

ANNEX C: Calibration Reports

EPGO 360 Probe Calibration Report

SID2450 Dipole Calibration Report

EPGO360 Probe Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref : ACR.307.3.21.BES.A

MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 39/21 EPGO360

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 11/02/2021

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/11

Ref: ACR.307.3.21.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	11/3/2021	A
Checked by :	Jérôme Luc	Technical Manager	11/3/2021	23
Approved by :	Yann Toutain	Laboratory Director	11/8/2021	Gann TOUTAAN

2021.11.08 09:00:56 +01'00'

	Customer Name
Distribution :	

Issue	Name	Date	Modifications
A	Jérôme Luc	11/3/2021	Initial release

Page: 2/11

Template_ACR.DDD.N.YY.MYGB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 307 3 21 BES A

TABLE OF CONTENTS

1	Dev	rice Under Test	
2	Pro	duct Description	
2.	1	General Information	4
3	Me	asurement Method	
3.	1	Linearity	4
3.	2	Sensitivity	4
3.	3	Lower Detection Limit	5
3.	4	Isotropy	5
3.	1	Boundary Effect	5
4	Mea	asurement Uncertainty	
5	Cal	ibration Measurement Results	
5.	1	Sensitivity in air	6
5.	2	Linearity	7
5.	3	Sensitivity in liquid	8
5.	4	Isotropy	s
6	List	of Equipment	

Page: 3/11

Template_ACR.DDD.N. **TY.MV GB.ISSUE_COMOSAR Probe vK**This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be used
only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

1

COMOSAR E-FIELD PROBE CALIBRATION REPORT

DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 39/21 EPGO360		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.199 MΩ		
5.0	Dipole 2: R2=0.218 MΩ		
	Dipole 3: R3=0.210 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Template_ACR.DDD.N. IT.MV GB.ISSUE_COMOSAR Probe vk This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submatted and is not to be released in whole or part without written approval of MVG.

Ref ACR 307 3 21 BES A

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{stee}$ along lines that are approximately normal to the surface:

SAR_{uncertainty}
$$[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{aup}\right)^2}{2d_{step}} \frac{\left(e^{-4e^{i\beta}(\theta)}\right)}{\delta/2}$$
 for $\left(d_{be} + d_{aup}\right) < 10 \text{ mm}$
where
SAR_{uncertainty} is the uncertainty in percent of the probe boundary effect
 d_{be} is the distance between the surface and the closest *zoom-scan* measurement
point, in millimetre
is the separation distance between the first and second measurement points that
are closest to the phantom surface, in millimetre, assuming the boundary effect
at the second location is negligible
 δ is the minimum penetration depth in millimetres of the head tissue-equivalent
liquids defined in this standard, i.e., $\delta \approx 14 \text{ mm}$ at 3 GHz.

 ΔSAR_{bc} in percent of SAR is the deviation between the measured SAR value, at the distance d_{bc} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref ACR 307 3 21 BES A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe of	calibration in wave	guide			
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

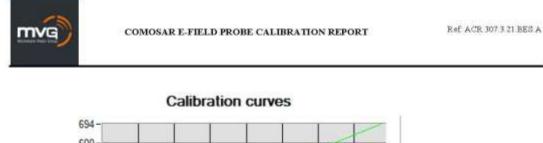
Calibration Parameters				
Liquid Temperature 20 +/- 1 °C				
Lab Temperature	20 +/- 1 °C			
Lab Humidity	30-70 %			

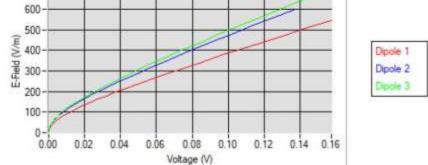
5.1 SENSITIVITY IN AIR

		Normz dipole 3 (µV/(V/m) ²)
1.26	0.87	0.77

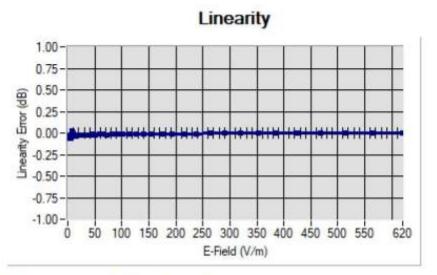
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
113	108	113

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:


$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$


Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vE


This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be seed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

5.2 LINEARITY

Linearity:+/-1.42% (+/-0.06dB)

Page: 7/11

Template_ACR.DDD.N.YT.MV GB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVO. The information contained herein is to be seed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

