NSS | Number of spatial streams | | | | R | Code rate | | | | NBPSC | Number of coded bits per single carrier | | | | NCBPS | Number of coded bits per symbol | | | | NDBPS | Number of data bits per symbol | | | | GI | Guard interval | | | Page 9 of 130 # 2.4. RELATED SUBMITTAL(S) / GRANT (S) This submittal(s) (test report) is intended for **FCC ID: 2AYHE-2303A** filing to comply with the FCC Part 15 requirements. ## 2.5. TEST METHODOLOGY The tests were performed according to following standards: | No. | Identity | Document Title | |-----|--------------------|---| | 1 | FCC 47 CFR Part 2 | Frequency allocations and radio treaty matters; general rules and regulations | | 2 | FCC 47 CFR Part 15 | Radio Frequency Devices | | 3 | ANSI C63.10-2013 | American National Standard for Testing Unlicensed Wireless Devices | | 4 | KDB 662911 | KDB 662911 D01 Multiple Transmitter Output v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc) | ## 2.6. SPECIAL ACCESSORIES Refer to section 5.2. #### 2.7. EQUIPMENT MODIFICATIONS Not available for this EUT intended for grant. ## 2.8. ANTENNA REQUIREMENT # **Standard Requirement** 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi ### **EUT Antenna:** The non-detachable antenna inside the device cannot be replaced by the user at will. For the antenna gain, please refer to the description in Chapter 2.10 of the report. Page 10 of 130 #### 2.9. DESCRIPTION OF AVAILABLE ANTENNAS | Ī | Antenna | Frequency | TX | Bandwidth | Max Pea | k Gain (dBi) | Max
Directional Gain | | | |---|---|-------------|-------|-----------|---------|--------------|-------------------------|--|--| | | Type | Band (MHz) | Paths | (MHz) | Ant 1 | Ant 2 | (dBi) | | | | | 2.4GWIFI FPC Antenna List (2.4GHz 2*2 MIMO) | | | | | | | | | | | FPC
Antenna | 2400~2483.5 | 2 | 20, 40 | 3.00 | 3.98 | 6.99 | | | Note 1: The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11n/ax mode. Note 2: The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated. If all antennas have the same gain, Gant, Directional gain = Gant + Array Gain, where Array Gain is as follows. • For power spectral density (PSD) measurements on devices: Array Gain = $10 \log (N_{ANT}/N_{SS}) dB = 3.01$; For power measurements on IEEE 802.1devices: Array Gain = 0 dB for $N_{ANT} \le 4$; Array Gain = 0 dB (i.e., no array gain) for channel widths ≥40 MHz for any Nant; Array Gain = 5 log(Nant/Nss) dB or 3 dB, whichever is less, for 20 MHz channel widths with Nant ≥ 5. If antenna gains are not equal, Directional gain may be calculated by using the formulas applicable to equal gain antennas with Gant set equal to the gain of the antenna having the highest gain.. Page 11 of 130 # 3. MEASUREMENT UNCERTAINTY The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%. | Item | Measurement Uncertainty | | | |---|----------------------------|--|--| | Uncertainty of Conducted Emission for AC Port | $U_c = \pm 3.1 \text{ dB}$ | | | | Uncertainty of Radiated Emission below 1GHz | $U_c = \pm 4.0 \text{ dB}$ | | | | Uncertainty of Radiated Emission above 1GHz | $U_c = \pm 4.8 \text{ dB}$ | | | | Uncertainty of total RF power, conducted | $U_c = \pm 0.8 \text{ dB}$ | | | | Uncertainty of RF power density, conducted | $U_c = \pm 2.6 \text{ dB}$ | | | | Uncertainty of spurious emissions, conducted | $U_c = \pm 2 \%$ | | | | Uncertainty of Occupied Channel Bandwidth | $U_c = \pm 2 \%$ | | | ## 4. DESCRIPTION OF TEST MODES | NO. | TEST MODE DESCRIPTION | |-----|----------------------------------| | 1 | Low channel transmitting (TX) | | 2 | Middle channel transmitting (TX) | | 3 | High channel transmitting (TX) | #### Note: - 1) Transmit by 802.11b with Date rate (1/2/5.5/11) - 2) Transmit by 802.11g with Date rate (6/9/12/18/24/36/48/54) - 3) Transmit by 802.11n (20MHz) with Date rate (6.5/13/19.5/26/39/52/58.5/65) - 4) Transmit by 802.11n (40MHz) with Date rate (13.5/27/40.5/54/81/108/121.5/135) - 5) The test channel for 20MHz bandwidth system is channel 1, 6 and 11. - 6) The test channel for 40MHz bandwidth system is channel 3, 6 and 9. #### Note: - 1. The EUT has been set to operate continuously on the lowest, middle and highest operation frequency Individually, and the EUT is operating at its maximum duty cycle>or equal 98% - 2. All modes under which configure applicable have been tested and the worst mode test data recording in the test report, if no other mode data. # # Software Setting Page 13 of 130 # 5. SYSTEM TEST CONFIGURATION # **5.1. CONFIGURATION OF EUT SYSTEM** ## **5.2. EQUIPMENT USED IN EUT SYSTEM** | Item | Equipment | Equipment Model No. Identifier | | Note | |------|----------------|--------------------------------|---|------| | 1 | WiFi IP Camera | E1 Outdoor Pro | 2AYHE-2303A | EUT | | 2 | Adapter | DCT12W120100US-B0 | Input: AC 100-240V 50/60Hz, 0.3A
Output: DC 12V 1A | AE | # **5.3. SUMMARY OF TEST RESULTS** | Item | FCC Rules | Description Of Test | Result | |------|----------------------|----------------------------------|--------| | 1 | §15.203&15.247(b)(4) | Antenna Equipment | Pass | | 2 | §15.247 (b)(1) | RF Output Power | Pass | | 3 | §15.247 (a)(1) | 6 dB Bandwidth | Pass | | 4 | §15.247 (e) | Power Spectral Density | Pass | | 4 | §15.247 (d) | Conducted Spurious Emission | Pass | | 5 | §15.209 | Radiated Emission& Band Edge | Pass | | 6 | §15.207 | AC Power Line Conducted Emission | Pass | Page 14 of 130 # 6. TEST FACILITY | Test Site | Attestation of Global Compliance (Shenzhen) Co., Ltd | |--------------------------------------|--| | Location | 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China | | Designation Number | CN1259 | | FCC Test Firm
Registration Number | 975832 | | A2LA Cert. No. | 5054.02 | | Description | Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA | # TEST EQUIPMENT OF CONDUCTED EMISSION TEST | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |---------------|--------------|----------------------|--------|---------------|---------------| | TEST RECEIVER | R&S | ESPI | 101206 | Aug. 04, 2022 | Aug. 03, 2023 | | LISN | R&S | ESH2-Z5 | 100086 | Jun. 08, 2022 | Jun. 07, 2023 | | Test software | R&S | ES-K1
(Ver.V1.71) | N/A | N/A | N/A | # **TEST EQUIPMENT OF RADIATED EMISSION TEST** | Equipment | Manufacturer | Model | S/N | Cal. Date | Cal. Due | |--------------------------------------|-----------------|----------------------|------------|---------------|---------------| | TEST
RECEIVER | R&S | ESCI | 10096 | Feb. 18, 2023 | Feb. 17, 2024 | | EXA Signal
Analyzer | Aglient | N9010A | MY53470504 | Aug. 04, 2022 | Aug. 03, 2023 | | 2.4GHz Filter | EM Electronics | 2400-2500MHz | N/A | N/A | N/A | | Attenuator | ZHINAN | E-002 | N/A | Sep. 01, 2022 | Aug. 31, 2023 | | Horn antenna | SCHWARZBEC
K | BBHA 9170 | #768 | Oct. 31, 2021 | Oct. 30, 2023 | | Active loop
antenna
(9K-30MHz) | ZHINAN | ZN30900C | 18051 | Mar. 12, 2022 | Mar. 11, 2024 | | Double-Ridged
Waveguide Horn | ETS LINDGREN | 3117 | 00034609 | Mar. 03, 2023 | Mar. 02, 2024 | | Broadband
Preamplifier | ETS LINDGREN | 3117PA | 00225134 | N/A | N/A | | ANTENNA | SCHWARZBEC