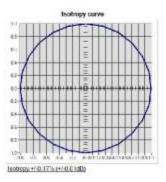
Ref: ACR 307 3 21 BES A

5.3 SENSITIVITY IN LIQUID

Liquid	<u>Frequency</u> <u>(MHz +/-</u> 100MHz)	ConvF
HL600	600	1.62
HL750	750	1.65
HL850	835	1.66
HL900	900	1.77
HL1500	1500	2.09
HL1750	1750	2.09
HL1800	1800	2.05
HL1900	1900	2.05
HL2000	2000	2.41
HL2100	2100	2.36
HL2300	2300	2.55
HL2450	2450	2.38
HL2600	2600	2.35
HL3300	3300	2.04
HL3500	3500	1.98
HL3700	3700	2.11
HL3900	3900	2.54
HL4200	4200	2.22
HL4600	4600	2.40
HL4900	4900	2.33
HL5200	5200	2.30
HL5400	5400	2.30
HL5600	5600	2.29
HL5800	5800	2.27

LOWER DETECTION LIMIT: 8mW/kg

Page: 8/11


Template_ACR.DDD.N.YT.MV GB.ISSUE_COMOSAR Probe vik This document shall not be reproduced, except vi full or in part, without the written approval of MVO. The information contained herein is to be seed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref: ACR 307 3 21 BES A

5.4 ISOTROPY HL1800 MHz

Page: 9/11

Template_ACR.DDD.N.YT.MV GB.ISSUE_COMOSAR Probe vik This document shall not be reproduced, except vi full or in part, without the written approval of MVO. The information contained herein is to be seed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref: ACR 307 3 21 BES A

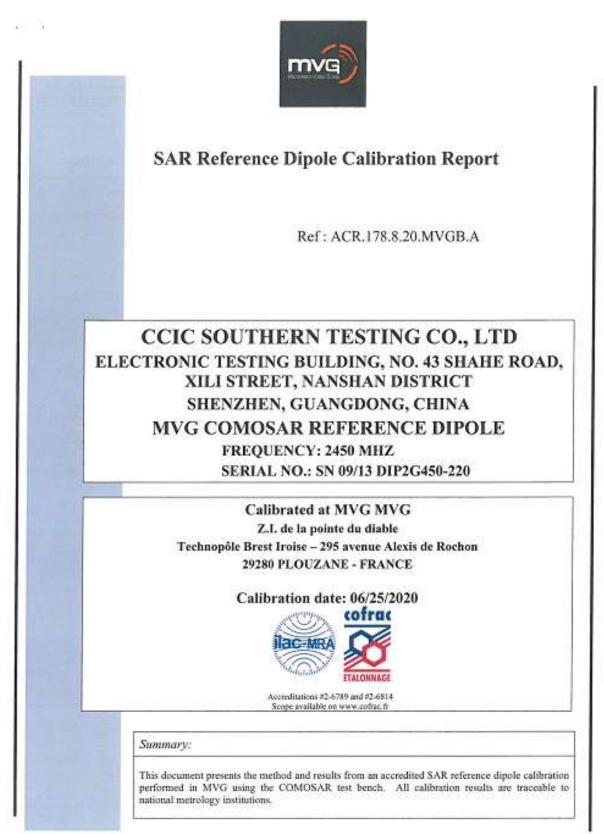
6 LIST OF EQUIPMENT

Equipment	Manufacturer /	Identification No.	Current	Next Calibration
Description	Model	Tuchinication : (0)	Calibration Date	Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Multimeter	Keithley 2000	1160271	02/2020	02/2023
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022
Amplifier	MVG	MODU-023-C-0002		Characterized prior to test. No cal required
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated, No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.

Page: 10/11

Template_ACR.DDD.N.YT.MV GB.ISSUE_COMOSAR Probe vik This document shall not be reproduced, except vi full or in part, without the written approval of MVO. The information contained herein is to be seed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

Ref: ACR 307 3 21 BES A


Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated, No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 11/11

Template_ACR.DDD.N.YT.MVGB.ISSUE_COMOSAR Probe vik This document shall not be reproduced, except vi full or in part, without the written approval of MVO. The information contained herein is to be seed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVO.

SID2450 Dipole Calibration Report

Page: 1/11

Ref: ACR 178.8.20 MVGB A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Technical Manager	6/26/2020	TZ
Checked by :	Jérôme LUC	Technical Manager	6/26/2020	Je-
Approved by :	Yann Toutain	Laboratory Director	6/26/2020	CIE.