K | VULB9168 | 494 | Jan. 05, 2023 | Jan. 04, 2025 | | Test software | Tonscend | JS32-RE
(Ver.2.5) | N/A | N/A | N/A | Page 15 of 130 ## 7. RF OUTPUT POWER MEASUREMENT #### 7.1 MEASUREMENT LIMITS For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. #### 7.2 MEASUREMENT PROCEDURE ## ⊠For peak power test: - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the RBW = 1 MHz. - 3. Set the VBW \geq [3 × RBW]. - 4. Set the Span ≥ [1.5 × DTS bandwidth]. - 5. Sweep time=Auto couple. - 6. Detector function=Peak. - 7. Trace Mode=Max hold. - 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. - 9. The indicated level is the peak output power, after any corrections for external attenuators and cables. # - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set Span to at least 1.5 times the OBW. - 3. Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz. - 4. Set VBW≥[3×RBW]. - 5. Sweep Time=Auto couple. - 6. Detector function=RMS (i.e., power averaging). - 7. Trace average at least 100 traces in power averaging (rms) mode; - 8. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%. - 10. Record the test results in the report. # 7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) Page 16 of 130 ## 7.4 MEASUREMENT RESULT | | Test Data of Conducted Output Power-Ant 1 | | | | | | |-----------|---|---------------------|---------------------|--------------|--------------|--| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Peak Power
(dBm) | Limits (dBm) | Pass or Fail | | | | 2412 | 11.38 | 13.64 | ≤30 | Pass | | | 802.11b | 2437 | 11.25 | 13.71 | ≤30 | Pass | | | | 2462 | 11.64 | 13.85 | ≤30 | Pass | | | | 2412 | 9.24 | 16.46 | ≤30 | Pass | | | 802.11g | 2437 | 10.29 | 16.86 | ≤30 | Pass | | | | 2462 | 10.49 | 17.13 | ≤30 | Pass | | | | 2412 | 9.76 | 16.20 | ≤30 | Pass | | | 802.11n20 | 2437 | 10.16 | 16.62 | ≤30 | Pass | | | | 2462 | 10.62 | 16.79 | ≤30 | Pass | | | | 2422 | 10.48 | 15.97 | ≤30 | Pass | | | 802.11n40 | 2437 | 10.21 | 16.04 | ≤30 | Pass | | | | 2452 | 10.46 | 16.15 | ≤30 | Pass | | | | Test Data of Conducted Output Power-Ant 2 | | | | | | | |-----------|---|---------------------|---------------------|--------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Peak Power
(dBm) | Limits (dBm) | Pass or Fail | | | | | 2412 | 11.05 | 13.30 | ≤30 | Pass | | | | 802.11b | 2437 | 11.02 | 13.39 | ≤30 | Pass | | | | | 2462 | 11.19 | 13.49 | ≤30 | Pass | | | | | 2412 | 9.93 | 16.46 | ≤30 | Pass | | | | 802.11g | 2437 | 10.18 | 16.69 | ≤30 | Pass | | | | | 2462 | 10.23 | 16.73 | ≤30 | Pass | | | | | 2412 | 10.26 | 16.67 | ≤30 | Pass | | | | 802.11n20 | 2437 | 10.38 | 16.73 | ≤30 | Pass | | | | | 2462 | 10.51 | 16.91 | ≤30 | Pass | | | | | 2422 | 10.43 | 16.03 | ≤30 | Pass | | | | 802.11n40 | 2437 | 10.39 | 16.11 | ≤30 | Pass | | | | | 2452 | 10.73 | 16.25 | ≤30 | Pass | | | Page 17 of 130 | Test Data of Conducted Output Power-MIMO | | | | | | | |--|-----------------------|---------------------|---------------------|--------------|--------------|--| | Test Mode | Test Channel
(MHz) | Average Power (dBm) | Peak Power