Customer Name		
CCIC SOUTHERN		
TESTING CO.,		
LTD		

Issue	Name	Date	Modifications
A	Jérôme LUC	6/26/2020	Initial release

Page: 2/11

Template_ACE,DDD.N.YY.MV GB.ISSUE_SAR Reference Dipute vG. This document shall not be reproduced, except to full or in part, without the written approval of MPG. The information contained berein is to be used only for the purpose for which it is tabmitted and it not to be refeased in whole or part without written approval of MPG.

Ref: ACR.178.8.20 MVGB A

TABLE OF CONTENTS

1	Int	roduction4	
2		vice Under Test	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	5
б	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	
7	Val	idation measurement	
	7.I	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

Template_ACR.DDD.9. YY.MVGB,ISSUE_SAR Reference Dipole vG This document shall not be reproduced, encept in full or in part, without the written appeared of MFG. The information contained herein is to be used only for the purpose for which is is submitted and is not to be released in whole or part without written approval of MFG.

Ref: ACR 178.8.20 MVGB A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

D	evice Under Test
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID2450
Serial Number	SN 09/13 DIP2G450-220
Product Condition (new / used)	Used

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - MVG COMOSAR Validation Dipole

Page: 4/11

Template ACR.DHD.N.YT.MVGR.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MVG. The beformation contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MYG.

mvq

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.178.8.20.MVGB.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEL/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
0 - 300	0.20 mm		
300 - 450	0.44 mm		

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

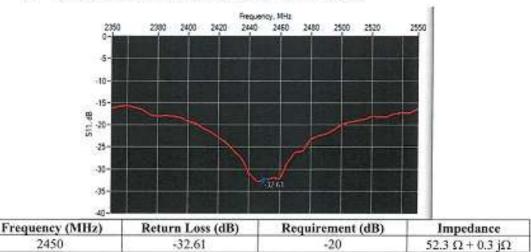
Scan Volume	Expanded Uncertainty

Page: 5/11

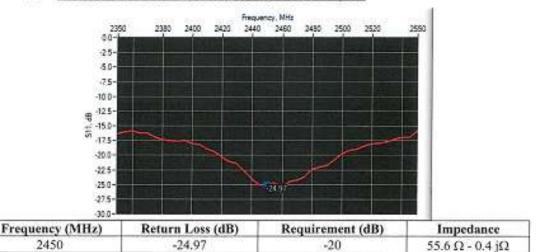
Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vG

This document shall not be repredicted, except in full or to pert, without the writen approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

mvg


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 178 8 20 MVGB A


1 g	19 % (SAR)
10 g	19 % (SAR)

CALIBRATION MEASUREMENT RESULTS 6

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L	mm.	hr	nm	d	mm
	required	measured	required	measured	required	measured

Page: 6/11

Template_ACR.DDD.N. VY.MV GB.ISSUE_NAR Reference Dipole +G This document shall not be reproduced, encept in full or up part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

B B V/C

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 178.8.20 MVGB A

300	420.0 ±1 %.		250.0±1%.		6.35 ±1 %.
450	290.0 ±1 %.		166.7±1%.		6.35 ±1 %.
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %;
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.
900	149.0±1%.		83.3 ±1 %.		3.6 ±1 %.
1450	89.1 ±1 %.		51.7±1%.		3.6 ±1 %.
1500	80.5 ±1 %		50.0 ±1 %.		3.6 ±1 %.
1640	79.0 ±1%.		45.7 ±1 %		3.6 ±1 %.
1750	75.2 ±1 %.	_	42.9 ±1 %.		3.6 ±1 %.
1800	72.0 ±1 %.		41.7 ±1 %.		3.6±1%.
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %,
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.
2000	64.5±1%.		37.5 ±1 %.		3.6 ±1 %.
2100	61.0±1%.		35.7±1%.		3.6 ±1 %.
2300	55.5 ±1 %		32.6 ±1 %.		3.6 ±1 %.
2450	51.5 ±1 %.	.+:	30.4 ±1 %.	- 20	3.6 ±1 %.
2600	48.5±1%		28.8 ±1 %.		3.6 ±1 %.
3000	41.5±1%.		25.0 ±1 %.		3.6 ±1 %.
3500	37.0±1 %.		25.4 ±1 %.		3.6 ±1 %.
3700	34.7±1 %.		26.4 ±1 %		3.5 ±1 %.

VALIDATION MEASUREMENT 7

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity $(c_{\rm f}')$		Conductivity (o) S/m	
	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5 ±10 %		0.90 ±10 %	
900	41.5±10%		0.97 ±10 %	
1450	40.5 ±10 %		1.20 ±10 %	
1500	40.4 ±10 %		1.23 ±10 %	
1640	40.2 ±10 %		1.31 ±10 %	

Page: 7/11

Template_ACR.DDD.N. VY. 414 GR.155U/E_SAR Reference: Dipule +G This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be weed only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.178.8.20.MVGB.A

1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	
2100	39.8±10%		1.49 ±10 %	
2300	39.5 ±10 %		1.67±10%	
2450	39.2 ±10 %	41.9	1.80 ±10 %	1.88
2600	39.0 ±10.%		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

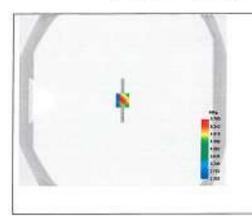
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

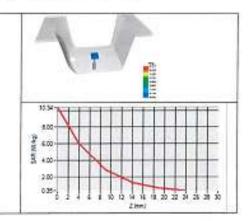
Software	OPENSAR V5		
Phantom	SN 13/09 SAM68		
Probe	SN 41/18 EPGO333		
Liquid	Head Liquid Values: eps" : 41.9 sigma : 1.88		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85		1.94	
450	4.58	1	3.05	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19,3	

Page: 8/11

Template_ACR, DDD.N, YY.MFGB, ISSUE_SAR. Reference: Dipole +6G This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.




mvg

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR, 178.8.20.MVGB, A

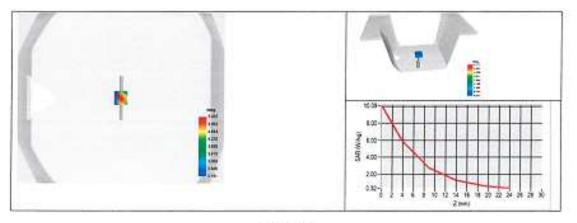
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	53.71 (5.37)	24	24.17 (2.42)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67.1		25	
3700	67.4		24.2	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity $(\epsilon_{\rm r}')$		Conductivity (o) S/m	
	required	measured	required	measures
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94 ±10 %	
750	55.5±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0±10%		1.05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0±10%	l)	1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	_
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.52 ±10 %	

Page: 9/11

Template_ACR.DDD.N.YY.MY GB.ISSUE_SAR.Reference Dipole vG This document shall not be rependiced, except in full or in part, without the written approval of MPG. The information contained berein is to be used only for the purpose for whick it is submitted and is not to be released be whole or part without written approval of MPG.


Ref: ACR.178.8.20.MVGB.A

2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %	53.4	1.95 ±10 %	2.14
2600	52.5 ±10 %		2.16 ±10 %	
3000	52.0 ±10 %		2.73 ±10 %	
3500	51.3 ±10 %		3.31 ±10 %	
3700	51.0±10%		3.55 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %	_	5.53 ±10 %	
5500	48.6 ±10 %		5.65±10 %	
5600	48.5 ±10 %		5.77±10%	
5800	48.2 ±10 %		6.00±10%	

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5		
Phantom	SN 13/09 SAM68		
Probe	SN 41/18 EPGO333		
Liquid	Body Liquid Values: eps* : 53.4 sigma : 2.14		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 *C		
Lab-Humidity	30-70 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	54.83 (5.48)	23.59 (2.36)	

Page: 10/11

Template_ACR.DDD.X.YE.MPGB.ISSUE_SAR Reference Dipute vG This document shall not be reproduced, except to full or in part, without the written approval of MPG. The information contained barrin is to be used only for the purpose for which it is rabmitted and is not to be released in whole or part without written approval of MPG.

Ref: ACR.178.8.20.MVGB.A

8 LIST OF EQUIPMENT

The second second second	N. C.		0	No. Contraction	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	MVG	SN-13/09-SAM68	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	05/2019	05/2022	
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2019	05/2022	
Calipers	Mitutoyo	SN 0009732	10/2019	10/2022	
Reference Probe	MVG	EPGO333 SN 41/18	05/2020	05/2021	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	04/2019	04/2022	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required	
Power Meter	NI-USB 5680	170100013	05/2019	05/2022	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.		
Temperature / Humidity Sensor	Control Company	150798832	11/2017	11/2020	

Page: 11/11

Temphate_ACR_DDD, N.YY.MUGR.ISSUE_SAR Reference Dipole vG This document shall not be reproduced, except in full or in part, without the written approval of MPG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MPG.