(dBm) | Limits (dBm) | Pass or Fail | | | | 2412 | 13.03 | 19.45 | ≤30 | Pass | | | 802.11n20 | 2437 | 13.28 | 19.69 | ≤30 | Pass | | | | 2462 | 13.58 | 19.86 | ≤30 | Pass | | | | 2422 | 13.47 | 19.01 | ≤30 | Pass | | | 802.11n40 | 2437 | 13.31 | 19.09 | ≤30 | Pass | | | | 2452 | 13.61 | 19.21 | ≤30 | Pass | | Page 18 of 130 ### 8. 6DB BANDWIDTH MEASUREMENT #### **8.1 MEASUREMENT LIMITS** The minimum 6 dB bandwidth shall be 500 kHz. ## **8.2 MEASUREMENT PROCEDURE** - 1) The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW). - 2) The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3) Set to the maximum power setting and enable the EUT transmit continuously. - 4) For 6dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. - 5) For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW. - 6) Detector = peak - 7) Trace mode = max hold. - 8) Sweep = auto couple. - 9) Allow the trace to stabilize. - 10) Measure and record the results in the test report. # 8.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) Page 19 of 130 ## **8.4 MEASUREMENT RESULTS** | | Test Data of Occupied Bandwidth and DTS Bandwidth-Ant 1 | | | | | | | |-----------|---|---------------------------------|-------------------------|-----------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -6dB
Bandwidth (MHz) | Limits
(MHz) | Pass or Fail | | | | | 2412 | 12.364 | 8.068 | ≥0.5 | Pass | | | | 802.11b | 2437 | 12.405 | 8.020 | ≥0.5 | Pass | | | | | 2462 | 12.384 | 8.102 | ≥0.5 | Pass | | | | | 2412 | 16.443 | 15.111 | ≥0.5 | Pass | | | | 802.11g | 2437 | 16.976 | 15.134 | ≥0.5 | Pass | | | | | 2462 | 16.967 | 15.137 | ≥0.5 | Pass | | | | | 2412 | 17.493 | 15.110 | ≥0.5 | Pass | | | | 802.11n20 | 2437 | 17.831 | 15.137 | ≥0.5 | Pass | | | | | 2462 | 17.817 | 15.136 | ≥0.5 | Pass | | | | | 2422 | 35.921 | 35.111 | ≥0.5 | Pass | | | | 802.11n40 | 2437 | 35.933 | 35.093 | ≥0.5 | Pass | | | | | 2452 | 35.943 | 35.098 | ≥0.5 | Pass | | | | | Test Data of Occupied Bandwidth and DTS Bandwidth-Ant 2 | | | | | | | |-----------|---|---------------------------------|-------------------------|-----------------|--------------|--|--| | Test Mode | Test Channel
(MHz) | 99% Occupied
Bandwidth (MHz) | -6dB
Bandwidth (MHz) | Limits
(MHz) | Pass or Fail | | | | | 2412 | 12.751 | 8.085 | ≥0.5 | Pass | | | | 802.11b | 2437 | 12.672 | 8.082 | ≥0.5 | Pass | | | | | 2462 | 12.649 | 8.079 | ≥0.5 | Pass | | | | | 2412 | 16.445 | 15.113 | ≥0.5 | Pass | | | | 802.11g | 2437 | 16.975 | 15.459 | ≥0.5 | Pass | | | | | 2462 | 16.972 | 15.133 | ≥0.5 | Pass | | | | | 2412 | 17.491 | 15.114 | ≥0.5 | Pass | | | | 802.11n20 | 2437 | 17.825 | 15.139 | ≥0.5 | Pass | | | | | 2462 | 17.824 | 15.130 | ≥0.5 | Pass | | | | | 2422 | 35.926 | 35.099 | ≥0.5 | Pass | | | | 802.11n40 | 2437 | 35.938 | 35.114 | ≥0.5 | Pass | | | | | 2452 | 35.934 | 35.100 | ≥0.5 | Pass | | | ## Test Graphs of Occupied Bandwidth ## Test Graphs of DTS Bandwidth Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Report No.: AGC11034230404FE04 Page 44 of 130 ## 9. CONDUCTED SPURIOUS EMISSION ### 9.1 MEASUREMENT LIMIT | Limits and Measurement Result | | | | | | |--|--|----------|--|--|--| | Applicable Limite | Measurement Result | | | | | | Applicable Limits | Test Data | Criteria | | | | | In any 100 kHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest | At least -20dBc than the limit
Specified on the Bottom
Channel | PASS | | | | | level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a)) | At least -20dBc than the limit
Specified on the Top Channel | PASS | | | | ### 9.2 MEASUREMENT PROCEDURE - 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually. - 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. - 4. RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.(Test frequency below 1GHz) - 5. RBW = 1 MHz; VBW= 3 MHz; Sweep = auto; Detector function = peak.(Test frequency Above 1GHz) - 6. Set SPA Trace 1 Max hold, then View. - 7. Mark the maximum useless stray point and compare it with the limit value to record the result. ## 9.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) ### 9.4 MEASUREMENT RESULTS ## Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands Test_Graph_802.11b_ANT1_2412_1Mbps_Lower Band Emissions 06:40:15 PM May 04, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N Frequency Center Freq 13.750000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast →→ IFGain:Low **Auto Tune** Mkr1 24.748 7 GHz -48.946 dBm 10 dB/div Ref 20.00 dBm Center Frea 13.750000000 GHz Start Freq 2 500000000 GHz Stop Freq 25.000000000 GHz **CF Step** 2.250000000 GHz Man Freq Offset 0 Hz Start 2.50 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz Test_Graph_802.11b_ANT1_2462_1Mbps_Higher Band Emissions 07:10:25 PM May 04, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N Frequency Center Freq 13.741750000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast →→ IFGain:Low **Auto Tune** Mkr1 24.808 6 GHz -49.982 dBm 10 dB/div Ref 20.00 dBm Center Frea 13.741750000 GHz Start Freq 2 483500000 GHz Stop Frea 25.000000000 GHz **CF Step** 2.251650000 GHz Man Freq Offset Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz Test_Graph_802.11g_ANT1_2437_6Mbps_Higher Band Emissions Web: http://www.agccert.com/ Agilent Spectrum Analyzer - Swept SA CM R RF 50 Ω AC CORREC SENSE:INT ALIGN AUTO 07:30:03 PM May 04, 2023 Center Freq 13.741750000 GHz PN0: Fast → IFG ain:Low #Atten: 30 dB PN0: Fast → Avg | Hold: 8/10 | TYPE M MAY 100 FZ A C | Low Auto T | Au Test_Graph_802.11n40_ANT1_2422_MCS0_Higher Band Emissions Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ 07:34:01 PM May 04, 2023 Frequency Center Freq 13.741750000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast →→ IFGain:Low **Auto Tune** Mkr1 24.991 7 GHz -48.290 dBm 10 dB/div Ref 20.00 dBm Center Frea 13.741750000 GHz Start Freq 2 483500000 GHz Stop Freq 25.000000000 GHz **CF Step** 2.251650000 GHz Man Freq Offset Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz Test_Graph_802.11n40_ANT1_2437_MCS0_Higher Band Emissions 07:35:54 PM May 04, 2023 TRACE 12 3 4 5 6 TYPE MWWWWWW DET P N N N N Frequency Center Freq 13.750000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast →→ IFGain:Low **Auto Tune** Mkr1 21.500 4 GHz -48.813 dBm 10 dB/div Ref 20.00 dBm Center Frea 13.750000000 GHz Start Freq 2 500000000 GHz Stop Freq 25.000000000 GHz **CF Step** 2.250000000 GHz Man Freq Offset Start 2.50 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz Test_Graph_802.11n40_ANT1_2452_MCS0_Higher Band Emissions 12:13:25 PM May 05, 2023 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N Frequency Center Freq 13.750000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast →→ IFGain:Low **Auto Tune** Mkr1 20.628 1 GHz -48.999 dBm 10 dB/div Ref 20.00 dBm Center Frea 13.750000000 GHz Start Freq 2 500000000 GHz Stop Frea 25.000000000 GHz 2.250000000 GHz Man Freq Offset Start 2.50 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz Test_Graph_802.11g_ANT2_2462_6Mbps_Higher Band Emissions 2 483500000 GHz **CF Step** 2.251650000 GHz **Stop Freq** 25.000000000 GHz Start 2.48 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 2.152 s (30000 pts) Test_Graph_802.11n20_ANT2_2437_MCS0_Higher Band Emissions Agilent Spectrum Analyzer - Swept 5A (χ) R RF 50 Ω AC CORREC SENSE:INT ALIGN AUTO 12:41:44 PM May 05, 2023 Frequency Center Freq 13.741750000 GHz PNO: Fast → IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg | Hold: 8/10 TrACE 12:3:45 G TYPE MANUAL DET PNNNNN TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 TYPE MANUAL DET PNNNNN AVg Type: Log-Pwr Avg | Hold: 8/10 8/10</t Test_Graph_802.11n40_ANT2_2422_MCS0_Higher Band Emissions Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Man Freq Offset Stop 25.00 GHz Sweep 2.152 s (30000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_ANT2_2437_MCS0_Higher Band Emissions #VBW 300 kHz Start 2.48 GHz #Res BW 100 kHz Frequency Center Freq 13.750000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast →→ IFGain:Low **Auto Tune** Mkr1 21.611 4 GHz -49.149 dBm 10 dB/div Ref 20.00 dBm Center Frea 13.750000000 GHz Start Freq 2 500000000 GHz Stop Freq -26.93 dE 25.000000000 GHz 2.250000000 GHz Man Freq Offset Start 2.50 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) #VBW 300 kHz Test_Graph_802.11n40_ANT2_2452_MCS0_Higher Band Emissions # Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_ANT1_2412_6Mbps_Lower Band Edge Emissions Test_Graph_802.11g_ANT2_2412_6Mbps_Lower Band Edge Emissions Note: Emissions from 2483.5-2500MHz which fall in the restricted bands had been considered with the radiated emission limits specified. Report No.: AGC11034230404FE04 Page 73 of 130 ### 10. POWER SPECTRAL DENSITY ### **10.1 MEASUREMENT LIMITS** The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. ### **10.2 MEASUREMENT PROCEDURE** - 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD. - 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 3. Set the RBW = 20 kHz. - 4. Set the VBW ≥ [3 × RBW]. - 5. Set the Span ≥ [1.5 × DTS bandwidth]. - 6. Sweep time=Auto couple. - 7. Detector function=Peak. - 8. Trace Mode=Max hold. - 9. When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result. - 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. - 11. The indicated level is the peak output power, after any corrections for external attenuators and cables. - For Average power spectral density test: - 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD. - 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator. - 3. Set Span to at least 1.5 times the OBW. - 4. Set RBW to:3 kHz ≤ RBW ≤ 100 kHz. - Set VBW≥[3×RBW]. - 6. Sweep Time=Auto couple. - 7. Detector function=RMS (i.e., power averaging). - 8. Trace average at least 100 traces in power averaging (rms) mode. - When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result. - 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%. - 12. Record the test results in the report. Report No.: AGC11034230404FE04 Page 74 of 130 # 10.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION) ### **10.4 MEASUREMENT RESULT** | Test Data of Conducted Output Power Spectral Density-Ant 1 | | | | | | | |--|-----------------------|------------------------------|-----------------------------|---------------------|--------------|--| | Test Mode | Test Channel
(MHz) | Power density
(dBm/20kHz) | Power density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | 802.11b | 2412 | 1.136 | -7.103 | ≤8 | Pass | | | | 2437 | 1.193 | -7.046 | ≪8 | Pass | | | | 2462 | -4.125 | -12.364 | ≤8 | Pass | | | 802.11g | 2412 | -7.924 | -16.163 | ≪8 | Pass | | | | 2437 | -7.275 | -15.514 | ≤8 | Pass | | | | 2462 | -7.266 | -15.505 | ≪8 | Pass | | | 802.11n20 | 2412 | -7.188 | -15.427 | ≤8 | Pass | | | | 2437 | -7.787 | -16.026 | ≪8 | Pass | | | | 2462 | -7.336 | -15.575 | ≤8 | Pass | | | 802.11n40 | 2422 | -11.643 | -19.882 | ≪8 | Pass | | | | 2437 | -10.720 | -18.959 | ≤8 | Pass | | | | 2452 | -11.159 | -19.398 | ≪8 | Pass | |